Skip to content
Snippets Groups Projects
Select Git revision
  • be65de6b03aa638c46ea51e9d11a92e4914d8103
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

sys.c

Blame
  • sys.c 63.07 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     *  linux/kernel/sys.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     */
    
    #include <linux/export.h>
    #include <linux/mm.h>
    #include <linux/utsname.h>
    #include <linux/mman.h>
    #include <linux/reboot.h>
    #include <linux/prctl.h>
    #include <linux/highuid.h>
    #include <linux/fs.h>
    #include <linux/kmod.h>
    #include <linux/perf_event.h>
    #include <linux/resource.h>
    #include <linux/kernel.h>
    #include <linux/workqueue.h>
    #include <linux/capability.h>
    #include <linux/device.h>
    #include <linux/key.h>
    #include <linux/times.h>
    #include <linux/posix-timers.h>
    #include <linux/security.h>
    #include <linux/suspend.h>
    #include <linux/tty.h>
    #include <linux/signal.h>
    #include <linux/cn_proc.h>
    #include <linux/getcpu.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/seccomp.h>
    #include <linux/cpu.h>
    #include <linux/personality.h>
    #include <linux/ptrace.h>
    #include <linux/fs_struct.h>
    #include <linux/file.h>
    #include <linux/mount.h>
    #include <linux/gfp.h>
    #include <linux/syscore_ops.h>
    #include <linux/version.h>
    #include <linux/ctype.h>
    #include <linux/syscall_user_dispatch.h>
    
    #include <linux/compat.h>
    #include <linux/syscalls.h>
    #include <linux/kprobes.h>
    #include <linux/user_namespace.h>
    #include <linux/time_namespace.h>
    #include <linux/binfmts.h>
    
    #include <linux/sched.h>
    #include <linux/sched/autogroup.h>
    #include <linux/sched/loadavg.h>
    #include <linux/sched/stat.h>
    #include <linux/sched/mm.h>
    #include <linux/sched/coredump.h>
    #include <linux/sched/task.h>
    #include <linux/sched/cputime.h>
    #include <linux/rcupdate.h>
    #include <linux/uidgid.h>
    #include <linux/cred.h>
    
    #include <linux/nospec.h>
    
    #include <linux/kmsg_dump.h>
    /* Move somewhere else to avoid recompiling? */
    #include <generated/utsrelease.h>
    
    #include <linux/uaccess.h>
    #include <asm/io.h>
    #include <asm/unistd.h>
    
    #include "uid16.h"
    
    #ifndef SET_UNALIGN_CTL
    # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef GET_UNALIGN_CTL
    # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef SET_FPEMU_CTL
    # define SET_FPEMU_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef GET_FPEMU_CTL
    # define GET_FPEMU_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef SET_FPEXC_CTL
    # define SET_FPEXC_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef GET_FPEXC_CTL
    # define GET_FPEXC_CTL(a, b)	(-EINVAL)
    #endif
    #ifndef GET_ENDIAN
    # define GET_ENDIAN(a, b)	(-EINVAL)
    #endif
    #ifndef SET_ENDIAN
    # define SET_ENDIAN(a, b)	(-EINVAL)
    #endif
    #ifndef GET_TSC_CTL
    # define GET_TSC_CTL(a)		(-EINVAL)
    #endif
    #ifndef SET_TSC_CTL
    # define SET_TSC_CTL(a)		(-EINVAL)
    #endif
    #ifndef GET_FP_MODE
    # define GET_FP_MODE(a)		(-EINVAL)
    #endif
    #ifndef SET_FP_MODE
    # define SET_FP_MODE(a,b)	(-EINVAL)
    #endif
    #ifndef SVE_SET_VL
    # define SVE_SET_VL(a)		(-EINVAL)
    #endif
    #ifndef SVE_GET_VL
    # define SVE_GET_VL()		(-EINVAL)
    #endif
    #ifndef PAC_RESET_KEYS
    # define PAC_RESET_KEYS(a, b)	(-EINVAL)
    #endif
    #ifndef SET_TAGGED_ADDR_CTRL
    # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
    #endif
    #ifndef GET_TAGGED_ADDR_CTRL
    # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
    #endif
    
    /*
     * this is where the system-wide overflow UID and GID are defined, for
     * architectures that now have 32-bit UID/GID but didn't in the past
     */
    
    int overflowuid = DEFAULT_OVERFLOWUID;
    int overflowgid = DEFAULT_OVERFLOWGID;
    
    EXPORT_SYMBOL(overflowuid);
    EXPORT_SYMBOL(overflowgid);
    
    /*
     * the same as above, but for filesystems which can only store a 16-bit
     * UID and GID. as such, this is needed on all architectures
     */
    
    int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
    int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
    
    EXPORT_SYMBOL(fs_overflowuid);
    EXPORT_SYMBOL(fs_overflowgid);
    
    /*
     * Returns true if current's euid is same as p's uid or euid,
     * or has CAP_SYS_NICE to p's user_ns.
     *
     * Called with rcu_read_lock, creds are safe
     */
    static bool set_one_prio_perm(struct task_struct *p)
    {
    	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
    
    	if (uid_eq(pcred->uid,  cred->euid) ||
    	    uid_eq(pcred->euid, cred->euid))
    		return true;
    	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
    		return true;
    	return false;
    }
    
    /*
     * set the priority of a task
     * - the caller must hold the RCU read lock
     */
    static int set_one_prio(struct task_struct *p, int niceval, int error)
    {
    	int no_nice;
    
    	if (!set_one_prio_perm(p)) {
    		error = -EPERM;
    		goto out;
    	}
    	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
    		error = -EACCES;
    		goto out;
    	}
    	no_nice = security_task_setnice(p, niceval);
    	if (no_nice) {
    		error = no_nice;
    		goto out;
    	}
    	if (error == -ESRCH)
    		error = 0;
    	set_user_nice(p, niceval);
    out:
    	return error;
    }
    
    SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
    {
    	struct task_struct *g, *p;
    	struct user_struct *user;
    	const struct cred *cred = current_cred();
    	int error = -EINVAL;
    	struct pid *pgrp;
    	kuid_t uid;
    
    	if (which > PRIO_USER || which < PRIO_PROCESS)
    		goto out;
    
    	/* normalize: avoid signed division (rounding problems) */
    	error = -ESRCH;
    	if (niceval < MIN_NICE)
    		niceval = MIN_NICE;
    	if (niceval > MAX_NICE)
    		niceval = MAX_NICE;
    
    	rcu_read_lock();
    	read_lock(&tasklist_lock);
    	switch (which) {
    	case PRIO_PROCESS:
    		if (who)
    			p = find_task_by_vpid(who);
    		else
    			p = current;
    		if (p)
    			error = set_one_prio(p, niceval, error);
    		break;
    	case PRIO_PGRP:
    		if (who)
    			pgrp = find_vpid(who);
    		else
    			pgrp = task_pgrp(current);
    		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
    			error = set_one_prio(p, niceval, error);
    		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
    		break;
    	case PRIO_USER:
    		uid = make_kuid(cred->user_ns, who);
    		user = cred->user;
    		if (!who)
    			uid = cred->uid;
    		else if (!uid_eq(uid, cred->uid)) {
    			user = find_user(uid);
    			if (!user)
    				goto out_unlock;	/* No processes for this user */
    		}
    		do_each_thread(g, p) {
    			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
    				error = set_one_prio(p, niceval, error);
    		} while_each_thread(g, p);
    		if (!uid_eq(uid, cred->uid))
    			free_uid(user);		/* For find_user() */
    		break;
    	}
    out_unlock:
    	read_unlock(&tasklist_lock);
    	rcu_read_unlock();
    out:
    	return error;
    }
    
    /*
     * Ugh. To avoid negative return values, "getpriority()" will
     * not return the normal nice-value, but a negated value that
     * has been offset by 20 (ie it returns 40..1 instead of -20..19)
     * to stay compatible.
     */
    SYSCALL_DEFINE2(getpriority, int, which, int, who)
    {
    	struct task_struct *g, *p;
    	struct user_struct *user;
    	const struct cred *cred = current_cred();
    	long niceval, retval = -ESRCH;
    	struct pid *pgrp;
    	kuid_t uid;
    
    	if (which > PRIO_USER || which < PRIO_PROCESS)
    		return -EINVAL;
    
    	rcu_read_lock();
    	read_lock(&tasklist_lock);
    	switch (which) {
    	case PRIO_PROCESS:
    		if (who)
    			p = find_task_by_vpid(who);
    		else
    			p = current;
    		if (p) {
    			niceval = nice_to_rlimit(task_nice(p));
    			if (niceval > retval)
    				retval = niceval;
    		}
    		break;
    	case PRIO_PGRP:
    		if (who)
    			pgrp = find_vpid(who);
    		else
    			pgrp = task_pgrp(current);
    		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
    			niceval = nice_to_rlimit(task_nice(p));
    			if (niceval > retval)
    				retval = niceval;
    		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
    		break;
    	case PRIO_USER:
    		uid = make_kuid(cred->user_ns, who);
    		user = cred->user;
    		if (!who)
    			uid = cred->uid;
    		else if (!uid_eq(uid, cred->uid)) {
    			user = find_user(uid);
    			if (!user)
    				goto out_unlock;	/* No processes for this user */
    		}
    		do_each_thread(g, p) {
    			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
    				niceval = nice_to_rlimit(task_nice(p));
    				if (niceval > retval)
    					retval = niceval;
    			}
    		} while_each_thread(g, p);
    		if (!uid_eq(uid, cred->uid))
    			free_uid(user);		/* for find_user() */
    		break;
    	}
    out_unlock:
    	read_unlock(&tasklist_lock);
    	rcu_read_unlock();
    
    	return retval;
    }
    
    /*
     * Unprivileged users may change the real gid to the effective gid
     * or vice versa.  (BSD-style)
     *
     * If you set the real gid at all, or set the effective gid to a value not
     * equal to the real gid, then the saved gid is set to the new effective gid.
     *
     * This makes it possible for a setgid program to completely drop its
     * privileges, which is often a useful assertion to make when you are doing
     * a security audit over a program.
     *
     * The general idea is that a program which uses just setregid() will be
     * 100% compatible with BSD.  A program which uses just setgid() will be
     * 100% compatible with POSIX with saved IDs.
     *
     * SMP: There are not races, the GIDs are checked only by filesystem
     *      operations (as far as semantic preservation is concerned).
     */
    #ifdef CONFIG_MULTIUSER
    long __sys_setregid(gid_t rgid, gid_t egid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kgid_t krgid, kegid;
    
    	krgid = make_kgid(ns, rgid);
    	kegid = make_kgid(ns, egid);
    
