Skip to content
Snippets Groups Projects
Select Git revision
  • c5b42f343d19d0a04782db0dde5b128dd282f95c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

wavelan.c

Blame
  • wavelan.c 122.17 KiB
    /*
     *	WaveLAN ISA driver
     *
     *		Jean II - HPLB '96
     *
     * Reorganisation and extension of the driver.
     * Original copyright follows (also see the end of this file).
     * See wavelan.p.h for details.
     *
     *
     *
     * AT&T GIS (nee NCR) WaveLAN card:
     *	An Ethernet-like radio transceiver
     *	controlled by an Intel 82586 coprocessor.
     */
    
    #include "wavelan.p.h"		/* Private header */
    
    /************************* MISC SUBROUTINES **************************/
    /*
     * Subroutines which won't fit in one of the following category
     * (WaveLAN modem or i82586)
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Translate irq number to PSA irq parameter
     */
    static u8 wv_irq_to_psa(int irq)
    {
    	if (irq < 0 || irq >= NELS(irqvals))
    		return 0;
    
    	return irqvals[irq];
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Translate PSA irq parameter to irq number 
     */
    static int __init wv_psa_to_irq(u8 irqval)
    {
    	int irq;
    
    	for (irq = 0; irq < NELS(irqvals); irq++)
    		if (irqvals[irq] == irqval)
    			return irq;
    
    	return -1;
    }
    
    #ifdef STRUCT_CHECK
    /*------------------------------------------------------------------*/
    /*
     * Sanity routine to verify the sizes of the various WaveLAN interface
     * structures.
     */
    static char *wv_struct_check(void)
    {
    #define	SC(t,s,n)	if (sizeof(t) != s) return(n);
    
    	SC(psa_t, PSA_SIZE, "psa_t");
    	SC(mmw_t, MMW_SIZE, "mmw_t");
    	SC(mmr_t, MMR_SIZE, "mmr_t");
    	SC(ha_t, HA_SIZE, "ha_t");
    
    #undef	SC
    
    	return ((char *) NULL);
    }				/* wv_struct_check */
    #endif				/* STRUCT_CHECK */
    
    /********************* HOST ADAPTER SUBROUTINES *********************/
    /*
     * Useful subroutines to manage the WaveLAN ISA interface
     *
     * One major difference with the PCMCIA hardware (except the port mapping)
     * is that we have to keep the state of the Host Control Register
     * because of the interrupt enable & bus size flags.
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Read from card's Host Adaptor Status Register.
     */
    static inline u16 hasr_read(unsigned long ioaddr)
    {
    	return (inw(HASR(ioaddr)));
    }				/* hasr_read */
    
    /*------------------------------------------------------------------*/
    /*
     * Write to card's Host Adapter Command Register.
     */
    static inline void hacr_write(unsigned long ioaddr, u16 hacr)
    {
    	outw(hacr, HACR(ioaddr));
    }				/* hacr_write */
    
    /*------------------------------------------------------------------*/
    /*
     * Write to card's Host Adapter Command Register. Include a delay for
     * those times when it is needed.
     */
    static inline void hacr_write_slow(unsigned long ioaddr, u16 hacr)
    {
    	hacr_write(ioaddr, hacr);
    	/* delay might only be needed sometimes */
    	mdelay(1);
    }				/* hacr_write_slow */
    
    /*------------------------------------------------------------------*/
    /*
     * Set the channel attention bit.
     */
    static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
    {
    	hacr_write(ioaddr, hacr | HACR_CA);
    }				/* set_chan_attn */
    
    /*------------------------------------------------------------------*/
    /*
     * Reset, and then set host adaptor into default mode.
     */
    static inline void wv_hacr_reset(unsigned long ioaddr)
    {
    	hacr_write_slow(ioaddr, HACR_RESET);
    	hacr_write(ioaddr, HACR_DEFAULT);
    }				/* wv_hacr_reset */
    
    /*------------------------------------------------------------------*/
    /*
     * Set the I/O transfer over the ISA bus to 8-bit mode
     */
    static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
    {
    	hacr &= ~HACR_16BITS;
    	hacr_write(ioaddr, hacr);
    }				/* wv_16_off */
    
    /*------------------------------------------------------------------*/
    /*
     * Set the I/O transfer over the ISA bus to 8-bit mode
     */
    static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
    {
    	hacr |= HACR_16BITS;
    	hacr_write(ioaddr, hacr);
    }				/* wv_16_on */
    
    /*------------------------------------------------------------------*/
    /*
     * Disable interrupts on the WaveLAN hardware.
     * (called by wv_82586_stop())
     */
    static inline void wv_ints_off(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	
    	lp->hacr &= ~HACR_INTRON;
    	hacr_write(ioaddr, lp->hacr);
    }				/* wv_ints_off */
    
    /*------------------------------------------------------------------*/
    /*
     * Enable interrupts on the WaveLAN hardware.
     * (called by wv_hw_reset())
     */
    static inline void wv_ints_on(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    
    	lp->hacr |= HACR_INTRON;
    	hacr_write(ioaddr, lp->hacr);
    }				/* wv_ints_on */
    
    /******************* MODEM MANAGEMENT SUBROUTINES *******************/
    /*
     * Useful subroutines to manage the modem of the WaveLAN
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Read the Parameter Storage Area from the WaveLAN card's memory
     */
    /*
     * Read bytes from the PSA.
     */
    static void psa_read(unsigned long ioaddr, u16 hacr, int o,	/* offset in PSA */
    		     u8 * b,	/* buffer to fill */
    		     int n)
    {				/* size to read */
    	wv_16_off(ioaddr, hacr);
    
    	while (n-- > 0) {
    		outw(o, PIOR2(ioaddr));
    		o++;
    		*b++ = inb(PIOP2(ioaddr));
    	}
    
    	wv_16_on(ioaddr, hacr);
    }				/* psa_read */
    
    /*------------------------------------------------------------------*/
    /*
     * Write the Parameter Storage Area to the WaveLAN card's memory.
     */
    static void psa_write(unsigned long ioaddr, u16 hacr, int o,	/* Offset in PSA */
    		      u8 * b,	/* Buffer in memory */
    		      int n)
    {				/* Length of buffer */
    	int count = 0;
    
    	wv_16_off(ioaddr, hacr);
    
    	while (n-- > 0) {
    		outw(o, PIOR2(ioaddr));
    		o++;
    
    		outb(*b, PIOP2(ioaddr));
    		b++;
    
    		/* Wait for the memory to finish its write cycle */
    		count = 0;
    		while ((count++ < 100) &&
    		       (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
    	}
    
    	wv_16_on(ioaddr, hacr);
    }				/* psa_write */
    
    #ifdef SET_PSA_CRC
    /*------------------------------------------------------------------*/
    /*
     * Calculate the PSA CRC
     * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
     * NOTE: By specifying a length including the CRC position the
     * returned value should be zero. (i.e. a correct checksum in the PSA)
     *
     * The Windows drivers don't use the CRC, but the AP and the PtP tool
     * depend on it.
     */
    static inline u16 psa_crc(u8 * psa,	/* The PSA */
    			      int size)
    {				/* Number of short for CRC */
    	int byte_cnt;		/* Loop on the PSA */
    	u16 crc_bytes = 0;	/* Data in the PSA */
    	int bit_cnt;		/* Loop on the bits of the short */
    
    	for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
    		crc_bytes ^= psa[byte_cnt];	/* Its an xor */
    
    		for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
    			if (crc_bytes & 0x0001)
    				crc_bytes = (crc_bytes >> 1) ^ 0xA001;
    			else
    				crc_bytes >>= 1;
    		}
    	}
    
    	return crc_bytes;
    }				/* psa_crc */
    #endif				/* SET_PSA_CRC */
    
    /*------------------------------------------------------------------*/
    /*
     * update the checksum field in the Wavelan's PSA
     */
    static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
    {
    #ifdef SET_PSA_CRC
    	psa_t psa;
    	u16 crc;
    
    	/* read the parameter storage area */
    	psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
    
    	/* update the checksum */
    	crc = psa_crc((unsigned char *) &psa,
    		      sizeof(psa) - sizeof(psa.psa_crc[0]) -
    		      sizeof(psa.psa_crc[1])
    		      - sizeof(psa.psa_crc_status));
    
    	psa.psa_crc[0] = crc & 0xFF;
    	psa.psa_crc[1] = (crc & 0xFF00) >> 8;
    
    	/* Write it ! */
    	psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
    		  (unsigned char *) &psa.psa_crc, 2);
    
    #ifdef DEBUG_IOCTL_INFO
    	printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
    	       dev->name, psa.psa_crc[0], psa.psa_crc[1]);
    
    	/* Check again (luxury !) */
    	crc = psa_crc((unsigned char *) &psa,
    		      sizeof(psa) - sizeof(psa.psa_crc_status));
    
    	if (crc != 0)
    		printk(KERN_WARNING
    		       "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
    		       dev->name);
    #endif				/* DEBUG_IOCTL_INFO */
    #endif				/* SET_PSA_CRC */
    }				/* update_psa_checksum */
    
    /*------------------------------------------------------------------*/
    /*
     * Write 1 byte to the MMC.
     */
    static inline void mmc_out(unsigned long ioaddr, u16 o, u8 d)
    {
    	int count = 0;
    
    	/* Wait for MMC to go idle */
    	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
    		udelay(10);
    
    	outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Routine to write bytes to the Modem Management Controller.
     * We start at the end because it is the way it should be!
     */
    static inline void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
    {
    	o += n;
    	b += n;
    
    	while (n-- > 0)
    		mmc_out(ioaddr, --o, *(--b));
    }				/* mmc_write */
    
    /*------------------------------------------------------------------*/
    /*
     * Read a byte from the MMC.
     * Optimised version for 1 byte, avoid using memory.
     */
    static inline u8 mmc_in(unsigned long ioaddr, u16 o)
    {
    	int count = 0;
    
    	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
    		udelay(10);
    	outw(o << 1, MMCR(ioaddr));
    
    	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
    		udelay(10);
    	return (u8) (inw(MMCR(ioaddr)) >> 8);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Routine to read bytes from the Modem Management Controller.
     * The implementation is complicated by a lack of address lines,
     * which prevents decoding of the low-order bit.
     * (code has just been moved in the above function)
     * We start at the end because it is the way it should be!
     */
    static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
    {
    	o += n;
    	b += n;
    
    	while (n-- > 0)
    		*(--b) = mmc_in(ioaddr, --o);
    }				/* mmc_read */
    
    /*------------------------------------------------------------------*/
    /*
     * Get the type of encryption available.
     */
    static inline int mmc_encr(unsigned long ioaddr)
    {				/* I/O port of the card */
    	int temp;
    
    	temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
    	if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
    		return 0;
    	else
    		return temp;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wait for the frequency EEPROM to complete a command.
     * I hope this one will be optimally inlined.
     */
    static inline void fee_wait(unsigned long ioaddr,	/* I/O port of the card */
    			    int delay,	/* Base delay to wait for */
    			    int number)
    {				/* Number of time to wait */
    	int count = 0;		/* Wait only a limited time */
    
    	while ((count++ < number) &&
    	       (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    		MMR_FEE_STATUS_BUSY)) udelay(delay);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Read bytes from the Frequency EEPROM (frequency select cards).
     */
    static void fee_read(unsigned long ioaddr,	/* I/O port of the card */
    		     u16 o,	/* destination offset */
    		     u16 * b,	/* data buffer */
    		     int n)
    {				/* number of registers */
    	b += n;			/* Position at the end of the area */
    
    	/* Write the address */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
    
    	/* Loop on all buffer */
    	while (n-- > 0) {
    		/* Write the read command */
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
    			MMW_FEE_CTRL_READ);
    
    		/* Wait until EEPROM is ready (should be quick). */
    		fee_wait(ioaddr, 10, 100);
    
    		/* Read the value. */
    		*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
    			mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
    	}
    }
    
    
    /*------------------------------------------------------------------*/
    /*
     * Write bytes from the Frequency EEPROM (frequency select cards).
     * This is a bit complicated, because the frequency EEPROM has to
     * be unprotected and the write enabled.
     * Jean II
     */
    static void fee_write(unsigned long ioaddr,	/* I/O port of the card */
    		      u16 o,	/* destination offset */
    		      u16 * b,	/* data buffer */
    		      int n)
    {				/* number of registers */
    	b += n;			/* Position at the end of the area. */
    
    #ifdef EEPROM_IS_PROTECTED	/* disabled */
    #ifdef DOESNT_SEEM_TO_WORK	/* disabled */
    	/* Ask to read the protected register */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
    
    	fee_wait(ioaddr, 10, 100);
    
    	/* Read the protected register. */
    	printk("Protected 2:  %02X-%02X\n",
    	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
    	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
    #endif				/* DOESNT_SEEM_TO_WORK */
    
    	/* Enable protected register. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
    
    	fee_wait(ioaddr, 10, 100);
    
    	/* Unprotect area. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
    #ifdef DOESNT_SEEM_TO_WORK	/* disabled */
    	/* or use: */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
    #endif				/* DOESNT_SEEM_TO_WORK */
    
    	fee_wait(ioaddr, 10, 100);
    #endif				/* EEPROM_IS_PROTECTED */
    
    	/* Write enable. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
    
    	fee_wait(ioaddr, 10, 100);
    
    	/* Write the EEPROM address. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
    
    	/* Loop on all buffer */
    	while (n-- > 0) {
    		/* Write the value. */
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
    
    		/* Write the write command. */
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
    			MMW_FEE_CTRL_WRITE);
    
    		/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
    		mdelay(10);
    		fee_wait(ioaddr, 10, 100);
    	}
    
    	/* Write disable. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
    
    	fee_wait(ioaddr, 10, 100);
    
    #ifdef EEPROM_IS_PROTECTED	/* disabled */
    	/* Reprotect EEPROM. */
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
    	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
    
    	fee_wait(ioaddr, 10, 100);
    #endif				/* EEPROM_IS_PROTECTED */
    }
    
    /************************ I82586 SUBROUTINES *************************/
    /*
     * Useful subroutines to manage the Ethernet controller
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Read bytes from the on-board RAM.
     * Why does inlining this function make it fail?
     */
    static /*inline */ void obram_read(unsigned long ioaddr,
    				   u16 o, u8 * b, int n)
    {
    	outw(o, PIOR1(ioaddr));
    	insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Write bytes to the on-board RAM.
     */
    static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
    {
    	outw(o, PIOR1(ioaddr));
    	outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Acknowledge the reading of the status issued by the i82586.
     */
    static void wv_ack(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	u16 scb_cs;
    	int i;
    
    	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
    		   (unsigned char *) &scb_cs, sizeof(scb_cs));
    	scb_cs &= SCB_ST_INT;
    
    	if (scb_cs == 0)
    		return;
    
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &scb_cs, sizeof(scb_cs));
    
    	set_chan_attn(ioaddr, lp->hacr);
    
    	for (i = 1000; i > 0; i--) {
    		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
    			   (unsigned char *) &scb_cs, sizeof(scb_cs));
    		if (scb_cs == 0)
    			break;
    
    		udelay(10);
    	}
    	udelay(100);
    
