Skip to content
Snippets Groups Projects
Select Git revision
  • c7e285e31f76453bc958006ebe5311a6cca909e3
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

inode.c

Blame
  • inode.c 40.70 KiB
    /*
     * hugetlbpage-backed filesystem.  Based on ramfs.
     *
     * Nadia Yvette Chambers, 2002
     *
     * Copyright (C) 2002 Linus Torvalds.
     * License: GPL
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/thread_info.h>
    #include <asm/current.h>
    #include <linux/sched/signal.h>		/* remove ASAP */
    #include <linux/falloc.h>
    #include <linux/fs.h>
    #include <linux/mount.h>
    #include <linux/file.h>
    #include <linux/kernel.h>
    #include <linux/writeback.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/capability.h>
    #include <linux/ctype.h>
    #include <linux/backing-dev.h>
    #include <linux/hugetlb.h>
    #include <linux/pagevec.h>
    #include <linux/fs_parser.h>
    #include <linux/mman.h>
    #include <linux/slab.h>
    #include <linux/dnotify.h>
    #include <linux/statfs.h>
    #include <linux/security.h>
    #include <linux/magic.h>
    #include <linux/migrate.h>
    #include <linux/uio.h>
    
    #include <linux/uaccess.h>
    #include <linux/sched/mm.h>
    
    static const struct super_operations hugetlbfs_ops;
    static const struct address_space_operations hugetlbfs_aops;
    const struct file_operations hugetlbfs_file_operations;
    static const struct inode_operations hugetlbfs_dir_inode_operations;
    static const struct inode_operations hugetlbfs_inode_operations;
    
    enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
    
    struct hugetlbfs_fs_context {
    	struct hstate		*hstate;
    	unsigned long long	max_size_opt;
    	unsigned long long	min_size_opt;
    	long			max_hpages;
    	long			nr_inodes;
    	long			min_hpages;
    	enum hugetlbfs_size_type max_val_type;
    	enum hugetlbfs_size_type min_val_type;
    	kuid_t			uid;
    	kgid_t			gid;
    	umode_t			mode;
    };
    
    int sysctl_hugetlb_shm_group;
    
    enum hugetlb_param {
    	Opt_gid,
    	Opt_min_size,
    	Opt_mode,
    	Opt_nr_inodes,
    	Opt_pagesize,
    	Opt_size,
    	Opt_uid,
    };
    
    static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
    	fsparam_u32   ("gid",		Opt_gid),
    	fsparam_string("min_size",	Opt_min_size),
    	fsparam_u32   ("mode",		Opt_mode),
    	fsparam_string("nr_inodes",	Opt_nr_inodes),
    	fsparam_string("pagesize",	Opt_pagesize),
    	fsparam_string("size",		Opt_size),
    	fsparam_u32   ("uid",		Opt_uid),
    	{}
    };
    
    #ifdef CONFIG_NUMA
    static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
    					struct inode *inode, pgoff_t index)
    {
    	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
    							index);
    }
    
    static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
    {
    	mpol_cond_put(vma->vm_policy);
    }
    #else
    static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
    					struct inode *inode, pgoff_t index)
    {
    }
    
    static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
    {
    }
    #endif
    
    static void huge_pagevec_release(struct pagevec *pvec)
    {
    	int i;
    
    	for (i = 0; i < pagevec_count(pvec); ++i)
    		put_page(pvec->pages[i]);
    
    	pagevec_reinit(pvec);
    }
    
    /*
     * Mask used when checking the page offset value passed in via system
     * calls.  This value will be converted to a loff_t which is signed.
     * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
     * value.  The extra bit (- 1 in the shift value) is to take the sign
     * bit into account.
     */
    #define PGOFF_LOFFT_MAX \
    	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
    
    static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	struct inode *inode = file_inode(file);
    	loff_t len, vma_len;
    	int ret;
    	struct hstate *h = hstate_file(file);
    
    	/*
    	 * vma address alignment (but not the pgoff alignment) has
    	 * already been checked by prepare_hugepage_range.  If you add
    	 * any error returns here, do so after setting VM_HUGETLB, so
    	 * is_vm_hugetlb_page tests below unmap_region go the right
    	 * way when do_mmap unwinds (may be important on powerpc
    	 * and ia64).
    	 */
    	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
    	vma->vm_ops = &hugetlb_vm_ops;
    
    	/*
    	 * page based offset in vm_pgoff could be sufficiently large to
    	 * overflow a loff_t when converted to byte offset.  This can
    	 * only happen on architectures where sizeof(loff_t) ==
    	 * sizeof(unsigned long).  So, only check in those instances.
    	 */
    	if (sizeof(unsigned long) == sizeof(loff_t)) {
    		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
    			return -EINVAL;
    	}
    
    	/* must be huge page aligned */
    	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
    		return -EINVAL;
    
    	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
    	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
    	/* check for overflow */
    	if (len < vma_len)
    		return -EINVAL;
    
    	inode_lock(inode);
    	file_accessed(file);
    
    	ret = -ENOMEM;
    	if (!hugetlb_reserve_pages(inode,
    				vma->vm_pgoff >> huge_page_order(h),
    				len >> huge_page_shift(h), vma,
    				vma->vm_flags))
    		goto out;
    
    	ret = 0;
    	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
    		i_size_write(inode, len);
    out:
    	inode_unlock(inode);
    
    	return ret;
    }
    
    /*
     * Called under mmap_write_lock(mm).
     */
    
    #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
    static unsigned long
    hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
    		unsigned long len, unsigned long pgoff, unsigned long flags)
    {
    	struct hstate *h = hstate_file(file);
    	struct vm_unmapped_area_info info;
    
    	info.flags = 0;
    	info.length = len;
    	info.low_limit = current->mm->mmap_base;
    	info.high_limit = TASK_SIZE;
    	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
    	info.align_offset = 0;
    	return vm_unmapped_area(&info);
    }
    
    static unsigned long
    hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
    		unsigned long len, unsigned long pgoff, unsigned long flags)
    {
    	struct hstate *h = hstate_file(file);
    	struct vm_unmapped_area_info info;
    
