Skip to content
Snippets Groups Projects
Select Git revision
  • bc1fc6d88c646ea071de34250552051a63000d70
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

util.c

Blame
  • util.c 19.68 KiB
    /*
     * linux/ipc/util.c
     * Copyright (C) 1992 Krishna Balasubramanian
     *
     * Sep 1997 - Call suser() last after "normal" permission checks so we
     *            get BSD style process accounting right.
     *            Occurs in several places in the IPC code.
     *            Chris Evans, <chris@ferret.lmh.ox.ac.uk>
     * Nov 1999 - ipc helper functions, unified SMP locking
     *	      Manfred Spraul <manfred@colorfullife.com>
     * Oct 2002 - One lock per IPC id. RCU ipc_free for lock-free grow_ary().
     *            Mingming Cao <cmm@us.ibm.com>
     * Mar 2006 - support for audit of ipc object properties
     *            Dustin Kirkland <dustin.kirkland@us.ibm.com>
     * Jun 2006 - namespaces ssupport
     *            OpenVZ, SWsoft Inc.
     *            Pavel Emelianov <xemul@openvz.org>
     */
    
    #include <linux/mm.h>
    #include <linux/shm.h>
    #include <linux/init.h>
    #include <linux/msg.h>
    #include <linux/smp_lock.h>
    #include <linux/vmalloc.h>
    #include <linux/slab.h>
    #include <linux/capability.h>
    #include <linux/highuid.h>
    #include <linux/security.h>
    #include <linux/rcupdate.h>
    #include <linux/workqueue.h>
    #include <linux/seq_file.h>
    #include <linux/proc_fs.h>
    #include <linux/audit.h>
    #include <linux/nsproxy.h>
    
    #include <asm/unistd.h>
    
    #include "util.h"
    
    struct ipc_proc_iface {
    	const char *path;
    	const char *header;
    	int ids;
    	int (*show)(struct seq_file *, void *);
    };
    
    struct ipc_namespace init_ipc_ns = {
    	.kref = {
    		.refcount	= ATOMIC_INIT(2),
    	},
    };
    
    #ifdef CONFIG_IPC_NS
    static struct ipc_namespace *clone_ipc_ns(struct ipc_namespace *old_ns)
    {
    	int err;
    	struct ipc_namespace *ns;
    
    	err = -ENOMEM;
    	ns = kmalloc(sizeof(struct ipc_namespace), GFP_KERNEL);
    	if (ns == NULL)
    		goto err_mem;
    
    	err = sem_init_ns(ns);
    	if (err)
    		goto err_sem;
    	err = msg_init_ns(ns);
    	if (err)
    		goto err_msg;
    	err = shm_init_ns(ns);
    	if (err)
    		goto err_shm;
    
    	kref_init(&ns->kref);
    	return ns;
    
    err_shm:
    	msg_exit_ns(ns);
    err_msg:
    	sem_exit_ns(ns);
    err_sem:
    	kfree(ns);
    err_mem:
    	return ERR_PTR(err);
    }
    
    int unshare_ipcs(unsigned long unshare_flags, struct ipc_namespace **new_ipc)
    {
    	struct ipc_namespace *new;
    
    	if (unshare_flags & CLONE_NEWIPC) {
    		if (!capable(CAP_SYS_ADMIN))
    			return -EPERM;
    
    		new = clone_ipc_ns(current->nsproxy->ipc_ns);
    		if (IS_ERR(new))
    			return PTR_ERR(new);
    