    #ifdef DEBUG_CONFIG_ERROR
    	if (i <= 0)
    		printk(KERN_INFO
    		       "%s: wv_ack(): board not accepting command.\n",
    		       dev->name);
    #endif
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Set channel attention bit and busy wait until command has
     * completed, then acknowledge completion of the command.
     */
    static inline int wv_synchronous_cmd(struct net_device * dev, const char *str)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	u16 scb_cmd;
    	ach_t cb;
    	int i;
    
    	scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));
    
    	set_chan_attn(ioaddr, lp->hacr);
    
    	for (i = 1000; i > 0; i--) {
    		obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
    			   sizeof(cb));
    		if (cb.ac_status & AC_SFLD_C)
    			break;
    
    		udelay(10);
    	}
    	udelay(100);
    
    	if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
    		       dev->name, str, cb.ac_status);
    #endif
    #ifdef DEBUG_I82586_SHOW
    		wv_scb_show(ioaddr);
    #endif
    		return -1;
    	}
    
    	/* Ack the status */
    	wv_ack(dev);
    
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Configuration commands completion interrupt.
     * Check if done, and if OK.
     */
    static inline int
    wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
    {
    	unsigned short mcs_addr;
    	unsigned short status;
    	int ret;
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
    #endif
    
    	mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
    	    + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
    
    	/* Read the status of the last command (set mc list). */
    	obram_read(ioaddr, acoff(mcs_addr, ac_status),
    		   (unsigned char *) &status, sizeof(status));
    
    	/* If not completed -> exit */
    	if ((status & AC_SFLD_C) == 0)
    		ret = 0;	/* Not ready to be scrapped */
    	else {
    #ifdef DEBUG_CONFIG_ERROR
    		unsigned short cfg_addr;
    		unsigned short ias_addr;
    
    		/* Check mc_config command */
    		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
    			printk(KERN_INFO
    			       "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
    			       dev->name, status);
    
    		/* check ia-config command */
    		ias_addr = mcs_addr - sizeof(ac_ias_t);
    		obram_read(ioaddr, acoff(ias_addr, ac_status),
    			   (unsigned char *) &status, sizeof(status));
    		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
    			printk(KERN_INFO
    			       "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
    			       dev->name, status);
    
    		/* Check config command. */
    		cfg_addr = ias_addr - sizeof(ac_cfg_t);
    		obram_read(ioaddr, acoff(cfg_addr, ac_status),
    			   (unsigned char *) &status, sizeof(status));
    		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
    			printk(KERN_INFO
    			       "%s: wv_config_complete(): configure failed; status = 0x%x\n",
    			       dev->name, status);
    #endif	/* DEBUG_CONFIG_ERROR */
    
    		ret = 1;	/* Ready to be scrapped */
    	}
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
    	       ret);
    #endif
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Command completion interrupt.
     * Reclaim as many freed tx buffers as we can.
     * (called in wavelan_interrupt()).
     * Note : the spinlock is already grabbed for us.
     */
    static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
    {
    	int nreaped = 0;
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
    #endif
    
    	/* Loop on all the transmit buffers */
    	while (lp->tx_first_in_use != I82586NULL) {
    		unsigned short tx_status;
    
    		/* Read the first transmit buffer */
    		obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
    			   (unsigned char *) &tx_status,
    			   sizeof(tx_status));
    
    		/* If not completed -> exit */
    		if ((tx_status & AC_SFLD_C) == 0)
    			break;
    
    		/* Hack for reconfiguration */
    		if (tx_status == 0xFFFF)
    			if (!wv_config_complete(dev, ioaddr, lp))
    				break;	/* Not completed */
    
    		/* We now remove this buffer */
    		nreaped++;
    		--lp->tx_n_in_use;
    
    /*
    if (lp->tx_n_in_use > 0)
    	printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
    */
    
    		/* Was it the last one? */
    		if (lp->tx_n_in_use <= 0)
    			lp->tx_first_in_use = I82586NULL;
    		else {
    			/* Next one in the chain */
    			lp->tx_first_in_use += TXBLOCKZ;
    			if (lp->tx_first_in_use >=
    			    OFFSET_CU +
    			    NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
    				    NTXBLOCKS * TXBLOCKZ;
    		}
    
    		/* Hack for reconfiguration */
    		if (tx_status == 0xFFFF)
    			continue;
    
    		/* Now, check status of the finished command */
    		if (tx_status & AC_SFLD_OK) {
    			int ncollisions;
    
    			lp->stats.tx_packets++;
    			ncollisions = tx_status & AC_SFLD_MAXCOL;
    			lp->stats.collisions += ncollisions;
    #ifdef DEBUG_TX_INFO
    			if (ncollisions > 0)
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx completed after %d collisions.\n",
    				       dev->name, ncollisions);
    #endif
    		} else {
    			lp->stats.tx_errors++;
    			if (tx_status & AC_SFLD_S10) {
    				lp->stats.tx_carrier_errors++;
    #ifdef DEBUG_TX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx error: no CS.\n",
    				       dev->name);
    #endif
    			}
    			if (tx_status & AC_SFLD_S9) {
    				lp->stats.tx_carrier_errors++;
    #ifdef DEBUG_TX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx error: lost CTS.\n",
    				       dev->name);
    #endif
    			}
    			if (tx_status & AC_SFLD_S8) {
    				lp->stats.tx_fifo_errors++;
    #ifdef DEBUG_TX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx error: slow DMA.\n",
    				       dev->name);
    #endif
    			}
    			if (tx_status & AC_SFLD_S6) {
    				lp->stats.tx_heartbeat_errors++;
    #ifdef DEBUG_TX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx error: heart beat.\n",
    				       dev->name);
    #endif
    			}
    			if (tx_status & AC_SFLD_S5) {
    				lp->stats.tx_aborted_errors++;
    #ifdef DEBUG_TX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_complete(): tx error: too many collisions.\n",
    				       dev->name);
    #endif
    			}
    		}
    
    #ifdef DEBUG_TX_INFO
    		printk(KERN_DEBUG
    		       "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
    		       dev->name, tx_status);
    #endif
    	}
    
    #ifdef DEBUG_INTERRUPT_INFO
    	if (nreaped > 1)
    		printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
    		       dev->name, nreaped);
    #endif
    
    	/*
    	 * Inform upper layers.
    	 */
    	if (lp->tx_n_in_use < NTXBLOCKS - 1) {
    		netif_wake_queue(dev);
    	}
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
    #endif
    	return nreaped;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Reconfigure the i82586, or at least ask for it.
     * Because wv_82586_config uses a transmission buffer, we must do it
     * when we are sure that there is one left, so we do it now
     * or in wavelan_packet_xmit() (I can't find any better place,
     * wavelan_interrupt is not an option), so you may experience
     * delays sometimes.
     */
    static inline void wv_82586_reconfig(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long flags;
    
    	/* Arm the flag, will be cleard in wv_82586_config() */
    	lp->reconfig_82586 = 1;
    
    	/* Check if we can do it now ! */
    	if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
    		spin_lock_irqsave(&lp->spinlock, flags);
    		/* May fail */
    		wv_82586_config(dev);
    		spin_unlock_irqrestore(&lp->spinlock, flags);
    	}
    	else {
    #ifdef DEBUG_CONFIG_INFO
    		printk(KERN_DEBUG
    		       "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
    			       dev->name, dev->state);
    #endif
    	}
    }
    
    /********************* DEBUG & INFO SUBROUTINES *********************/
    /*
     * This routine is used in the code to show information for debugging.
     * Most of the time, it dumps the contents of hardware structures.
     */
    
    #ifdef DEBUG_PSA_SHOW
    /*------------------------------------------------------------------*/
    /*
     * Print the formatted contents of the Parameter Storage Area.
     */
    static void wv_psa_show(psa_t * p)
    {
    	printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
    	printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
    	       p->psa_io_base_addr_1,
    	       p->psa_io_base_addr_2,
    	       p->psa_io_base_addr_3, p->psa_io_base_addr_4);
    	printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
    	       p->psa_rem_boot_addr_1,
    	       p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
    	printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
    	printk("psa_int_req_no: %d\n", p->psa_int_req_no);
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG
    	       "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
    	       p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
    	       p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
    	       p->psa_unused0[6]);
    #endif				/* DEBUG_SHOW_UNUSED */
    	printk(KERN_DEBUG
    	       "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
    	       p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
    	       p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
    	       p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
    	printk(KERN_DEBUG
    	       "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
    	       p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
    	       p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
    	       p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
    	printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
    	       p->psa_univ_local_sel);
    	printk("psa_comp_number: %d, ", p->psa_comp_number);
    	printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
    	printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
    	       p->psa_feature_select);
    	printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
    	printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
    	printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
    	printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
    	       p->psa_nwid[1]);
    	printk("psa_nwid_select: %d\n", p->psa_nwid_select);
    	printk(KERN_DEBUG "psa_encryption_select: %d, ",
    	       p->psa_encryption_select);
    	printk
    	    ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
    	     p->psa_encryption_key[0], p->psa_encryption_key[1],
    	     p->psa_encryption_key[2], p->psa_encryption_key[3],
    	     p->psa_encryption_key[4], p->psa_encryption_key[5],
    	     p->psa_encryption_key[6], p->psa_encryption_key[7]);
    	printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
    	printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
    	       p->psa_call_code[0]);
    	printk
    	    ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
    	     p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
    	     p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
    	     p->psa_call_code[6], p->psa_call_code[7]);
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
    	       p->psa_reserved[0],
    	       p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
    #endif				/* DEBUG_SHOW_UNUSED */
    	printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
    	printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
    	printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
    }				/* wv_psa_show */
    #endif				/* DEBUG_PSA_SHOW */
    
    #ifdef DEBUG_MMC_SHOW
    /*------------------------------------------------------------------*/
    /*
     * Print the formatted status of the Modem Management Controller.
     * This function needs to be completed.
     */
    static void wv_mmc_show(struct net_device * dev)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;
    	mmr_t m;
    
    	/* Basic check */
    	if (hasr_read(ioaddr) & HASR_NO_CLK) {
    		printk(KERN_WARNING
    		       "%s: wv_mmc_show: modem not connected\n",
    		       dev->name);
    		return;
    	}
    
    	/* Read the mmc */
    	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
    	mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
    	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
    
    	/* Don't forget to update statistics */
    	lp->wstats.discard.nwid +=
    	    (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
    
    	printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG
    	       "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
    	       m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
    	       m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
    	       m.mmr_unused0[6], m.mmr_unused0[7]);
    #endif				/* DEBUG_SHOW_UNUSED */
    	printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
    	       m.mmr_des_avail, m.mmr_des_status);
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
    	       m.mmr_unused1[0],
    	       m.mmr_unused1[1],
    	       m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
    #endif				/* DEBUG_SHOW_UNUSED */
    	printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
    	       m.mmr_dce_status,
    	       (m.
    		mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
    	       "energy detected," : "",
    	       (m.
    		mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
    	       "loop test indicated," : "",
    	       (m.
    		mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
    	       "transmitter on," : "",
    	       (m.
    		mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
    	       "jabber timer expired," : "");
    	printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
    	       m.mmr_unused2[0], m.mmr_unused2[1]);
    #endif				/* DEBUG_SHOW_UNUSED */
    	printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
    	       (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
    	       (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
    	printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
    	       m.mmr_thr_pre_set & MMR_THR_PRE_SET,
    	       (m.
    		mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
    	       "below");
    	printk(KERN_DEBUG "signal_lvl: %d [%s], ",
    	       m.mmr_signal_lvl & MMR_SIGNAL_LVL,
    	       (m.
    		mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
    	       "no new msg");
    	printk("silence_lvl: %d [%s], ",
    	       m.mmr_silence_lvl & MMR_SILENCE_LVL,
    	       (m.
    		mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
    	       "no new update");
    	printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
    	       (m.
    		mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
    	       "Antenna 0");
    #ifdef DEBUG_SHOW_UNUSED
    	printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
    #endif				/* DEBUG_SHOW_UNUSED */
    }				/* wv_mmc_show */
    #endif				/* DEBUG_MMC_SHOW */
    
    #ifdef DEBUG_I82586_SHOW
    /*------------------------------------------------------------------*/
    /*
     * Print the last block of the i82586 memory.
     */
    static void wv_scb_show(unsigned long ioaddr)
    {
    	scb_t scb;
    
    	obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
    		   sizeof(scb));
    
    	printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
    
    	printk(KERN_DEBUG "status: ");
    	printk("stat 0x%x[%s%s%s%s] ",
    	       (scb.
    		scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
    			      SCB_ST_RNR)) >> 12,
    	       (scb.
    		scb_status & SCB_ST_CX) ? "command completion interrupt," :
    	       "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
    	       (scb.
    		scb_status & SCB_ST_CNA) ? "command unit not active," : "",
    	       (scb.
    		scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
    	       "");
    	printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
    	       ((scb.scb_status & SCB_ST_CUS) ==
    		SCB_ST_CUS_IDLE) ? "idle" : "",
    	       ((scb.scb_status & SCB_ST_CUS) ==
    		SCB_ST_CUS_SUSP) ? "suspended" : "",
    	       ((scb.scb_status & SCB_ST_CUS) ==
    		SCB_ST_CUS_ACTV) ? "active" : "");
    	printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
    	       ((scb.scb_status & SCB_ST_RUS) ==
    		SCB_ST_RUS_IDLE) ? "idle" : "",
    	       ((scb.scb_status & SCB_ST_RUS) ==
    		SCB_ST_RUS_SUSP) ? "suspended" : "",
    	       ((scb.scb_status & SCB_ST_RUS) ==
    		SCB_ST_RUS_NRES) ? "no resources" : "",
    	       ((scb.scb_status & SCB_ST_RUS) ==
    		SCB_ST_RUS_RDY) ? "ready" : "");
    
    	printk(KERN_DEBUG "command: ");
    	printk("ack 0x%x[%s%s%s%s] ",
    	       (scb.
    		scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
    			       SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
    	       (scb.
    		scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
    	       (scb.
    		scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
    	       (scb.
    		scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
    	       (scb.
    		scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
    	printk("cuc 0x%x[%s%s%s%s%s] ",
    	       (scb.scb_command & SCB_CMD_CUC) >> 8,
    	       ((scb.scb_command & SCB_CMD_CUC) ==
    		SCB_CMD_CUC_NOP) ? "nop" : "",
    	       ((scb.scb_command & SCB_CMD_CUC) ==
    		SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
    	       ((scb.scb_command & SCB_CMD_CUC) ==
    		SCB_CMD_CUC_RES) ? "resume execution" : "",
    	       ((scb.scb_command & SCB_CMD_CUC) ==
    		SCB_CMD_CUC_SUS) ? "suspend execution" : "",
    	       ((scb.scb_command & SCB_CMD_CUC) ==
    		SCB_CMD_CUC_ABT) ? "abort execution" : "");
    	printk("ruc 0x%x[%s%s%s%s%s]\n",
    	       (scb.scb_command & SCB_CMD_RUC) >> 4,
    	       ((scb.scb_command & SCB_CMD_RUC) ==
    		SCB_CMD_RUC_NOP) ? "nop" : "",
    	       ((scb.scb_command & SCB_CMD_RUC) ==
    		SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
    	       ((scb.scb_command & SCB_CMD_RUC) ==
    		SCB_CMD_RUC_RES) ? "resume reception" : "",
    	       ((scb.scb_command & SCB_CMD_RUC) ==
    		SCB_CMD_RUC_SUS) ? "suspend reception" : "",
    	       ((scb.scb_command & SCB_CMD_RUC) ==
    		SCB_CMD_RUC_ABT) ? "abort reception" : "");
    
    	printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
    	printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
    
    	printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
    	printk("alnerrs %d ", scb.scb_alnerrs);
    	printk("rscerrs %d ", scb.scb_rscerrs);
    	printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Print the formatted status of the i82586's receive unit.
     */
    static void wv_ru_show(struct net_device * dev)
    {
    	/* net_local *lp = (net_local *) dev->priv; */
    
    	printk(KERN_DEBUG
    	       "##### WaveLAN i82586 receiver unit status: #####\n");
    	printk(KERN_DEBUG "ru:");
    	/*
    	 * Not implemented yet
    	 */
    	printk("\n");
    }				/* wv_ru_show */
    