    	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
    	info.length = len;
    	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
    	info.high_limit = current->mm->mmap_base;
    	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
    	info.align_offset = 0;
    	addr = vm_unmapped_area(&info);
    
    	/*
    	 * A failed mmap() very likely causes application failure,
    	 * so fall back to the bottom-up function here. This scenario
    	 * can happen with large stack limits and large mmap()
    	 * allocations.
    	 */
    	if (unlikely(offset_in_page(addr))) {
    		VM_BUG_ON(addr != -ENOMEM);
    		info.flags = 0;
    		info.low_limit = current->mm->mmap_base;
    		info.high_limit = TASK_SIZE;
    		addr = vm_unmapped_area(&info);
    	}
    
    	return addr;
    }
    
    static unsigned long
    hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
    		unsigned long len, unsigned long pgoff, unsigned long flags)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma;
    	struct hstate *h = hstate_file(file);
    
    	if (len & ~huge_page_mask(h))
    		return -EINVAL;
    	if (len > TASK_SIZE)
    		return -ENOMEM;
    
    	if (flags & MAP_FIXED) {
    		if (prepare_hugepage_range(file, addr, len))
    			return -EINVAL;
    		return addr;
    	}
    
    	if (addr) {
    		addr = ALIGN(addr, huge_page_size(h));
    		vma = find_vma(mm, addr);
    		if (TASK_SIZE - len >= addr &&
    		    (!vma || addr + len <= vm_start_gap(vma)))
    			return addr;
    	}
    
    	/*
    	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
    	 * If architectures have special needs, they should define their own
    	 * version of hugetlb_get_unmapped_area.
    	 */
    	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
    		return hugetlb_get_unmapped_area_topdown(file, addr, len,
    				pgoff, flags);
    	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
    			pgoff, flags);
    }
    #endif
    
    static size_t
    hugetlbfs_read_actor(struct page *page, unsigned long offset,
    			struct iov_iter *to, unsigned long size)
    {
    	size_t copied = 0;
    	int i, chunksize;
    
    	/* Find which 4k chunk and offset with in that chunk */
    	i = offset >> PAGE_SHIFT;
    	offset = offset & ~PAGE_MASK;
    
    	while (size) {
    		size_t n;
    		chunksize = PAGE_SIZE;
    		if (offset)
    			chunksize -= offset;
    		if (chunksize > size)
    			chunksize = size;
    		n = copy_page_to_iter(&page[i], offset, chunksize, to);
    		copied += n;
    		if (n != chunksize)
    			return copied;
    		offset = 0;
    		size -= chunksize;
    		i++;
    	}
    	return copied;
    }
    
    /*
     * Support for read() - Find the page attached to f_mapping and copy out the
     * data. Its *very* similar to generic_file_buffered_read(), we can't use that
     * since it has PAGE_SIZE assumptions.
     */
    static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
    {
    	struct file *file = iocb->ki_filp;
    	struct hstate *h = hstate_file(file);
    	struct address_space *mapping = file->f_mapping;
    	struct inode *inode = mapping->host;
    	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
    	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
    	unsigned long end_index;
    	loff_t isize;
    	ssize_t retval = 0;
    
    	while (iov_iter_count(to)) {
    		struct page *page;
    		size_t nr, copied;
    
    		/* nr is the maximum number of bytes to copy from this page */
    		nr = huge_page_size(h);
    		isize = i_size_read(inode);
    		if (!isize)
    			break;
    		end_index = (isize - 1) >> huge_page_shift(h);
    		if (index > end_index)
    			break;
    		if (index == end_index) {
    			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
    			if (nr <= offset)
    				break;
    		}
    		nr = nr - offset;
    
    		/* Find the page */
    		page = find_lock_page(mapping, index);
    		if (unlikely(page == NULL)) {
    			/*
    			 * We have a HOLE, zero out the user-buffer for the
    			 * length of the hole or request.
    			 */
    			copied = iov_iter_zero(nr, to);
    		} else {
    			unlock_page(page);
    
    			/*
    			 * We have the page, copy it to user space buffer.
    			 */
    			copied = hugetlbfs_read_actor(page, offset, to, nr);
    			put_page(page);
    		}
    		offset += copied;
    		retval += copied;
    		if (copied != nr && iov_iter_count(to)) {
    			if (!retval)
    				retval = -EFAULT;
    			break;
    		}
    		index += offset >> huge_page_shift(h);
    		offset &= ~huge_page_mask(h);
    	}
    	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
    	return retval;
    }
    
    static int hugetlbfs_write_begin(struct file *file,
    			struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned flags,
    			struct page **pagep, void **fsdata)
    {
    	return -EINVAL;
    }
    
    static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned copied,
    			struct page *page, void *fsdata)
    {
    	BUG();
    	return -EINVAL;
    }
    
    static void remove_huge_page(struct page *page)
    {
    	ClearPageDirty(page);
    	ClearPageUptodate(page);
    	delete_from_page_cache(page);
    }
    
    static void
    hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
    {
    	struct vm_area_struct *vma;
    
    	/*
    	 * end == 0 indicates that the entire range after
    	 * start should be unmapped.
    	 */
    	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
    		unsigned long v_offset;
    		unsigned long v_end;
    
