Skip to content
Snippets Groups Projects
Select Git revision
  • b811580d91e9c0945b0a923dcec3e10cce04ac30
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

route.c

Blame
  • pagemap.h 18.87 KiB
    #ifndef _LINUX_PAGEMAP_H
    #define _LINUX_PAGEMAP_H
    
    /*
     * Copyright 1995 Linus Torvalds
     */
    #include <linux/mm.h>
    #include <linux/fs.h>
    #include <linux/list.h>
    #include <linux/highmem.h>
    #include <linux/compiler.h>
    #include <asm/uaccess.h>
    #include <linux/gfp.h>
    #include <linux/bitops.h>
    #include <linux/hardirq.h> /* for in_interrupt() */
    #include <linux/hugetlb_inline.h>
    
    /*
     * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
     * allocation mode flags.
     */
    enum mapping_flags {
    	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
    	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
    	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
    	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
    	AS_EXITING	= __GFP_BITS_SHIFT + 4, /* final truncate in progress */
    };
    
    static inline void mapping_set_error(struct address_space *mapping, int error)
    {
    	if (unlikely(error)) {
    		if (error == -ENOSPC)
    			set_bit(AS_ENOSPC, &mapping->flags);
    		else
    			set_bit(AS_EIO, &mapping->flags);
    	}
    }
    
    static inline void mapping_set_unevictable(struct address_space *mapping)
    {
    	set_bit(AS_UNEVICTABLE, &mapping->flags);
    }
    
    static inline void mapping_clear_unevictable(struct address_space *mapping)
    {
    	clear_bit(AS_UNEVICTABLE, &mapping->flags);
    }
    
    static inline int mapping_unevictable(struct address_space *mapping)
    {
    	if (mapping)
    		return test_bit(AS_UNEVICTABLE, &mapping->flags);
    	return !!mapping;
    }
    
    static inline void mapping_set_exiting(struct address_space *mapping)
    {
    	set_bit(AS_EXITING, &mapping->flags);
    }
    
    static inline int mapping_exiting(struct address_space *mapping)
    {
    	return test_bit(AS_EXITING, &mapping->flags);
    }
    
    static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
    {
    	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
    }
    
    /* Restricts the given gfp_mask to what the mapping allows. */
    static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
    		gfp_t gfp_mask)
    {
    	return mapping_gfp_mask(mapping) & gfp_mask;
    }
    
    /*
     * This is non-atomic.  Only to be used before the mapping is activated.
     * Probably needs a barrier...
     */
    static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
    {
    	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
    				(__force unsigned long)mask;
    }
    
    void release_pages(struct page **pages, int nr, bool cold);
    
    /*
     * speculatively take a reference to a page.
     * If the page is free (_refcount == 0), then _refcount is untouched, and 0
     * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
     *
     * This function must be called inside the same rcu_read_lock() section as has
     * been used to lookup the page in the pagecache radix-tree (or page table):
     * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
     *
     * Unless an RCU grace period has passed, the count of all pages coming out
     * of the allocator must be considered unstable. page_count may return higher
     * than expected, and put_page must be able to do the right thing when the
     * page has been finished with, no matter what it is subsequently allocated
     * for (because put_page is what is used here to drop an invalid speculative
     * reference).
     *
     * This is the interesting part of the lockless pagecache (and lockless
     * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
     * has the following pattern:
     * 1. find page in radix tree
     * 2. conditionally increment refcount
     * 3. check the page is still in pagecache (if no, goto 1)
     *
     * Remove-side that cares about stability of _refcount (eg. reclaim) has the
     * following (with tree_lock held for write):
     * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
     * B. remove page from pagecache
     * C. free the page
     *
     * There are 2 critical interleavings that matter:
     * - 2 runs before A: in this case, A sees elevated refcount and bails out
     * - A runs before 2: in this case, 2 sees zero refcount and retries;
     *   subsequently, B will complete and 1 will find no page, causing the
     *   lookup to return NULL.
     *
     * It is possible that between 1 and 2, the page is removed then the exact same
     * page is inserted into the same position in pagecache. That's OK: the
     * old find_get_page using tree_lock could equally have run before or after
     * such a re-insertion, depending on order that locks are granted.
     *
     * Lookups racing against pagecache insertion isn't a big problem: either 1
     * will find the page or it will not. Likewise, the old find_get_page could run
     * either before the insertion or afterwards, depending on timing.
     */
    static inline int page_cache_get_speculative(struct page *page)
    {
    	VM_BUG_ON(in_interrupt());
    