    /*------------------------------------------------------------------*/
    /*
     * Display info about one control block of the i82586 memory.
     */
    static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
    {
    	unsigned long ioaddr;
    	ac_tx_t actx;
    
    	ioaddr = dev->base_addr;
    
    	printk("%d: 0x%x:", i, p);
    
    	obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
    	printk(" status=0x%x,", actx.tx_h.ac_status);
    	printk(" command=0x%x,", actx.tx_h.ac_command);
    
    	/*
    	   {
    	   tbd_t      tbd;
    
    	   obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
    	   printk(" tbd_status=0x%x,", tbd.tbd_status);
    	   }
    	 */
    
    	printk("|");
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Print status of the command unit of the i82586.
     */
    static void wv_cu_show(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned int i;
    	u16 p;
    
    	printk(KERN_DEBUG
    	       "##### WaveLAN i82586 command unit status: #####\n");
    
    	printk(KERN_DEBUG);
    	for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
    		wv_cu_show_one(dev, lp, i, p);
    
    		p += TXBLOCKZ;
    		if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
    			p -= NTXBLOCKS * TXBLOCKZ;
    	}
    	printk("\n");
    }
    #endif				/* DEBUG_I82586_SHOW */
    
    #ifdef DEBUG_DEVICE_SHOW
    /*------------------------------------------------------------------*/
    /*
     * Print the formatted status of the WaveLAN PCMCIA device driver.
     */
    static void wv_dev_show(struct net_device * dev)
    {
    	printk(KERN_DEBUG "dev:");
    	printk(" state=%lX,", dev->state);
    	printk(" trans_start=%ld,", dev->trans_start);
    	printk(" flags=0x%x,", dev->flags);
    	printk("\n");
    }				/* wv_dev_show */
    
    /*------------------------------------------------------------------*/
    /*
     * Print the formatted status of the WaveLAN PCMCIA device driver's
     * private information.
     */
    static void wv_local_show(struct net_device * dev)
    {
    	net_local *lp;
    
    	lp = (net_local *) dev->priv;
    
    	printk(KERN_DEBUG "local:");
    	printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
    	printk(" hacr=0x%x,", lp->hacr);
    	printk(" rx_head=0x%x,", lp->rx_head);
    	printk(" rx_last=0x%x,", lp->rx_last);
    	printk(" tx_first_free=0x%x,", lp->tx_first_free);
    	printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
    	printk("\n");
    }				/* wv_local_show */
    #endif				/* DEBUG_DEVICE_SHOW */
    
    #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
    /*------------------------------------------------------------------*/
    /*
     * Dump packet header (and content if necessary) on the screen
     */
    static inline void wv_packet_info(u8 * p,	/* Packet to dump */
    				  int length,	/* Length of the packet */
    				  char *msg1,	/* Name of the device */
    				  char *msg2)
    {				/* Name of the function */
    	int i;
    	int maxi;
    
    	printk(KERN_DEBUG
    	       "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
    	       msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
    	printk(KERN_DEBUG
    	       "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
    	       msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
    	       p[13]);
    
    #ifdef DEBUG_PACKET_DUMP
    
    	printk(KERN_DEBUG "data=\"");
    
    	if ((maxi = length) > DEBUG_PACKET_DUMP)
    		maxi = DEBUG_PACKET_DUMP;
    	for (i = 14; i < maxi; i++)
    		if (p[i] >= ' ' && p[i] <= '~')
    			printk(" %c", p[i]);
    		else
    			printk("%02X", p[i]);
    	if (maxi < length)
    		printk("..");
    	printk("\"\n");
    	printk(KERN_DEBUG "\n");
    #endif				/* DEBUG_PACKET_DUMP */
    }
    #endif				/* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
    
    /*------------------------------------------------------------------*/
    /*
     * This is the information which is displayed by the driver at startup.
     * There are lots of flags for configuring it to your liking.
     */
    static inline void wv_init_info(struct net_device * dev)
    {
    	short ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;
    	psa_t psa;
    	int i;
    
    	/* Read the parameter storage area */
    	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
    
    #ifdef DEBUG_PSA_SHOW
    	wv_psa_show(&psa);
    #endif
    #ifdef DEBUG_MMC_SHOW
    	wv_mmc_show(dev);
    #endif
    #ifdef DEBUG_I82586_SHOW
    	wv_cu_show(dev);
    #endif
    
    #ifdef DEBUG_BASIC_SHOW
    	/* Now, let's go for the basic stuff. */
    	printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
    	for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
    		printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
    	printk(", IRQ %d", dev->irq);
    
    	/* Print current network ID. */
    	if (psa.psa_nwid_select)
    		printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
    		       psa.psa_nwid[1]);
    	else
    		printk(", nwid off");
    
    	/* If 2.00 card */
    	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
    		unsigned short freq;
    
    		/* Ask the EEPROM to read the frequency from the first area. */
    		fee_read(ioaddr, 0x00, &freq, 1);
    
    		/* Print frequency */
    		printk(", 2.00, %ld", (freq >> 6) + 2400L);
    
    		/* Hack! */
    		if (freq & 0x20)
    			printk(".5");
    	} else {
    		printk(", PC");
    		switch (psa.psa_comp_number) {
    		case PSA_COMP_PC_AT_915:
    		case PSA_COMP_PC_AT_2400:
    			printk("-AT");
    			break;
    		case PSA_COMP_PC_MC_915:
    		case PSA_COMP_PC_MC_2400:
    			printk("-MC");
    			break;
    		case PSA_COMP_PCMCIA_915:
    			printk("MCIA");
    			break;
    		default:
    			printk("?");
    		}
    		printk(", ");
    		switch (psa.psa_subband) {
    		case PSA_SUBBAND_915:
    			printk("915");
    			break;
    		case PSA_SUBBAND_2425:
    			printk("2425");
    			break;
    		case PSA_SUBBAND_2460:
    			printk("2460");
    			break;
    		case PSA_SUBBAND_2484:
    			printk("2484");
    			break;
    		case PSA_SUBBAND_2430_5:
    			printk("2430.5");
    			break;
    		default:
    			printk("?");
    		}
    	}
    
    	printk(" MHz\n");
    #endif				/* DEBUG_BASIC_SHOW */
    
    #ifdef DEBUG_VERSION_SHOW
    	/* Print version information */
    	printk(KERN_NOTICE "%s", version);
    #endif
    }				/* wv_init_info */
    
    /********************* IOCTL, STATS & RECONFIG *********************/
    /*
     * We found here routines that are called by Linux on different
     * occasions after the configuration and not for transmitting data
     * These may be called when the user use ifconfig, /proc/net/dev
     * or wireless extensions
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Get the current Ethernet statistics. This may be called with the
     * card open or closed.
     * Used when the user read /proc/net/dev
     */
    static en_stats *wavelan_get_stats(struct net_device * dev)
    {
    #ifdef DEBUG_IOCTL_TRACE
    	printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
    #endif
    
    	return (&((net_local *) dev->priv)->stats);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Set or clear the multicast filter for this adaptor.
     * num_addrs == -1	Promiscuous mode, receive all packets
     * num_addrs == 0	Normal mode, clear multicast list
     * num_addrs > 0	Multicast mode, receive normal and MC packets,
     *			and do best-effort filtering.
     */
    static void wavelan_set_multicast_list(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    
    #ifdef DEBUG_IOCTL_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
    	       dev->name);
    #endif
    
    #ifdef DEBUG_IOCTL_INFO
    	printk(KERN_DEBUG
    	       "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
    	       dev->name, dev->flags, dev->mc_count);
    #endif
    
    	/* Are we asking for promiscuous mode,
    	 * or all multicast addresses (we don't have that!)
    	 * or too many multicast addresses for the hardware filter? */
    	if ((dev->flags & IFF_PROMISC) ||
    	    (dev->flags & IFF_ALLMULTI) ||
    	    (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
    		/*
    		 * Enable promiscuous mode: receive all packets.
    		 */
    		if (!lp->promiscuous) {
    			lp->promiscuous = 1;
    			lp->mc_count = 0;
    
    			wv_82586_reconfig(dev);
    
    			/* Tell the kernel that we are doing a really bad job. */
    			dev->flags |= IFF_PROMISC;
    		}
    	} else
    		/* Are there multicast addresses to send? */
    	if (dev->mc_list != (struct dev_mc_list *) NULL) {
    		/*
    		 * Disable promiscuous mode, but receive all packets
    		 * in multicast list
    		 */
    #ifdef MULTICAST_AVOID
    		if (lp->promiscuous || (dev->mc_count != lp->mc_count))
    #endif
    		{
    			lp->promiscuous = 0;
    			lp->mc_count = dev->mc_count;
    
    			wv_82586_reconfig(dev);
    		}
    	} else {
    		/*
    		 * Switch to normal mode: disable promiscuous mode and 
    		 * clear the multicast list.
    		 */
    		if (lp->promiscuous || lp->mc_count == 0) {
    			lp->promiscuous = 0;
    			lp->mc_count = 0;
    
    			wv_82586_reconfig(dev);
    		}
    	}
    #ifdef DEBUG_IOCTL_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
    	       dev->name);
    #endif
    }
    
    /*------------------------------------------------------------------*/
    /*
     * This function doesn't exist.
     * (Note : it was a nice way to test the reconfigure stuff...)
     */
    #ifdef SET_MAC_ADDRESS
    static int wavelan_set_mac_address(struct net_device * dev, void *addr)
    {
    	struct sockaddr *mac = addr;
    
    	/* Copy the address. */
    	memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
    
    	/* Reconfigure the beast. */
    	wv_82586_reconfig(dev);
    
    	return 0;
    }
    #endif				/* SET_MAC_ADDRESS */
    
    
    /*------------------------------------------------------------------*/
    /*
     * Frequency setting (for hardware capable of it)
     * It's a bit complicated and you don't really want to look into it.
     * (called in wavelan_ioctl)
     */
    static inline int wv_set_frequency(unsigned long ioaddr,	/* I/O port of the card */
    				   iw_freq * frequency)
    {
    	const int BAND_NUM = 10;	/* Number of bands */
    	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz */
    #ifdef DEBUG_IOCTL_INFO
    	int i;
    #endif
    
    	/* Setting by frequency */
    	/* Theoretically, you may set any frequency between
    	 * the two limits with a 0.5 MHz precision. In practice,
    	 * I don't want you to have trouble with local regulations.
    	 */
    	if ((frequency->e == 1) &&
    	    (frequency->m >= (int) 2.412e8)
    	    && (frequency->m <= (int) 2.487e8)) {
    		freq = ((frequency->m / 10000) - 24000L) / 5;
    	}
    
    	/* Setting by channel (same as wfreqsel) */
    	/* Warning: each channel is 22 MHz wide, so some of the channels
    	 * will interfere. */
    	if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
    		/* Get frequency offset. */
    		freq = channel_bands[frequency->m] >> 1;
    	}
    
    	/* Verify that the frequency is allowed. */
    	if (freq != 0L) {
    		u16 table[10];	/* Authorized frequency table */
    
    		/* Read the frequency table. */
    		fee_read(ioaddr, 0x71, table, 10);
    
    #ifdef DEBUG_IOCTL_INFO
    		printk(KERN_DEBUG "Frequency table: ");
    		for (i = 0; i < 10; i++) {
    			printk(" %04X", table[i]);
    		}
    		printk("\n");
    #endif
    
    		/* Look in the table to see whether the frequency is allowed. */
    		if (!(table[9 - ((freq - 24) / 16)] &
    		      (1 << ((freq - 24) % 16)))) return -EINVAL;	/* not allowed */
    	} else
    		return -EINVAL;
    
    	/* if we get a usable frequency */
    	if (freq != 0L) {
    		unsigned short area[16];
    		unsigned short dac[2];
    		unsigned short area_verify[16];
    		unsigned short dac_verify[2];
    		/* Corresponding gain (in the power adjust value table)
    		 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
    		 * and WCIN062D.DOC, page 6.2.9. */
    		unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
    		int power_band = 0;	/* Selected band */
    		unsigned short power_adjust;	/* Correct value */
    
    		/* Search for the gain. */
    		power_band = 0;
    		while ((freq > power_limit[power_band]) &&
    		       (power_limit[++power_band] != 0));
    
    		/* Read the first area. */
    		fee_read(ioaddr, 0x00, area, 16);
    
    		/* Read the DAC. */
    		fee_read(ioaddr, 0x60, dac, 2);
    
    		/* Read the new power adjust value. */
    		fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
    			 1);
    		if (power_band & 0x1)
    			power_adjust >>= 8;
    		else
    			power_adjust &= 0xFF;
    
    #ifdef DEBUG_IOCTL_INFO
    		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
    		for (i = 0; i < 16; i++) {
    			printk(" %04X", area[i]);
    		}
    		printk("\n");
    
    		printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
    		       dac[0], dac[1]);
    #endif
    
    		/* Frequency offset (for info only) */
    		area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
    
    		/* Receiver Principle main divider coefficient */
    		area[3] = (freq >> 1) + 2400L - 352L;
    		area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
    
    		/* Transmitter Main divider coefficient */
    		area[13] = (freq >> 1) + 2400L;
    		area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
    
    		/* Other parts of the area are flags, bit streams or unused. */
    
    		/* Set the value in the DAC. */
    		dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
    		dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
    
    		/* Write the first area. */
    		fee_write(ioaddr, 0x00, area, 16);
    
    		/* Write the DAC. */
    		fee_write(ioaddr, 0x60, dac, 2);
    
    		/* We now should verify here that the writing of the EEPROM went OK. */
    
    		/* Reread the first area. */
    		fee_read(ioaddr, 0x00, area_verify, 16);
    
    		/* Reread the DAC. */
    		fee_read(ioaddr, 0x60, dac_verify, 2);
    
