Skip to content
Snippets Groups Projects
Select Git revision
  • cf2039af1a2eee58fdbfa68bc0c9123e77477645
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

pagemap.h

Blame
  • pagemap.h 29.93 KiB
    /* SPDX-License-Identifier: GPL-2.0 */
    #ifndef _LINUX_PAGEMAP_H
    #define _LINUX_PAGEMAP_H
    
    /*
     * Copyright 1995 Linus Torvalds
     */
    #include <linux/mm.h>
    #include <linux/fs.h>
    #include <linux/list.h>
    #include <linux/highmem.h>
    #include <linux/compiler.h>
    #include <linux/uaccess.h>
    #include <linux/gfp.h>
    #include <linux/bitops.h>
    #include <linux/hardirq.h> /* for in_interrupt() */
    #include <linux/hugetlb_inline.h>
    
    struct pagevec;
    
    /*
     * Bits in mapping->flags.
     */
    enum mapping_flags {
    	AS_EIO		= 0,	/* IO error on async write */
    	AS_ENOSPC	= 1,	/* ENOSPC on async write */
    	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
    	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
    	AS_EXITING	= 4, 	/* final truncate in progress */
    	/* writeback related tags are not used */
    	AS_NO_WRITEBACK_TAGS = 5,
    	AS_THP_SUPPORT = 6,	/* THPs supported */
    };
    
    /**
     * mapping_set_error - record a writeback error in the address_space
     * @mapping: the mapping in which an error should be set
     * @error: the error to set in the mapping
     *
     * When writeback fails in some way, we must record that error so that
     * userspace can be informed when fsync and the like are called.  We endeavor
     * to report errors on any file that was open at the time of the error.  Some
     * internal callers also need to know when writeback errors have occurred.
     *
     * When a writeback error occurs, most filesystems will want to call
     * mapping_set_error to record the error in the mapping so that it can be
     * reported when the application calls fsync(2).
     */
    static inline void mapping_set_error(struct address_space *mapping, int error)
    {
    	if (likely(!error))
    		return;
    
    	/* Record in wb_err for checkers using errseq_t based tracking */
    	__filemap_set_wb_err(mapping, error);
    
    	/* Record it in superblock */
    	if (mapping->host)
    		errseq_set(&mapping->host->i_sb->s_wb_err, error);
    
    	/* Record it in flags for now, for legacy callers */
    	if (error == -ENOSPC)
    		set_bit(AS_ENOSPC, &mapping->flags);
    	else
    		set_bit(AS_EIO, &mapping->flags);
    }
    
    static inline void mapping_set_unevictable(struct address_space *mapping)
    {
    	set_bit(AS_UNEVICTABLE, &mapping->flags);
    }
    
    static inline void mapping_clear_unevictable(struct address_space *mapping)
    {
    	clear_bit(AS_UNEVICTABLE, &mapping->flags);
    }
    
    static inline bool mapping_unevictable(struct address_space *mapping)
    {
    	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
    }
    
    static inline void mapping_set_exiting(struct address_space *mapping)
    {
    	set_bit(AS_EXITING, &mapping->flags);
    }
    
    static inline int mapping_exiting(struct address_space *mapping)
    {
    	return test_bit(AS_EXITING, &mapping->flags);
    }
    
    static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
    {
    	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
    }
    
    static inline int mapping_use_writeback_tags(struct address_space *mapping)
    {
    	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
    }
    
    static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
    {
    	return mapping->gfp_mask;
    }
    
    /* Restricts the given gfp_mask to what the mapping allows. */
    static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
    		gfp_t gfp_mask)
    {
    	return mapping_gfp_mask(mapping) & gfp_mask;
    }
    
    /*
     * This is non-atomic.  Only to be used before the mapping is activated.
     * Probably needs a barrier...
     */
    static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
    {
    	m->gfp_mask = mask;
    }
    
    static inline bool mapping_thp_support(struct address_space *mapping)
    {
    	return test_bit(AS_THP_SUPPORT, &mapping->flags);
    }
    
    static inline int filemap_nr_thps(struct address_space *mapping)
    {
    #ifdef CONFIG_READ_ONLY_THP_FOR_FS
    	return atomic_read(&mapping->nr_thps);
    #else
    	return 0;
    #endif
    }
    
    static inline void filemap_nr_thps_inc(struct address_space *mapping)
    {
    #ifdef CONFIG_READ_ONLY_THP_FOR_FS
    	if (!mapping_thp_support(mapping))
    		atomic_inc(&mapping->nr_thps);
    #else
    	WARN_ON_ONCE(1);
    #endif
    }
    
    static inline void filemap_nr_thps_dec(struct address_space *mapping)
    {
    #ifdef CONFIG_READ_ONLY_THP_FOR_FS
    	if (!mapping_thp_support(mapping))
    		atomic_dec(&mapping->nr_thps);
    #else
    	WARN_ON_ONCE(1);
    #endif
    }
    
    void release_pages(struct page **pages, int nr);
    