    	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
    		return -EINVAL;
    	if ((egid != (gid_t) -1) && !gid_valid(kegid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    	old = current_cred();
    
    	retval = -EPERM;
    	if (rgid != (gid_t) -1) {
    		if (gid_eq(old->gid, krgid) ||
    		    gid_eq(old->egid, krgid) ||
    		    ns_capable_setid(old->user_ns, CAP_SETGID))
    			new->gid = krgid;
    		else
    			goto error;
    	}
    	if (egid != (gid_t) -1) {
    		if (gid_eq(old->gid, kegid) ||
    		    gid_eq(old->egid, kegid) ||
    		    gid_eq(old->sgid, kegid) ||
    		    ns_capable_setid(old->user_ns, CAP_SETGID))
    			new->egid = kegid;
    		else
    			goto error;
    	}
    
    	if (rgid != (gid_t) -1 ||
    	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
    		new->sgid = new->egid;
    	new->fsgid = new->egid;
    
    	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
    {
    	return __sys_setregid(rgid, egid);
    }
    
    /*
     * setgid() is implemented like SysV w/ SAVED_IDS
     *
     * SMP: Same implicit races as above.
     */
    long __sys_setgid(gid_t gid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kgid_t kgid;
    
    	kgid = make_kgid(ns, gid);
    	if (!gid_valid(kgid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    	old = current_cred();
    
    	retval = -EPERM;
    	if (ns_capable_setid(old->user_ns, CAP_SETGID))
    		new->gid = new->egid = new->sgid = new->fsgid = kgid;
    	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
    		new->egid = new->fsgid = kgid;
    	else
    		goto error;
    
    	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE1(setgid, gid_t, gid)
    {
    	return __sys_setgid(gid);
    }
    
    /*
     * change the user struct in a credentials set to match the new UID
     */
    static int set_user(struct cred *new)
    {
    	struct user_struct *new_user;
    
    	new_user = alloc_uid(new->uid);
    	if (!new_user)
    		return -EAGAIN;
    
    	/*
    	 * We don't fail in case of NPROC limit excess here because too many
    	 * poorly written programs don't check set*uid() return code, assuming
    	 * it never fails if called by root.  We may still enforce NPROC limit
    	 * for programs doing set*uid()+execve() by harmlessly deferring the
    	 * failure to the execve() stage.
    	 */
    	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
    			new_user != INIT_USER)
    		current->flags |= PF_NPROC_EXCEEDED;
    	else
    		current->flags &= ~PF_NPROC_EXCEEDED;
    
    	free_uid(new->user);
    	new->user = new_user;
    	return 0;
    }
    
    /*
     * Unprivileged users may change the real uid to the effective uid
     * or vice versa.  (BSD-style)
     *
     * If you set the real uid at all, or set the effective uid to a value not
     * equal to the real uid, then the saved uid is set to the new effective uid.
     *
     * This makes it possible for a setuid program to completely drop its
     * privileges, which is often a useful assertion to make when you are doing
     * a security audit over a program.
     *
     * The general idea is that a program which uses just setreuid() will be
     * 100% compatible with BSD.  A program which uses just setuid() will be
     * 100% compatible with POSIX with saved IDs.
     */
    long __sys_setreuid(uid_t ruid, uid_t euid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kuid_t kruid, keuid;
    
    	kruid = make_kuid(ns, ruid);
    	keuid = make_kuid(ns, euid);
    
    	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
    		return -EINVAL;
    	if ((euid != (uid_t) -1) && !uid_valid(keuid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    	old = current_cred();
    
    	retval = -EPERM;
    	if (ruid != (uid_t) -1) {
    		new->uid = kruid;
    		if (!uid_eq(old->uid, kruid) &&
    		    !uid_eq(old->euid, kruid) &&
    		    !ns_capable_setid(old->user_ns, CAP_SETUID))
    			goto error;
    	}
    
    	if (euid != (uid_t) -1) {
    		new->euid = keuid;
    		if (!uid_eq(old->uid, keuid) &&
    		    !uid_eq(old->euid, keuid) &&
    		    !uid_eq(old->suid, keuid) &&
    		    !ns_capable_setid(old->user_ns, CAP_SETUID))
    			goto error;
    	}
    
    	if (!uid_eq(new->uid, old->uid)) {
    		retval = set_user(new);
    		if (retval < 0)
    			goto error;
    	}
    	if (ruid != (uid_t) -1 ||
    	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
    		new->suid = new->euid;
    	new->fsuid = new->euid;
    
    	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
    {
    	return __sys_setreuid(ruid, euid);
    }
    
    /*
     * setuid() is implemented like SysV with SAVED_IDS
     *
     * Note that SAVED_ID's is deficient in that a setuid root program
     * like sendmail, for example, cannot set its uid to be a normal
     * user and then switch back, because if you're root, setuid() sets
     * the saved uid too.  If you don't like this, blame the bright people
     * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
     * will allow a root program to temporarily drop privileges and be able to
     * regain them by swapping the real and effective uid.
     */
    long __sys_setuid(uid_t uid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kuid_t kuid;
    
    	kuid = make_kuid(ns, uid);
    	if (!uid_valid(kuid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    	old = current_cred();
    
    	retval = -EPERM;
    	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
    		new->suid = new->uid = kuid;
    		if (!uid_eq(kuid, old->uid)) {
    			retval = set_user(new);
    			if (retval < 0)
    				goto error;
    		}
    	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
    		goto error;
    	}
    
    	new->fsuid = new->euid = kuid;
    
    	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE1(setuid, uid_t, uid)
    {
    	return __sys_setuid(uid);
    }
    
    
    /*
     * This function implements a generic ability to update ruid, euid,
     * and suid.  This allows you to implement the 4.4 compatible seteuid().
     */
    long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kuid_t kruid, keuid, ksuid;
    
    	kruid = make_kuid(ns, ruid);
    	keuid = make_kuid(ns, euid);
    	ksuid = make_kuid(ns, suid);
    
    	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
    		return -EINVAL;
    
    	if ((euid != (uid_t) -1) && !uid_valid(keuid))
    		return -EINVAL;
    
    	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    
    	old = current_cred();
    
    	retval = -EPERM;
    	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
    		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
    		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
    			goto error;
    		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
    		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
    			goto error;
    		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
    		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
    			goto error;
    	}
    
    	if (ruid != (uid_t) -1) {
    		new->uid = kruid;
    		if (!uid_eq(kruid, old->uid)) {
    			retval = set_user(new);
    			if (retval < 0)
    				goto error;
    		}
    	}
    	if (euid != (uid_t) -1)
    		new->euid = keuid;
    	if (suid != (uid_t) -1)
    		new->suid = ksuid;
    	new->fsuid = new->euid;
    
    	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
    {
    	return __sys_setresuid(ruid, euid, suid);
    }
    
    SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
    {
    	const struct cred *cred = current_cred();
    	int retval;
    	uid_t ruid, euid, suid;
    
    	ruid = from_kuid_munged(cred->user_ns, cred->uid);
    	euid = from_kuid_munged(cred->user_ns, cred->euid);
    	suid = from_kuid_munged(cred->user_ns, cred->suid);
    
    	retval = put_user(ruid, ruidp);
    	if (!retval) {
    		retval = put_user(euid, euidp);
    		if (!retval)
    			return put_user(suid, suidp);
    	}
    	return retval;
    }
    
    /*
     * Same as above, but for rgid, egid, sgid.
     */
    long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
    {
    	struct user_namespace *ns = current_user_ns();
    	const struct cred *old;
    	struct cred *new;
    	int retval;
    	kgid_t krgid, kegid, ksgid;
    
    	krgid = make_kgid(ns, rgid);
    	kegid = make_kgid(ns, egid);
    	ksgid = make_kgid(ns, sgid);
    
    	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
    		return -EINVAL;
    	if ((egid != (gid_t) -1) && !gid_valid(kegid))
    		return -EINVAL;
    	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
    		return -EINVAL;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    	old = current_cred();
    
    	retval = -EPERM;
    	if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
    		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
    		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
    			goto error;
    		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
    		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
    			goto error;
    		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
    		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
    			goto error;
    	}
    
    	if (rgid != (gid_t) -1)
    		new->gid = krgid;
    	if (egid != (gid_t) -1)
    		new->egid = kegid;
    	if (sgid != (gid_t) -1)
    		new->sgid = ksgid;
    	new->fsgid = new->egid;
    