    #ifdef CONFIG_TINY_RCU
    # ifdef CONFIG_PREEMPT_COUNT
    	VM_BUG_ON(!in_atomic());
    # endif
    	/*
    	 * Preempt must be disabled here - we rely on rcu_read_lock doing
    	 * this for us.
    	 *
    	 * Pagecache won't be truncated from interrupt context, so if we have
    	 * found a page in the radix tree here, we have pinned its refcount by
    	 * disabling preempt, and hence no need for the "speculative get" that
    	 * SMP requires.
    	 */
    	VM_BUG_ON_PAGE(page_count(page) == 0, page);
    	page_ref_inc(page);
    
    #else
    	if (unlikely(!get_page_unless_zero(page))) {
    		/*
    		 * Either the page has been freed, or will be freed.
    		 * In either case, retry here and the caller should
    		 * do the right thing (see comments above).
    		 */
    		return 0;
    	}
    #endif
    	VM_BUG_ON_PAGE(PageTail(page), page);
    
    	return 1;
    }
    
    /*
     * Same as above, but add instead of inc (could just be merged)
     */
    static inline int page_cache_add_speculative(struct page *page, int count)
    {
    	VM_BUG_ON(in_interrupt());
    
    #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
    # ifdef CONFIG_PREEMPT_COUNT
    	VM_BUG_ON(!in_atomic());
    # endif
    	VM_BUG_ON_PAGE(page_count(page) == 0, page);
    	page_ref_add(page, count);
    
    #else
    	if (unlikely(!page_ref_add_unless(page, count, 0)))
    		return 0;
    #endif
    	VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
    
    	return 1;
    }
    
    #ifdef CONFIG_NUMA
    extern struct page *__page_cache_alloc(gfp_t gfp);
    #else
    static inline struct page *__page_cache_alloc(gfp_t gfp)
    {
    	return alloc_pages(gfp, 0);
    }
    #endif
    
    static inline struct page *page_cache_alloc(struct address_space *x)
    {
    	return __page_cache_alloc(mapping_gfp_mask(x));
    }
    
    static inline struct page *page_cache_alloc_cold(struct address_space *x)
    {
    	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
    }
    
    static inline gfp_t readahead_gfp_mask(struct address_space *x)
    {
    	return mapping_gfp_mask(x) |
    				  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
    }
    
    typedef int filler_t(void *, struct page *);
    
    pgoff_t page_cache_next_hole(struct address_space *mapping,
    			     pgoff_t index, unsigned long max_scan);
    pgoff_t page_cache_prev_hole(struct address_space *mapping,
    			     pgoff_t index, unsigned long max_scan);
    
    #define FGP_ACCESSED		0x00000001
    #define FGP_LOCK		0x00000002
    #define FGP_CREAT		0x00000004
    #define FGP_WRITE		0x00000008
    #define FGP_NOFS		0x00000010
    #define FGP_NOWAIT		0x00000020
    
    struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
    		int fgp_flags, gfp_t cache_gfp_mask);
    
    /**
     * find_get_page - find and get a page reference
     * @mapping: the address_space to search
     * @offset: the page index
     *
     * Looks up the page cache slot at @mapping & @offset.  If there is a
     * page cache page, it is returned with an increased refcount.
     *
     * Otherwise, %NULL is returned.
     */
    static inline struct page *find_get_page(struct address_space *mapping,
    					pgoff_t offset)
    {
    	return pagecache_get_page(mapping, offset, 0, 0);
    }
    
    static inline struct page *find_get_page_flags(struct address_space *mapping,
    					pgoff_t offset, int fgp_flags)
    {
    	return pagecache_get_page(mapping, offset, fgp_flags, 0);
    }
    
    /**
     * find_lock_page - locate, pin and lock a pagecache page
     * pagecache_get_page - find and get a page reference
     * @mapping: the address_space to search
     * @offset: the page index
     *
     * Looks up the page cache slot at @mapping & @offset.  If there is a
     * page cache page, it is returned locked and with an increased
     * refcount.
     *
     * Otherwise, %NULL is returned.
     *
     * find_lock_page() may sleep.
     */
    static inline struct page *find_lock_page(struct address_space *mapping,
    					pgoff_t offset)
    {
    	return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
    }
    
    /**
     * find_or_create_page - locate or add a pagecache page
     * @mapping: the page's address_space
     * @index: the page's index into the mapping
     * @gfp_mask: page allocation mode
     *
     * Looks up the page cache slot at @mapping & @offset.  If there is a
     * page cache page, it is returned locked and with an increased
     * refcount.
     *
     * If the page is not present, a new page is allocated using @gfp_mask
     * and added to the page cache and the VM's LRU list.  The page is
     * returned locked and with an increased refcount.
     *
     * On memory exhaustion, %NULL is returned.
     *
     * find_or_create_page() may sleep, even if @gfp_flags specifies an
     * atomic allocation!
     */
    static inline struct page *find_or_create_page(struct address_space *mapping,
    					pgoff_t offset, gfp_t gfp_mask)
    {
    	return pagecache_get_page(mapping, offset,
    					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
    					gfp_mask);
    }
    