    		/* Compare. */
    		if (memcmp(area, area_verify, 16 * 2) ||
    		    memcmp(dac, dac_verify, 2 * 2)) {
    #ifdef DEBUG_IOCTL_ERROR
    			printk(KERN_INFO
    			       "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
    #endif
    			return -EOPNOTSUPP;
    		}
    
    		/* We must download the frequency parameters to the
    		 * synthesizers (from the EEPROM - area 1)
    		 * Note: as the EEPROM is automatically decremented, we set the end
    		 * if the area... */
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
    			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
    
    		/* Wait until the download is finished. */
    		fee_wait(ioaddr, 100, 100);
    
    		/* We must now download the power adjust value (gain) to
    		 * the synthesizers (from the EEPROM - area 7 - DAC). */
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
    		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
    			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
    
    		/* Wait for the download to finish. */
    		fee_wait(ioaddr, 100, 100);
    
    #ifdef DEBUG_IOCTL_INFO
    		/* Verification of what we have done */
    
    		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
    		for (i = 0; i < 16; i++) {
    			printk(" %04X", area_verify[i]);
    		}
    		printk("\n");
    
    		printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
    		       dac_verify[0], dac_verify[1]);
    #endif
    
    		return 0;
    	} else
    		return -EINVAL;	/* Bah, never get there... */
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Give the list of available frequencies.
     */
    static inline int wv_frequency_list(unsigned long ioaddr,	/* I/O port of the card */
    				    iw_freq * list,	/* List of frequencies to fill */
    				    int max)
    {				/* Maximum number of frequencies */
    	u16 table[10];	/* Authorized frequency table */
    	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz + 12 MHz */
    	int i;			/* index in the table */
    	int c = 0;		/* Channel number */
    
    	/* Read the frequency table. */
    	fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
    
    	/* Check all frequencies. */
    	i = 0;
    	for (freq = 0; freq < 150; freq++)
    		/* Look in the table if the frequency is allowed */
    		if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
    			/* Compute approximate channel number */
    			while ((((channel_bands[c] >> 1) - 24) < freq) &&
    			       (c < NELS(channel_bands)))
    				c++;
    			list[i].i = c;	/* Set the list index */
    
    			/* put in the list */
    			list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
    			list[i++].e = 1;
    
    			/* Check number. */
    			if (i >= max)
    				return (i);
    		}
    
    	return (i);
    }
    
    #ifdef IW_WIRELESS_SPY
    /*------------------------------------------------------------------*/
    /*
     * Gather wireless spy statistics:  for each packet, compare the source
     * address with our list, and if they match, get the statistics.
     * Sorry, but this function really needs the wireless extensions.
     */
    static inline void wl_spy_gather(struct net_device * dev,
    				 u8 *	mac,	/* MAC address */
    				 u8 *	stats)	/* Statistics to gather */
    {
    	struct iw_quality wstats;
    
    	wstats.qual = stats[2] & MMR_SGNL_QUAL;
    	wstats.level = stats[0] & MMR_SIGNAL_LVL;
    	wstats.noise = stats[1] & MMR_SILENCE_LVL;
    	wstats.updated = 0x7;
    
    	/* Update spy records */
    	wireless_spy_update(dev, mac, &wstats);
    }
    #endif /* IW_WIRELESS_SPY */
    
    #ifdef HISTOGRAM
    /*------------------------------------------------------------------*/
    /*
     * This function calculates a histogram of the signal level.
     * As the noise is quite constant, it's like doing it on the SNR.
     * We have defined a set of interval (lp->his_range), and each time
     * the level goes in that interval, we increment the count (lp->his_sum).
     * With this histogram you may detect if one WaveLAN is really weak,
     * or you may also calculate the mean and standard deviation of the level.
     */
    static inline void wl_his_gather(struct net_device * dev, u8 * stats)
    {				/* Statistics to gather */
    	net_local *lp = (net_local *) dev->priv;
    	u8 level = stats[0] & MMR_SIGNAL_LVL;
    	int i;
    
    	/* Find the correct interval. */
    	i = 0;
    	while ((i < (lp->his_number - 1))
    	       && (level >= lp->his_range[i++]));
    
    	/* Increment interval counter. */
    	(lp->his_sum[i])++;
    }
    #endif /* HISTOGRAM */
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get protocol name
     */
    static int wavelan_get_name(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	strcpy(wrqu->name, "WaveLAN");
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : set NWID
     */
    static int wavelan_set_nwid(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	mm_t m;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Set NWID in WaveLAN. */
    	if (!wrqu->nwid.disabled) {
    		/* Set NWID in psa */
    		psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
    		psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
    		psa.psa_nwid_select = 0x01;
    		psa_write(ioaddr, lp->hacr,
    			  (char *) psa.psa_nwid - (char *) &psa,
    			  (unsigned char *) psa.psa_nwid, 3);
    
    		/* Set NWID in mmc. */
    		m.w.mmw_netw_id_l = psa.psa_nwid[1];
    		m.w.mmw_netw_id_h = psa.psa_nwid[0];
    		mmc_write(ioaddr,
    			  (char *) &m.w.mmw_netw_id_l -
    			  (char *) &m,
    			  (unsigned char *) &m.w.mmw_netw_id_l, 2);
    		mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
    	} else {
    		/* Disable NWID in the psa. */
    		psa.psa_nwid_select = 0x00;
    		psa_write(ioaddr, lp->hacr,
    			  (char *) &psa.psa_nwid_select -
    			  (char *) &psa,
    			  (unsigned char *) &psa.psa_nwid_select,
    			  1);
    
    		/* Disable NWID in the mmc (no filtering). */
    		mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
    			MMW_LOOPT_SEL_DIS_NWID);
    	}
    	/* update the Wavelan checksum */
    	update_psa_checksum(dev, ioaddr, lp->hacr);
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get NWID 
     */
    static int wavelan_get_nwid(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Read the NWID. */
    	psa_read(ioaddr, lp->hacr,
    		 (char *) psa.psa_nwid - (char *) &psa,
    		 (unsigned char *) psa.psa_nwid, 3);
    	wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
    	wrqu->nwid.disabled = !(psa.psa_nwid_select);
    	wrqu->nwid.fixed = 1;	/* Superfluous */
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : set frequency
     */
    static int wavelan_set_freq(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	unsigned long flags;
    	int ret;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
    	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
    		ret = wv_set_frequency(ioaddr, &(wrqu->freq));
    	else
    		ret = -EOPNOTSUPP;
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get frequency
     */
    static int wavelan_get_freq(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
    	 * Does it work for everybody, especially old cards? */
    	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
    		unsigned short freq;
    
    		/* Ask the EEPROM to read the frequency from the first area. */
    		fee_read(ioaddr, 0x00, &freq, 1);
    		wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
    		wrqu->freq.e = 1;
    	} else {
    		psa_read(ioaddr, lp->hacr,
    			 (char *) &psa.psa_subband - (char *) &psa,
    			 (unsigned char *) &psa.psa_subband, 1);
    
    		if (psa.psa_subband <= 4) {
    			wrqu->freq.m = fixed_bands[psa.psa_subband];
    			wrqu->freq.e = (psa.psa_subband != 0);
    		} else
    			ret = -EOPNOTSUPP;
    	}
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : set level threshold
     */
    static int wavelan_set_sens(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Set the level threshold. */
    	/* We should complain loudly if wrqu->sens.fixed = 0, because we
    	 * can't set auto mode... */
    	psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
    	psa_write(ioaddr, lp->hacr,
    		  (char *) &psa.psa_thr_pre_set - (char *) &psa,
    		  (unsigned char *) &psa.psa_thr_pre_set, 1);
    	/* update the Wavelan checksum */
    	update_psa_checksum(dev, ioaddr, lp->hacr);
    	mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
    		psa.psa_thr_pre_set);
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get level threshold
     */
    static int wavelan_get_sens(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Read the level threshold. */
    	psa_read(ioaddr, lp->hacr,
    		 (char *) &psa.psa_thr_pre_set - (char *) &psa,
    		 (unsigned char *) &psa.psa_thr_pre_set, 1);
    	wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
    	wrqu->sens.fixed = 1;
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : set encryption key
     */
    static int wavelan_set_encode(struct net_device *dev,
    			      struct iw_request_info *info,
    			      union iwreq_data *wrqu,
    			      char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	unsigned long flags;
    	psa_t psa;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    
    	/* Check if capable of encryption */
    	if (!mmc_encr(ioaddr)) {
    		ret = -EOPNOTSUPP;
    	}
    
    	/* Check the size of the key */
    	if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
    		ret = -EINVAL;
    	}
    
    	if(!ret) {
    		/* Basic checking... */
    		if (wrqu->encoding.length == 8) {
    			/* Copy the key in the driver */
    			memcpy(psa.psa_encryption_key, extra,
    			       wrqu->encoding.length);
    			psa.psa_encryption_select = 1;
    
    			psa_write(ioaddr, lp->hacr,
    				  (char *) &psa.psa_encryption_select -
    				  (char *) &psa,
    				  (unsigned char *) &psa.
    				  psa_encryption_select, 8 + 1);
    
    			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
    				MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
    			mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
    				  (unsigned char *) &psa.
    				  psa_encryption_key, 8);
    		}
    
    		/* disable encryption */
    		if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
    			psa.psa_encryption_select = 0;
    			psa_write(ioaddr, lp->hacr,
    				  (char *) &psa.psa_encryption_select -
    				  (char *) &psa,
    				  (unsigned char *) &psa.
    				  psa_encryption_select, 1);
    
    			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
    		}
    		/* update the Wavelan checksum */
    		update_psa_checksum(dev, ioaddr, lp->hacr);
    	}
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get encryption key
     */
    static int wavelan_get_encode(struct net_device *dev,
    			      struct iw_request_info *info,
    			      union iwreq_data *wrqu,
    			      char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Check if encryption is available */
    	if (!mmc_encr(ioaddr)) {
    		ret = -EOPNOTSUPP;
    	} else {
    		/* Read the encryption key */
    		psa_read(ioaddr, lp->hacr,
    			 (char *) &psa.psa_encryption_select -
    			 (char *) &psa,
    			 (unsigned char *) &psa.
    			 psa_encryption_select, 1 + 8);
    
    		/* encryption is enabled ? */
    		if (psa.psa_encryption_select)
    			wrqu->encoding.flags = IW_ENCODE_ENABLED;
    		else
    			wrqu->encoding.flags = IW_ENCODE_DISABLED;
    		wrqu->encoding.flags |= mmc_encr(ioaddr);
    
    		/* Copy the key to the user buffer */
    		wrqu->encoding.length = 8;
    		memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
    	}
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Handler : get range info
     */
    static int wavelan_get_range(struct net_device *dev,
    			     struct iw_request_info *info,
    			     union iwreq_data *wrqu,
    			     char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	struct iw_range *range = (struct iw_range *) extra;
    	unsigned long flags;
    	int ret = 0;
    
    	/* Set the length (very important for backward compatibility) */
    	wrqu->data.length = sizeof(struct iw_range);
    
    	/* Set all the info we don't care or don't know about to zero */
    	memset(range, 0, sizeof(struct iw_range));
    
    	/* Set the Wireless Extension versions */
    	range->we_version_compiled = WIRELESS_EXT;
    	range->we_version_source = 9;
    
    	/* Set information in the range struct.  */
    	range->throughput = 1.6 * 1000 * 1000;	/* don't argue on this ! */
    	range->min_nwid = 0x0000;
    	range->max_nwid = 0xFFFF;
    
    	range->sensitivity = 0x3F;
    	range->max_qual.qual = MMR_SGNL_QUAL;
    	range->max_qual.level = MMR_SIGNAL_LVL;
    	range->max_qual.noise = MMR_SILENCE_LVL;
    	range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
    	/* Need to get better values for those two */
    	range->avg_qual.level = 30;
    	range->avg_qual.noise = 8;
    
    	range->num_bitrates = 1;
    	range->bitrate[0] = 2000000;	/* 2 Mb/s */
    
    	/* Event capability (kernel + driver) */
    	range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
    				IW_EVENT_CAPA_MASK(0x8B04));
    	range->event_capa[1] = IW_EVENT_CAPA_K_1;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
    	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
    		range->num_channels = 10;
    		range->num_frequency = wv_frequency_list(ioaddr, range->freq,
    							IW_MAX_FREQUENCIES);
    	} else
    		range->num_channels = range->num_frequency = 0;
    
    	/* Encryption supported ? */
    	if (mmc_encr(ioaddr)) {
    		range->encoding_size[0] = 8;	/* DES = 64 bits key */
    		range->num_encoding_sizes = 1;
    		range->max_encoding_tokens = 1;	/* Only one key possible */
    	} else {
    		range->num_encoding_sizes = 0;
    		range->max_encoding_tokens = 0;
    	}
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Private Handler : set quality threshold
     */
    static int wavelan_set_qthr(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	psa.psa_quality_thr = *(extra) & 0x0F;
    	psa_write(ioaddr, lp->hacr,
    		  (char *) &psa.psa_quality_thr - (char *) &psa,
    		  (unsigned char *) &psa.psa_quality_thr, 1);
    	/* update the Wavelan checksum */
    	update_psa_checksum(dev, ioaddr, lp->hacr);
    	mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
    		psa.psa_quality_thr);
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Private Handler : get quality threshold
     */
    static int wavelan_get_qthr(struct net_device *dev,
    			    struct iw_request_info *info,
    			    union iwreq_data *wrqu,
    			    char *extra)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    	psa_t psa;
    	unsigned long flags;
    
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	psa_read(ioaddr, lp->hacr,
    		 (char *) &psa.psa_quality_thr - (char *) &psa,
    		 (unsigned char *) &psa.psa_quality_thr, 1);
    	*(extra) = psa.psa_quality_thr & 0x0F;
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	return 0;
    }
    
    #ifdef HISTOGRAM
    /*------------------------------------------------------------------*/
    /*
     * Wireless Private Handler : set histogram
     */
    static int wavelan_set_histo(struct net_device *dev,
    			     struct iw_request_info *info,
    			     union iwreq_data *wrqu,
    			     char *extra)
    {
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    
    	/* Check the number of intervals. */
    	if (wrqu->data.length > 16) {
    		return(-E2BIG);
    	}
    
    	/* Disable histo while we copy the addresses.
    	 * As we don't disable interrupts, we need to do this */
    	lp->his_number = 0;
    
    	/* Are there ranges to copy? */
    	if (wrqu->data.length > 0) {
    		/* Copy interval ranges to the driver */
    		memcpy(lp->his_range, extra, wrqu->data.length);
    
    		{
    		  int i;
    		  printk(KERN_DEBUG "Histo :");
    		  for(i = 0; i < wrqu->data.length; i++)
    		    printk(" %d", lp->his_range[i]);
    		  printk("\n");
    		}
    
    		/* Reset result structure. */
    		memset(lp->his_sum, 0x00, sizeof(long) * 16);
    	}
    
    	/* Now we can set the number of ranges */
    	lp->his_number = wrqu->data.length;
    
    	return(0);
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Wireless Private Handler : get histogram
     */
    static int wavelan_get_histo(struct net_device *dev,
    			     struct iw_request_info *info,
    			     union iwreq_data *wrqu,
    			     char *extra)
    {
    	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
    
