Skip to content
Snippets Groups Projects
Select Git revision
  • c46f59e90226fa5bfcc83650edebe84ae47d454b
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

elf.c

Blame
  • setup.c 13.71 KiB
    /*
     * This file is subject to the terms and conditions of the GNU General Public
     * License.  See the file "COPYING" in the main directory of this archive
     * for more details.
     *
     * Copyright (C) 1995 Linus Torvalds
     * Copyright (C) 1995 Waldorf Electronics
     * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
     * Copyright (C) 1996 Stoned Elipot
     * Copyright (C) 1999 Silicon Graphics, Inc.
     * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
     */
    #include <linux/init.h>
    #include <linux/ioport.h>
    #include <linux/module.h>
    #include <linux/screen_info.h>
    #include <linux/bootmem.h>
    #include <linux/initrd.h>
    #include <linux/root_dev.h>
    #include <linux/highmem.h>
    #include <linux/console.h>
    #include <linux/pfn.h>
    #include <linux/debugfs.h>
    
    #include <asm/addrspace.h>
    #include <asm/bootinfo.h>
    #include <asm/bugs.h>
    #include <asm/cache.h>
    #include <asm/cpu.h>
    #include <asm/sections.h>
    #include <asm/setup.h>
    #include <asm/smp-ops.h>
    #include <asm/system.h>
    
    struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
    
    EXPORT_SYMBOL(cpu_data);
    
    #ifdef CONFIG_VT
    struct screen_info screen_info;
    #endif
    
    /*
     * Despite it's name this variable is even if we don't have PCI
     */
    unsigned int PCI_DMA_BUS_IS_PHYS;
    
    EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
    
    /*
     * Setup information
     *
     * These are initialized so they are in the .data section
     */
    unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
    
    EXPORT_SYMBOL(mips_machtype);
    
    struct boot_mem_map boot_mem_map;
    
    static char command_line[CL_SIZE];
           char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
    
    /*
     * mips_io_port_base is the begin of the address space to which x86 style
     * I/O ports are mapped.
     */
    const unsigned long mips_io_port_base __read_mostly = -1;
    EXPORT_SYMBOL(mips_io_port_base);
    
    static struct resource code_resource = { .name = "Kernel code", };
    static struct resource data_resource = { .name = "Kernel data", };
    
    void __init add_memory_region(phys_t start, phys_t size, long type)
    {
    	int x = boot_mem_map.nr_map;
    	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
    
    	/* Sanity check */
    	if (start + size < start) {
    		pr_warning("Trying to add an invalid memory region, skipped\n");
    		return;
    	}
    
    	/*
    	 * Try to merge with previous entry if any.  This is far less than
    	 * perfect but is sufficient for most real world cases.
    	 */
    	if (x && prev->addr + prev->size == start && prev->type == type) {
    		prev->size += size;
    		return;
    	}
    
    	if (x == BOOT_MEM_MAP_MAX) {
    		pr_err("Ooops! Too many entries in the memory map!\n");
    		return;
    	}
    
    	boot_mem_map.map[x].addr = start;
    	boot_mem_map.map[x].size = size;
    	boot_mem_map.map[x].type = type;
    	boot_mem_map.nr_map++;
    }
    
    static void __init print_memory_map(void)
    {
    	int i;
    	const int field = 2 * sizeof(unsigned long);
    
    	for (i = 0; i < boot_mem_map.nr_map; i++) {
    		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
    		       field, (unsigned long long) boot_mem_map.map[i].size,
    		       field, (unsigned long long) boot_mem_map.map[i].addr);
    
    		switch (boot_mem_map.map[i].type) {
    		case BOOT_MEM_RAM:
    			printk(KERN_CONT "(usable)\n");
    			break;
    		case BOOT_MEM_ROM_DATA:
    			printk(KERN_CONT "(ROM data)\n");
    			break;
    		case BOOT_MEM_RESERVED:
    			printk(KERN_CONT "(reserved)\n");
    			break;
    		default:
    			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
    			break;
    		}
    	}
    }
    
    /*
     * Manage initrd
     */
    #ifdef CONFIG_BLK_DEV_INITRD
    
    static int __init rd_start_early(char *p)
    {
    	unsigned long start = memparse(p, &p);
    