    	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
    	if (retval < 0)
    		goto error;
    
    	return commit_creds(new);
    
    error:
    	abort_creds(new);
    	return retval;
    }
    
    SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
    {
    	return __sys_setresgid(rgid, egid, sgid);
    }
    
    SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
    {
    	const struct cred *cred = current_cred();
    	int retval;
    	gid_t rgid, egid, sgid;
    
    	rgid = from_kgid_munged(cred->user_ns, cred->gid);
    	egid = from_kgid_munged(cred->user_ns, cred->egid);
    	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
    
    	retval = put_user(rgid, rgidp);
    	if (!retval) {
    		retval = put_user(egid, egidp);
    		if (!retval)
    			retval = put_user(sgid, sgidp);
    	}
    
    	return retval;
    }
    
    
    /*
     * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
     * is used for "access()" and for the NFS daemon (letting nfsd stay at
     * whatever uid it wants to). It normally shadows "euid", except when
     * explicitly set by setfsuid() or for access..
     */
    long __sys_setfsuid(uid_t uid)
    {
    	const struct cred *old;
    	struct cred *new;
    	uid_t old_fsuid;
    	kuid_t kuid;
    
    	old = current_cred();
    	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
    
    	kuid = make_kuid(old->user_ns, uid);
    	if (!uid_valid(kuid))
    		return old_fsuid;
    
    	new = prepare_creds();
    	if (!new)
    		return old_fsuid;
    
    	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
    	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
    	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
    		if (!uid_eq(kuid, old->fsuid)) {
    			new->fsuid = kuid;
    			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
    				goto change_okay;
    		}
    	}
    
    	abort_creds(new);
    	return old_fsuid;
    
    change_okay:
    	commit_creds(new);
    	return old_fsuid;
    }
    
    SYSCALL_DEFINE1(setfsuid, uid_t, uid)
    {
    	return __sys_setfsuid(uid);
    }
    
    /*
     * Samma på svenska..
     */
    long __sys_setfsgid(gid_t gid)
    {
    	const struct cred *old;
    	struct cred *new;
    	gid_t old_fsgid;
    	kgid_t kgid;
    
    	old = current_cred();
    	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
    
    	kgid = make_kgid(old->user_ns, gid);
    	if (!gid_valid(kgid))
    		return old_fsgid;
    
    	new = prepare_creds();
    	if (!new)
    		return old_fsgid;
    
    	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
    	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
    	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
    		if (!gid_eq(kgid, old->fsgid)) {
    			new->fsgid = kgid;
    			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
    				goto change_okay;
    		}
    	}
    
    	abort_creds(new);
    	return old_fsgid;
    
    change_okay:
    	commit_creds(new);
    	return old_fsgid;
    }
    
    SYSCALL_DEFINE1(setfsgid, gid_t, gid)
    {
    	return __sys_setfsgid(gid);
    }
    #endif /* CONFIG_MULTIUSER */
    
    /**
     * sys_getpid - return the thread group id of the current process
     *
     * Note, despite the name, this returns the tgid not the pid.  The tgid and
     * the pid are identical unless CLONE_THREAD was specified on clone() in
     * which case the tgid is the same in all threads of the same group.
     *
     * This is SMP safe as current->tgid does not change.
     */
    SYSCALL_DEFINE0(getpid)
    {
    	return task_tgid_vnr(current);
    }
    
    /* Thread ID - the internal kernel "pid" */
    SYSCALL_DEFINE0(gettid)
    {
    	return task_pid_vnr(current);
    }
    
    /*
     * Accessing ->real_parent is not SMP-safe, it could
     * change from under us. However, we can use a stale
     * value of ->real_parent under rcu_read_lock(), see
     * release_task()->call_rcu(delayed_put_task_struct).
     */
    SYSCALL_DEFINE0(getppid)
    {
    	int pid;
    
    	rcu_read_lock();
    	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
    	rcu_read_unlock();
    
    	return pid;
    }
    
    SYSCALL_DEFINE0(getuid)
    {
    	/* Only we change this so SMP safe */
    	return from_kuid_munged(current_user_ns(), current_uid());
    }
    
    SYSCALL_DEFINE0(geteuid)
    {
    	/* Only we change this so SMP safe */
    	return from_kuid_munged(current_user_ns(), current_euid());
    }
    
    SYSCALL_DEFINE0(getgid)
    {
    	/* Only we change this so SMP safe */
    	return from_kgid_munged(current_user_ns(), current_gid());
    }
    
    SYSCALL_DEFINE0(getegid)
    {
    	/* Only we change this so SMP safe */
    	return from_kgid_munged(current_user_ns(), current_egid());
    }
    
    static void do_sys_times(struct tms *tms)
    {
    	u64 tgutime, tgstime, cutime, cstime;
    
    	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
    	cutime = current->signal->cutime;
    	cstime = current->signal->cstime;
    	tms->tms_utime = nsec_to_clock_t(tgutime);
    	tms->tms_stime = nsec_to_clock_t(tgstime);
    	tms->tms_cutime = nsec_to_clock_t(cutime);
    	tms->tms_cstime = nsec_to_clock_t(cstime);
    }
    
    SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
    {
    	if (tbuf) {
    		struct tms tmp;
    
    		do_sys_times(&tmp);
    		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
    			return -EFAULT;
    	}
    	force_successful_syscall_return();
    	return (long) jiffies_64_to_clock_t(get_jiffies_64());
    }
    
    #ifdef CONFIG_COMPAT
    static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
    {
    	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
    }
    
    COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
    {
    	if (tbuf) {
    		struct tms tms;
    		struct compat_tms tmp;
    
    		do_sys_times(&tms);
    		/* Convert our struct tms to the compat version. */
    		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
    		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
    		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
    		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
    		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
    			return -EFAULT;
    	}
    	force_successful_syscall_return();
    	return compat_jiffies_to_clock_t(jiffies);
    }
    #endif
    
    /*
     * This needs some heavy checking ...
     * I just haven't the stomach for it. I also don't fully
     * understand sessions/pgrp etc. Let somebody who does explain it.
     *
     * OK, I think I have the protection semantics right.... this is really
     * only important on a multi-user system anyway, to make sure one user
     * can't send a signal to a process owned by another.  -TYT, 12/12/91
     *
     * !PF_FORKNOEXEC check to conform completely to POSIX.
     */
    SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
    {
    	struct task_struct *p;
    	struct task_struct *group_leader = current->group_leader;
    	struct pid *pgrp;
    	int err;
    
    	if (!pid)
    		pid = task_pid_vnr(group_leader);
    	if (!pgid)
    		pgid = pid;
    	if (pgid < 0)
    		return -EINVAL;
    	rcu_read_lock();
    
    	/* From this point forward we keep holding onto the tasklist lock
    	 * so that our parent does not change from under us. -DaveM
    	 */
    	write_lock_irq(&tasklist_lock);
    
    	err = -ESRCH;
    	p = find_task_by_vpid(pid);
    	if (!p)
    		goto out;
    
    	err = -EINVAL;
    	if (!thread_group_leader(p))
    		goto out;
    
    	if (same_thread_group(p->real_parent, group_leader)) {
    		err = -EPERM;
    		if (task_session(p) != task_session(group_leader))
    			goto out;
    		err = -EACCES;
    		if (!(p->flags & PF_FORKNOEXEC))
    			goto out;
    	} else {
    		err = -ESRCH;
    		if (p != group_leader)
    			goto out;
    	}
    
    	err = -EPERM;
    	if (p->signal->leader)
    		goto out;
    
    	pgrp = task_pid(p);
    	if (pgid != pid) {
    		struct task_struct *g;
    
    		pgrp = find_vpid(pgid);
    		g = pid_task(pgrp, PIDTYPE_PGID);
    		if (!g || task_session(g) != task_session(group_leader))
    			goto out;
    	}
    
    	err = security_task_setpgid(p, pgid);
    	if (err)
    		goto out;
    
    	if (task_pgrp(p) != pgrp)
    		change_pid(p, PIDTYPE_PGID, pgrp);
    
    	err = 0;
    out:
    	/* All paths lead to here, thus we are safe. -DaveM */
    	write_unlock_irq(&tasklist_lock);
    	rcu_read_unlock();
    	return err;
    }
    
    static int do_getpgid(pid_t pid)
    {
    	struct task_struct *p;
    	struct pid *grp;
    	int retval;
    
    	rcu_read_lock();
    	if (!pid)
    		grp = task_pgrp(current);
    	else {
    		retval = -ESRCH;
    		p = find_task_by_vpid(pid);
    		if (!p)
    			goto out;
    		grp = task_pgrp(p);
    		if (!grp)
    			goto out;
    
    		retval = security_task_getpgid(p);
    		if (retval)
    			goto out;
    	}
    	retval = pid_vnr(grp);
    out:
    	rcu_read_unlock();
    	return retval;
    }
    