    	/* Set the number of intervals. */
    	wrqu->data.length = lp->his_number;
    
    	/* Give back the distribution statistics */
    	if(lp->his_number > 0)
    		memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
    
    	return(0);
    }
    #endif			/* HISTOGRAM */
    
    /*------------------------------------------------------------------*/
    /*
     * Structures to export the Wireless Handlers
     */
    
    static const iw_handler		wavelan_handler[] =
    {
    	NULL,				/* SIOCSIWNAME */
    	wavelan_get_name,		/* SIOCGIWNAME */
    	wavelan_set_nwid,		/* SIOCSIWNWID */
    	wavelan_get_nwid,		/* SIOCGIWNWID */
    	wavelan_set_freq,		/* SIOCSIWFREQ */
    	wavelan_get_freq,		/* SIOCGIWFREQ */
    	NULL,				/* SIOCSIWMODE */
    	NULL,				/* SIOCGIWMODE */
    	wavelan_set_sens,		/* SIOCSIWSENS */
    	wavelan_get_sens,		/* SIOCGIWSENS */
    	NULL,				/* SIOCSIWRANGE */
    	wavelan_get_range,		/* SIOCGIWRANGE */
    	NULL,				/* SIOCSIWPRIV */
    	NULL,				/* SIOCGIWPRIV */
    	NULL,				/* SIOCSIWSTATS */
    	NULL,				/* SIOCGIWSTATS */
    	iw_handler_set_spy,		/* SIOCSIWSPY */
    	iw_handler_get_spy,		/* SIOCGIWSPY */
    	iw_handler_set_thrspy,		/* SIOCSIWTHRSPY */
    	iw_handler_get_thrspy,		/* SIOCGIWTHRSPY */
    	NULL,				/* SIOCSIWAP */
    	NULL,				/* SIOCGIWAP */
    	NULL,				/* -- hole -- */
    	NULL,				/* SIOCGIWAPLIST */
    	NULL,				/* -- hole -- */
    	NULL,				/* -- hole -- */
    	NULL,				/* SIOCSIWESSID */
    	NULL,				/* SIOCGIWESSID */
    	NULL,				/* SIOCSIWNICKN */
    	NULL,				/* SIOCGIWNICKN */
    	NULL,				/* -- hole -- */
    	NULL,				/* -- hole -- */
    	NULL,				/* SIOCSIWRATE */
    	NULL,				/* SIOCGIWRATE */
    	NULL,				/* SIOCSIWRTS */
    	NULL,				/* SIOCGIWRTS */
    	NULL,				/* SIOCSIWFRAG */
    	NULL,				/* SIOCGIWFRAG */
    	NULL,				/* SIOCSIWTXPOW */
    	NULL,				/* SIOCGIWTXPOW */
    	NULL,				/* SIOCSIWRETRY */
    	NULL,				/* SIOCGIWRETRY */
    	/* Bummer ! Why those are only at the end ??? */
    	wavelan_set_encode,		/* SIOCSIWENCODE */
    	wavelan_get_encode,		/* SIOCGIWENCODE */
    };
    
    static const iw_handler		wavelan_private_handler[] =
    {
    	wavelan_set_qthr,		/* SIOCIWFIRSTPRIV */
    	wavelan_get_qthr,		/* SIOCIWFIRSTPRIV + 1 */
    #ifdef HISTOGRAM
    	wavelan_set_histo,		/* SIOCIWFIRSTPRIV + 2 */
    	wavelan_get_histo,		/* SIOCIWFIRSTPRIV + 3 */
    #endif	/* HISTOGRAM */
    };
    
    static const struct iw_priv_args wavelan_private_args[] = {
    /*{ cmd,         set_args,                            get_args, name } */
      { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
      { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
      { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
      { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
    };
    
    static const struct iw_handler_def	wavelan_handler_def =
    {
    	.num_standard	= sizeof(wavelan_handler)/sizeof(iw_handler),
    	.num_private	= sizeof(wavelan_private_handler)/sizeof(iw_handler),
    	.num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args),
    	.standard	= wavelan_handler,
    	.private	= wavelan_private_handler,
    	.private_args	= wavelan_private_args,
    	.get_wireless_stats = wavelan_get_wireless_stats,
    };
    
    /*------------------------------------------------------------------*/
    /*
     * Get wireless statistics.
     * Called by /proc/net/wireless
     */
    static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;
    	mmr_t m;
    	iw_stats *wstats;
    	unsigned long flags;
    
    #ifdef DEBUG_IOCTL_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
    	       dev->name);
    #endif
    
    	/* Check */
    	if (lp == (net_local *) NULL)
    		return (iw_stats *) NULL;
    	
    	/* Disable interrupts and save flags. */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	wstats = &lp->wstats;
    
    	/* Get data from the mmc. */
    	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
    
    	mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
    	mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
    		 2);
    	mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
    		 4);
    
    	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
    
    	/* Copy data to wireless stuff. */
    	wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
    	wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
    	wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
    	wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
    	wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
    			| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
    			| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
    	wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
    	wstats->discard.code = 0L;
    	wstats->discard.misc = 0L;
    
    	/* Enable interrupts and restore flags. */
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    #ifdef DEBUG_IOCTL_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
    	       dev->name);
    #endif
    	return &lp->wstats;
    }
    
    /************************* PACKET RECEPTION *************************/
    /*
     * This part deals with receiving the packets.
     * The interrupt handler gets an interrupt when a packet has been
     * successfully received and calls this part.
     */
    
    /*------------------------------------------------------------------*/
    /*
     * This routine does the actual copying of data (including the Ethernet
     * header structure) from the WaveLAN card to an sk_buff chain that
     * will be passed up to the network interface layer. NOTE: we
     * currently don't handle trailer protocols (neither does the rest of
     * the network interface), so if that is needed, it will (at least in
     * part) be added here.  The contents of the receive ring buffer are
     * copied to a message chain that is then passed to the kernel.
     *
     * Note: if any errors occur, the packet is "dropped on the floor".
     * (called by wv_packet_rcv())
     */
    static inline void
    wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	struct sk_buff *skb;
    
    #ifdef DEBUG_RX_TRACE
    	printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
    	       dev->name, buf_off, sksize);
    #endif
    
    	/* Allocate buffer for the data */
    	if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
    #ifdef DEBUG_RX_ERROR
    		printk(KERN_INFO
    		       "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
    		       dev->name, sksize);
    #endif
    		lp->stats.rx_dropped++;
    		return;
    	}
    
    	skb->dev = dev;
    
    	/* Copy the packet to the buffer. */
    	obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
    	skb->protocol = eth_type_trans(skb, dev);
    
    #ifdef DEBUG_RX_INFO
    	wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read");
    #endif				/* DEBUG_RX_INFO */
    
    	/* Statistics-gathering and associated stuff.
    	 * It seem a bit messy with all the define, but it's really
    	 * simple... */
    	if (
    #ifdef IW_WIRELESS_SPY		/* defined in iw_handler.h */
    		   (lp->spy_data.spy_number > 0) ||
    #endif /* IW_WIRELESS_SPY */
    #ifdef HISTOGRAM
    		   (lp->his_number > 0) ||
    #endif /* HISTOGRAM */
    		   0) {
    		u8 stats[3];	/* signal level, noise level, signal quality */
    
    		/* Read signal level, silence level and signal quality bytes */
    		/* Note: in the PCMCIA hardware, these are part of the frame.
    		 * It seems that for the ISA hardware, it's nowhere to be
    		 * found in the frame, so I'm obliged to do this (it has a
    		 * side effect on /proc/net/wireless).
    		 * Any ideas?
    		 */
    		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
    		mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
    		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
    
    #ifdef DEBUG_RX_INFO
    		printk(KERN_DEBUG
    		       "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
    		       dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
    		       stats[2] & 0x0F);
    #endif
    
    		/* Spying stuff */
    #ifdef IW_WIRELESS_SPY
    		wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE,
    			      stats);
    #endif /* IW_WIRELESS_SPY */
    #ifdef HISTOGRAM
    		wl_his_gather(dev, stats);
    #endif /* HISTOGRAM */
    	}
    
    	/*
    	 * Hand the packet to the network module.
    	 */
    	netif_rx(skb);
    
    	/* Keep statistics up to date */
    	dev->last_rx = jiffies;
    	lp->stats.rx_packets++;
    	lp->stats.rx_bytes += sksize;
    
    #ifdef DEBUG_RX_TRACE
    	printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
    #endif
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Transfer as many packets as we can
     * from the device RAM.
     * (called in wavelan_interrupt()).
     * Note : the spinlock is already grabbed for us.
     */
    static inline void wv_receive(struct net_device * dev)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;
    	fd_t fd;
    	rbd_t rbd;
    	int nreaped = 0;
    
    #ifdef DEBUG_RX_TRACE
    	printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
    #endif
    
    	/* Loop on each received packet. */
    	for (;;) {
    		obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
    			   sizeof(fd));
    
    		/* Note about the status :
    		 * It start up to be 0 (the value we set). Then, when the RU
    		 * grab the buffer to prepare for reception, it sets the
    		 * FD_STATUS_B flag. When the RU has finished receiving the
    		 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
    		 * completion and set the other flags to indicate the eventual
    		 * errors. FD_STATUS_OK indicates that the reception was OK.
    		 */
    
    		/* If the current frame is not complete, we have reached the end. */
    		if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
    			break;	/* This is how we exit the loop. */
    
    		nreaped++;
    
    		/* Check whether frame was correctly received. */
    		if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
    			/* Does the frame contain a pointer to the data?  Let's check. */
    			if (fd.fd_rbd_offset != I82586NULL) {
    				/* Read the receive buffer descriptor */
    				obram_read(ioaddr, fd.fd_rbd_offset,
    					   (unsigned char *) &rbd,
    					   sizeof(rbd));
    
    #ifdef DEBUG_RX_ERROR
    				if ((rbd.rbd_status & RBD_STATUS_EOF) !=
    				    RBD_STATUS_EOF) printk(KERN_INFO
    							   "%s: wv_receive(): missing EOF flag.\n",
    							   dev->name);
    
    				if ((rbd.rbd_status & RBD_STATUS_F) !=
    				    RBD_STATUS_F) printk(KERN_INFO
    							 "%s: wv_receive(): missing F flag.\n",
    							 dev->name);
    #endif				/* DEBUG_RX_ERROR */
    
    				/* Read the packet and transmit to Linux */
    				wv_packet_read(dev, rbd.rbd_bufl,
    					       rbd.
    					       rbd_status &
    					       RBD_STATUS_ACNT);
    			}
    #ifdef DEBUG_RX_ERROR
    			else	/* if frame has no data */
    				printk(KERN_INFO
    				       "%s: wv_receive(): frame has no data.\n",
    				       dev->name);
    #endif
    		} else {	/* If reception was no successful */
    
    			lp->stats.rx_errors++;
    
    #ifdef DEBUG_RX_INFO
    			printk(KERN_DEBUG
    			       "%s: wv_receive(): frame not received successfully (%X).\n",
    			       dev->name, fd.fd_status);
    #endif
    
    #ifdef DEBUG_RX_ERROR
    			if ((fd.fd_status & FD_STATUS_S6) != 0)
    				printk(KERN_INFO
    				       "%s: wv_receive(): no EOF flag.\n",
    				       dev->name);
    #endif
    
    			if ((fd.fd_status & FD_STATUS_S7) != 0) {
    				lp->stats.rx_length_errors++;
    #ifdef DEBUG_RX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_receive(): frame too short.\n",
    				       dev->name);
    #endif
    			}
    
    			if ((fd.fd_status & FD_STATUS_S8) != 0) {
    				lp->stats.rx_over_errors++;
    #ifdef DEBUG_RX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_receive(): rx DMA overrun.\n",
    				       dev->name);
    #endif
    			}
    
    			if ((fd.fd_status & FD_STATUS_S9) != 0) {
    				lp->stats.rx_fifo_errors++;
    #ifdef DEBUG_RX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_receive(): ran out of resources.\n",
    				       dev->name);
    #endif
    			}
    
    			if ((fd.fd_status & FD_STATUS_S10) != 0) {
    				lp->stats.rx_frame_errors++;
    #ifdef DEBUG_RX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_receive(): alignment error.\n",
    				       dev->name);
    #endif
    			}
    
    			if ((fd.fd_status & FD_STATUS_S11) != 0) {
    				lp->stats.rx_crc_errors++;
    #ifdef DEBUG_RX_FAIL
    				printk(KERN_DEBUG
    				       "%s: wv_receive(): CRC error.\n",
    				       dev->name);
    #endif
    			}
    		}
    
    		fd.fd_status = 0;
    		obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
    			    (unsigned char *) &fd.fd_status,
    			    sizeof(fd.fd_status));
    
    		fd.fd_command = FD_COMMAND_EL;
    		obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
    			    (unsigned char *) &fd.fd_command,
    			    sizeof(fd.fd_command));
    
    		fd.fd_command = 0;
    		obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
    			    (unsigned char *) &fd.fd_command,
    			    sizeof(fd.fd_command));
    
    		lp->rx_last = lp->rx_head;
    		lp->rx_head = fd.fd_link_offset;
    	}			/* for(;;) -> loop on all frames */
    
    #ifdef DEBUG_RX_INFO
    	if (nreaped > 1)
    		printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
    		       dev->name, nreaped);
    #endif
    #ifdef DEBUG_RX_TRACE
    	printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
    #endif
    }
    
    /*********************** PACKET TRANSMISSION ***********************/
    /*
     * This part deals with sending packets through the WaveLAN.
     *
     */
    
    /*------------------------------------------------------------------*/
    /*
     * This routine fills in the appropriate registers and memory
     * locations on the WaveLAN card and starts the card off on
     * the transmit.
     *
     * The principle:
     * Each block contains a transmit command, a NOP command,
     * a transmit block descriptor and a buffer.
     * The CU read the transmit block which point to the tbd,
     * read the tbd and the content of the buffer.
     * When it has finish with it, it goes to the next command
     * which in our case is the NOP. The NOP points on itself,
     * so the CU stop here.
     * When we add the next block, we modify the previous nop
     * to make it point on the new tx command.
     * Simple, isn't it ?
     *
     * (called in wavelan_packet_xmit())
     */
    static inline int wv_packet_write(struct net_device * dev, void *buf, short length)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	unsigned short txblock;
    	unsigned short txpred;
    	unsigned short tx_addr;
    	unsigned short nop_addr;
    	unsigned short tbd_addr;
    	unsigned short buf_addr;
    	ac_tx_t tx;
    	ac_nop_t nop;
    	tbd_t tbd;
    	int clen = length;
    	unsigned long flags;
    
    #ifdef DEBUG_TX_TRACE
    	printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
    	       length);
    #endif
    
    	spin_lock_irqsave(&lp->spinlock, flags);
    
    	/* Check nothing bad has happened */
    	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
    #ifdef DEBUG_TX_ERROR
    		printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
    		       dev->name);
    #endif
    		spin_unlock_irqrestore(&lp->spinlock, flags);
    		return 1;
    	}
    