    /*
     * speculatively take a reference to a page.
     * If the page is free (_refcount == 0), then _refcount is untouched, and 0
     * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
     *
     * This function must be called inside the same rcu_read_lock() section as has
     * been used to lookup the page in the pagecache radix-tree (or page table):
     * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
     *
     * Unless an RCU grace period has passed, the count of all pages coming out
     * of the allocator must be considered unstable. page_count may return higher
     * than expected, and put_page must be able to do the right thing when the
     * page has been finished with, no matter what it is subsequently allocated
     * for (because put_page is what is used here to drop an invalid speculative
     * reference).
     *
     * This is the interesting part of the lockless pagecache (and lockless
     * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
     * has the following pattern:
     * 1. find page in radix tree
     * 2. conditionally increment refcount
     * 3. check the page is still in pagecache (if no, goto 1)
     *
     * Remove-side that cares about stability of _refcount (eg. reclaim) has the
     * following (with the i_pages lock held):
     * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
     * B. remove page from pagecache
     * C. free the page
     *
     * There are 2 critical interleavings that matter:
     * - 2 runs before A: in this case, A sees elevated refcount and bails out
     * - A runs before 2: in this case, 2 sees zero refcount and retries;
     *   subsequently, B will complete and 1 will find no page, causing the
     *   lookup to return NULL.
     *
     * It is possible that between 1 and 2, the page is removed then the exact same
     * page is inserted into the same position in pagecache. That's OK: the
     * old find_get_page using a lock could equally have run before or after
     * such a re-insertion, depending on order that locks are granted.
     *
     * Lookups racing against pagecache insertion isn't a big problem: either 1
     * will find the page or it will not. Likewise, the old find_get_page could run
     * either before the insertion or afterwards, depending on timing.
     */
    static inline int __page_cache_add_speculative(struct page *page, int count)
    {
    #ifdef CONFIG_TINY_RCU
    # ifdef CONFIG_PREEMPT_COUNT
    	VM_BUG_ON(!in_atomic() && !irqs_disabled());
    # endif
    	/*
    	 * Preempt must be disabled here - we rely on rcu_read_lock doing
    	 * this for us.
    	 *
    	 * Pagecache won't be truncated from interrupt context, so if we have
    	 * found a page in the radix tree here, we have pinned its refcount by
    	 * disabling preempt, and hence no need for the "speculative get" that
    	 * SMP requires.
    	 */
    	VM_BUG_ON_PAGE(page_count(page) == 0, page);
    	page_ref_add(page, count);
    
    #else
    	if (unlikely(!page_ref_add_unless(page, count, 0))) {
    		/*
    		 * Either the page has been freed, or will be freed.
    		 * In either case, retry here and the caller should
    		 * do the right thing (see comments above).
    		 */
    		return 0;
    	}
    #endif
    	VM_BUG_ON_PAGE(PageTail(page), page);
    
    	return 1;
    }
    
    static inline int page_cache_get_speculative(struct page *page)
    {
    	return __page_cache_add_speculative(page, 1);
    }
    
    static inline int page_cache_add_speculative(struct page *page, int count)
    {
    	return __page_cache_add_speculative(page, count);
    }
    
    /**
     * attach_page_private - Attach private data to a page.
     * @page: Page to attach data to.
     * @data: Data to attach to page.
     *
     * Attaching private data to a page increments the page's reference count.
     * The data must be detached before the page will be freed.
     */
    static inline void attach_page_private(struct page *page, void *data)
    {
    	get_page(page);
    	set_page_private(page, (unsigned long)data);
    	SetPagePrivate(page);
    }
    