    		*new_ipc = new;
    	}
    
    	return 0;
    }
    
    int copy_ipcs(unsigned long flags, struct task_struct *tsk)
    {
    	struct ipc_namespace *old_ns = tsk->nsproxy->ipc_ns;
    	struct ipc_namespace *new_ns;
    	int err = 0;
    
    	if (!old_ns)
    		return 0;
    
    	get_ipc_ns(old_ns);
    
    	if (!(flags & CLONE_NEWIPC))
    		return 0;
    
    	if (!capable(CAP_SYS_ADMIN)) {
    		err = -EPERM;
    		goto out;
    	}
    
    	new_ns = clone_ipc_ns(old_ns);
    	if (!new_ns) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	tsk->nsproxy->ipc_ns = new_ns;
    out:
    	put_ipc_ns(old_ns);
    	return err;
    }
    
    void free_ipc_ns(struct kref *kref)
    {
    	struct ipc_namespace *ns;
    
    	ns = container_of(kref, struct ipc_namespace, kref);
    	sem_exit_ns(ns);
    	msg_exit_ns(ns);
    	shm_exit_ns(ns);
    	kfree(ns);
    }
    #endif
    
    /**
     *	ipc_init	-	initialise IPC subsystem
     *
     *	The various system5 IPC resources (semaphores, messages and shared
     *	memory) are initialised
     */
     
    static int __init ipc_init(void)
    {
    	sem_init();
    	msg_init();
    	shm_init();
    	return 0;
    }
    __initcall(ipc_init);
    
    /**
     *	ipc_init_ids		-	initialise IPC identifiers
     *	@ids: Identifier set
     *	@size: Number of identifiers
     *
     *	Given a size for the ipc identifier range (limited below IPCMNI)
     *	set up the sequence range to use then allocate and initialise the
     *	array itself. 
     */
     
    void __ipc_init ipc_init_ids(struct ipc_ids* ids, int size)
    {
    	int i;
    
    	mutex_init(&ids->mutex);
    
    	if(size > IPCMNI)
    		size = IPCMNI;
    	ids->in_use = 0;
    	ids->max_id = -1;
    	ids->seq = 0;
    	{
    		int seq_limit = INT_MAX/SEQ_MULTIPLIER;
    		if(seq_limit > USHRT_MAX)
    			ids->seq_max = USHRT_MAX;
    		 else
    		 	ids->seq_max = seq_limit;
    	}
    
    	ids->entries = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*size +
    				     sizeof(struct ipc_id_ary));
    
    	if(ids->entries == NULL) {
    		printk(KERN_ERR "ipc_init_ids() failed, ipc service disabled.\n");
    		size = 0;
    		ids->entries = &ids->nullentry;
    	}
    	ids->entries->size = size;
    	for(i=0;i<size;i++)
    		ids->entries->p[i] = NULL;
    }
    
    #ifdef CONFIG_PROC_FS
    static struct file_operations sysvipc_proc_fops;
    /**
     *	ipc_init_proc_interface	-  Create a proc interface for sysipc types using a seq_file interface.
     *	@path: Path in procfs
     *	@header: Banner to be printed at the beginning of the file.
     *	@ids: ipc id table to iterate.
     *	@show: show routine.
     */
    void __init ipc_init_proc_interface(const char *path, const char *header,
    		int ids, int (*show)(struct seq_file *, void *))
    {
    	struct proc_dir_entry *pde;
    	struct ipc_proc_iface *iface;
    
    	iface = kmalloc(sizeof(*iface), GFP_KERNEL);
    	if (!iface)
    		return;
    	iface->path	= path;
    	iface->header	= header;
    	iface->ids	= ids;
    	iface->show	= show;
    
    	pde = create_proc_entry(path,
    				S_IRUGO,        /* world readable */
    				NULL            /* parent dir */);
    	if (pde) {
    		pde->data = iface;
    		pde->proc_fops = &sysvipc_proc_fops;
    	} else {
    		kfree(iface);
    	}
    }
    #endif
    
    /**
     *	ipc_findkey	-	find a key in an ipc identifier set	
     *	@ids: Identifier set
     *	@key: The key to find
     *	
     *	Requires ipc_ids.mutex locked.
     *	Returns the identifier if found or -1 if not.
     */
     
    int ipc_findkey(struct ipc_ids* ids, key_t key)
    {
    	int id;
    	struct kern_ipc_perm* p;
    	int max_id = ids->max_id;
    