    	/* Calculate addresses of next block and previous block. */
    	txblock = lp->tx_first_free;
    	txpred = txblock - TXBLOCKZ;
    	if (txpred < OFFSET_CU)
    		txpred += NTXBLOCKS * TXBLOCKZ;
    	lp->tx_first_free += TXBLOCKZ;
    	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
    		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
    
    	lp->tx_n_in_use++;
    
    	/* Calculate addresses of the different parts of the block. */
    	tx_addr = txblock;
    	nop_addr = tx_addr + sizeof(tx);
    	tbd_addr = nop_addr + sizeof(nop);
    	buf_addr = tbd_addr + sizeof(tbd);
    
    	/*
    	 * Transmit command
    	 */
    	tx.tx_h.ac_status = 0;
    	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
    		    (unsigned char *) &tx.tx_h.ac_status,
    		    sizeof(tx.tx_h.ac_status));
    
    	/*
    	 * NOP command
    	 */
    	nop.nop_h.ac_status = 0;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
    		    (unsigned char *) &nop.nop_h.ac_status,
    		    sizeof(nop.nop_h.ac_status));
    	nop.nop_h.ac_link = nop_addr;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
    		    (unsigned char *) &nop.nop_h.ac_link,
    		    sizeof(nop.nop_h.ac_link));
    
    	/*
    	 * Transmit buffer descriptor
    	 */
    	tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
    	tbd.tbd_next_bd_offset = I82586NULL;
    	tbd.tbd_bufl = buf_addr;
    	tbd.tbd_bufh = 0;
    	obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
    
    	/*
    	 * Data
    	 */
    	obram_write(ioaddr, buf_addr, buf, length);
    
    	/*
    	 * Overwrite the predecessor NOP link
    	 * so that it points to this txblock.
    	 */
    	nop_addr = txpred + sizeof(tx);
    	nop.nop_h.ac_status = 0;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
    		    (unsigned char *) &nop.nop_h.ac_status,
    		    sizeof(nop.nop_h.ac_status));
    	nop.nop_h.ac_link = txblock;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
    		    (unsigned char *) &nop.nop_h.ac_link,
    		    sizeof(nop.nop_h.ac_link));
    
    	/* Make sure the watchdog will keep quiet for a while */
    	dev->trans_start = jiffies;
    
    	/* Keep stats up to date. */
    	lp->stats.tx_bytes += length;
    
    	if (lp->tx_first_in_use == I82586NULL)
    		lp->tx_first_in_use = txblock;
    
    	if (lp->tx_n_in_use < NTXBLOCKS - 1)
    		netif_wake_queue(dev);
    
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    	
    #ifdef DEBUG_TX_INFO
    	wv_packet_info((u8 *) buf, length, dev->name,
    		       "wv_packet_write");
    #endif				/* DEBUG_TX_INFO */
    
    #ifdef DEBUG_TX_TRACE
    	printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
    #endif
    
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * This routine is called when we want to send a packet (NET3 callback)
     * In this routine, we check if the harware is ready to accept
     * the packet.  We also prevent reentrance.  Then we call the function
     * to send the packet.
     */
    static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long flags;
    
    #ifdef DEBUG_TX_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
    	       (unsigned) skb);
    #endif
    
    	/*
    	 * Block a timer-based transmit from overlapping.
    	 * In other words, prevent reentering this routine.
    	 */
    	netif_stop_queue(dev);
    
    	/* If somebody has asked to reconfigure the controller, 
    	 * we can do it now.
    	 */
    	if (lp->reconfig_82586) {
    		spin_lock_irqsave(&lp->spinlock, flags);
    		wv_82586_config(dev);
    		spin_unlock_irqrestore(&lp->spinlock, flags);
    		/* Check that we can continue */
    		if (lp->tx_n_in_use == (NTXBLOCKS - 1))
    			return 1;
    	}
    #ifdef DEBUG_TX_ERROR
    	if (skb->next)
    		printk(KERN_INFO "skb has next\n");
    #endif
    
    	/* Do we need some padding? */
    	/* Note : on wireless the propagation time is in the order of 1us,
    	 * and we don't have the Ethernet specific requirement of beeing
    	 * able to detect collisions, therefore in theory we don't really
    	 * need to pad. Jean II */
    	if (skb->len < ETH_ZLEN) {
    		skb = skb_padto(skb, ETH_ZLEN);
    		if (skb == NULL)
    			return 0;
    	}
    
    	/* Write packet on the card */
    	if(wv_packet_write(dev, skb->data, skb->len))
    		return 1;	/* We failed */
    
    	dev_kfree_skb(skb);
    
    #ifdef DEBUG_TX_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*********************** HARDWARE CONFIGURATION ***********************/
    /*
     * This part does the real job of starting and configuring the hardware.
     */
    
    /*--------------------------------------------------------------------*/
    /*
     * Routine to initialize the Modem Management Controller.
     * (called by wv_hw_reset())
     */
    static inline int wv_mmc_init(struct net_device * dev)
    {
    	unsigned long ioaddr = dev->base_addr;
    	net_local *lp = (net_local *) dev->priv;
    	psa_t psa;
    	mmw_t m;
    	int configured;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
    #endif
    
    	/* Read the parameter storage area. */
    	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
    
    #ifdef USE_PSA_CONFIG
    	configured = psa.psa_conf_status & 1;
    #else
    	configured = 0;
    #endif
    
    	/* Is the PSA is not configured */
    	if (!configured) {
    		/* User will be able to configure NWID later (with iwconfig). */
    		psa.psa_nwid[0] = 0;
    		psa.psa_nwid[1] = 0;
    
    		/* no NWID checking since NWID is not set */
    		psa.psa_nwid_select = 0;
    
    		/* Disable encryption */
    		psa.psa_encryption_select = 0;
    
    		/* Set to standard values:
    		 * 0x04 for AT,
    		 * 0x01 for MCA,
    		 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
    		 */
    		if (psa.psa_comp_number & 1)
    			psa.psa_thr_pre_set = 0x01;
    		else
    			psa.psa_thr_pre_set = 0x04;
    		psa.psa_quality_thr = 0x03;
    
    		/* It is configured */
    		psa.psa_conf_status |= 1;
    
    #ifdef USE_PSA_CONFIG
    		/* Write the psa. */
    		psa_write(ioaddr, lp->hacr,
    			  (char *) psa.psa_nwid - (char *) &psa,
    			  (unsigned char *) psa.psa_nwid, 4);
    		psa_write(ioaddr, lp->hacr,
    			  (char *) &psa.psa_thr_pre_set - (char *) &psa,
    			  (unsigned char *) &psa.psa_thr_pre_set, 1);
    		psa_write(ioaddr, lp->hacr,
    			  (char *) &psa.psa_quality_thr - (char *) &psa,
    			  (unsigned char *) &psa.psa_quality_thr, 1);
    		psa_write(ioaddr, lp->hacr,
    			  (char *) &psa.psa_conf_status - (char *) &psa,
    			  (unsigned char *) &psa.psa_conf_status, 1);
    		/* update the Wavelan checksum */
    		update_psa_checksum(dev, ioaddr, lp->hacr);
    #endif
    	}
    
    	/* Zero the mmc structure. */
    	memset(&m, 0x00, sizeof(m));
    
    	/* Copy PSA info to the mmc. */
    	m.mmw_netw_id_l = psa.psa_nwid[1];
    	m.mmw_netw_id_h = psa.psa_nwid[0];
    
    	if (psa.psa_nwid_select & 1)
    		m.mmw_loopt_sel = 0x00;
    	else
    		m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
    
    	memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
    	       sizeof(m.mmw_encr_key));
    
    	if (psa.psa_encryption_select)
    		m.mmw_encr_enable =
    		    MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
    	else
    		m.mmw_encr_enable = 0;
    
    	m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
    	m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
    
    	/*
    	 * Set default modem control parameters.
    	 * See NCR document 407-0024326 Rev. A.
    	 */
    	m.mmw_jabber_enable = 0x01;
    	m.mmw_freeze = 0;
    	m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
    	m.mmw_ifs = 0x20;
    	m.mmw_mod_delay = 0x04;
    	m.mmw_jam_time = 0x38;
    
    	m.mmw_des_io_invert = 0;
    	m.mmw_decay_prm = 0;
    	m.mmw_decay_updat_prm = 0;
    
    	/* Write all info to MMC. */
    	mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
    
    	/* The following code starts the modem of the 2.00 frequency
    	 * selectable cards at power on.  It's not strictly needed for the
    	 * following boots.
    	 * The original patch was by Joe Finney for the PCMCIA driver, but
    	 * I've cleaned it up a bit and added documentation.
    	 * Thanks to Loeke Brederveld from Lucent for the info.
    	 */
    
    	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
    	 * Does it work for everybody, especially old cards? */
    	/* Note: WFREQSEL verifies that it is able to read a sensible
    	 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
    	 * is 0xA (Xilinx version) or 0xB (Ariadne version).
    	 * My test is more crude but does work. */
    	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
    	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
    		/* We must download the frequency parameters to the
    		 * synthesizers (from the EEPROM - area 1)
    		 * Note: as the EEPROM is automatically decremented, we set the end
    		 * if the area... */
    		m.mmw_fee_addr = 0x0F;
    		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
    		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
    			  (unsigned char *) &m.mmw_fee_ctrl, 2);
    
    		/* Wait until the download is finished. */
    		fee_wait(ioaddr, 100, 100);
    
    #ifdef DEBUG_CONFIG_INFO
    		/* The frequency was in the last word downloaded. */
    		mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
    			 (unsigned char *) &m.mmw_fee_data_l, 2);
    
    		/* Print some info for the user. */
    		printk(KERN_DEBUG
    		       "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
    		       dev->name,
    		       ((m.
    			 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
    		       5 / 2 + 24000L);
    #endif
    
    		/* We must now download the power adjust value (gain) to
    		 * the synthesizers (from the EEPROM - area 7 - DAC). */
    		m.mmw_fee_addr = 0x61;
    		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
    		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
    			  (unsigned char *) &m.mmw_fee_ctrl, 2);
    
    		/* Wait until the download is finished. */
    	}
    	/* if 2.00 card */
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Construct the fd and rbd structures.
     * Start the receive unit.
     * (called by wv_hw_reset())
     */
    static inline int wv_ru_start(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	u16 scb_cs;
    	fd_t fd;
    	rbd_t rbd;
    	u16 rx;
    	u16 rx_next;
    	int i;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
    #endif
    
    	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
    		   (unsigned char *) &scb_cs, sizeof(scb_cs));
    	if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
    		return 0;
    
    	lp->rx_head = OFFSET_RU;
    
    	for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
    		rx_next =
    		    (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
    
    		fd.fd_status = 0;
    		fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
    		fd.fd_link_offset = rx_next;
    		fd.fd_rbd_offset = rx + sizeof(fd);
    		obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
    
    		rbd.rbd_status = 0;
    		rbd.rbd_next_rbd_offset = I82586NULL;
    		rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
    		rbd.rbd_bufh = 0;
    		rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
    		obram_write(ioaddr, rx + sizeof(fd),
    			    (unsigned char *) &rbd, sizeof(rbd));
    
    		lp->rx_last = rx;
    	}
    
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
    		    (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
    
    	scb_cs = SCB_CMD_RUC_GO;
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &scb_cs, sizeof(scb_cs));
    
    	set_chan_attn(ioaddr, lp->hacr);
    
    	for (i = 1000; i > 0; i--) {
    		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
    			   (unsigned char *) &scb_cs, sizeof(scb_cs));
    		if (scb_cs == 0)
    			break;
    
    		udelay(10);
    	}
    
    	if (i <= 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_ru_start(): board not accepting command.\n",
    		       dev->name);
    #endif
    		return -1;
    	}
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Initialise the transmit blocks.
     * Start the command unit executing the NOP
     * self-loop of the first transmit block.
     *
     * Here we create the list of send buffers used to transmit packets
     * between the PC and the command unit. For each buffer, we create a
     * buffer descriptor (pointing on the buffer), a transmit command
     * (pointing to the buffer descriptor) and a NOP command.
     * The transmit command is linked to the NOP, and the NOP to itself.
     * When we will have finished executing the transmit command, we will
     * then loop on the NOP. By releasing the NOP link to a new command,
     * we may send another buffer.
     *
     * (called by wv_hw_reset())
     */
    static inline int wv_cu_start(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	int i;
    	u16 txblock;
    	u16 first_nop;
    	u16 scb_cs;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
    #endif
    
    	lp->tx_first_free = OFFSET_CU;
    	lp->tx_first_in_use = I82586NULL;
    
    	for (i = 0, txblock = OFFSET_CU;
    	     i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
    		ac_tx_t tx;
    		ac_nop_t nop;
    		tbd_t tbd;
    		unsigned short tx_addr;
    		unsigned short nop_addr;
    		unsigned short tbd_addr;
    		unsigned short buf_addr;
    
    		tx_addr = txblock;
    		nop_addr = tx_addr + sizeof(tx);
    		tbd_addr = nop_addr + sizeof(nop);
    		buf_addr = tbd_addr + sizeof(tbd);
    
    		tx.tx_h.ac_status = 0;
    		tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
    		tx.tx_h.ac_link = nop_addr;
    		tx.tx_tbd_offset = tbd_addr;
    		obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
    			    sizeof(tx));
    
    		nop.nop_h.ac_status = 0;
    		nop.nop_h.ac_command = acmd_nop;
    		nop.nop_h.ac_link = nop_addr;
    		obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
    			    sizeof(nop));
    
    		tbd.tbd_status = TBD_STATUS_EOF;
    		tbd.tbd_next_bd_offset = I82586NULL;
    		tbd.tbd_bufl = buf_addr;
    		tbd.tbd_bufh = 0;
    		obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
    			    sizeof(tbd));
    	}
    
    	first_nop =
    	    OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
    		    (unsigned char *) &first_nop, sizeof(first_nop));
    
    	scb_cs = SCB_CMD_CUC_GO;
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &scb_cs, sizeof(scb_cs));
    
    	set_chan_attn(ioaddr, lp->hacr);
    
    	for (i = 1000; i > 0; i--) {
    		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
    			   (unsigned char *) &scb_cs, sizeof(scb_cs));
    		if (scb_cs == 0)
    			break;
    
    		udelay(10);
    	}
    
    	if (i <= 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_cu_start(): board not accepting command.\n",
    		       dev->name);
    #endif
    		return -1;
    	}
    
    	lp->tx_n_in_use = 0;
    	netif_start_queue(dev);
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * This routine does a standard configuration of the WaveLAN 
     * controller (i82586).
     *
     * It initialises the scp, iscp and scb structure
     * The first two are just pointers to the next.
     * The last one is used for basic configuration and for basic
     * communication (interrupt status).
     *
     * (called by wv_hw_reset())
     */
    static inline int wv_82586_start(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	scp_t scp;		/* system configuration pointer */
    	iscp_t iscp;		/* intermediate scp */
    	scb_t scb;		/* system control block */
    	ach_t cb;		/* Action command header */
    	u8 zeroes[512];
    	int i;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
    #endif
    
    	/*
    	 * Clear the onboard RAM.
    	 */
    	memset(&zeroes[0], 0x00, sizeof(zeroes));
    	for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
    		obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
    