    /**
     * grab_cache_page_nowait - returns locked page at given index in given cache
     * @mapping: target address_space
     * @index: the page index
     *
     * Same as grab_cache_page(), but do not wait if the page is unavailable.
     * This is intended for speculative data generators, where the data can
     * be regenerated if the page couldn't be grabbed.  This routine should
     * be safe to call while holding the lock for another page.
     *
     * Clear __GFP_FS when allocating the page to avoid recursion into the fs
     * and deadlock against the caller's locked page.
     */
    static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
    				pgoff_t index)
    {
    	return pagecache_get_page(mapping, index,
    			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
    			mapping_gfp_mask(mapping));
    }
    
    struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
    struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
    unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
    			  unsigned int nr_entries, struct page **entries,
    			  pgoff_t *indices);
    unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
    			unsigned int nr_pages, struct page **pages);
    unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
    			       unsigned int nr_pages, struct page **pages);
    unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
    			int tag, unsigned int nr_pages, struct page **pages);
    unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
    			int tag, unsigned int nr_entries,
    			struct page **entries, pgoff_t *indices);
    
    struct page *grab_cache_page_write_begin(struct address_space *mapping,
    			pgoff_t index, unsigned flags);
    
    /*
     * Returns locked page at given index in given cache, creating it if needed.
     */
    static inline struct page *grab_cache_page(struct address_space *mapping,
    								pgoff_t index)
    {
    	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
    }
    
    extern struct page * read_cache_page(struct address_space *mapping,
    				pgoff_t index, filler_t *filler, void *data);
    extern struct page * read_cache_page_gfp(struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    extern int read_cache_pages(struct address_space *mapping,
    		struct list_head *pages, filler_t *filler, void *data);
    
    static inline struct page *read_mapping_page(struct address_space *mapping,
    				pgoff_t index, void *data)
    {
    	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
    	return read_cache_page(mapping, index, filler, data);
    }
    
    /*
     * Get the offset in PAGE_SIZE.
     * (TODO: hugepage should have ->index in PAGE_SIZE)
     */
    static inline pgoff_t page_to_pgoff(struct page *page)
    {
    	pgoff_t pgoff;
    
    	if (unlikely(PageHeadHuge(page)))
    		return page->index << compound_order(page);
    
    	if (likely(!PageTransTail(page)))
    		return page->index;
    
    	/*
    	 *  We don't initialize ->index for tail pages: calculate based on
    	 *  head page
    	 */
    	pgoff = compound_head(page)->index;
    	pgoff += page - compound_head(page);
    	return pgoff;
    }
    
    /*
     * Return byte-offset into filesystem object for page.
     */
    static inline loff_t page_offset(struct page *page)
    {
    	return ((loff_t)page->index) << PAGE_SHIFT;
    }
    
    static inline loff_t page_file_offset(struct page *page)
    {
    	return ((loff_t)page_file_index(page)) << PAGE_SHIFT;
    }
    
    extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
    				     unsigned long address);
    
    static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
    					unsigned long address)
    {
    	pgoff_t pgoff;
    	if (unlikely(is_vm_hugetlb_page(vma)))
    		return linear_hugepage_index(vma, address);
    	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
    	pgoff += vma->vm_pgoff;
    	return pgoff;
    }
    
    extern void __lock_page(struct page *page);
    extern int __lock_page_killable(struct page *page);
    extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
    				unsigned int flags);
    extern void unlock_page(struct page *page);
    
    static inline int trylock_page(struct page *page)
    {
    	page = compound_head(page);
    	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
    }
    
    /*
     * lock_page may only be called if we have the page's inode pinned.
     */
    static inline void lock_page(struct page *page)
    {
    	might_sleep();
    	if (!trylock_page(page))
    		__lock_page(page);
    }
    
    /*
     * lock_page_killable is like lock_page but can be interrupted by fatal
     * signals.  It returns 0 if it locked the page and -EINTR if it was
     * killed while waiting.
     */
    static inline int lock_page_killable(struct page *page)
    {
    	might_sleep();
    	if (!trylock_page(page))
    		return __lock_page_killable(page);
    	return 0;
    }
    
    /*
     * lock_page_or_retry - Lock the page, unless this would block and the
     * caller indicated that it can handle a retry.
     *
     * Return value and mmap_sem implications depend on flags; see
     * __lock_page_or_retry().
     */
    static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
    				     unsigned int flags)
    {
    	might_sleep();
    	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
    }
    