    	/*
    	 * rcu_dereference() is not needed here
    	 * since ipc_ids.mutex is held
    	 */
    	for (id = 0; id <= max_id; id++) {
    		p = ids->entries->p[id];
    		if(p==NULL)
    			continue;
    		if (key == p->key)
    			return id;
    	}
    	return -1;
    }
    
    /*
     * Requires ipc_ids.mutex locked
     */
    static int grow_ary(struct ipc_ids* ids, int newsize)
    {
    	struct ipc_id_ary* new;
    	struct ipc_id_ary* old;
    	int i;
    	int size = ids->entries->size;
    
    	if(newsize > IPCMNI)
    		newsize = IPCMNI;
    	if(newsize <= size)
    		return newsize;
    
    	new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize +
    			    sizeof(struct ipc_id_ary));
    	if(new == NULL)
    		return size;
    	new->size = newsize;
    	memcpy(new->p, ids->entries->p, sizeof(struct kern_ipc_perm *)*size);
    	for(i=size;i<newsize;i++) {
    		new->p[i] = NULL;
    	}
    	old = ids->entries;
    
    	/*
    	 * Use rcu_assign_pointer() to make sure the memcpyed contents
    	 * of the new array are visible before the new array becomes visible.
    	 */
    	rcu_assign_pointer(ids->entries, new);
    
    	__ipc_fini_ids(ids, old);
    	return newsize;
    }
    
    /**
     *	ipc_addid 	-	add an IPC identifier
     *	@ids: IPC identifier set
     *	@new: new IPC permission set
     *	@size: new size limit for the id array
     *
     *	Add an entry 'new' to the IPC arrays. The permissions object is
     *	initialised and the first free entry is set up and the id assigned
     *	is returned. The list is returned in a locked state on success.
     *	On failure the list is not locked and -1 is returned.
     *
     *	Called with ipc_ids.mutex held.
     */
     
    int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size)
    {
    	int id;
    
    	size = grow_ary(ids,size);
    
    	/*
    	 * rcu_dereference()() is not needed here since
    	 * ipc_ids.mutex is held
    	 */
    	for (id = 0; id < size; id++) {
    		if(ids->entries->p[id] == NULL)
    			goto found;
    	}
    	return -1;
    found:
    	ids->in_use++;
    	if (id > ids->max_id)
    		ids->max_id = id;
    
    	new->cuid = new->uid = current->euid;
    	new->gid = new->cgid = current->egid;
    
    	new->seq = ids->seq++;
    	if(ids->seq > ids->seq_max)
    		ids->seq = 0;
    
    	spin_lock_init(&new->lock);
    	new->deleted = 0;
    	rcu_read_lock();
    	spin_lock(&new->lock);
    	ids->entries->p[id] = new;
    	return id;
    }
    
    /**
     *	ipc_rmid	-	remove an IPC identifier
     *	@ids: identifier set
     *	@id: Identifier to remove
     *
     *	The identifier must be valid, and in use. The kernel will panic if
     *	fed an invalid identifier. The entry is removed and internal
     *	variables recomputed. The object associated with the identifier
     *	is returned.
     *	ipc_ids.mutex and the spinlock for this ID is hold before this function
     *	is called, and remain locked on the exit.
     */
     
    struct kern_ipc_perm* ipc_rmid(struct ipc_ids* ids, int id)
    {
    	struct kern_ipc_perm* p;
    	int lid = id % SEQ_MULTIPLIER;
    	BUG_ON(lid >= ids->entries->size);
    
    	/* 
    	 * do not need a rcu_dereference()() here to force ordering
    	 * on Alpha, since the ipc_ids.mutex is held.
    	 */	
    	p = ids->entries->p[lid];
    	ids->entries->p[lid] = NULL;
    	BUG_ON(p==NULL);
    	ids->in_use--;
    
    	if (lid == ids->max_id) {
    		do {
    			lid--;
    			if(lid == -1)
    				break;
    		} while (ids->entries->p[lid] == NULL);
    		ids->max_id = lid;
    	}
    	p->deleted = 1;
    	return p;
    }
    