    		/*
    		 * Can the expression below overflow on 32-bit arches?
    		 * No, because the interval tree returns us only those vmas
    		 * which overlap the truncated area starting at pgoff,
    		 * and no vma on a 32-bit arch can span beyond the 4GB.
    		 */
    		if (vma->vm_pgoff < start)
    			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
    		else
    			v_offset = 0;
    
    		if (!end)
    			v_end = vma->vm_end;
    		else {
    			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
    							+ vma->vm_start;
    			if (v_end > vma->vm_end)
    				v_end = vma->vm_end;
    		}
    
    		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
    									NULL);
    	}
    }
    
    /*
     * remove_inode_hugepages handles two distinct cases: truncation and hole
     * punch.  There are subtle differences in operation for each case.
     *
     * truncation is indicated by end of range being LLONG_MAX
     *	In this case, we first scan the range and release found pages.
     *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
     *	maps and global counts.  Page faults can not race with truncation
     *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
     *	page faults in the truncated range by checking i_size.  i_size is
     *	modified while holding i_mmap_rwsem.
     * hole punch is indicated if end is not LLONG_MAX
     *	In the hole punch case we scan the range and release found pages.
     *	Only when releasing a page is the associated region/reserv map
     *	deleted.  The region/reserv map for ranges without associated
     *	pages are not modified.  Page faults can race with hole punch.
     *	This is indicated if we find a mapped page.
     * Note: If the passed end of range value is beyond the end of file, but
     * not LLONG_MAX this routine still performs a hole punch operation.
     */
    static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
    				   loff_t lend)
    {
    	struct hstate *h = hstate_inode(inode);
    	struct address_space *mapping = &inode->i_data;
    	const pgoff_t start = lstart >> huge_page_shift(h);
    	const pgoff_t end = lend >> huge_page_shift(h);
    	struct vm_area_struct pseudo_vma;
    	struct pagevec pvec;
    	pgoff_t next, index;
    	int i, freed = 0;
    	bool truncate_op = (lend == LLONG_MAX);
    
    	vma_init(&pseudo_vma, current->mm);
    	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
    	pagevec_init(&pvec);
    	next = start;
    	while (next < end) {
    		/*
    		 * When no more pages are found, we are done.
    		 */
    		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
    			break;
    
    		for (i = 0; i < pagevec_count(&pvec); ++i) {
    			struct page *page = pvec.pages[i];
    			u32 hash;
    
    			index = page->index;
    			hash = hugetlb_fault_mutex_hash(mapping, index);
    			if (!truncate_op) {
    				/*
    				 * Only need to hold the fault mutex in the
    				 * hole punch case.  This prevents races with
    				 * page faults.  Races are not possible in the
    				 * case of truncation.
    				 */
    				mutex_lock(&hugetlb_fault_mutex_table[hash]);
    			}
    
    			/*
    			 * If page is mapped, it was faulted in after being
    			 * unmapped in caller.  Unmap (again) now after taking
    			 * the fault mutex.  The mutex will prevent faults
    			 * until we finish removing the page.
    			 *
    			 * This race can only happen in the hole punch case.
    			 * Getting here in a truncate operation is a bug.
    			 */
    			if (unlikely(page_mapped(page))) {
    				BUG_ON(truncate_op);
    
    				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    				i_mmap_lock_write(mapping);
    				mutex_lock(&hugetlb_fault_mutex_table[hash]);
    				hugetlb_vmdelete_list(&mapping->i_mmap,
    					index * pages_per_huge_page(h),
    					(index + 1) * pages_per_huge_page(h));
    				i_mmap_unlock_write(mapping);
    			}
    
    			lock_page(page);
    			/*
    			 * We must free the huge page and remove from page
    			 * cache (remove_huge_page) BEFORE removing the
    			 * region/reserve map (hugetlb_unreserve_pages).  In
    			 * rare out of memory conditions, removal of the
    			 * region/reserve map could fail. Correspondingly,
    			 * the subpool and global reserve usage count can need
    			 * to be adjusted.
    			 */
    			VM_BUG_ON(PagePrivate(page));
    			remove_huge_page(page);
    			freed++;
    			if (!truncate_op) {
    				if (unlikely(hugetlb_unreserve_pages(inode,
    							index, index + 1, 1)))
    					hugetlb_fix_reserve_counts(inode);
    			}
    
    			unlock_page(page);
    			if (!truncate_op)
    				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    		}
    		huge_pagevec_release(&pvec);
    		cond_resched();
    	}
    
    	if (truncate_op)
    		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
    }
    
    static void hugetlbfs_evict_inode(struct inode *inode)
    {
    	struct resv_map *resv_map;
    
    	remove_inode_hugepages(inode, 0, LLONG_MAX);
    
    	/*
    	 * Get the resv_map from the address space embedded in the inode.
    	 * This is the address space which points to any resv_map allocated
    	 * at inode creation time.  If this is a device special inode,
    	 * i_mapping may not point to the original address space.
    	 */
    	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
    	/* Only regular and link inodes have associated reserve maps */
    	if (resv_map)
    		resv_map_release(&resv_map->refs);
    	clear_inode(inode);
    }
    
    static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
    {
    	pgoff_t pgoff;
    	struct address_space *mapping = inode->i_mapping;
    	struct hstate *h = hstate_inode(inode);
    
    	BUG_ON(offset & ~huge_page_mask(h));
    	pgoff = offset >> PAGE_SHIFT;
    
    	i_mmap_lock_write(mapping);
    	i_size_write(inode, offset);
    	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
    		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
    	i_mmap_unlock_write(mapping);
    	remove_inode_hugepages(inode, offset, LLONG_MAX);
    	return 0;
    }
    
    static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
    {
    	struct hstate *h = hstate_inode(inode);
    	loff_t hpage_size = huge_page_size(h);
    	loff_t hole_start, hole_end;
    