    	/*
    	 * Construct the command unit structures:
    	 * scp, iscp, scb, cb.
    	 */
    	memset(&scp, 0x00, sizeof(scp));
    	scp.scp_sysbus = SCP_SY_16BBUS;
    	scp.scp_iscpl = OFFSET_ISCP;
    	obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
    		    sizeof(scp));
    
    	memset(&iscp, 0x00, sizeof(iscp));
    	iscp.iscp_busy = 1;
    	iscp.iscp_offset = OFFSET_SCB;
    	obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
    		    sizeof(iscp));
    
    	/* Our first command is to reset the i82586. */
    	memset(&scb, 0x00, sizeof(scb));
    	scb.scb_command = SCB_CMD_RESET;
    	scb.scb_cbl_offset = OFFSET_CU;
    	scb.scb_rfa_offset = OFFSET_RU;
    	obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
    		    sizeof(scb));
    
    	set_chan_attn(ioaddr, lp->hacr);
    
    	/* Wait for command to finish. */
    	for (i = 1000; i > 0; i--) {
    		obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
    			   sizeof(iscp));
    
    		if (iscp.iscp_busy == (unsigned short) 0)
    			break;
    
    		udelay(10);
    	}
    
    	if (i <= 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wv_82586_start(): iscp_busy timeout.\n",
    		       dev->name);
    #endif
    		return -1;
    	}
    
    	/* Check command completion. */
    	for (i = 15; i > 0; i--) {
    		obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
    			   sizeof(scb));
    
    		if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
    			break;
    
    		udelay(10);
    	}
    
    	if (i <= 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
    		       dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
    #endif
    		return -1;
    	}
    
    	wv_ack(dev);
    
    	/* Set the action command header. */
    	memset(&cb, 0x00, sizeof(cb));
    	cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
    	cb.ac_link = OFFSET_CU;
    	obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
    
    	if (wv_synchronous_cmd(dev, "diag()") == -1)
    		return -1;
    
    	obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
    	if (cb.ac_status & AC_SFLD_FAIL) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wv_82586_start(): i82586 Self Test failed.\n",
    		       dev->name);
    #endif
    		return -1;
    	}
    #ifdef DEBUG_I82586_SHOW
    	wv_scb_show(ioaddr);
    #endif
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * This routine does a standard configuration of the WaveLAN
     * controller (i82586).
     *
     * This routine is a violent hack. We use the first free transmit block
     * to make our configuration. In the buffer area, we create the three
     * configuration commands (linked). We make the previous NOP point to
     * the beginning of the buffer instead of the tx command. After, we go
     * as usual to the NOP command.
     * Note that only the last command (mc_set) will generate an interrupt.
     *
     * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
     */
    static void wv_82586_config(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	unsigned short txblock;
    	unsigned short txpred;
    	unsigned short tx_addr;
    	unsigned short nop_addr;
    	unsigned short tbd_addr;
    	unsigned short cfg_addr;
    	unsigned short ias_addr;
    	unsigned short mcs_addr;
    	ac_tx_t tx;
    	ac_nop_t nop;
    	ac_cfg_t cfg;		/* Configure action */
    	ac_ias_t ias;		/* IA-setup action */
    	ac_mcs_t mcs;		/* Multicast setup */
    	struct dev_mc_list *dmi;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
    #endif
    
    	/* Check nothing bad has happened */
    	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
    		       dev->name);
    #endif
    		return;
    	}
    
    	/* Calculate addresses of next block and previous block. */
    	txblock = lp->tx_first_free;
    	txpred = txblock - TXBLOCKZ;
    	if (txpred < OFFSET_CU)
    		txpred += NTXBLOCKS * TXBLOCKZ;
    	lp->tx_first_free += TXBLOCKZ;
    	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
    		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
    
    	lp->tx_n_in_use++;
    
    	/* Calculate addresses of the different parts of the block. */
    	tx_addr = txblock;
    	nop_addr = tx_addr + sizeof(tx);
    	tbd_addr = nop_addr + sizeof(nop);
    	cfg_addr = tbd_addr + sizeof(tbd_t);	/* beginning of the buffer */
    	ias_addr = cfg_addr + sizeof(cfg);
    	mcs_addr = ias_addr + sizeof(ias);
    
    	/*
    	 * Transmit command
    	 */
    	tx.tx_h.ac_status = 0xFFFF;	/* Fake completion value */
    	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
    		    (unsigned char *) &tx.tx_h.ac_status,
    		    sizeof(tx.tx_h.ac_status));
    
    	/*
    	 * NOP command
    	 */
    	nop.nop_h.ac_status = 0;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
    		    (unsigned char *) &nop.nop_h.ac_status,
    		    sizeof(nop.nop_h.ac_status));
    	nop.nop_h.ac_link = nop_addr;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
    		    (unsigned char *) &nop.nop_h.ac_link,
    		    sizeof(nop.nop_h.ac_link));
    
    	/* Create a configure action. */
    	memset(&cfg, 0x00, sizeof(cfg));
    
    	/*
    	 * For Linux we invert AC_CFG_ALOC() so as to conform
    	 * to the way that net packets reach us from above.
    	 * (See also ac_tx_t.)
    	 *
    	 * Updated from Wavelan Manual WCIN085B
    	 */
    	cfg.cfg_byte_cnt =
    	    AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
    	cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
    	cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
    	cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
    	    AC_CFG_ILPBCK(0) |
    	    AC_CFG_PRELEN(AC_CFG_PLEN_2) |
    	    AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
    	cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
    	    AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
    	cfg.cfg_ifs = 0x20;
    	cfg.cfg_slotl = 0x0C;
    	cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
    	cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
    	    AC_CFG_BTSTF(0) |
    	    AC_CFG_CRC16(0) |
    	    AC_CFG_NCRC(0) |
    	    AC_CFG_TNCRS(1) |
    	    AC_CFG_MANCH(0) |
    	    AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
    	cfg.cfg_byte15 = AC_CFG_ICDS(0) |
    	    AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
    /*
      cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
    */
    	cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
    
    	cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
    	cfg.cfg_h.ac_link = ias_addr;
    	obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
    
    	/* Set up the MAC address */
    	memset(&ias, 0x00, sizeof(ias));
    	ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
    	ias.ias_h.ac_link = mcs_addr;
    	memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
    	       sizeof(ias.ias_addr));
    	obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
    
    	/* Initialize adapter's Ethernet multicast addresses */
    	memset(&mcs, 0x00, sizeof(mcs));
    	mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
    	mcs.mcs_h.ac_link = nop_addr;
    	mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
    	obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
    
    	/* Any address to set? */
    	if (lp->mc_count) {
    		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
    			outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
    			      WAVELAN_ADDR_SIZE >> 1);
    
    #ifdef DEBUG_CONFIG_INFO
    		printk(KERN_DEBUG
    		       "%s: wv_82586_config(): set %d multicast addresses:\n",
    		       dev->name, lp->mc_count);
    		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
    			printk(KERN_DEBUG
    			       " %02x:%02x:%02x:%02x:%02x:%02x\n",
    			       dmi->dmi_addr[0], dmi->dmi_addr[1],
    			       dmi->dmi_addr[2], dmi->dmi_addr[3],
    			       dmi->dmi_addr[4], dmi->dmi_addr[5]);
    #endif
    	}
    
    	/*
    	 * Overwrite the predecessor NOP link
    	 * so that it points to the configure action.
    	 */
    	nop_addr = txpred + sizeof(tx);
    	nop.nop_h.ac_status = 0;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
    		    (unsigned char *) &nop.nop_h.ac_status,
    		    sizeof(nop.nop_h.ac_status));
    	nop.nop_h.ac_link = cfg_addr;
    	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
    		    (unsigned char *) &nop.nop_h.ac_link,
    		    sizeof(nop.nop_h.ac_link));
    
    	/* Job done, clear the flag */
    	lp->reconfig_82586 = 0;
    
    	if (lp->tx_first_in_use == I82586NULL)
    		lp->tx_first_in_use = txblock;
    
    	if (lp->tx_n_in_use == (NTXBLOCKS - 1))
    		netif_stop_queue(dev);
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
    #endif
    }
    
    /*------------------------------------------------------------------*/
    /*
     * This routine, called by wavelan_close(), gracefully stops the 
     * WaveLAN controller (i82586).
     * (called by wavelan_close())
     */
    static inline void wv_82586_stop(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    	u16 scb_cmd;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
    #endif
    
    	/* Suspend both command unit and receive unit. */
    	scb_cmd =
    	    (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
    					       SCB_CMD_RUC_SUS);
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));
    	set_chan_attn(ioaddr, lp->hacr);
    
    	/* No more interrupts */
    	wv_ints_off(dev);
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
    #endif
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Totally reset the WaveLAN and restart it.
     * Performs the following actions:
     *	1. A power reset (reset DMA)
     *	2. Initialize the radio modem (using wv_mmc_init)
     *	3. Reset & Configure LAN controller (using wv_82586_start)
     *	4. Start the LAN controller's command unit
     *	5. Start the LAN controller's receive unit
     * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
     */
    static int wv_hw_reset(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long ioaddr = dev->base_addr;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
    	       (unsigned int) dev);
    #endif
    
    	/* Increase the number of resets done. */
    	lp->nresets++;
    
    	wv_hacr_reset(ioaddr);
    	lp->hacr = HACR_DEFAULT;
    
    	if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
    		return -1;
    
    	/* Enable the card to send interrupts. */
    	wv_ints_on(dev);
    
    	/* Start card functions */
    	if (wv_cu_start(dev) < 0)
    		return -1;
    
    	/* Setup the controller and parameters */
    	wv_82586_config(dev);
    
    	/* Finish configuration with the receive unit */
    	if (wv_ru_start(dev) < 0)
    		return -1;
    
    #ifdef DEBUG_CONFIG_TRACE
    	printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Check if there is a WaveLAN at the specific base address.
     * As a side effect, this reads the MAC address.
     * (called in wavelan_probe() and init_module())
     */
    static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
    {
    	int i;			/* Loop counter */
    
    	/* Check if the base address if available. */
    	if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
    		return -EBUSY;		/* ioaddr already used */
    
    	/* Reset host interface */
    	wv_hacr_reset(ioaddr);
    
    	/* Read the MAC address from the parameter storage area. */
    	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
    		 mac, 6);
    
    	release_region(ioaddr, sizeof(ha_t));
    
    	/*
    	 * Check the first three octets of the address for the manufacturer's code.
    	 * Note: if this can't find your WaveLAN card, you've got a
    	 * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
    	 * how to configure your card.
    	 */
    	for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
    		if ((mac[0] == MAC_ADDRESSES[i][0]) &&
    		    (mac[1] == MAC_ADDRESSES[i][1]) &&
    		    (mac[2] == MAC_ADDRESSES[i][2]))
    			return 0;
    
    #ifdef DEBUG_CONFIG_INFO
    	printk(KERN_WARNING
    	       "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
    	       ioaddr, mac[0], mac[1], mac[2]);
    #endif
    	return -ENODEV;
    }
    
    /************************ INTERRUPT HANDLING ************************/
    
    /*
     * This function is the interrupt handler for the WaveLAN card. This
     * routine will be called whenever: 
     */
    static irqreturn_t wavelan_interrupt(int irq, void *dev_id, struct pt_regs *regs)
    {
    	struct net_device *dev;
    	unsigned long ioaddr;
    	net_local *lp;
    	u16 hasr;
    	u16 status;
    	u16 ack_cmd;
    
    	dev = dev_id;
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
    #endif
    
    	lp = (net_local *) dev->priv;
    	ioaddr = dev->base_addr;
    
    #ifdef DEBUG_INTERRUPT_INFO
    	/* Check state of our spinlock */
    	if(spin_is_locked(&lp->spinlock))
    		printk(KERN_DEBUG
    		       "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
    		       dev->name);
    #endif
    
    	/* Prevent reentrancy. We need to do that because we may have
    	 * multiple interrupt handler running concurrently.
    	 * It is safe because interrupts are disabled before acquiring
    	 * the spinlock. */
    	spin_lock(&lp->spinlock);
    
    	/* We always had spurious interrupts at startup, but lately I
    	 * saw them comming *between* the request_irq() and the
    	 * spin_lock_irqsave() in wavelan_open(), so the spinlock
    	 * protection is no enough.
    	 * So, we also check lp->hacr that will tell us is we enabled
    	 * irqs or not (see wv_ints_on()).
    	 * We can't use netif_running(dev) because we depend on the
    	 * proper processing of the irq generated during the config. */
    
    	/* Which interrupt it is ? */
    	hasr = hasr_read(ioaddr);
    
    #ifdef DEBUG_INTERRUPT_INFO
    	printk(KERN_INFO
    	       "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
    	       dev->name, hasr, lp->hacr);
    #endif
    
    	/* Check modem interrupt */
    	if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
    		u8 dce_status;
    
    		/*
    		 * Interrupt from the modem management controller.
    		 * This will clear it -- ignored for now.
    		 */
    		mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
    			 sizeof(dce_status));
    
    #ifdef DEBUG_INTERRUPT_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
    		       dev->name, dce_status);
    #endif
    	}
    
    	/* Check if not controller interrupt */
    	if (((hasr & HASR_82586_INTR) == 0) ||
    	    ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
    #ifdef DEBUG_INTERRUPT_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
    		       dev->name, hasr);
    #endif
    		spin_unlock (&lp->spinlock);
    		return IRQ_NONE;
    	}
    
    	/* Read interrupt data. */
    	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
    		   (unsigned char *) &status, sizeof(status));
    
    	/*
    	 * Acknowledge the interrupt(s).
    	 */
    	ack_cmd = status & SCB_ST_INT;
    	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
    		    (unsigned char *) &ack_cmd, sizeof(ack_cmd));
    	set_chan_attn(ioaddr, lp->hacr);
    
    #ifdef DEBUG_INTERRUPT_INFO
    	printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
    	       dev->name, status);
    #endif
    
    	/* Command completed. */
    	if ((status & SCB_ST_CX) == SCB_ST_CX) {
    #ifdef DEBUG_INTERRUPT_INFO
    		printk(KERN_DEBUG
    		       "%s: wavelan_interrupt(): command completed.\n",
    		       dev->name);
    #endif
    		wv_complete(dev, ioaddr, lp);
    	}
    
    	/* Frame received. */
    	if ((status & SCB_ST_FR) == SCB_ST_FR) {
    #ifdef DEBUG_INTERRUPT_INFO
    		printk(KERN_DEBUG
    		       "%s: wavelan_interrupt(): received packet.\n",
    		       dev->name);
    #endif
    		wv_receive(dev);
    	}
    
    	/* Check the state of the command unit. */
    	if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
    	    (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
    	     (netif_running(dev)))) {
    #ifdef DEBUG_INTERRUPT_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_interrupt(): CU inactive -- restarting\n",
    		       dev->name);
    #endif
    		wv_hw_reset(dev);
    	}
    