    /**
     * detach_page_private - Detach private data from a page.
     * @page: Page to detach data from.
     *
     * Removes the data that was previously attached to the page and decrements
     * the refcount on the page.
     *
     * Return: Data that was attached to the page.
     */
    static inline void *detach_page_private(struct page *page)
    {
    	void *data = (void *)page_private(page);
    
    	if (!PagePrivate(page))
    		return NULL;
    	ClearPagePrivate(page);
    	set_page_private(page, 0);
    	put_page(page);
    
    	return data;
    }
    
    #ifdef CONFIG_NUMA
    extern struct page *__page_cache_alloc(gfp_t gfp);
    #else
    static inline struct page *__page_cache_alloc(gfp_t gfp)
    {
    	return alloc_pages(gfp, 0);
    }
    #endif
    
    static inline struct page *page_cache_alloc(struct address_space *x)
    {
    	return __page_cache_alloc(mapping_gfp_mask(x));
    }
    
    static inline gfp_t readahead_gfp_mask(struct address_space *x)
    {
    	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
    }
    
    typedef int filler_t(void *, struct page *);
    
    pgoff_t page_cache_next_miss(struct address_space *mapping,
    			     pgoff_t index, unsigned long max_scan);
    pgoff_t page_cache_prev_miss(struct address_space *mapping,
    			     pgoff_t index, unsigned long max_scan);
    
    #define FGP_ACCESSED		0x00000001
    #define FGP_LOCK		0x00000002
    #define FGP_CREAT		0x00000004
    #define FGP_WRITE		0x00000008
    #define FGP_NOFS		0x00000010
    #define FGP_NOWAIT		0x00000020
    #define FGP_FOR_MMAP		0x00000040
    #define FGP_HEAD		0x00000080
    #define FGP_ENTRY		0x00000100
    
    struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
    		int fgp_flags, gfp_t cache_gfp_mask);
    
    /**
     * find_get_page - find and get a page reference
     * @mapping: the address_space to search
     * @offset: the page index
     *
     * Looks up the page cache slot at @mapping & @offset.  If there is a
     * page cache page, it is returned with an increased refcount.
     *
     * Otherwise, %NULL is returned.
     */
    static inline struct page *find_get_page(struct address_space *mapping,
    					pgoff_t offset)
    {
    	return pagecache_get_page(mapping, offset, 0, 0);
    }
    
    static inline struct page *find_get_page_flags(struct address_space *mapping,
    					pgoff_t offset, int fgp_flags)
    {
    	return pagecache_get_page(mapping, offset, fgp_flags, 0);
    }
    
    /**
     * find_lock_page - locate, pin and lock a pagecache page
     * @mapping: the address_space to search
     * @index: the page index
     *
     * Looks up the page cache entry at @mapping & @index.  If there is a
     * page cache page, it is returned locked and with an increased
     * refcount.
     *
     * Context: May sleep.
     * Return: A struct page or %NULL if there is no page in the cache for this
     * index.
     */
    static inline struct page *find_lock_page(struct address_space *mapping,
    					pgoff_t index)
    {
    	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
    }
    
    /**
     * find_lock_head - Locate, pin and lock a pagecache page.
     * @mapping: The address_space to search.
     * @index: The page index.
     *
     * Looks up the page cache entry at @mapping & @index.  If there is a
     * page cache page, its head page is returned locked and with an increased
     * refcount.
     *
     * Context: May sleep.
     * Return: A struct page which is !PageTail, or %NULL if there is no page
     * in the cache for this index.
     */
    static inline struct page *find_lock_head(struct address_space *mapping,
    					pgoff_t index)
    {
    	return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
    }
    
    /**
     * find_or_create_page - locate or add a pagecache page
     * @mapping: the page's address_space
     * @index: the page's index into the mapping
     * @gfp_mask: page allocation mode
     *
     * Looks up the page cache slot at @mapping & @offset.  If there is a
     * page cache page, it is returned locked and with an increased
     * refcount.
     *
     * If the page is not present, a new page is allocated using @gfp_mask
     * and added to the page cache and the VM's LRU list.  The page is
     * returned locked and with an increased refcount.
     *
     * On memory exhaustion, %NULL is returned.
     *
     * find_or_create_page() may sleep, even if @gfp_flags specifies an
     * atomic allocation!
     */
    static inline struct page *find_or_create_page(struct address_space *mapping,
    					pgoff_t index, gfp_t gfp_mask)
    {
    	return pagecache_get_page(mapping, index,
    					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
    					gfp_mask);
    }
    