    SYSCALL_DEFINE1(getpgid, pid_t, pid)
    {
    	return do_getpgid(pid);
    }
    
    #ifdef __ARCH_WANT_SYS_GETPGRP
    
    SYSCALL_DEFINE0(getpgrp)
    {
    	return do_getpgid(0);
    }
    
    #endif
    
    SYSCALL_DEFINE1(getsid, pid_t, pid)
    {
    	struct task_struct *p;
    	struct pid *sid;
    	int retval;
    
    	rcu_read_lock();
    	if (!pid)
    		sid = task_session(current);
    	else {
    		retval = -ESRCH;
    		p = find_task_by_vpid(pid);
    		if (!p)
    			goto out;
    		sid = task_session(p);
    		if (!sid)
    			goto out;
    
    		retval = security_task_getsid(p);
    		if (retval)
    			goto out;
    	}
    	retval = pid_vnr(sid);
    out:
    	rcu_read_unlock();
    	return retval;
    }
    
    static void set_special_pids(struct pid *pid)
    {
    	struct task_struct *curr = current->group_leader;
    
    	if (task_session(curr) != pid)
    		change_pid(curr, PIDTYPE_SID, pid);
    
    	if (task_pgrp(curr) != pid)
    		change_pid(curr, PIDTYPE_PGID, pid);
    }
    
    int ksys_setsid(void)
    {
    	struct task_struct *group_leader = current->group_leader;
    	struct pid *sid = task_pid(group_leader);
    	pid_t session = pid_vnr(sid);
    	int err = -EPERM;
    
    	write_lock_irq(&tasklist_lock);
    	/* Fail if I am already a session leader */
    	if (group_leader->signal->leader)
    		goto out;
    
    	/* Fail if a process group id already exists that equals the
    	 * proposed session id.
    	 */
    	if (pid_task(sid, PIDTYPE_PGID))
    		goto out;
    
    	group_leader->signal->leader = 1;
    	set_special_pids(sid);
    
    	proc_clear_tty(group_leader);
    
    	err = session;
    out:
    	write_unlock_irq(&tasklist_lock);
    	if (err > 0) {
    		proc_sid_connector(group_leader);
    		sched_autogroup_create_attach(group_leader);
    	}
    	return err;
    }
    
    SYSCALL_DEFINE0(setsid)
    {
    	return ksys_setsid();
    }
    
    DECLARE_RWSEM(uts_sem);
    
    #ifdef COMPAT_UTS_MACHINE
    #define override_architecture(name) \
    	(personality(current->personality) == PER_LINUX32 && \
    	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
    		      sizeof(COMPAT_UTS_MACHINE)))
    #else
    #define override_architecture(name)	0
    #endif
    
    /*
     * Work around broken programs that cannot handle "Linux 3.0".
     * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
     * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
     * 2.6.60.
     */
    static int override_release(char __user *release, size_t len)
    {
    	int ret = 0;
    
    	if (current->personality & UNAME26) {
    		const char *rest = UTS_RELEASE;
    		char buf[65] = { 0 };
    		int ndots = 0;
    		unsigned v;
    		size_t copy;
    
    		while (*rest) {
    			if (*rest == '.' && ++ndots >= 3)
    				break;
    			if (!isdigit(*rest) && *rest != '.')
    				break;
    			rest++;
    		}
    		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
    		copy = clamp_t(size_t, len, 1, sizeof(buf));
    		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
    		ret = copy_to_user(release, buf, copy + 1);
    	}
    	return ret;
    }
    
    SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
    {
    	struct new_utsname tmp;
    
    	down_read(&uts_sem);
    	memcpy(&tmp, utsname(), sizeof(tmp));
    	up_read(&uts_sem);
    	if (copy_to_user(name, &tmp, sizeof(tmp)))
    		return -EFAULT;
    
    	if (override_release(name->release, sizeof(name->release)))
    		return -EFAULT;
    	if (override_architecture(name))
    		return -EFAULT;
    	return 0;
    }
    
    #ifdef __ARCH_WANT_SYS_OLD_UNAME
    /*
     * Old cruft
     */
    SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
    {
    	struct old_utsname tmp;
    
    	if (!name)
    		return -EFAULT;
    
    	down_read(&uts_sem);
    	memcpy(&tmp, utsname(), sizeof(tmp));
    	up_read(&uts_sem);
    	if (copy_to_user(name, &tmp, sizeof(tmp)))
    		return -EFAULT;
    
    	if (override_release(name->release, sizeof(name->release)))
    		return -EFAULT;
    	if (override_architecture(name))
    		return -EFAULT;
    	return 0;
    }
    
    SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
    {
    	struct oldold_utsname tmp;
    
    	if (!name)
    		return -EFAULT;
    
    	memset(&tmp, 0, sizeof(tmp));
    
    	down_read(&uts_sem);
    	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
    	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
    	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
    	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
    	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
    	up_read(&uts_sem);
    	if (copy_to_user(name, &tmp, sizeof(tmp)))
    		return -EFAULT;
    
    	if (override_architecture(name))
    		return -EFAULT;
    	if (override_release(name->release, sizeof(name->release)))
    		return -EFAULT;
    	return 0;
    }
    #endif
    
    SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
    {
    	int errno;
    	char tmp[__NEW_UTS_LEN];
    
    	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (len < 0 || len > __NEW_UTS_LEN)
    		return -EINVAL;
    	errno = -EFAULT;
    	if (!copy_from_user(tmp, name, len)) {
    		struct new_utsname *u;
    
    		down_write(&uts_sem);
    		u = utsname();
    		memcpy(u->nodename, tmp, len);
    		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
    		errno = 0;
    		uts_proc_notify(UTS_PROC_HOSTNAME);
    		up_write(&uts_sem);
    	}
    	return errno;
    }
    
    #ifdef __ARCH_WANT_SYS_GETHOSTNAME
    
    SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
    {
    	int i;
    	struct new_utsname *u;
    	char tmp[__NEW_UTS_LEN + 1];
    
    	if (len < 0)
    		return -EINVAL;
    	down_read(&uts_sem);
    	u = utsname();
    	i = 1 + strlen(u->nodename);
    	if (i > len)
    		i = len;
    	memcpy(tmp, u->nodename, i);
    	up_read(&uts_sem);
    	if (copy_to_user(name, tmp, i))
    		return -EFAULT;
    	return 0;
    }
    
    #endif
    
    /*
     * Only setdomainname; getdomainname can be implemented by calling
     * uname()
     */
    SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
    {
    	int errno;
    	char tmp[__NEW_UTS_LEN];
    
    	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
    		return -EPERM;
    	if (len < 0 || len > __NEW_UTS_LEN)
    		return -EINVAL;
    
    	errno = -EFAULT;
    	if (!copy_from_user(tmp, name, len)) {
    		struct new_utsname *u;
    
    		down_write(&uts_sem);
    		u = utsname();
    		memcpy(u->domainname, tmp, len);
    		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
    		errno = 0;
    		uts_proc_notify(UTS_PROC_DOMAINNAME);
    		up_write(&uts_sem);
    	}
    	return errno;
    }
    
    SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
    {
    	struct rlimit value;
    	int ret;
    
    	ret = do_prlimit(current, resource, NULL, &value);
    	if (!ret)
    		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
    
    	return ret;
    }
    
    #ifdef CONFIG_COMPAT
    
    COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
    		       struct compat_rlimit __user *, rlim)
    {
    	struct rlimit r;
    	struct compat_rlimit r32;
    
    	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
    		return -EFAULT;
    
    	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
    		r.rlim_cur = RLIM_INFINITY;
    	else
    		r.rlim_cur = r32.rlim_cur;
    	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
    		r.rlim_max = RLIM_INFINITY;
    	else
    		r.rlim_max = r32.rlim_max;
    	return do_prlimit(current, resource, &r, NULL);
    }
    
    COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
    		       struct compat_rlimit __user *, rlim)
    {
    	struct rlimit r;
    	int ret;
    
    	ret = do_prlimit(current, resource, NULL, &r);
    	if (!ret) {
    		struct compat_rlimit r32;
    		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
    			r32.rlim_cur = COMPAT_RLIM_INFINITY;
    		else
    			r32.rlim_cur = r.rlim_cur;
    		if (r.rlim_max > COMPAT_RLIM_INFINITY)
    			r32.rlim_max = COMPAT_RLIM_INFINITY;
    		else
    			r32.rlim_max = r.rlim_max;
    
    		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
    			return -EFAULT;
    	}
    	return ret;
    }
    
    #endif
    
    #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
    
    /*
     *	Back compatibility for getrlimit. Needed for some apps.
     */
    SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
    		struct rlimit __user *, rlim)
    {
    	struct rlimit x;
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    
    	resource = array_index_nospec(resource, RLIM_NLIMITS);
    	task_lock(current->group_leader);
    	x = current->signal->rlim[resource];
    	task_unlock(current->group_leader);
    	if (x.rlim_cur > 0x7FFFFFFF)
    		x.rlim_cur = 0x7FFFFFFF;
    	if (x.rlim_max > 0x7FFFFFFF)
    		x.rlim_max = 0x7FFFFFFF;
    	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
    }
    
    #ifdef CONFIG_COMPAT
    COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
    		       struct compat_rlimit __user *, rlim)
    {
    	struct rlimit r;
    
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    
    	resource = array_index_nospec(resource, RLIM_NLIMITS);
    	task_lock(current->group_leader);
    	r = current->signal->rlim[resource];
    	task_unlock(current->group_leader);
    	if (r.rlim_cur > 0x7FFFFFFF)
    		r.rlim_cur = 0x7FFFFFFF;
    	if (r.rlim_max > 0x7FFFFFFF)
    		r.rlim_max = 0x7FFFFFFF;
    