    	/*
    	 * For hole punch round up the beginning offset of the hole and
    	 * round down the end.
    	 */
    	hole_start = round_up(offset, hpage_size);
    	hole_end = round_down(offset + len, hpage_size);
    
    	if (hole_end > hole_start) {
    		struct address_space *mapping = inode->i_mapping;
    		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
    
    		inode_lock(inode);
    
    		/* protected by i_mutex */
    		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
    			inode_unlock(inode);
    			return -EPERM;
    		}
    
    		i_mmap_lock_write(mapping);
    		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
    			hugetlb_vmdelete_list(&mapping->i_mmap,
    						hole_start >> PAGE_SHIFT,
    						hole_end  >> PAGE_SHIFT);
    		i_mmap_unlock_write(mapping);
    		remove_inode_hugepages(inode, hole_start, hole_end);
    		inode_unlock(inode);
    	}
    
    	return 0;
    }
    
    static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
    				loff_t len)
    {
    	struct inode *inode = file_inode(file);
    	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
    	struct address_space *mapping = inode->i_mapping;
    	struct hstate *h = hstate_inode(inode);
    	struct vm_area_struct pseudo_vma;
    	struct mm_struct *mm = current->mm;
    	loff_t hpage_size = huge_page_size(h);
    	unsigned long hpage_shift = huge_page_shift(h);
    	pgoff_t start, index, end;
    	int error;
    	u32 hash;
    
    	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
    		return -EOPNOTSUPP;
    
    	if (mode & FALLOC_FL_PUNCH_HOLE)
    		return hugetlbfs_punch_hole(inode, offset, len);
    
    	/*
    	 * Default preallocate case.
    	 * For this range, start is rounded down and end is rounded up
    	 * as well as being converted to page offsets.
    	 */
    	start = offset >> hpage_shift;
    	end = (offset + len + hpage_size - 1) >> hpage_shift;
    
    	inode_lock(inode);
    
    	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
    	error = inode_newsize_ok(inode, offset + len);
    	if (error)
    		goto out;
    
    	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
    		error = -EPERM;
    		goto out;
    	}
    
    	/*
    	 * Initialize a pseudo vma as this is required by the huge page
    	 * allocation routines.  If NUMA is configured, use page index
    	 * as input to create an allocation policy.
    	 */
    	vma_init(&pseudo_vma, mm);
    	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
    	pseudo_vma.vm_file = file;
    
    	for (index = start; index < end; index++) {
    		/*
    		 * This is supposed to be the vaddr where the page is being
    		 * faulted in, but we have no vaddr here.
    		 */
    		struct page *page;
    		unsigned long addr;
    		int avoid_reserve = 0;
    
    		cond_resched();
    
    		/*
    		 * fallocate(2) manpage permits EINTR; we may have been
    		 * interrupted because we are using up too much memory.
    		 */
    		if (signal_pending(current)) {
    			error = -EINTR;
    			break;
    		}
    
    		/* Set numa allocation policy based on index */
    		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
    
    		/* addr is the offset within the file (zero based) */
    		addr = index * hpage_size;
    
    		/*
    		 * fault mutex taken here, protects against fault path
    		 * and hole punch.  inode_lock previously taken protects
    		 * against truncation.
    		 */
    		hash = hugetlb_fault_mutex_hash(mapping, index);
    		mutex_lock(&hugetlb_fault_mutex_table[hash]);
    
    		/* See if already present in mapping to avoid alloc/free */
    		page = find_get_page(mapping, index);
    		if (page) {
    			put_page(page);
    			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    			hugetlb_drop_vma_policy(&pseudo_vma);
    			continue;
    		}
    
    		/* Allocate page and add to page cache */
    		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
    		hugetlb_drop_vma_policy(&pseudo_vma);
    		if (IS_ERR(page)) {
    			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    			error = PTR_ERR(page);
    			goto out;
    		}
    		clear_huge_page(page, addr, pages_per_huge_page(h));
    		__SetPageUptodate(page);
    		error = huge_add_to_page_cache(page, mapping, index);
    		if (unlikely(error)) {
    			put_page(page);
    			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    			goto out;
    		}
    
    		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
    
    		SetHPageMigratable(page);
    		/*
    		 * unlock_page because locked by add_to_page_cache()
    		 * put_page() due to reference from alloc_huge_page()
    		 */
    		unlock_page(page);
    		put_page(page);
    	}
    
    	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
    		i_size_write(inode, offset + len);
    	inode->i_ctime = current_time(inode);
    out:
    	inode_unlock(inode);
    	return error;
    }
    
    static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
    			     struct dentry *dentry, struct iattr *attr)
    {
    	struct inode *inode = d_inode(dentry);
    	struct hstate *h = hstate_inode(inode);
    	int error;
    	unsigned int ia_valid = attr->ia_valid;
    	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
    
    	error = setattr_prepare(&init_user_ns, dentry, attr);
    	if (error)
    		return error;
    
    	if (ia_valid & ATTR_SIZE) {
    		loff_t oldsize = inode->i_size;
    		loff_t newsize = attr->ia_size;
    
    		if (newsize & ~huge_page_mask(h))
    			return -EINVAL;
    		/* protected by i_mutex */
    		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
    		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
    			return -EPERM;
    		error = hugetlb_vmtruncate(inode, newsize);
    		if (error)
    			return error;
    	}
    
    	setattr_copy(&init_user_ns, inode, attr);
    	mark_inode_dirty(inode);
    	return 0;
    }
    
    static struct inode *hugetlbfs_get_root(struct super_block *sb,
    					struct hugetlbfs_fs_context *ctx)
    {
    	struct inode *inode;
    
    	inode = new_inode(sb);
    	if (inode) {
    		inode->i_ino = get_next_ino();
    		inode->i_mode = S_IFDIR | ctx->mode;
    		inode->i_uid = ctx->uid;
    		inode->i_gid = ctx->gid;
    		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
    		inode->i_op = &hugetlbfs_dir_inode_operations;
    		inode->i_fop = &simple_dir_operations;
    		/* directory inodes start off with i_nlink == 2 (for "." entry) */
    		inc_nlink(inode);
    		lockdep_annotate_inode_mutex_key(inode);
    	}
    	return inode;
    }
    