    	/* Check the state of the command unit. */
    	if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
    	    (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
    	     (netif_running(dev)))) {
    #ifdef DEBUG_INTERRUPT_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_interrupt(): RU not ready -- restarting\n",
    		       dev->name);
    #endif
    		wv_hw_reset(dev);
    	}
    
    	/* Release spinlock */
    	spin_unlock (&lp->spinlock);
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
    #endif
    	return IRQ_HANDLED;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Watchdog: when we start a transmission, a timer is set for us in the
     * kernel.  If the transmission completes, this timer is disabled. If
     * the timer expires, we are called and we try to unlock the hardware.
     */
    static void wavelan_watchdog(struct net_device *	dev)
    {
    	net_local *	lp = (net_local *)dev->priv;
    	u_long		ioaddr = dev->base_addr;
    	unsigned long	flags;
    	unsigned int	nreaped;
    
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
    #endif
    
    #ifdef DEBUG_INTERRUPT_ERROR
    	printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
    	       dev->name);
    #endif
    
    	/* Check that we came here for something */
    	if (lp->tx_n_in_use <= 0) {
    		return;
    	}
    
    	spin_lock_irqsave(&lp->spinlock, flags);
    
    	/* Try to see if some buffers are not free (in case we missed
    	 * an interrupt */
    	nreaped = wv_complete(dev, ioaddr, lp);
    
    #ifdef DEBUG_INTERRUPT_INFO
    	printk(KERN_DEBUG
    	       "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
    	       dev->name, nreaped, lp->tx_n_in_use);
    #endif
    
    #ifdef DEBUG_PSA_SHOW
    	{
    		psa_t psa;
    		psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
    		wv_psa_show(&psa);
    	}
    #endif
    #ifdef DEBUG_MMC_SHOW
    	wv_mmc_show(dev);
    #endif
    #ifdef DEBUG_I82586_SHOW
    	wv_cu_show(dev);
    #endif
    
    	/* If no buffer has been freed */
    	if (nreaped == 0) {
    #ifdef DEBUG_INTERRUPT_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
    		       dev->name);
    #endif
    		wv_hw_reset(dev);
    	}
    
    	/* At this point, we should have some free Tx buffer ;-) */
    	if (lp->tx_n_in_use < NTXBLOCKS - 1)
    		netif_wake_queue(dev);
    
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    	
    #ifdef DEBUG_INTERRUPT_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
    #endif
    }
    
    /********************* CONFIGURATION CALLBACKS *********************/
    /*
     * Here are the functions called by the Linux networking code (NET3)
     * for initialization, configuration and deinstallations of the 
     * WaveLAN ISA hardware.
     */
    
    /*------------------------------------------------------------------*/
    /*
     * Configure and start up the WaveLAN PCMCIA adaptor.
     * Called by NET3 when it "opens" the device.
     */
    static int wavelan_open(struct net_device * dev)
    {
    	net_local *	lp = (net_local *)dev->priv;
    	unsigned long	flags;
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
    	       (unsigned int) dev);
    #endif
    
    	/* Check irq */
    	if (dev->irq == 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
    		       dev->name);
    #endif
    		return -ENXIO;
    	}
    
    	if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
    	{
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
    		       dev->name);
    #endif
    		return -EAGAIN;
    	}
    
    	spin_lock_irqsave(&lp->spinlock, flags);
    	
    	if (wv_hw_reset(dev) != -1) {
    		netif_start_queue(dev);
    	} else {
    		free_irq(dev->irq, dev);
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_open(): impossible to start the card\n",
    		       dev->name);
    #endif
    		spin_unlock_irqrestore(&lp->spinlock, flags);
    		return -EAGAIN;
    	}
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    	
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Shut down the WaveLAN ISA card.
     * Called by NET3 when it "closes" the device.
     */
    static int wavelan_close(struct net_device * dev)
    {
    	net_local *lp = (net_local *) dev->priv;
    	unsigned long flags;
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
    	       (unsigned int) dev);
    #endif
    
    	netif_stop_queue(dev);
    
    	/*
    	 * Flush the Tx and disable Rx.
    	 */
    	spin_lock_irqsave(&lp->spinlock, flags);
    	wv_82586_stop(dev);
    	spin_unlock_irqrestore(&lp->spinlock, flags);
    
    	free_irq(dev->irq, dev);
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
    #endif
    	return 0;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Probe an I/O address, and if the WaveLAN is there configure the
     * device structure
     * (called by wavelan_probe() and via init_module()).
     */
    static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
    {
    	u8 irq_mask;
    	int irq;
    	net_local *lp;
    	mac_addr mac;
    	int err;
    
    	if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
    		return -EADDRINUSE;
    
    	err = wv_check_ioaddr(ioaddr, mac);
    	if (err)
    		goto out;
    
    	memcpy(dev->dev_addr, mac, 6);
    
    	dev->base_addr = ioaddr;
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
    	       dev->name, (unsigned int) dev, ioaddr);
    #endif
    
    	/* Check IRQ argument on command line. */
    	if (dev->irq != 0) {
    		irq_mask = wv_irq_to_psa(dev->irq);
    
    		if (irq_mask == 0) {
    #ifdef DEBUG_CONFIG_ERROR
    			printk(KERN_WARNING
    			       "%s: wavelan_config(): invalid IRQ %d ignored.\n",
    			       dev->name, dev->irq);
    #endif
    			dev->irq = 0;
    		} else {
    #ifdef DEBUG_CONFIG_INFO
    			printk(KERN_DEBUG
    			       "%s: wavelan_config(): changing IRQ to %d\n",
    			       dev->name, dev->irq);
    #endif
    			psa_write(ioaddr, HACR_DEFAULT,
    				  psaoff(0, psa_int_req_no), &irq_mask, 1);
    			/* update the Wavelan checksum */
    			update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
    			wv_hacr_reset(ioaddr);
    		}
    	}
    
    	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
    		 &irq_mask, 1);
    	if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_INFO
    		       "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
    		       dev->name, irq_mask);
    #endif
    		err = -EAGAIN;
    		goto out;
    	}
    
    	dev->irq = irq;
    
    	dev->mem_start = 0x0000;
    	dev->mem_end = 0x0000;
    	dev->if_port = 0;
    
    	/* Initialize device structures */
    	memset(dev->priv, 0, sizeof(net_local));
    	lp = (net_local *) dev->priv;
    
    	/* Back link to the device structure. */
    	lp->dev = dev;
    	/* Add the device at the beginning of the linked list. */
    	lp->next = wavelan_list;
    	wavelan_list = lp;
    
    	lp->hacr = HACR_DEFAULT;
    
    	/* Multicast stuff */
    	lp->promiscuous = 0;
    	lp->mc_count = 0;
    
    	/* Init spinlock */
    	spin_lock_init(&lp->spinlock);
    
    	SET_MODULE_OWNER(dev);
    	dev->open = wavelan_open;
    	dev->stop = wavelan_close;
    	dev->hard_start_xmit = wavelan_packet_xmit;
    	dev->get_stats = wavelan_get_stats;
    	dev->set_multicast_list = &wavelan_set_multicast_list;
            dev->tx_timeout		= &wavelan_watchdog;
            dev->watchdog_timeo	= WATCHDOG_JIFFIES;
    #ifdef SET_MAC_ADDRESS
    	dev->set_mac_address = &wavelan_set_mac_address;
    #endif				/* SET_MAC_ADDRESS */
    
    	dev->wireless_handlers = &wavelan_handler_def;
    	lp->wireless_data.spy_data = &lp->spy_data;
    	dev->wireless_data = &lp->wireless_data;
    
    	dev->mtu = WAVELAN_MTU;
    
    	/* Display nice information. */
    	wv_init_info(dev);
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
    #endif
    	return 0;
    out:
    	release_region(ioaddr, sizeof(ha_t));
    	return err;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Check for a network adaptor of this type.  Return '0' iff one 
     * exists.  There seem to be different interpretations of
     * the initial value of dev->base_addr.
     * We follow the example in drivers/net/ne.c.
     * (called in "Space.c")
     */
    struct net_device * __init wavelan_probe(int unit)
    {
    	struct net_device *dev;
    	short base_addr;
    	int def_irq;
    	int i;
    	int r = 0;
    
    #ifdef	STRUCT_CHECK
    	if (wv_struct_check() != (char *) NULL) {
    		printk(KERN_WARNING
    		       "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
    		       dev->name, wv_struct_check());
    		return -ENODEV;
    	}
    #endif				/* STRUCT_CHECK */
    
    	dev = alloc_etherdev(sizeof(net_local));
    	if (!dev)
    		return ERR_PTR(-ENOMEM);
    
    	sprintf(dev->name, "eth%d", unit);
    	netdev_boot_setup_check(dev);
    	base_addr = dev->base_addr;
    	def_irq = dev->irq;
    
    #ifdef DEBUG_CALLBACK_TRACE
    	printk(KERN_DEBUG
    	       "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
    	       dev->name, dev, (unsigned int) dev->base_addr);
    #endif
    
    	/* Don't probe at all. */
    	if (base_addr < 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_WARNING
    		       "%s: wavelan_probe(): invalid base address\n",
    		       dev->name);
    #endif
    		r = -ENXIO;
    	} else if (base_addr > 0x100) { /* Check a single specified location. */
    		r = wavelan_config(dev, base_addr);
    #ifdef DEBUG_CONFIG_INFO
    		if (r != 0)
    			printk(KERN_DEBUG
    			       "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
    			       dev->name, base_addr);
    #endif
    
    #ifdef DEBUG_CALLBACK_TRACE
    		printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
    #endif
    	} else { /* Scan all possible addresses of the WaveLAN hardware. */
    		for (i = 0; i < NELS(iobase); i++) {
    			dev->irq = def_irq;
    			if (wavelan_config(dev, iobase[i]) == 0) {
    #ifdef DEBUG_CALLBACK_TRACE
    				printk(KERN_DEBUG
    				       "%s: <-wavelan_probe()\n",
    				       dev->name);
    #endif
    				break;
    			}
    		}
    		if (i == NELS(iobase))
    			r = -ENODEV;
    	}
    	if (r) 
    		goto out;
    	r = register_netdev(dev);
    	if (r)
    		goto out1;
    	return dev;
    out1:
    	release_region(dev->base_addr, sizeof(ha_t));
    	wavelan_list = wavelan_list->next;
    out:
    	free_netdev(dev);
    	return ERR_PTR(r);
    }
    
    /****************************** MODULE ******************************/
    /*
     * Module entry point: insertion and removal
     */
    
    #ifdef	MODULE
    /*------------------------------------------------------------------*/
    /*
     * Insertion of the module
     * I'm now quite proud of the multi-device support.
     */
    int init_module(void)
    {
    	int ret = -EIO;		/* Return error if no cards found */
    	int i;
    
    #ifdef DEBUG_MODULE_TRACE
    	printk(KERN_DEBUG "-> init_module()\n");
    #endif
    
    	/* If probing is asked */
    	if (io[0] == 0) {
    #ifdef DEBUG_CONFIG_ERROR
    		printk(KERN_WARNING
    		       "WaveLAN init_module(): doing device probing (bad !)\n");
    		printk(KERN_WARNING
    		       "Specify base addresses while loading module to correct the problem\n");
    #endif
    
    		/* Copy the basic set of address to be probed. */
    		for (i = 0; i < NELS(iobase); i++)
    			io[i] = iobase[i];
    	}
    
    
    	/* Loop on all possible base addresses. */
    	i = -1;
    	while ((io[++i] != 0) && (i < NELS(io))) {
    		struct net_device *dev = alloc_etherdev(sizeof(net_local));
    		if (!dev)
    			break;
    		if (name[i])
    			strcpy(dev->name, name[i]);	/* Copy name */
    		dev->base_addr = io[i];
    		dev->irq = irq[i];
    
    		/* Check if there is something at this base address. */
    		if (wavelan_config(dev, io[i]) == 0) {
    			if (register_netdev(dev) != 0) {
    				release_region(dev->base_addr, sizeof(ha_t));
    				wavelan_list = wavelan_list->next;
    			} else {
    				ret = 0;
    				continue;
    			}
    		}
    		free_netdev(dev);
    	}
    
    #ifdef DEBUG_CONFIG_ERROR
    	if (!wavelan_list)
    		printk(KERN_WARNING
    		       "WaveLAN init_module(): no device found\n");
    #endif
    
    #ifdef DEBUG_MODULE_TRACE
    	printk(KERN_DEBUG "<- init_module()\n");
    #endif
    	return ret;
    }
    
    /*------------------------------------------------------------------*/
    /*
     * Removal of the module
     */
    void cleanup_module(void)
    {
    #ifdef DEBUG_MODULE_TRACE
    	printk(KERN_DEBUG "-> cleanup_module()\n");
    #endif
    
    	/* Loop on all devices and release them. */
    	while (wavelan_list) {
    		struct net_device *dev = wavelan_list->dev;
    
    #ifdef DEBUG_CONFIG_INFO
    		printk(KERN_DEBUG
    		       "%s: cleanup_module(): removing device at 0x%x\n",
    		       dev->name, (unsigned int) dev);
    #endif
    		unregister_netdev(dev);
    
    		release_region(dev->base_addr, sizeof(ha_t));
    		wavelan_list = wavelan_list->next;
    
    		free_netdev(dev);
    	}
    
    #ifdef DEBUG_MODULE_TRACE
    	printk(KERN_DEBUG "<- cleanup_module()\n");
    #endif
    }
    #endif				/* MODULE */
    MODULE_LICENSE("GPL");
    
    /*
     * This software may only be used and distributed
     * according to the terms of the GNU General Public License.
     *
     * This software was developed as a component of the
     * Linux operating system.
     * It is based on other device drivers and information
     * either written or supplied by:
     *	Ajay Bakre (bakre@paul.rutgers.edu),
     *	Donald Becker (becker@scyld.com),
     *	Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
     *	Anders Klemets (klemets@it.kth.se),
     *	Vladimir V. Kolpakov (w@stier.koenig.ru),
     *	Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
     *	Pauline Middelink (middelin@polyware.iaf.nl),
     *	Robert Morris (rtm@das.harvard.edu),
     *	Jean Tourrilhes (jt@hplb.hpl.hp.com),
     *	Girish Welling (welling@paul.rutgers.edu),
     *
     * Thanks go also to:
     *	James Ashton (jaa101@syseng.anu.edu.au),
     *	Alan Cox (alan@redhat.com),
     *	Allan Creighton (allanc@cs.usyd.edu.au),
     *	Matthew Geier (matthew@cs.usyd.edu.au),
     *	Remo di Giovanni (remo@cs.usyd.edu.au),
     *	Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
     *	Vipul Gupta (vgupta@cs.binghamton.edu),
     *	Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
     *	Tim Nicholson (tim@cs.usyd.edu.au),
     *	Ian Parkin (ian@cs.usyd.edu.au),
     *	John Rosenberg (johnr@cs.usyd.edu.au),
     *	George Rossi (george@phm.gov.au),
     *	Arthur Scott (arthur@cs.usyd.edu.au),
     *	Peter Storey,
     * for their assistance and advice.
     *
     * Please send bug reports, updates, comments to:
     *
     * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
     * Basser Department of Computer Science           Phone:  +61-2-9351-3423
     * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
     */