    	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
    	    put_user(r.rlim_max, &rlim->rlim_max))
    		return -EFAULT;
    	return 0;
    }
    #endif
    
    #endif
    
    static inline bool rlim64_is_infinity(__u64 rlim64)
    {
    #if BITS_PER_LONG < 64
    	return rlim64 >= ULONG_MAX;
    #else
    	return rlim64 == RLIM64_INFINITY;
    #endif
    }
    
    static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
    {
    	if (rlim->rlim_cur == RLIM_INFINITY)
    		rlim64->rlim_cur = RLIM64_INFINITY;
    	else
    		rlim64->rlim_cur = rlim->rlim_cur;
    	if (rlim->rlim_max == RLIM_INFINITY)
    		rlim64->rlim_max = RLIM64_INFINITY;
    	else
    		rlim64->rlim_max = rlim->rlim_max;
    }
    
    static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
    {
    	if (rlim64_is_infinity(rlim64->rlim_cur))
    		rlim->rlim_cur = RLIM_INFINITY;
    	else
    		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
    	if (rlim64_is_infinity(rlim64->rlim_max))
    		rlim->rlim_max = RLIM_INFINITY;
    	else
    		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
    }
    
    /* make sure you are allowed to change @tsk limits before calling this */
    int do_prlimit(struct task_struct *tsk, unsigned int resource,
    		struct rlimit *new_rlim, struct rlimit *old_rlim)
    {
    	struct rlimit *rlim;
    	int retval = 0;
    
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    	if (new_rlim) {
    		if (new_rlim->rlim_cur > new_rlim->rlim_max)
    			return -EINVAL;
    		if (resource == RLIMIT_NOFILE &&
    				new_rlim->rlim_max > sysctl_nr_open)
    			return -EPERM;
    	}
    
    	/* protect tsk->signal and tsk->sighand from disappearing */
    	read_lock(&tasklist_lock);
    	if (!tsk->sighand) {
    		retval = -ESRCH;
    		goto out;
    	}
    
    	rlim = tsk->signal->rlim + resource;
    	task_lock(tsk->group_leader);
    	if (new_rlim) {
    		/* Keep the capable check against init_user_ns until
    		   cgroups can contain all limits */
    		if (new_rlim->rlim_max > rlim->rlim_max &&
    				!capable(CAP_SYS_RESOURCE))
    			retval = -EPERM;
    		if (!retval)
    			retval = security_task_setrlimit(tsk, resource, new_rlim);
    	}
    	if (!retval) {
    		if (old_rlim)
    			*old_rlim = *rlim;
    		if (new_rlim)
    			*rlim = *new_rlim;
    	}
    	task_unlock(tsk->group_leader);
    
    	/*
    	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
    	 * infite. In case of RLIM_INFINITY the posix CPU timer code
    	 * ignores the rlimit.
    	 */
    	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
    	     new_rlim->rlim_cur != RLIM_INFINITY &&
    	     IS_ENABLED(CONFIG_POSIX_TIMERS))
    		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
    out:
    	read_unlock(&tasklist_lock);
    	return retval;
    }
    
    /* rcu lock must be held */
    static int check_prlimit_permission(struct task_struct *task,
    				    unsigned int flags)
    {
    	const struct cred *cred = current_cred(), *tcred;
    	bool id_match;
    
    	if (current == task)
    		return 0;
    
    	tcred = __task_cred(task);
    	id_match = (uid_eq(cred->uid, tcred->euid) &&
    		    uid_eq(cred->uid, tcred->suid) &&
    		    uid_eq(cred->uid, tcred->uid)  &&
    		    gid_eq(cred->gid, tcred->egid) &&
    		    gid_eq(cred->gid, tcred->sgid) &&
    		    gid_eq(cred->gid, tcred->gid));
    	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
    		return -EPERM;
    
    	return security_task_prlimit(cred, tcred, flags);
    }
    
    SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
    		const struct rlimit64 __user *, new_rlim,
    		struct rlimit64 __user *, old_rlim)
    {
    	struct rlimit64 old64, new64;
    	struct rlimit old, new;
    	struct task_struct *tsk;
    	unsigned int checkflags = 0;
    	int ret;
    
    	if (old_rlim)
    		checkflags |= LSM_PRLIMIT_READ;
    
    	if (new_rlim) {
    		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
    			return -EFAULT;
    		rlim64_to_rlim(&new64, &new);
    		checkflags |= LSM_PRLIMIT_WRITE;
    	}
    
    	rcu_read_lock();
    	tsk = pid ? find_task_by_vpid(pid) : current;
    	if (!tsk) {
    		rcu_read_unlock();
    		return -ESRCH;
    	}
    	ret = check_prlimit_permission(tsk, checkflags);
    	if (ret) {
    		rcu_read_unlock();
    		return ret;
    	}
    	get_task_struct(tsk);
    	rcu_read_unlock();
    
    	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
    			old_rlim ? &old : NULL);
    
    	if (!ret && old_rlim) {
    		rlim_to_rlim64(&old, &old64);
    		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
    			ret = -EFAULT;
    	}
    
    	put_task_struct(tsk);
    	return ret;
    }
    
    SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
    {
    	struct rlimit new_rlim;
    
    	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
    		return -EFAULT;
    	return do_prlimit(current, resource, &new_rlim, NULL);
    }
    
    /*
     * It would make sense to put struct rusage in the task_struct,
     * except that would make the task_struct be *really big*.  After
     * task_struct gets moved into malloc'ed memory, it would
     * make sense to do this.  It will make moving the rest of the information
     * a lot simpler!  (Which we're not doing right now because we're not
     * measuring them yet).
     *
     * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
     * races with threads incrementing their own counters.  But since word
     * reads are atomic, we either get new values or old values and we don't
     * care which for the sums.  We always take the siglock to protect reading
     * the c* fields from p->signal from races with exit.c updating those
     * fields when reaping, so a sample either gets all the additions of a
     * given child after it's reaped, or none so this sample is before reaping.
     *
     * Locking:
     * We need to take the siglock for CHILDEREN, SELF and BOTH
     * for  the cases current multithreaded, non-current single threaded
     * non-current multithreaded.  Thread traversal is now safe with
     * the siglock held.
     * Strictly speaking, we donot need to take the siglock if we are current and
     * single threaded,  as no one else can take our signal_struct away, no one
     * else can  reap the  children to update signal->c* counters, and no one else
     * can race with the signal-> fields. If we do not take any lock, the
     * signal-> fields could be read out of order while another thread was just
     * exiting. So we should  place a read memory barrier when we avoid the lock.
     * On the writer side,  write memory barrier is implied in  __exit_signal
     * as __exit_signal releases  the siglock spinlock after updating the signal->
     * fields. But we don't do this yet to keep things simple.
     *
     */
    
    static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
    {
    	r->ru_nvcsw += t->nvcsw;
    	r->ru_nivcsw += t->nivcsw;
    	r->ru_minflt += t->min_flt;
    	r->ru_majflt += t->maj_flt;
    	r->ru_inblock += task_io_get_inblock(t);
    	r->ru_oublock += task_io_get_oublock(t);
    }
    
    void getrusage(struct task_struct *p, int who, struct rusage *r)
    {
    	struct task_struct *t;
    	unsigned long flags;
    	u64 tgutime, tgstime, utime, stime;
    	unsigned long maxrss = 0;
    
    	memset((char *)r, 0, sizeof (*r));
    	utime = stime = 0;
    
    	if (who == RUSAGE_THREAD) {
    		task_cputime_adjusted(current, &utime, &stime);
    		accumulate_thread_rusage(p, r);
    		maxrss = p->signal->maxrss;
    		goto out;
    	}
    
    	if (!lock_task_sighand(p, &flags))
    		return;
    
    	switch (who) {
    	case RUSAGE_BOTH:
    	case RUSAGE_CHILDREN:
    		utime = p->signal->cutime;
    		stime = p->signal->cstime;
    		r->ru_nvcsw = p->signal->cnvcsw;
    		r->ru_nivcsw = p->signal->cnivcsw;
    		r->ru_minflt = p->signal->cmin_flt;
    		r->ru_majflt = p->signal->cmaj_flt;
    		r->ru_inblock = p->signal->cinblock;
    		r->ru_oublock = p->signal->coublock;
    		maxrss = p->signal->cmaxrss;
    
    		if (who == RUSAGE_CHILDREN)
    			break;
    		fallthrough;
    
    	case RUSAGE_SELF:
    		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
    		utime += tgutime;
    		stime += tgstime;
    		r->ru_nvcsw += p->signal->nvcsw;
    		r->ru_nivcsw += p->signal->nivcsw;
    		r->ru_minflt += p->signal->min_flt;
    		r->ru_majflt += p->signal->maj_flt;
    		r->ru_inblock += p->signal->inblock;
    		r->ru_oublock += p->signal->oublock;
    		if (maxrss < p->signal->maxrss)
    			maxrss = p->signal->maxrss;
    		t = p;
    		do {
    			accumulate_thread_rusage(t, r);
    		} while_each_thread(p, t);
    		break;
    
    	default:
    		BUG();
    	}
    	unlock_task_sighand(p, &flags);
    
    out:
    	r->ru_utime = ns_to_kernel_old_timeval(utime);
    	r->ru_stime = ns_to_kernel_old_timeval(stime);
    
    	if (who != RUSAGE_CHILDREN) {
    		struct mm_struct *mm = get_task_mm(p);
    
    		if (mm) {
    			setmax_mm_hiwater_rss(&maxrss, mm);
    			mmput(mm);
    		}
    	}
    	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
    }
    
    SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
    {
    	struct rusage r;
    
    	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
    	    who != RUSAGE_THREAD)
    		return -EINVAL;
    
    	getrusage(current, who, &r);
    	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
    }
    
    #ifdef CONFIG_COMPAT
    COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
    {
    	struct rusage r;
    
    	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
    	    who != RUSAGE_THREAD)
    		return -EINVAL;
    
    	getrusage(current, who, &r);
    	return put_compat_rusage(&r, ru);
    }
    #endif
    
    SYSCALL_DEFINE1(umask, int, mask)
    {
    	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
    	return mask;
    }
    
    static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
    {
    	struct fd exe;
    	struct file *old_exe, *exe_file;
    	struct inode *inode;
    	int err;
    
    	exe = fdget(fd);
    	if (!exe.file)
    		return -EBADF;
    
    	inode = file_inode(exe.file);
    
    	/*
    	 * Because the original mm->exe_file points to executable file, make
    	 * sure that this one is executable as well, to avoid breaking an
    	 * overall picture.
    	 */
    	err = -EACCES;
    	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
    		goto exit;
    
    	err = inode_permission(inode, MAY_EXEC);
    	if (err)
    		goto exit;
    
    	/*
    	 * Forbid mm->exe_file change if old file still mapped.
    	 */
    	exe_file = get_mm_exe_file(mm);
    	err = -EBUSY;
    	if (exe_file) {
    		struct vm_area_struct *vma;
    
    		mmap_read_lock(mm);
    		for (vma = mm->mmap; vma; vma = vma->vm_next) {
    			if (!vma->vm_file)
    				continue;
    			if (path_equal(&vma->vm_file->f_path,
    				       &exe_file->f_path))
    				goto exit_err;
    		}
    
    		mmap_read_unlock(mm);
    		fput(exe_file);
    	}
    
    	err = 0;
    	/* set the new file, lockless */
    	get_file(exe.file);
    	old_exe = xchg(&mm->exe_file, exe.file);
    	if (old_exe)
    		fput(old_exe);
    exit:
    	fdput(exe);
    	return err;
    exit_err:
    	mmap_read_unlock(mm);
    	fput(exe_file);
    	goto exit;
    }
    
    /*
     * Check arithmetic relations of passed addresses.
     *
     * WARNING: we don't require any capability here so be very careful
     * in what is allowed for modification from userspace.
     */
    static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
    {
    	unsigned long mmap_max_addr = TASK_SIZE;
    	int error = -EINVAL, i;
    
    	static const unsigned char offsets[] = {
    		offsetof(struct prctl_mm_map, start_code),
    		offsetof(struct prctl_mm_map, end_code),
    		offsetof(struct prctl_mm_map, start_data),
    		offsetof(struct prctl_mm_map, end_data),
    		offsetof(struct prctl_mm_map, start_brk),
    		offsetof(struct prctl_mm_map, brk),
    		offsetof(struct prctl_mm_map, start_stack),
    		offsetof(struct prctl_mm_map, arg_start),
    		offsetof(struct prctl_mm_map, arg_end),
    		offsetof(struct prctl_mm_map, env_start),
    		offsetof(struct prctl_mm_map, env_end),
    	};
    
    	/*
    	 * Make sure the members are not somewhere outside
    	 * of allowed address space.
    	 */
    	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
    		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
    
    		if ((unsigned long)val >= mmap_max_addr ||
    		    (unsigned long)val < mmap_min_addr)
    			goto out;
    	}
    
    	/*
    	 * Make sure the pairs are ordered.
    	 */
    #define __prctl_check_order(__m1, __op, __m2)				\
    	((unsigned long)prctl_map->__m1 __op				\
    	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
    	error  = __prctl_check_order(start_code, <, end_code);
    	error |= __prctl_check_order(start_data,<=, end_data);
    	error |= __prctl_check_order(start_brk, <=, brk);
    	error |= __prctl_check_order(arg_start, <=, arg_end);
    	error |= __prctl_check_order(env_start, <=, env_end);
    	if (error)
    		goto out;
    #undef __prctl_check_order
    
    	error = -EINVAL;
    
    	/*
    	 * @brk should be after @end_data in traditional maps.
    	 */
    	if (prctl_map->start_brk <= prctl_map->end_data ||
    	    prctl_map->brk <= prctl_map->end_data)
    		goto out;
    
    	/*
    	 * Neither we should allow to override limits if they set.
    	 */
    	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
    			      prctl_map->start_brk, prctl_map->end_data,
    			      prctl_map->start_data))
    			goto out;
    
    	error = 0;
    out:
    	return error;
    }
    
    #ifdef CONFIG_CHECKPOINT_RESTORE
    static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
    {
    	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
    	unsigned long user_auxv[AT_VECTOR_SIZE];
    	struct mm_struct *mm = current->mm;
    	int error;
    
    	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
    	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
    
    	if (opt == PR_SET_MM_MAP_SIZE)
    		return put_user((unsigned int)sizeof(prctl_map),
    				(unsigned int __user *)addr);
    
    	if (data_size != sizeof(prctl_map))
    		return -EINVAL;
    
    	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
    		return -EFAULT;
    
    	error = validate_prctl_map_addr(&prctl_map);
    	if (error)
    		return error;
    
    	if (prctl_map.auxv_size) {
    		/*
    		 * Someone is trying to cheat the auxv vector.
    		 */
    		if (!prctl_map.auxv ||
    				prctl_map.auxv_size > sizeof(mm->saved_auxv))
    			return -EINVAL;
    
    		memset(user_auxv, 0, sizeof(user_auxv));
    		if (copy_from_user(user_auxv,
    				   (const void __user *)prctl_map.auxv,
    				   prctl_map.auxv_size))
    			return -EFAULT;
    
    		/* Last entry must be AT_NULL as specification requires */
    		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
    		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
    	}
    
    	if (prctl_map.exe_fd != (u32)-1) {
    		/*
    		 * Check if the current user is checkpoint/restore capable.
    		 * At the time of this writing, it checks for CAP_SYS_ADMIN
    		 * or CAP_CHECKPOINT_RESTORE.
    		 * Note that a user with access to ptrace can masquerade an
    		 * arbitrary program as any executable, even setuid ones.
    		 * This may have implications in the tomoyo subsystem.
    		 */
    		if (!checkpoint_restore_ns_capable(current_user_ns()))
    			return -EPERM;
    
    		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
    		if (error)
    			return error;
    	}
    
    	/*
    	 * arg_lock protects concurent updates but we still need mmap_lock for
    	 * read to exclude races with sys_brk.
    	 */
    	mmap_read_lock(mm);
    
    	/*
    	 * We don't validate if these members are pointing to
    	 * real present VMAs because application may have correspond
    	 * VMAs already unmapped and kernel uses these members for statistics
    	 * output in procfs mostly, except
    	 *
    	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
    	 *    for VMAs when updating these memvers so anything wrong written
    	 *    here cause kernel to swear at userspace program but won't lead
    	 *    to any problem in kernel itself
    	 */
    
    	spin_lock(&mm->arg_lock);
    	mm->start_code	= prctl_map.start_code;
    	mm->end_code	= prctl_map.end_code;
    	mm->start_data	= prctl_map.start_data;
    	mm->end_data	= prctl_map.end_data;
    	mm->start_brk	= prctl_map.start_brk;
    	mm->brk		= prctl_map.brk;
    	mm->start_stack	= prctl_map.start_stack;
    	mm->arg_start	= prctl_map.arg_start;
    	mm->arg_end	= prctl_map.arg_end;
    	mm->env_start	= prctl_map.env_start;
    	mm->env_end	= prctl_map.env_end;
    	spin_unlock(&mm->arg_lock);
    
    	/*
    	 * Note this update of @saved_auxv is lockless thus
    	 * if someone reads this member in procfs while we're
    	 * updating -- it may get partly updated results. It's
    	 * known and acceptable trade off: we leave it as is to
    	 * not introduce additional locks here making the kernel
    	 * more complex.
    	 */
    	if (prctl_map.auxv_size)
    		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
    
    	mmap_read_unlock(mm);
    	return 0;
    }
    #endif /* CONFIG_CHECKPOINT_RESTORE */
    
    static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
    			  unsigned long len)
    {
    	/*
    	 * This doesn't move the auxiliary vector itself since it's pinned to
    	 * mm_struct, but it permits filling the vector with new values.  It's
    	 * up to the caller to provide sane values here, otherwise userspace
    	 * tools which use this vector might be unhappy.
    	 */
    	unsigned long user_auxv[AT_VECTOR_SIZE];
    
    	if (len > sizeof(user_auxv))
    		return -EINVAL;
    
    	if (copy_from_user(user_auxv, (const void __user *)addr, len))
    		return -EFAULT;
    
    	/* Make sure the last entry is always AT_NULL */
    	user_auxv[AT_VECTOR_SIZE - 2] = 0;
    	user_auxv[AT_VECTOR_SIZE - 1] = 0;
    
    	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
    
    	task_lock(current);
    	memcpy(mm->saved_auxv, user_auxv, len);
    	task_unlock(current);
    
    	return 0;
    }
    
    static int prctl_set_mm(int opt, unsigned long addr,
    			unsigned long arg4, unsigned long arg5)
    {
    	struct mm_struct *mm = current->mm;
    	struct prctl_mm_map prctl_map = {
    		.auxv = NULL,
    		.auxv_size = 0,
    		.exe_fd = -1,
    	};
    	struct vm_area_struct *vma;
    	int error;
    