    /*
     * This is exported only for wait_on_page_locked/wait_on_page_writeback,
     * and for filesystems which need to wait on PG_private.
     */
    extern void wait_on_page_bit(struct page *page, int bit_nr);
    
    extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
    extern int wait_on_page_bit_killable_timeout(struct page *page,
    					     int bit_nr, unsigned long timeout);
    
    static inline int wait_on_page_locked_killable(struct page *page)
    {
    	if (!PageLocked(page))
    		return 0;
    	return wait_on_page_bit_killable(compound_head(page), PG_locked);
    }
    
    extern wait_queue_head_t *page_waitqueue(struct page *page);
    static inline void wake_up_page(struct page *page, int bit)
    {
    	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
    }
    
    /* 
     * Wait for a page to be unlocked.
     *
     * This must be called with the caller "holding" the page,
     * ie with increased "page->count" so that the page won't
     * go away during the wait..
     */
    static inline void wait_on_page_locked(struct page *page)
    {
    	if (PageLocked(page))
    		wait_on_page_bit(compound_head(page), PG_locked);
    }
    
    /* 
     * Wait for a page to complete writeback
     */
    static inline void wait_on_page_writeback(struct page *page)
    {
    	if (PageWriteback(page))
    		wait_on_page_bit(page, PG_writeback);
    }
    
    extern void end_page_writeback(struct page *page);
    void wait_for_stable_page(struct page *page);
    
    void page_endio(struct page *page, bool is_write, int err);
    
    /*
     * Add an arbitrary waiter to a page's wait queue
     */
    extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
    
    /*
     * Fault one or two userspace pages into pagetables.
     * Return -EINVAL if more than two pages would be needed.
     * Return non-zero on a fault.
     */
    static inline int fault_in_pages_writeable(char __user *uaddr, int size)
    {
    	int span, ret;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	span = offset_in_page(uaddr) + size;
    	if (span > 2 * PAGE_SIZE)
    		return -EINVAL;
    	/*
    	 * Writing zeroes into userspace here is OK, because we know that if
    	 * the zero gets there, we'll be overwriting it.
    	 */
    	ret = __put_user(0, uaddr);
    	if (ret == 0 && span > PAGE_SIZE)
    		ret = __put_user(0, uaddr + size - 1);
    	return ret;
    }
    
    static inline int fault_in_pages_readable(const char __user *uaddr, int size)
    {
    	volatile char c;
    	int ret;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	ret = __get_user(c, uaddr);
    	if (ret == 0) {
    		const char __user *end = uaddr + size - 1;
    
    		if (((unsigned long)uaddr & PAGE_MASK) !=
    				((unsigned long)end & PAGE_MASK)) {
    			ret = __get_user(c, end);
    			(void)c;
    		}
    	}
    	return ret;
    }
    
    /*
     * Multipage variants of the above prefault helpers, useful if more than
     * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
     * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
     * filemap.c hotpaths.
     */
    static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
    {
    	char __user *end = uaddr + size - 1;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	if (unlikely(uaddr > end))
    		return -EFAULT;
    	/*
    	 * Writing zeroes into userspace here is OK, because we know that if
    	 * the zero gets there, we'll be overwriting it.
    	 */
    	do {
    		if (unlikely(__put_user(0, uaddr) != 0))
    			return -EFAULT;
    		uaddr += PAGE_SIZE;
    	} while (uaddr <= end);
    
    	/* Check whether the range spilled into the next page. */
    	if (((unsigned long)uaddr & PAGE_MASK) ==
    			((unsigned long)end & PAGE_MASK))
    		return __put_user(0, end);
    
    	return 0;
    }
    
    static inline int fault_in_multipages_readable(const char __user *uaddr,
    					       int size)
    {
    	volatile char c;
    	const char __user *end = uaddr + size - 1;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	if (unlikely(uaddr > end))
    		return -EFAULT;
    
    	do {
    		if (unlikely(__get_user(c, uaddr) != 0))
    			return -EFAULT;
    		uaddr += PAGE_SIZE;
    	} while (uaddr <= end);
    
    	/* Check whether the range spilled into the next page. */
    	if (((unsigned long)uaddr & PAGE_MASK) ==
    			((unsigned long)end & PAGE_MASK)) {
    		return __get_user(c, end);
    	}
    
    	return 0;
    }
    
    int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    extern void delete_from_page_cache(struct page *page);
    extern void __delete_from_page_cache(struct page *page, void *shadow);
    int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
    
    /*
     * Like add_to_page_cache_locked, but used to add newly allocated pages:
     * the page is new, so we can just run __SetPageLocked() against it.
     */
    static inline int add_to_page_cache(struct page *page,
    		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
    {
    	int error;
    
    	__SetPageLocked(page);
    	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
    	if (unlikely(error))
    		__ClearPageLocked(page);
    	return error;
    }
    
    static inline unsigned long dir_pages(struct inode *inode)
    {
    	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
    			       PAGE_SHIFT;
    }
    
    #endif /* _LINUX_PAGEMAP_H */