    /**
     *	ipc_alloc	-	allocate ipc space
     *	@size: size desired
     *
     *	Allocate memory from the appropriate pools and return a pointer to it.
     *	NULL is returned if the allocation fails
     */
     
    void* ipc_alloc(int size)
    {
    	void* out;
    	if(size > PAGE_SIZE)
    		out = vmalloc(size);
    	else
    		out = kmalloc(size, GFP_KERNEL);
    	return out;
    }
    
    /**
     *	ipc_free        -       free ipc space
     *	@ptr: pointer returned by ipc_alloc
     *	@size: size of block
     *
     *	Free a block created with ipc_alloc(). The caller must know the size
     *	used in the allocation call.
     */
    
    void ipc_free(void* ptr, int size)
    {
    	if(size > PAGE_SIZE)
    		vfree(ptr);
    	else
    		kfree(ptr);
    }
    
    /*
     * rcu allocations:
     * There are three headers that are prepended to the actual allocation:
     * - during use: ipc_rcu_hdr.
     * - during the rcu grace period: ipc_rcu_grace.
     * - [only if vmalloc]: ipc_rcu_sched.
     * Their lifetime doesn't overlap, thus the headers share the same memory.
     * Unlike a normal union, they are right-aligned, thus some container_of
     * forward/backward casting is necessary:
     */
    struct ipc_rcu_hdr
    {
    	int refcount;
    	int is_vmalloc;
    	void *data[0];
    };
    
    
    struct ipc_rcu_grace
    {
    	struct rcu_head rcu;
    	/* "void *" makes sure alignment of following data is sane. */
    	void *data[0];
    };
    
    struct ipc_rcu_sched
    {
    	struct work_struct work;
    	/* "void *" makes sure alignment of following data is sane. */
    	void *data[0];
    };
    
    #define HDRLEN_KMALLOC		(sizeof(struct ipc_rcu_grace) > sizeof(struct ipc_rcu_hdr) ? \
    					sizeof(struct ipc_rcu_grace) : sizeof(struct ipc_rcu_hdr))
    #define HDRLEN_VMALLOC		(sizeof(struct ipc_rcu_sched) > HDRLEN_KMALLOC ? \
    					sizeof(struct ipc_rcu_sched) : HDRLEN_KMALLOC)
    
    static inline int rcu_use_vmalloc(int size)
    {
    	/* Too big for a single page? */
    	if (HDRLEN_KMALLOC + size > PAGE_SIZE)
    		return 1;
    	return 0;
    }
    
    /**
     *	ipc_rcu_alloc	-	allocate ipc and rcu space 
     *	@size: size desired
     *
     *	Allocate memory for the rcu header structure +  the object.
     *	Returns the pointer to the object.
     *	NULL is returned if the allocation fails. 
     */
     
    void* ipc_rcu_alloc(int size)
    {
    	void* out;
    	/* 
    	 * We prepend the allocation with the rcu struct, and
    	 * workqueue if necessary (for vmalloc). 
    	 */
    	if (rcu_use_vmalloc(size)) {
    		out = vmalloc(HDRLEN_VMALLOC + size);
    		if (out) {
    			out += HDRLEN_VMALLOC;
    			container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1;
    			container_of(out, struct ipc_rcu_hdr, data)->refcount = 1;
    		}
    	} else {
    		out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL);
    		if (out) {
    			out += HDRLEN_KMALLOC;
    			container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0;
    			container_of(out, struct ipc_rcu_hdr, data)->refcount = 1;
    		}
    	}
    
    	return out;
    }
    
    void ipc_rcu_getref(void *ptr)
    {
    	container_of(ptr, struct ipc_rcu_hdr, data)->refcount++;
    }
    
    static void ipc_do_vfree(struct work_struct *work)
    {
    	vfree(container_of(work, struct ipc_rcu_sched, work));
    }
    