    #ifdef CONFIG_64BIT
    	/* Guess if the sign extension was forgotten by bootloader */
    	if (start < XKPHYS)
    		start = (int)start;
    #endif
    	initrd_start = start;
    	initrd_end += start;
    	return 0;
    }
    early_param("rd_start", rd_start_early);
    
    static int __init rd_size_early(char *p)
    {
    	initrd_end += memparse(p, &p);
    	return 0;
    }
    early_param("rd_size", rd_size_early);
    
    /* it returns the next free pfn after initrd */
    static unsigned long __init init_initrd(void)
    {
    	unsigned long end;
    
    	/*
    	 * Board specific code or command line parser should have
    	 * already set up initrd_start and initrd_end. In these cases
    	 * perfom sanity checks and use them if all looks good.
    	 */
    	if (!initrd_start || initrd_end <= initrd_start) {
    #ifdef CONFIG_PROBE_INITRD_HEADER
    		u32 *initrd_header;
    
    		/*
    		 * See if initrd has been added to the kernel image by
    		 * arch/mips/boot/addinitrd.c. In that case a header is
    		 * prepended to initrd and is made up by 8 bytes. The first
    		 * word is a magic number and the second one is the size of
    		 * initrd.  Initrd start must be page aligned in any cases.
    		 */
    		initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
    		if (initrd_header[0] != 0x494E5244)
    			goto disable;
    		initrd_start = (unsigned long)(initrd_header + 2);
    		initrd_end = initrd_start + initrd_header[1];
    #else
    		goto disable;
    #endif
    	}
    
    	if (initrd_start & ~PAGE_MASK) {
    		pr_err("initrd start must be page aligned\n");
    		goto disable;
    	}
    	if (initrd_start < PAGE_OFFSET) {
    		pr_err("initrd start < PAGE_OFFSET\n");
    		goto disable;
    	}
    
    	/*
    	 * Sanitize initrd addresses. For example firmware
    	 * can't guess if they need to pass them through
    	 * 64-bits values if the kernel has been built in pure
    	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
    	 * addresses now, so the code can now safely use __pa().
    	 */
    	end = __pa(initrd_end);
    	initrd_end = (unsigned long)__va(end);
    	initrd_start = (unsigned long)__va(__pa(initrd_start));
    
    	ROOT_DEV = Root_RAM0;
    	return PFN_UP(end);
    disable:
    	initrd_start = 0;
    	initrd_end = 0;
    	return 0;
    }
    
    static void __init finalize_initrd(void)
    {
    	unsigned long size = initrd_end - initrd_start;
    
    	if (size == 0) {
    		printk(KERN_INFO "Initrd not found or empty");
    		goto disable;
    	}
    	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
    		printk(KERN_ERR "Initrd extends beyond end of memory");
    		goto disable;
    	}
    
    	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
    	initrd_below_start_ok = 1;
    
    	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
    		initrd_start, size);
    	return;
    disable:
    	printk(KERN_CONT " - disabling initrd\n");
    	initrd_start = 0;
    	initrd_end = 0;
    }
    
    #else  /* !CONFIG_BLK_DEV_INITRD */
    
    static unsigned long __init init_initrd(void)
    {
    	return 0;
    }
    
    #define finalize_initrd()	do {} while (0)
    
    #endif
    
    /*
     * Initialize the bootmem allocator. It also setup initrd related data
     * if needed.
     */
    #ifdef CONFIG_SGI_IP27
    
    static void __init bootmem_init(void)
    {
    	init_initrd();
    	finalize_initrd();
    }
    
    #else  /* !CONFIG_SGI_IP27 */
    
    static void __init bootmem_init(void)
    {
    	unsigned long reserved_end;
    	unsigned long mapstart = ~0UL;
    	unsigned long bootmap_size;
    	int i;
    
    	/*
    	 * Init any data related to initrd. It's a nop if INITRD is
    	 * not selected. Once that done we can determine the low bound
    	 * of usable memory.
    	 */
    	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
    
    	/*
    	 * max_low_pfn is not a number of pages. The number of pages
    	 * of the system is given by 'max_low_pfn - min_low_pfn'.
    	 */
    	min_low_pfn = ~0UL;
    	max_low_pfn = 0;
    
    	/*
    	 * Find the highest page frame number we have available.
    	 */
    	for (i = 0; i < boot_mem_map.nr_map; i++) {
    		unsigned long start, end;
    