    /*
     * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
     * be taken from reclaim -- unlike regular filesystems. This needs an
     * annotation because huge_pmd_share() does an allocation under hugetlb's
     * i_mmap_rwsem.
     */
    static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
    
    static struct inode *hugetlbfs_get_inode(struct super_block *sb,
    					struct inode *dir,
    					umode_t mode, dev_t dev)
    {
    	struct inode *inode;
    	struct resv_map *resv_map = NULL;
    
    	/*
    	 * Reserve maps are only needed for inodes that can have associated
    	 * page allocations.
    	 */
    	if (S_ISREG(mode) || S_ISLNK(mode)) {
    		resv_map = resv_map_alloc();
    		if (!resv_map)
    			return NULL;
    	}
    
    	inode = new_inode(sb);
    	if (inode) {
    		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
    
    		inode->i_ino = get_next_ino();
    		inode_init_owner(&init_user_ns, inode, dir, mode);
    		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
    				&hugetlbfs_i_mmap_rwsem_key);
    		inode->i_mapping->a_ops = &hugetlbfs_aops;
    		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
    		inode->i_mapping->private_data = resv_map;
    		info->seals = F_SEAL_SEAL;
    		switch (mode & S_IFMT) {
    		default:
    			init_special_inode(inode, mode, dev);
    			break;
    		case S_IFREG:
    			inode->i_op = &hugetlbfs_inode_operations;
    			inode->i_fop = &hugetlbfs_file_operations;
    			break;
    		case S_IFDIR:
    			inode->i_op = &hugetlbfs_dir_inode_operations;
    			inode->i_fop = &simple_dir_operations;
    
    			/* directory inodes start off with i_nlink == 2 (for "." entry) */
    			inc_nlink(inode);
    			break;
    		case S_IFLNK:
    			inode->i_op = &page_symlink_inode_operations;
    			inode_nohighmem(inode);
    			break;
    		}
    		lockdep_annotate_inode_mutex_key(inode);
    	} else {
    		if (resv_map)
    			kref_put(&resv_map->refs, resv_map_release);
    	}
    
    	return inode;
    }
    
    /*
     * File creation. Allocate an inode, and we're done..
     */
    static int do_hugetlbfs_mknod(struct inode *dir,
    			struct dentry *dentry,
    			umode_t mode,
    			dev_t dev,
    			bool tmpfile)
    {
    	struct inode *inode;
    	int error = -ENOSPC;
    
    	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
    	if (inode) {
    		dir->i_ctime = dir->i_mtime = current_time(dir);
    		if (tmpfile) {
    			d_tmpfile(dentry, inode);
    		} else {
    			d_instantiate(dentry, inode);
    			dget(dentry);/* Extra count - pin the dentry in core */
    		}
    		error = 0;
    	}
    	return error;
    }
    
    static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
    			   struct dentry *dentry, umode_t mode, dev_t dev)
    {
    	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
    }
    
    static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
    			   struct dentry *dentry, umode_t mode)
    {
    	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
    				     mode | S_IFDIR, 0);
    	if (!retval)
    		inc_nlink(dir);
    	return retval;
    }
    
    static int hugetlbfs_create(struct user_namespace *mnt_userns,
    			    struct inode *dir, struct dentry *dentry,
    			    umode_t mode, bool excl)
    {
    	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
    }
    
    static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
    			     struct inode *dir, struct dentry *dentry,
    			     umode_t mode)
    {
    	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
    }
    
    static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
    			     struct inode *dir, struct dentry *dentry,
    			     const char *symname)
    {
    	struct inode *inode;
    	int error = -ENOSPC;
    
    	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
    	if (inode) {
    		int l = strlen(symname)+1;
    		error = page_symlink(inode, symname, l);
    		if (!error) {
    			d_instantiate(dentry, inode);
    			dget(dentry);
    		} else
    			iput(inode);
    	}
    	dir->i_ctime = dir->i_mtime = current_time(dir);
    
    	return error;
    }
    
    static int hugetlbfs_migrate_page(struct address_space *mapping,
    				struct page *newpage, struct page *page,
    				enum migrate_mode mode)
    {
    	int rc;
    
    	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
    	if (rc != MIGRATEPAGE_SUCCESS)
    		return rc;
    
    	if (hugetlb_page_subpool(page)) {
    		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
    		hugetlb_set_page_subpool(page, NULL);
    	}
    
    	if (mode != MIGRATE_SYNC_NO_COPY)
    		migrate_page_copy(newpage, page);
    	else
    		migrate_page_states(newpage, page);
    
    	return MIGRATEPAGE_SUCCESS;
    }
    
    static int hugetlbfs_error_remove_page(struct address_space *mapping,
    				struct page *page)
    {
    	struct inode *inode = mapping->host;
    	pgoff_t index = page->index;
    
    	remove_huge_page(page);
    	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
    		hugetlb_fix_reserve_counts(inode);
    
    	return 0;
    }
    
    /*
     * Display the mount options in /proc/mounts.
     */
    static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
    {
    	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
    	struct hugepage_subpool *spool = sbinfo->spool;
    	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
    	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
    	char mod;
    