    	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
    			      opt != PR_SET_MM_MAP &&
    			      opt != PR_SET_MM_MAP_SIZE)))
    		return -EINVAL;
    
    #ifdef CONFIG_CHECKPOINT_RESTORE
    	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
    		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
    #endif
    
    	if (!capable(CAP_SYS_RESOURCE))
    		return -EPERM;
    
    	if (opt == PR_SET_MM_EXE_FILE)
    		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
    
    	if (opt == PR_SET_MM_AUXV)
    		return prctl_set_auxv(mm, addr, arg4);
    
    	if (addr >= TASK_SIZE || addr < mmap_min_addr)
    		return -EINVAL;
    
    	error = -EINVAL;
    
    	/*
    	 * arg_lock protects concurent updates of arg boundaries, we need
    	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
    	 * validation.
    	 */
    	mmap_read_lock(mm);
    	vma = find_vma(mm, addr);
    
    	spin_lock(&mm->arg_lock);
    	prctl_map.start_code	= mm->start_code;
    	prctl_map.end_code	= mm->end_code;
    	prctl_map.start_data	= mm->start_data;
    	prctl_map.end_data	= mm->end_data;
    	prctl_map.start_brk	= mm->start_brk;
    	prctl_map.brk		= mm->brk;
    	prctl_map.start_stack	= mm->start_stack;
    	prctl_map.arg_start	= mm->arg_start;
    	prctl_map.arg_end	= mm->arg_end;
    	prctl_map.env_start	= mm->env_start;
    	prctl_map.env_end	= mm->env_end;
    
    	switch (opt) {
    	case PR_SET_MM_START_CODE:
    		prctl_map.start_code = addr;
    		break;
    	case PR_SET_MM_END_CODE:
    		prctl_map.end_code = addr;
    		break;
    	case PR_SET_MM_START_DATA:
    		prctl_map.start_data = addr;
    		break;
    	case PR_SET_MM_END_DATA:
    		prctl_map.end_data = addr;
    		break;
    	case PR_SET_MM_START_STACK:
    		prctl_map.start_stack = addr;
    		break;
    	case PR_SET_MM_START_BRK:
    		prctl_map.start_brk = addr;
    		break;
    	case PR_SET_MM_BRK:
    		prctl_map.brk = addr;
    		break;
    	case PR_SET_MM_ARG_START:
    		prctl_map.arg_start = addr;
    		break;
    	case PR_SET_MM_ARG_END:
    		prctl_map.arg_end = addr;
    		break;
    	case PR_SET_MM_ENV_START:
    		prctl_map.env_start = addr;
    		break;
    	case PR_SET_MM_ENV_END:
    		prctl_map.env_end = addr;
    		break;
    	default:
    		goto out;
    	}
    
    	error = validate_prctl_map_addr(&prctl_map);
    	if (error)
    		goto out;
    
    	switch (opt) {
    	/*
    	 * If command line arguments and environment
    	 * are placed somewhere else on stack, we can
    	 * set them up here, ARG_START/END to setup
    	 * command line argumets and ENV_START/END
    	 * for environment.
    	 */
    	case PR_SET_MM_START_STACK:
    	case PR_SET_MM_ARG_START:
    	case PR_SET_MM_ARG_END:
    	case PR_SET_MM_ENV_START:
    	case PR_SET_MM_ENV_END:
    		if (!vma) {
    			error = -EFAULT;
    			goto out;
    		}
    	}
    
    	mm->start_code	= prctl_map.start_code;
    	mm->end_code	= prctl_map.end_code;
    	mm->start_data	= prctl_map.start_data;
    	mm->end_data	= prctl_map.end_data;
    	mm->start_brk	= prctl_map.start_brk;
    	mm->brk		= prctl_map.brk;
    	mm->start_stack	= prctl_map.start_stack;
    	mm->arg_start	= prctl_map.arg_start;
    	mm->arg_end	= prctl_map.arg_end;
    	mm->env_start	= prctl_map.env_start;
    	mm->env_end	= prctl_map.env_end;
    
    	error = 0;
    out:
    	spin_unlock(&mm->arg_lock);
    	mmap_read_unlock(mm);
    	return error;
    }
    
    #ifdef CONFIG_CHECKPOINT_RESTORE
    static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
    {
    	return put_user(me->clear_child_tid, tid_addr);
    }
    #else
    static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
    {
    	return -EINVAL;
    }
    #endif
    
    static int propagate_has_child_subreaper(struct task_struct *p, void *data)
    {
    	/*
    	 * If task has has_child_subreaper - all its decendants
    	 * already have these flag too and new decendants will
    	 * inherit it on fork, skip them.
    	 *
    	 * If we've found child_reaper - skip descendants in
    	 * it's subtree as they will never get out pidns.
    	 */
    	if (p->signal->has_child_subreaper ||
    	    is_child_reaper(task_pid(p)))
    		return 0;
    
    	p->signal->has_child_subreaper = 1;
    	return 1;
    }
    
    int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
    {
    	return -EINVAL;
    }
    
    int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
    				    unsigned long ctrl)
    {
    	return -EINVAL;
    }
    
    #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
    
    SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
    		unsigned long, arg4, unsigned long, arg5)
    {
    	struct task_struct *me = current;
    	unsigned char comm[sizeof(me->comm)];
    	long error;
    
    	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
    	if (error != -ENOSYS)
    		return error;
    
    	error = 0;
    	switch (option) {
    	case PR_SET_PDEATHSIG:
    		if (!valid_signal(arg2)) {
    			error = -EINVAL;
    			break;
    		}
    		me->pdeath_signal = arg2;
    		break;
    	case PR_GET_PDEATHSIG:
    		error = put_user(me->pdeath_signal, (int __user *)arg2);
    		break;
    	case PR_GET_DUMPABLE:
    		error = get_dumpable(me->mm);
    		break;
    	case PR_SET_DUMPABLE:
    		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
    			error = -EINVAL;
    			break;
    		}
    		set_dumpable(me->mm, arg2);
    		break;
    
    	case PR_SET_UNALIGN:
    		error = SET_UNALIGN_CTL(me, arg2);
    		break;
    	case PR_GET_UNALIGN:
    		error = GET_UNALIGN_CTL(me, arg2);
    		break;
    	case PR_SET_FPEMU:
    		error = SET_FPEMU_CTL(me, arg2);
    		break;
    	case PR_GET_FPEMU:
    		error = GET_FPEMU_CTL(me, arg2);
    		break;
    	case PR_SET_FPEXC:
    		error = SET_FPEXC_CTL(me, arg2);
    		break;
    	case PR_GET_FPEXC:
    		error = GET_FPEXC_CTL(me, arg2);
    		break;
    	case PR_GET_TIMING:
    		error = PR_TIMING_STATISTICAL;
    		break;
    	case PR_SET_TIMING:
    		if (arg2 != PR_TIMING_STATISTICAL)
    			error = -EINVAL;
    		break;
    	case PR_SET_NAME:
    		comm[sizeof(me->comm) - 1] = 0;
    		if (strncpy_from_user(comm, (char __user *)arg2,
    				      sizeof(me->comm) - 1) < 0)
    			return -EFAULT;
    		set_task_comm(me, comm);
    		proc_comm_connector(me);
    		break;
    	case PR_GET_NAME:
    		get_task_comm(comm, me);
    		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
    			return -EFAULT;
    		break;
    	case PR_GET_ENDIAN:
    		error = GET_ENDIAN(me, arg2);
    		break;
    	case PR_SET_ENDIAN:
    		error = SET_ENDIAN(me, arg2);
    		break;
    	case PR_GET_SECCOMP:
    		error = prctl_get_seccomp();
    		break;
    	case PR_SET_SECCOMP:
    		error = prctl_set_seccomp(arg2, (char __user *)arg3);
    		break;
    	case PR_GET_TSC:
    		error = GET_TSC_CTL(arg2);
    		break;
    	case PR_SET_TSC:
    		error = SET_TSC_CTL(arg2);
    		break;
    	case PR_TASK_PERF_EVENTS_DISABLE:
    		error = perf_event_task_disable();
    		break;
    	case PR_TASK_PERF_EVENTS_ENABLE:
    		error = perf_event_task_enable();
    		break;
    	case PR_GET_TIMERSLACK:
    		if (current->timer_slack_ns > ULONG_MAX)
    			error = ULONG_MAX;
    		else
    			error = current->timer_slack_ns;
    		break;
    	case PR_SET_TIMERSLACK:
    		if (arg2 <= 0)
    			current->timer_slack_ns =
    					current->default_timer_slack_ns;
    		else
    			current->timer_slack_ns = arg2;
    		break;
    	case PR_MCE_KILL:
    		if (arg4 | arg5)
    			return -EINVAL;
    		switch (arg2) {
    		case PR_MCE_KILL_CLEAR:
    			if (arg3 != 0)
    				return -EINVAL;
    			current->flags &= ~PF_MCE_PROCESS;
    			break;
    		case PR_MCE_KILL_SET:
    			current->flags |= PF_MCE_PROCESS;
    			if (arg3 == PR_MCE_KILL_EARLY)
    				current->flags |= PF_MCE_EARLY;
    			else if (arg3 == PR_MCE_KILL_LATE)
    				current->flags &= ~PF_MCE_EARLY;
    			else if (arg3 == PR_MCE_KILL_DEFAULT)
    				current->flags &=
    						~(PF_MCE_EARLY|PF_MCE_PROCESS);
    			else
    				return -EINVAL;
    			break;
    		default:
    			return -EINVAL;
    		}
    		break;
    	case PR_MCE_KILL_GET:
    		if (arg2 | arg3 | arg4 | arg5)
    			return -EINVAL;
    		if (current->flags & PF_MCE_PROCESS)
    			error = (current->flags & PF_MCE_EARLY) ?
    				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
    		else
    			error = PR_MCE_KILL_DEFAULT;
    		break;
    	case PR_SET_MM:
    		error = prctl_set_mm(arg2, arg3, arg4, arg5);
    		break;
    	case PR_GET_TID_ADDRESS:
    		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
    		break;
    	case PR_SET_CHILD_SUBREAPER:
    		me->signal->is_child_subreaper = !!arg2;
    		if (!arg2)
    			break;
    