    		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
    			continue;
    
    		start = PFN_UP(boot_mem_map.map[i].addr);
    		end = PFN_DOWN(boot_mem_map.map[i].addr
    				+ boot_mem_map.map[i].size);
    
    		if (end > max_low_pfn)
    			max_low_pfn = end;
    		if (start < min_low_pfn)
    			min_low_pfn = start;
    		if (end <= reserved_end)
    			continue;
    		if (start >= mapstart)
    			continue;
    		mapstart = max(reserved_end, start);
    	}
    
    	if (min_low_pfn >= max_low_pfn)
    		panic("Incorrect memory mapping !!!");
    	if (min_low_pfn > ARCH_PFN_OFFSET) {
    		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
    			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
    			min_low_pfn - ARCH_PFN_OFFSET);
    	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
    		pr_info("%lu free pages won't be used\n",
    			ARCH_PFN_OFFSET - min_low_pfn);
    	}
    	min_low_pfn = ARCH_PFN_OFFSET;
    
    	/*
    	 * Determine low and high memory ranges
    	 */
    	max_pfn = max_low_pfn;
    	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
    #ifdef CONFIG_HIGHMEM
    		highstart_pfn = PFN_DOWN(HIGHMEM_START);
    		highend_pfn = max_low_pfn;
    #endif
    		max_low_pfn = PFN_DOWN(HIGHMEM_START);
    	}
    
    	/*
    	 * Initialize the boot-time allocator with low memory only.
    	 */
    	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
    					 min_low_pfn, max_low_pfn);
    
    
    	for (i = 0; i < boot_mem_map.nr_map; i++) {
    		unsigned long start, end;
    
    		start = PFN_UP(boot_mem_map.map[i].addr);
    		end = PFN_DOWN(boot_mem_map.map[i].addr
    				+ boot_mem_map.map[i].size);
    
    		if (start <= min_low_pfn)
    			start = min_low_pfn;
    		if (start >= end)
    			continue;
    
    #ifndef CONFIG_HIGHMEM
    		if (end > max_low_pfn)
    			end = max_low_pfn;
    
    		/*
    		 * ... finally, is the area going away?
    		 */
    		if (end <= start)
    			continue;
    #endif
    
    		add_active_range(0, start, end);
    	}
    
    	/*
    	 * Register fully available low RAM pages with the bootmem allocator.
    	 */
    	for (i = 0; i < boot_mem_map.nr_map; i++) {
    		unsigned long start, end, size;
    
    		/*
    		 * Reserve usable memory.
    		 */
    		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
    			continue;
    
    		start = PFN_UP(boot_mem_map.map[i].addr);
    		end   = PFN_DOWN(boot_mem_map.map[i].addr
    				    + boot_mem_map.map[i].size);
    		/*
    		 * We are rounding up the start address of usable memory
    		 * and at the end of the usable range downwards.
    		 */
    		if (start >= max_low_pfn)
    			continue;
    		if (start < reserved_end)
    			start = reserved_end;
    		if (end > max_low_pfn)
    			end = max_low_pfn;
    
    		/*
    		 * ... finally, is the area going away?
    		 */
    		if (end <= start)
    			continue;
    		size = end - start;
    
    		/* Register lowmem ranges */
    		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
    		memory_present(0, start, end);
    	}
    
    	/*
    	 * Reserve the bootmap memory.
    	 */
    	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
    
    	/*
    	 * Reserve initrd memory if needed.
    	 */
    	finalize_initrd();
    }
    
    #endif	/* CONFIG_SGI_IP27 */
    
    /*
     * arch_mem_init - initialize memory management subsystem
     *
     *  o plat_mem_setup() detects the memory configuration and will record detected
     *    memory areas using add_memory_region.
     *
     * At this stage the memory configuration of the system is known to the
     * kernel but generic memory management system is still entirely uninitialized.
     *
     *  o bootmem_init()
     *  o sparse_init()
     *  o paging_init()
     *
     * At this stage the bootmem allocator is ready to use.
     *
     * NOTE: historically plat_mem_setup did the entire platform initialization.
     *       This was rather impractical because it meant plat_mem_setup had to
     * get away without any kind of memory allocator.  To keep old code from
     * breaking plat_setup was just renamed to plat_setup and a second platform
     * initialization hook for anything else was introduced.
     */
    
    static int usermem __initdata = 0;
    
    static int __init early_parse_mem(char *p)
    {
    	unsigned long start, size;
    