    /**
     * ipc_schedule_free - free ipc + rcu space
     * @head: RCU callback structure for queued work
     * 
     * Since RCU callback function is called in bh,
     * we need to defer the vfree to schedule_work().
     */
    static void ipc_schedule_free(struct rcu_head *head)
    {
    	struct ipc_rcu_grace *grace =
    		container_of(head, struct ipc_rcu_grace, rcu);
    	struct ipc_rcu_sched *sched =
    			container_of(&(grace->data[0]), struct ipc_rcu_sched, data[0]);
    
    	INIT_WORK(&sched->work, ipc_do_vfree);
    	schedule_work(&sched->work);
    }
    
    /**
     * ipc_immediate_free - free ipc + rcu space
     * @head: RCU callback structure that contains pointer to be freed
     *
     * Free from the RCU callback context.
     */
    static void ipc_immediate_free(struct rcu_head *head)
    {
    	struct ipc_rcu_grace *free =
    		container_of(head, struct ipc_rcu_grace, rcu);
    	kfree(free);
    }
    
    void ipc_rcu_putref(void *ptr)
    {
    	if (--container_of(ptr, struct ipc_rcu_hdr, data)->refcount > 0)
    		return;
    
    	if (container_of(ptr, struct ipc_rcu_hdr, data)->is_vmalloc) {
    		call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu,
    				ipc_schedule_free);
    	} else {
    		call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu,
    				ipc_immediate_free);
    	}
    }
    
    /**
     *	ipcperms	-	check IPC permissions
     *	@ipcp: IPC permission set
     *	@flag: desired permission set.
     *
     *	Check user, group, other permissions for access
     *	to ipc resources. return 0 if allowed
     */
     
    int ipcperms (struct kern_ipc_perm *ipcp, short flag)
    {	/* flag will most probably be 0 or S_...UGO from <linux/stat.h> */
    	int requested_mode, granted_mode, err;
    
    	if (unlikely((err = audit_ipc_obj(ipcp))))
    		return err;
    	requested_mode = (flag >> 6) | (flag >> 3) | flag;
    	granted_mode = ipcp->mode;
    	if (current->euid == ipcp->cuid || current->euid == ipcp->uid)
    		granted_mode >>= 6;
    	else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid))
    		granted_mode >>= 3;
    	/* is there some bit set in requested_mode but not in granted_mode? */
    	if ((requested_mode & ~granted_mode & 0007) && 
    	    !capable(CAP_IPC_OWNER))
    		return -1;
    
    	return security_ipc_permission(ipcp, flag);
    }
    
    /*
     * Functions to convert between the kern_ipc_perm structure and the
     * old/new ipc_perm structures
     */
    
    /**
     *	kernel_to_ipc64_perm	-	convert kernel ipc permissions to user
     *	@in: kernel permissions
     *	@out: new style IPC permissions
     *
     *	Turn the kernel object @in into a set of permissions descriptions
     *	for returning to userspace (@out).
     */
     
    
    void kernel_to_ipc64_perm (struct kern_ipc_perm *in, struct ipc64_perm *out)
    {
    	out->key	= in->key;
    	out->uid	= in->uid;
    	out->gid	= in->gid;
    	out->cuid	= in->cuid;
    	out->cgid	= in->cgid;
    	out->mode	= in->mode;
    	out->seq	= in->seq;
    }
    
    /**
     *	ipc64_perm_to_ipc_perm	-	convert old ipc permissions to new
     *	@in: new style IPC permissions
     *	@out: old style IPC permissions
     *
     *	Turn the new style permissions object @in into a compatibility
     *	object and store it into the @out pointer.
     */
     
    void ipc64_perm_to_ipc_perm (struct ipc64_perm *in, struct ipc_perm *out)
    {
    	out->key	= in->key;
    	SET_UID(out->uid, in->uid);
    	SET_GID(out->gid, in->gid);
    	SET_UID(out->cuid, in->cuid);
    	SET_GID(out->cgid, in->cgid);
    	out->mode	= in->mode;
    	out->seq	= in->seq;
    }
    