    	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
    		seq_printf(m, ",uid=%u",
    			   from_kuid_munged(&init_user_ns, sbinfo->uid));
    	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
    		seq_printf(m, ",gid=%u",
    			   from_kgid_munged(&init_user_ns, sbinfo->gid));
    	if (sbinfo->mode != 0755)
    		seq_printf(m, ",mode=%o", sbinfo->mode);
    	if (sbinfo->max_inodes != -1)
    		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
    
    	hpage_size /= 1024;
    	mod = 'K';
    	if (hpage_size >= 1024) {
    		hpage_size /= 1024;
    		mod = 'M';
    	}
    	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
    	if (spool) {
    		if (spool->max_hpages != -1)
    			seq_printf(m, ",size=%llu",
    				   (unsigned long long)spool->max_hpages << hpage_shift);
    		if (spool->min_hpages != -1)
    			seq_printf(m, ",min_size=%llu",
    				   (unsigned long long)spool->min_hpages << hpage_shift);
    	}
    	return 0;
    }
    
    static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
    {
    	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
    	struct hstate *h = hstate_inode(d_inode(dentry));
    
    	buf->f_type = HUGETLBFS_MAGIC;
    	buf->f_bsize = huge_page_size(h);
    	if (sbinfo) {
    		spin_lock(&sbinfo->stat_lock);
    		/* If no limits set, just report 0 for max/free/used
    		 * blocks, like simple_statfs() */
    		if (sbinfo->spool) {
    			long free_pages;
    
    			spin_lock(&sbinfo->spool->lock);
    			buf->f_blocks = sbinfo->spool->max_hpages;
    			free_pages = sbinfo->spool->max_hpages
    				- sbinfo->spool->used_hpages;
    			buf->f_bavail = buf->f_bfree = free_pages;
    			spin_unlock(&sbinfo->spool->lock);
    			buf->f_files = sbinfo->max_inodes;
    			buf->f_ffree = sbinfo->free_inodes;
    		}
    		spin_unlock(&sbinfo->stat_lock);
    	}
    	buf->f_namelen = NAME_MAX;
    	return 0;
    }
    
    static void hugetlbfs_put_super(struct super_block *sb)
    {
    	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
    
    	if (sbi) {
    		sb->s_fs_info = NULL;
    
    		if (sbi->spool)
    			hugepage_put_subpool(sbi->spool);
    
    		kfree(sbi);
    	}
    }
    
    static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
    {
    	if (sbinfo->free_inodes >= 0) {
    		spin_lock(&sbinfo->stat_lock);
    		if (unlikely(!sbinfo->free_inodes)) {
    			spin_unlock(&sbinfo->stat_lock);
    			return 0;
    		}
    		sbinfo->free_inodes--;
    		spin_unlock(&sbinfo->stat_lock);
    	}
    
    	return 1;
    }
    
    static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
    {
    	if (sbinfo->free_inodes >= 0) {
    		spin_lock(&sbinfo->stat_lock);
    		sbinfo->free_inodes++;
    		spin_unlock(&sbinfo->stat_lock);
    	}
    }
    
    
    static struct kmem_cache *hugetlbfs_inode_cachep;
    
    static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
    {
    	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
    	struct hugetlbfs_inode_info *p;
    
    	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
    		return NULL;
    	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
    	if (unlikely(!p)) {
    		hugetlbfs_inc_free_inodes(sbinfo);
    		return NULL;
    	}
    
    	/*
    	 * Any time after allocation, hugetlbfs_destroy_inode can be called
    	 * for the inode.  mpol_free_shared_policy is unconditionally called
    	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
    	 * in case of a quick call to destroy.
    	 *
    	 * Note that the policy is initialized even if we are creating a
    	 * private inode.  This simplifies hugetlbfs_destroy_inode.
    	 */
    	mpol_shared_policy_init(&p->policy, NULL);
    
    	return &p->vfs_inode;
    }
    
    static void hugetlbfs_free_inode(struct inode *inode)
    {
    	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
    }
    
    static void hugetlbfs_destroy_inode(struct inode *inode)
    {
    	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
    	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
    }
    
    static const struct address_space_operations hugetlbfs_aops = {
    	.write_begin	= hugetlbfs_write_begin,
    	.write_end	= hugetlbfs_write_end,
    	.set_page_dirty	=  __set_page_dirty_no_writeback,
    	.migratepage    = hugetlbfs_migrate_page,
    	.error_remove_page	= hugetlbfs_error_remove_page,
    };
    
    
    static void init_once(void *foo)
    {
    	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
    
    	inode_init_once(&ei->vfs_inode);
    }
    
    const struct file_operations hugetlbfs_file_operations = {
    	.read_iter		= hugetlbfs_read_iter,
    	.mmap			= hugetlbfs_file_mmap,
    	.fsync			= noop_fsync,
    	.get_unmapped_area	= hugetlb_get_unmapped_area,
    	.llseek			= default_llseek,
    	.fallocate		= hugetlbfs_fallocate,
    };
    
    static const struct inode_operations hugetlbfs_dir_inode_operations = {
    	.create		= hugetlbfs_create,
    	.lookup		= simple_lookup,
    	.link		= simple_link,
    	.unlink		= simple_unlink,
    	.symlink	= hugetlbfs_symlink,
    	.mkdir		= hugetlbfs_mkdir,
    	.rmdir		= simple_rmdir,
    	.mknod		= hugetlbfs_mknod,
    	.rename		= simple_rename,
    	.setattr	= hugetlbfs_setattr,
    	.tmpfile	= hugetlbfs_tmpfile,
    };
    
    static const struct inode_operations hugetlbfs_inode_operations = {
    	.setattr	= hugetlbfs_setattr,
    };
    
    static const struct super_operations hugetlbfs_ops = {
    	.alloc_inode    = hugetlbfs_alloc_inode,
    	.free_inode     = hugetlbfs_free_inode,
    	.destroy_inode  = hugetlbfs_destroy_inode,
    	.evict_inode	= hugetlbfs_evict_inode,
    	.statfs		= hugetlbfs_statfs,
    	.put_super	= hugetlbfs_put_super,
    	.show_options	= hugetlbfs_show_options,
    };
    