    	/*
    	 * If a user specifies memory size, we
    	 * blow away any automatically generated
    	 * size.
    	 */
    	if (usermem == 0) {
    		boot_mem_map.nr_map = 0;
    		usermem = 1;
     	}
    	start = 0;
    	size = memparse(p, &p);
    	if (*p == '@')
    		start = memparse(p + 1, &p);
    
    	add_memory_region(start, size, BOOT_MEM_RAM);
    	return 0;
    }
    early_param("mem", early_parse_mem);
    
    static void __init arch_mem_init(char **cmdline_p)
    {
    	extern void plat_mem_setup(void);
    
    	/* call board setup routine */
    	plat_mem_setup();
    
    	pr_info("Determined physical RAM map:\n");
    	print_memory_map();
    
    	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
    	strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
    
    	*cmdline_p = command_line;
    
    	parse_early_param();
    
    	if (usermem) {
    		pr_info("User-defined physical RAM map:\n");
    		print_memory_map();
    	}
    
    	bootmem_init();
    	sparse_init();
    	paging_init();
    }
    
    static void __init resource_init(void)
    {
    	int i;
    
    	if (UNCAC_BASE != IO_BASE)
    		return;
    
    	code_resource.start = __pa_symbol(&_text);
    	code_resource.end = __pa_symbol(&_etext) - 1;
    	data_resource.start = __pa_symbol(&_etext);
    	data_resource.end = __pa_symbol(&_edata) - 1;
    
    	/*
    	 * Request address space for all standard RAM.
    	 */
    	for (i = 0; i < boot_mem_map.nr_map; i++) {
    		struct resource *res;
    		unsigned long start, end;
    
    		start = boot_mem_map.map[i].addr;
    		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
    		if (start >= HIGHMEM_START)
    			continue;
    		if (end >= HIGHMEM_START)
    			end = HIGHMEM_START - 1;
    
    		res = alloc_bootmem(sizeof(struct resource));
    		switch (boot_mem_map.map[i].type) {
    		case BOOT_MEM_RAM:
    		case BOOT_MEM_ROM_DATA:
    			res->name = "System RAM";
    			break;
    		case BOOT_MEM_RESERVED:
    		default:
    			res->name = "reserved";
    		}
    
    		res->start = start;
    		res->end = end;
    
    		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
    		request_resource(&iomem_resource, res);
    
    		/*
    		 *  We don't know which RAM region contains kernel data,
    		 *  so we try it repeatedly and let the resource manager
    		 *  test it.
    		 */
    		request_resource(res, &code_resource);
    		request_resource(res, &data_resource);
    	}
    }
    
    void __init setup_arch(char **cmdline_p)
    {
    	cpu_probe();
    	prom_init();
    
    #ifdef CONFIG_EARLY_PRINTK
    	setup_early_printk();
    #endif
    	cpu_report();
    	check_bugs_early();
    
    #if defined(CONFIG_VT)
    #if defined(CONFIG_VGA_CONSOLE)
    	conswitchp = &vga_con;
    #elif defined(CONFIG_DUMMY_CONSOLE)
    	conswitchp = &dummy_con;
    #endif
    #endif
    
    	arch_mem_init(cmdline_p);
    
    	resource_init();
    	plat_smp_setup();
    }
    
    static int __init fpu_disable(char *s)
    {
    	int i;
    
    	for (i = 0; i < NR_CPUS; i++)
    		cpu_data[i].options &= ~MIPS_CPU_FPU;
    
    	return 1;
    }
    
    __setup("nofpu", fpu_disable);
    
    static int __init dsp_disable(char *s)
    {
    	cpu_data[0].ases &= ~MIPS_ASE_DSP;
    
    	return 1;
    }
    
    __setup("nodsp", dsp_disable);
    
    unsigned long kernelsp[NR_CPUS];
    unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
    
    #ifdef CONFIG_DEBUG_FS
    struct dentry *mips_debugfs_dir;
    static int __init debugfs_mips(void)
    {
    	struct dentry *d;
    
    	d = debugfs_create_dir("mips", NULL);
    	if (IS_ERR(d))
    		return PTR_ERR(d);
    	mips_debugfs_dir = d;
    	return 0;
    }
    arch_initcall(debugfs_mips);
    #endif