    /*
     * So far only shm_get_stat() calls ipc_get() via shm_get(), so ipc_get()
     * is called with shm_ids.mutex locked.  Since grow_ary() is also called with
     * shm_ids.mutex down(for Shared Memory), there is no need to add read
     * barriers here to gurantee the writes in grow_ary() are seen in order 
     * here (for Alpha).
     *
     * However ipc_get() itself does not necessary require ipc_ids.mutex down. So
     * if in the future ipc_get() is used by other places without ipc_ids.mutex
     * down, then ipc_get() needs read memery barriers as ipc_lock() does.
     */
    struct kern_ipc_perm* ipc_get(struct ipc_ids* ids, int id)
    {
    	struct kern_ipc_perm* out;
    	int lid = id % SEQ_MULTIPLIER;
    	if(lid >= ids->entries->size)
    		return NULL;
    	out = ids->entries->p[lid];
    	return out;
    }
    
    struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
    {
    	struct kern_ipc_perm* out;
    	int lid = id % SEQ_MULTIPLIER;
    	struct ipc_id_ary* entries;
    
    	rcu_read_lock();
    	entries = rcu_dereference(ids->entries);
    	if(lid >= entries->size) {
    		rcu_read_unlock();
    		return NULL;
    	}
    	out = entries->p[lid];
    	if(out == NULL) {
    		rcu_read_unlock();
    		return NULL;
    	}
    	spin_lock(&out->lock);
    	
    	/* ipc_rmid() may have already freed the ID while ipc_lock
    	 * was spinning: here verify that the structure is still valid
    	 */
    	if (out->deleted) {
    		spin_unlock(&out->lock);
    		rcu_read_unlock();
    		return NULL;
    	}
    	return out;
    }
    
    void ipc_lock_by_ptr(struct kern_ipc_perm *perm)
    {
    	rcu_read_lock();
    	spin_lock(&perm->lock);
    }
    
    void ipc_unlock(struct kern_ipc_perm* perm)
    {
    	spin_unlock(&perm->lock);
    	rcu_read_unlock();
    }
    
    int ipc_buildid(struct ipc_ids* ids, int id, int seq)
    {
    	return SEQ_MULTIPLIER*seq + id;
    }
    
    int ipc_checkid(struct ipc_ids* ids, struct kern_ipc_perm* ipcp, int uid)
    {
    	if(uid/SEQ_MULTIPLIER != ipcp->seq)
    		return 1;
    	return 0;
    }
    
    #ifdef __ARCH_WANT_IPC_PARSE_VERSION
    
    
    /**
     *	ipc_parse_version	-	IPC call version
     *	@cmd: pointer to command
     *
     *	Return IPC_64 for new style IPC and IPC_OLD for old style IPC. 
     *	The @cmd value is turned from an encoding command and version into
     *	just the command code.
     */
     
    int ipc_parse_version (int *cmd)
    {
    	if (*cmd & IPC_64) {
    		*cmd ^= IPC_64;
    		return IPC_64;
    	} else {
    		return IPC_OLD;
    	}
    }
    
    #endif /* __ARCH_WANT_IPC_PARSE_VERSION */
    
    #ifdef CONFIG_PROC_FS
    struct ipc_proc_iter {
    	struct ipc_namespace *ns;
    	struct ipc_proc_iface *iface;
    };
    
    static void *sysvipc_proc_next(struct seq_file *s, void *it, loff_t *pos)
    {
    	struct ipc_proc_iter *iter = s->private;
    	struct ipc_proc_iface *iface = iter->iface;
    	struct kern_ipc_perm *ipc = it;
    	loff_t p;
    	struct ipc_ids *ids;
    
    	ids = iter->ns->ids[iface->ids];
    
    	/* If we had an ipc id locked before, unlock it */
    	if (ipc && ipc != SEQ_START_TOKEN)
    		ipc_unlock(ipc);
    