    /*
     * Convert size option passed from command line to number of huge pages
     * in the pool specified by hstate.  Size option could be in bytes
     * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
     */
    static long
    hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
    			 enum hugetlbfs_size_type val_type)
    {
    	if (val_type == NO_SIZE)
    		return -1;
    
    	if (val_type == SIZE_PERCENT) {
    		size_opt <<= huge_page_shift(h);
    		size_opt *= h->max_huge_pages;
    		do_div(size_opt, 100);
    	}
    
    	size_opt >>= huge_page_shift(h);
    	return size_opt;
    }
    
    /*
     * Parse one mount parameter.
     */
    static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
    {
    	struct hugetlbfs_fs_context *ctx = fc->fs_private;
    	struct fs_parse_result result;
    	char *rest;
    	unsigned long ps;
    	int opt;
    
    	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
    	if (opt < 0)
    		return opt;
    
    	switch (opt) {
    	case Opt_uid:
    		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
    		if (!uid_valid(ctx->uid))
    			goto bad_val;
    		return 0;
    
    	case Opt_gid:
    		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
    		if (!gid_valid(ctx->gid))
    			goto bad_val;
    		return 0;
    
    	case Opt_mode:
    		ctx->mode = result.uint_32 & 01777U;
    		return 0;
    
    	case Opt_size:
    		/* memparse() will accept a K/M/G without a digit */
    		if (!isdigit(param->string[0]))
    			goto bad_val;
    		ctx->max_size_opt = memparse(param->string, &rest);
    		ctx->max_val_type = SIZE_STD;
    		if (*rest == '%')
    			ctx->max_val_type = SIZE_PERCENT;
    		return 0;
    
    	case Opt_nr_inodes:
    		/* memparse() will accept a K/M/G without a digit */
    		if (!isdigit(param->string[0]))
    			goto bad_val;
    		ctx->nr_inodes = memparse(param->string, &rest);
    		return 0;
    
    	case Opt_pagesize:
    		ps = memparse(param->string, &rest);
    		ctx->hstate = size_to_hstate(ps);
    		if (!ctx->hstate) {
    			pr_err("Unsupported page size %lu MB\n", ps >> 20);
    			return -EINVAL;
    		}
    		return 0;
    
    	case Opt_min_size:
    		/* memparse() will accept a K/M/G without a digit */
    		if (!isdigit(param->string[0]))
    			goto bad_val;
    		ctx->min_size_opt = memparse(param->string, &rest);
    		ctx->min_val_type = SIZE_STD;
    		if (*rest == '%')
    			ctx->min_val_type = SIZE_PERCENT;
    		return 0;
    
    	default:
    		return -EINVAL;
    	}
    
    bad_val:
    	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
    		      param->string, param->key);
    }
    
    /*
     * Validate the parsed options.
     */
    static int hugetlbfs_validate(struct fs_context *fc)
    {
    	struct hugetlbfs_fs_context *ctx = fc->fs_private;
    
    	/*
    	 * Use huge page pool size (in hstate) to convert the size
    	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
    	 */
    	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
    						   ctx->max_size_opt,
    						   ctx->max_val_type);
    	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
    						   ctx->min_size_opt,
    						   ctx->min_val_type);
    
    	/*
    	 * If max_size was specified, then min_size must be smaller
    	 */
    	if (ctx->max_val_type > NO_SIZE &&
    	    ctx->min_hpages > ctx->max_hpages) {
    		pr_err("Minimum size can not be greater than maximum size\n");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int
    hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
    {
    	struct hugetlbfs_fs_context *ctx = fc->fs_private;
    	struct hugetlbfs_sb_info *sbinfo;
    
    	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
    	if (!sbinfo)
    		return -ENOMEM;
    	sb->s_fs_info = sbinfo;
    	spin_lock_init(&sbinfo->stat_lock);
    	sbinfo->hstate		= ctx->hstate;
    	sbinfo->max_inodes	= ctx->nr_inodes;
    	sbinfo->free_inodes	= ctx->nr_inodes;
    	sbinfo->spool		= NULL;
    	sbinfo->uid		= ctx->uid;
    	sbinfo->gid		= ctx->gid;
    	sbinfo->mode		= ctx->mode;
    
    	/*
    	 * Allocate and initialize subpool if maximum or minimum size is
    	 * specified.  Any needed reservations (for minimim size) are taken
    	 * taken when the subpool is created.
    	 */
    	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
    		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
    						     ctx->max_hpages,
    						     ctx->min_hpages);
    		if (!sbinfo->spool)
    			goto out_free;
    	}
    	sb->s_maxbytes = MAX_LFS_FILESIZE;
    	sb->s_blocksize = huge_page_size(ctx->hstate);
    	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
    	sb->s_magic = HUGETLBFS_MAGIC;
    	sb->s_op = &hugetlbfs_ops;
    	sb->s_time_gran = 1;
    
    	/*
    	 * Due to the special and limited functionality of hugetlbfs, it does
    	 * not work well as a stacking filesystem.
    	 */
    	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
    	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
    	if (!sb->s_root)
    		goto out_free;
    	return 0;
    out_free:
    	kfree(sbinfo->spool);
    	kfree(sbinfo);
    	return -ENOMEM;
    }
    
    static int hugetlbfs_get_tree(struct fs_context *fc)
    {
    	int err = hugetlbfs_validate(fc);
    	if (err)
    		return err;
    	return get_tree_nodev(fc, hugetlbfs_fill_super);
    }
    
    static void hugetlbfs_fs_context_free(struct fs_context *fc)
    {
    	kfree(fc->fs_private);
    }
    
    static const struct fs_context_operations hugetlbfs_fs_context_ops = {
    	.free		= hugetlbfs_fs_context_free,
    	.parse_param	= hugetlbfs_parse_param,
    	.get_tree	= hugetlbfs_get_tree,
    };
    
    static int hugetlbfs_init_fs_context(struct fs_context *fc)
    {
    	struct hugetlbfs_fs_context *ctx;
    