    		walk_process_tree(me, propagate_has_child_subreaper, NULL);
    		break;
    	case PR_GET_CHILD_SUBREAPER:
    		error = put_user(me->signal->is_child_subreaper,
    				 (int __user *)arg2);
    		break;
    	case PR_SET_NO_NEW_PRIVS:
    		if (arg2 != 1 || arg3 || arg4 || arg5)
    			return -EINVAL;
    
    		task_set_no_new_privs(current);
    		break;
    	case PR_GET_NO_NEW_PRIVS:
    		if (arg2 || arg3 || arg4 || arg5)
    			return -EINVAL;
    		return task_no_new_privs(current) ? 1 : 0;
    	case PR_GET_THP_DISABLE:
    		if (arg2 || arg3 || arg4 || arg5)
    			return -EINVAL;
    		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
    		break;
    	case PR_SET_THP_DISABLE:
    		if (arg3 || arg4 || arg5)
    			return -EINVAL;
    		if (mmap_write_lock_killable(me->mm))
    			return -EINTR;
    		if (arg2)
    			set_bit(MMF_DISABLE_THP, &me->mm->flags);
    		else
    			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
    		mmap_write_unlock(me->mm);
    		break;
    	case PR_MPX_ENABLE_MANAGEMENT:
    	case PR_MPX_DISABLE_MANAGEMENT:
    		/* No longer implemented: */
    		return -EINVAL;
    	case PR_SET_FP_MODE:
    		error = SET_FP_MODE(me, arg2);
    		break;
    	case PR_GET_FP_MODE:
    		error = GET_FP_MODE(me);
    		break;
    	case PR_SVE_SET_VL:
    		error = SVE_SET_VL(arg2);
    		break;
    	case PR_SVE_GET_VL:
    		error = SVE_GET_VL();
    		break;
    	case PR_GET_SPECULATION_CTRL:
    		if (arg3 || arg4 || arg5)
    			return -EINVAL;
    		error = arch_prctl_spec_ctrl_get(me, arg2);
    		break;
    	case PR_SET_SPECULATION_CTRL:
    		if (arg4 || arg5)
    			return -EINVAL;
    		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
    		break;
    	case PR_PAC_RESET_KEYS:
    		if (arg3 || arg4 || arg5)
    			return -EINVAL;
    		error = PAC_RESET_KEYS(me, arg2);
    		break;
    	case PR_SET_TAGGED_ADDR_CTRL:
    		if (arg3 || arg4 || arg5)
    			return -EINVAL;
    		error = SET_TAGGED_ADDR_CTRL(arg2);
    		break;
    	case PR_GET_TAGGED_ADDR_CTRL:
    		if (arg2 || arg3 || arg4 || arg5)
    			return -EINVAL;
    		error = GET_TAGGED_ADDR_CTRL();
    		break;
    	case PR_SET_IO_FLUSHER:
    		if (!capable(CAP_SYS_RESOURCE))
    			return -EPERM;
    
    		if (arg3 || arg4 || arg5)
    			return -EINVAL;
    
    		if (arg2 == 1)
    			current->flags |= PR_IO_FLUSHER;
    		else if (!arg2)
    			current->flags &= ~PR_IO_FLUSHER;
    		else
    			return -EINVAL;
    		break;
    	case PR_GET_IO_FLUSHER:
    		if (!capable(CAP_SYS_RESOURCE))
    			return -EPERM;
    
    		if (arg2 || arg3 || arg4 || arg5)
    			return -EINVAL;
    
    		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
    		break;
    	case PR_SET_SYSCALL_USER_DISPATCH:
    		error = set_syscall_user_dispatch(arg2, arg3, arg4,
    						  (char __user *) arg5);
    		break;
    	default:
    		error = -EINVAL;
    		break;
    	}
    	return error;
    }
    
    SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
    		struct getcpu_cache __user *, unused)
    {
    	int err = 0;
    	int cpu = raw_smp_processor_id();
    
    	if (cpup)
    		err |= put_user(cpu, cpup);
    	if (nodep)
    		err |= put_user(cpu_to_node(cpu), nodep);
    	return err ? -EFAULT : 0;
    }
    
    /**
     * do_sysinfo - fill in sysinfo struct
     * @info: pointer to buffer to fill
     */
    static int do_sysinfo(struct sysinfo *info)
    {
    	unsigned long mem_total, sav_total;
    	unsigned int mem_unit, bitcount;
    	struct timespec64 tp;
    
    	memset(info, 0, sizeof(struct sysinfo));
    
    	ktime_get_boottime_ts64(&tp);
    	timens_add_boottime(&tp);
    	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
    
    	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
    
    	info->procs = nr_threads;
    
    	si_meminfo(info);
    	si_swapinfo(info);
    
    	/*
    	 * If the sum of all the available memory (i.e. ram + swap)
    	 * is less than can be stored in a 32 bit unsigned long then
    	 * we can be binary compatible with 2.2.x kernels.  If not,
    	 * well, in that case 2.2.x was broken anyways...
    	 *
    	 *  -Erik Andersen <andersee@debian.org>
    	 */
    
    	mem_total = info->totalram + info->totalswap;
    	if (mem_total < info->totalram || mem_total < info->totalswap)
    		goto out;
    	bitcount = 0;
    	mem_unit = info->mem_unit;
    	while (mem_unit > 1) {
    		bitcount++;
    		mem_unit >>= 1;
    		sav_total = mem_total;
    		mem_total <<= 1;
    		if (mem_total < sav_total)
    			goto out;
    	}
    
    	/*
    	 * If mem_total did not overflow, multiply all memory values by
    	 * info->mem_unit and set it to 1.  This leaves things compatible
    	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
    	 * kernels...
    	 */
    
    	info->mem_unit = 1;
    	info->totalram <<= bitcount;
    	info->freeram <<= bitcount;
    	info->sharedram <<= bitcount;
    	info->bufferram <<= bitcount;
    	info->totalswap <<= bitcount;
    	info->freeswap <<= bitcount;
    	info->totalhigh <<= bitcount;
    	info->freehigh <<= bitcount;
    
    out:
    	return 0;
    }
    
    SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
    {
    	struct sysinfo val;
    
    	do_sysinfo(&val);
    
    	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
    		return -EFAULT;
    
    	return 0;
    }
    
    #ifdef CONFIG_COMPAT
    struct compat_sysinfo {
    	s32 uptime;
    	u32 loads[3];
    	u32 totalram;
    	u32 freeram;
    	u32 sharedram;
    	u32 bufferram;
    	u32 totalswap;
    	u32 freeswap;
    	u16 procs;
    	u16 pad;
    	u32 totalhigh;
    	u32 freehigh;
    	u32 mem_unit;
    	char _f[20-2*sizeof(u32)-sizeof(int)];
    };
    
    COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
    {
    	struct sysinfo s;
    	struct compat_sysinfo s_32;
    
    	do_sysinfo(&s);
    
    	/* Check to see if any memory value is too large for 32-bit and scale
    	 *  down if needed
    	 */
    	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
    		int bitcount = 0;
    
    		while (s.mem_unit < PAGE_SIZE) {
    			s.mem_unit <<= 1;
    			bitcount++;
    		}
    
    		s.totalram >>= bitcount;
    		s.freeram >>= bitcount;
    		s.sharedram >>= bitcount;
    		s.bufferram >>= bitcount;
    		s.totalswap >>= bitcount;
    		s.freeswap >>= bitcount;
    		s.totalhigh >>= bitcount;
    		s.freehigh >>= bitcount;
    	}
    
    	memset(&s_32, 0, sizeof(s_32));
    	s_32.uptime = s.uptime;
    	s_32.loads[0] = s.loads[0];
    	s_32.loads[1] = s.loads[1];
    	s_32.loads[2] = s.loads[2];
    	s_32.totalram = s.totalram;
    	s_32.freeram = s.freeram;
    	s_32.sharedram = s.sharedram;
    	s_32.bufferram = s.bufferram;
    	s_32.totalswap = s.totalswap;
    	s_32.freeswap = s.freeswap;
    	s_32.procs = s.procs;
    	s_32.totalhigh = s.totalhigh;
    	s_32.freehigh = s.freehigh;
    	s_32.mem_unit = s.mem_unit;
    	if (copy_to_user(info, &s_32, sizeof(s_32)))
    		return -EFAULT;
    	return 0;
    }
    #endif /* CONFIG_COMPAT */