    	/*
    	 * p = *pos - 1 (because id 0 starts at position 1)
    	 *          + 1 (because we increment the position by one)
    	 */
    	for (p = *pos; p <= ids->max_id; p++) {
    		if ((ipc = ipc_lock(ids, p)) != NULL) {
    			*pos = p + 1;
    			return ipc;
    		}
    	}
    
    	/* Out of range - return NULL to terminate iteration */
    	return NULL;
    }
    
    /*
     * File positions: pos 0 -> header, pos n -> ipc id + 1.
     * SeqFile iterator: iterator value locked shp or SEQ_TOKEN_START.
     */
    static void *sysvipc_proc_start(struct seq_file *s, loff_t *pos)
    {
    	struct ipc_proc_iter *iter = s->private;
    	struct ipc_proc_iface *iface = iter->iface;
    	struct kern_ipc_perm *ipc;
    	loff_t p;
    	struct ipc_ids *ids;
    
    	ids = iter->ns->ids[iface->ids];
    
    	/*
    	 * Take the lock - this will be released by the corresponding
    	 * call to stop().
    	 */
    	mutex_lock(&ids->mutex);
    
    	/* pos < 0 is invalid */
    	if (*pos < 0)
    		return NULL;
    
    	/* pos == 0 means header */
    	if (*pos == 0)
    		return SEQ_START_TOKEN;
    
    	/* Find the (pos-1)th ipc */
    	for (p = *pos - 1; p <= ids->max_id; p++) {
    		if ((ipc = ipc_lock(ids, p)) != NULL) {
    			*pos = p + 1;
    			return ipc;
    		}
    	}
    	return NULL;
    }
    
    static void sysvipc_proc_stop(struct seq_file *s, void *it)
    {
    	struct kern_ipc_perm *ipc = it;
    	struct ipc_proc_iter *iter = s->private;
    	struct ipc_proc_iface *iface = iter->iface;
    	struct ipc_ids *ids;
    
    	/* If we had a locked segment, release it */
    	if (ipc && ipc != SEQ_START_TOKEN)
    		ipc_unlock(ipc);
    
    	ids = iter->ns->ids[iface->ids];
    	/* Release the lock we took in start() */
    	mutex_unlock(&ids->mutex);
    }
    
    static int sysvipc_proc_show(struct seq_file *s, void *it)
    {
    	struct ipc_proc_iter *iter = s->private;
    	struct ipc_proc_iface *iface = iter->iface;
    
    	if (it == SEQ_START_TOKEN)
    		return seq_puts(s, iface->header);
    
    	return iface->show(s, it);
    }
    
    static struct seq_operations sysvipc_proc_seqops = {
    	.start = sysvipc_proc_start,
    	.stop  = sysvipc_proc_stop,
    	.next  = sysvipc_proc_next,
    	.show  = sysvipc_proc_show,
    };
    
    static int sysvipc_proc_open(struct inode *inode, struct file *file)
    {
    	int ret;
    	struct seq_file *seq;
    	struct ipc_proc_iter *iter;
    
    	ret = -ENOMEM;
    	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
    	if (!iter)
    		goto out;
    
    	ret = seq_open(file, &sysvipc_proc_seqops);
    	if (ret)
    		goto out_kfree;
    
    	seq = file->private_data;
    	seq->private = iter;
    
    	iter->iface = PDE(inode)->data;
    	iter->ns    = get_ipc_ns(current->nsproxy->ipc_ns);
    out:
    	return ret;
    out_kfree:
    	kfree(iter);
    	goto out;
    }
    
    static int sysvipc_proc_release(struct inode *inode, struct file *file)
    {
    	struct seq_file *seq = file->private_data;
    	struct ipc_proc_iter *iter = seq->private;
    	put_ipc_ns(iter->ns);
    	return seq_release_private(inode, file);
    }
    
    static struct file_operations sysvipc_proc_fops = {
    	.open    = sysvipc_proc_open,
    	.read    = seq_read,
    	.llseek  = seq_lseek,
    	.release = sysvipc_proc_release,
    };
    #endif /* CONFIG_PROC_FS */