    	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
    	if (!ctx)
    		return -ENOMEM;
    
    	ctx->max_hpages	= -1; /* No limit on size by default */
    	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
    	ctx->uid	= current_fsuid();
    	ctx->gid	= current_fsgid();
    	ctx->mode	= 0755;
    	ctx->hstate	= &default_hstate;
    	ctx->min_hpages	= -1; /* No default minimum size */
    	ctx->max_val_type = NO_SIZE;
    	ctx->min_val_type = NO_SIZE;
    	fc->fs_private = ctx;
    	fc->ops	= &hugetlbfs_fs_context_ops;
    	return 0;
    }
    
    static struct file_system_type hugetlbfs_fs_type = {
    	.name			= "hugetlbfs",
    	.init_fs_context	= hugetlbfs_init_fs_context,
    	.parameters		= hugetlb_fs_parameters,
    	.kill_sb		= kill_litter_super,
    };
    
    static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
    
    static int can_do_hugetlb_shm(void)
    {
    	kgid_t shm_group;
    	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
    	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
    }
    
    static int get_hstate_idx(int page_size_log)
    {
    	struct hstate *h = hstate_sizelog(page_size_log);
    
    	if (!h)
    		return -1;
    	return h - hstates;
    }
    
    /*
     * Note that size should be aligned to proper hugepage size in caller side,
     * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
     */
    struct file *hugetlb_file_setup(const char *name, size_t size,
    				vm_flags_t acctflag, struct user_struct **user,
    				int creat_flags, int page_size_log)
    {
    	struct inode *inode;
    	struct vfsmount *mnt;
    	int hstate_idx;
    	struct file *file;
    
    	hstate_idx = get_hstate_idx(page_size_log);
    	if (hstate_idx < 0)
    		return ERR_PTR(-ENODEV);
    
    	*user = NULL;
    	mnt = hugetlbfs_vfsmount[hstate_idx];
    	if (!mnt)
    		return ERR_PTR(-ENOENT);
    
    	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
    		*user = current_user();
    		if (user_shm_lock(size, *user)) {
    			task_lock(current);
    			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
    				current->comm, current->pid);
    			task_unlock(current);
    		} else {
    			*user = NULL;
    			return ERR_PTR(-EPERM);
    		}
    	}
    
    	file = ERR_PTR(-ENOSPC);
    	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
    	if (!inode)
    		goto out;
    	if (creat_flags == HUGETLB_SHMFS_INODE)
    		inode->i_flags |= S_PRIVATE;
    
    	inode->i_size = size;
    	clear_nlink(inode);
    
    	if (!hugetlb_reserve_pages(inode, 0,
    			size >> huge_page_shift(hstate_inode(inode)), NULL,
    			acctflag))
    		file = ERR_PTR(-ENOMEM);
    	else
    		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
    					&hugetlbfs_file_operations);
    	if (!IS_ERR(file))
    		return file;
    
    	iput(inode);
    out:
    	if (*user) {
    		user_shm_unlock(size, *user);
    		*user = NULL;
    	}
    	return file;
    }
    
    static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
    {
    	struct fs_context *fc;
    	struct vfsmount *mnt;
    
    	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
    	if (IS_ERR(fc)) {
    		mnt = ERR_CAST(fc);
    	} else {
    		struct hugetlbfs_fs_context *ctx = fc->fs_private;
    		ctx->hstate = h;
    		mnt = fc_mount(fc);
    		put_fs_context(fc);
    	}
    	if (IS_ERR(mnt))
    		pr_err("Cannot mount internal hugetlbfs for page size %uK",
    		       1U << (h->order + PAGE_SHIFT - 10));
    	return mnt;
    }
    
    static int __init init_hugetlbfs_fs(void)
    {
    	struct vfsmount *mnt;
    	struct hstate *h;
    	int error;
    	int i;
    
    	if (!hugepages_supported()) {
    		pr_info("disabling because there are no supported hugepage sizes\n");
    		return -ENOTSUPP;
    	}
    
    	error = -ENOMEM;
    	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
    					sizeof(struct hugetlbfs_inode_info),
    					0, SLAB_ACCOUNT, init_once);
    	if (hugetlbfs_inode_cachep == NULL)
    		goto out;
    
    	error = register_filesystem(&hugetlbfs_fs_type);
    	if (error)
    		goto out_free;
    
    	/* default hstate mount is required */
    	mnt = mount_one_hugetlbfs(&default_hstate);
    	if (IS_ERR(mnt)) {
    		error = PTR_ERR(mnt);
    		goto out_unreg;
    	}
    	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
    
    	/* other hstates are optional */
    	i = 0;
    	for_each_hstate(h) {
    		if (i == default_hstate_idx) {
    			i++;
    			continue;
    		}
    
    		mnt = mount_one_hugetlbfs(h);
    		if (IS_ERR(mnt))
    			hugetlbfs_vfsmount[i] = NULL;
    		else
    			hugetlbfs_vfsmount[i] = mnt;
    		i++;
    	}
    
    	return 0;
    
     out_unreg:
    	(void)unregister_filesystem(&hugetlbfs_fs_type);
     out_free:
    	kmem_cache_destroy(hugetlbfs_inode_cachep);
     out:
    	return error;
    }
    fs_initcall(init_hugetlbfs_fs)