    /**
     * grab_cache_page_nowait - returns locked page at given index in given cache
     * @mapping: target address_space
     * @index: the page index
     *
     * Same as grab_cache_page(), but do not wait if the page is unavailable.
     * This is intended for speculative data generators, where the data can
     * be regenerated if the page couldn't be grabbed.  This routine should
     * be safe to call while holding the lock for another page.
     *
     * Clear __GFP_FS when allocating the page to avoid recursion into the fs
     * and deadlock against the caller's locked page.
     */
    static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
    				pgoff_t index)
    {
    	return pagecache_get_page(mapping, index,
    			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
    			mapping_gfp_mask(mapping));
    }
    
    /* Does this page contain this index? */
    static inline bool thp_contains(struct page *head, pgoff_t index)
    {
    	/* HugeTLBfs indexes the page cache in units of hpage_size */
    	if (PageHuge(head))
    		return head->index == index;
    	return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
    }
    
    /*
     * Given the page we found in the page cache, return the page corresponding
     * to this index in the file
     */
    static inline struct page *find_subpage(struct page *head, pgoff_t index)
    {
    	/* HugeTLBfs wants the head page regardless */
    	if (PageHuge(head))
    		return head;
    
    	return head + (index & (thp_nr_pages(head) - 1));
    }
    
    unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
    		pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
    unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
    			pgoff_t end, unsigned int nr_pages,
    			struct page **pages);
    static inline unsigned find_get_pages(struct address_space *mapping,
    			pgoff_t *start, unsigned int nr_pages,
    			struct page **pages)
    {
    	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
    				    pages);
    }
    unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
    			       unsigned int nr_pages, struct page **pages);
    unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
    			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
    			struct page **pages);
    static inline unsigned find_get_pages_tag(struct address_space *mapping,
    			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
    			struct page **pages)
    {
    	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
    					nr_pages, pages);
    }
    
    struct page *grab_cache_page_write_begin(struct address_space *mapping,
    			pgoff_t index, unsigned flags);
    
    /*
     * Returns locked page at given index in given cache, creating it if needed.
     */
    static inline struct page *grab_cache_page(struct address_space *mapping,
    								pgoff_t index)
    {
    	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
    }
    
    extern struct page * read_cache_page(struct address_space *mapping,
    				pgoff_t index, filler_t *filler, void *data);
    extern struct page * read_cache_page_gfp(struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    extern int read_cache_pages(struct address_space *mapping,
    		struct list_head *pages, filler_t *filler, void *data);
    
    static inline struct page *read_mapping_page(struct address_space *mapping,
    				pgoff_t index, void *data)
    {
    	return read_cache_page(mapping, index, NULL, data);
    }
    
    /*
     * Get index of the page with in radix-tree
     * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
     */
    static inline pgoff_t page_to_index(struct page *page)
    {
    	pgoff_t pgoff;
    
    	if (likely(!PageTransTail(page)))
    		return page->index;
    
    	/*
    	 *  We don't initialize ->index for tail pages: calculate based on
    	 *  head page
    	 */
    	pgoff = compound_head(page)->index;
    	pgoff += page - compound_head(page);
    	return pgoff;
    }
    
    /*
     * Get the offset in PAGE_SIZE.
     * (TODO: hugepage should have ->index in PAGE_SIZE)
     */
    static inline pgoff_t page_to_pgoff(struct page *page)
    {
    	if (unlikely(PageHeadHuge(page)))
    		return page->index << compound_order(page);
    
    	return page_to_index(page);
    }
    
    /*
     * Return byte-offset into filesystem object for page.
     */
    static inline loff_t page_offset(struct page *page)
    {
    	return ((loff_t)page->index) << PAGE_SHIFT;
    }
    
    static inline loff_t page_file_offset(struct page *page)
    {
    	return ((loff_t)page_index(page)) << PAGE_SHIFT;
    }
    
    extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
    				     unsigned long address);
    
    static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
    					unsigned long address)
    {
    	pgoff_t pgoff;
    	if (unlikely(is_vm_hugetlb_page(vma)))
    		return linear_hugepage_index(vma, address);
    	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
    	pgoff += vma->vm_pgoff;
    	return pgoff;
    }
    
    /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
    struct wait_page_key {
    	struct page *page;
    	int bit_nr;
    	int page_match;
    };
    
    struct wait_page_queue {
    	struct page *page;
    	int bit_nr;
    	wait_queue_entry_t wait;
    };
    
    static inline bool wake_page_match(struct wait_page_queue *wait_page,
    				  struct wait_page_key *key)
    {
    	if (wait_page->page != key->page)
    	       return false;
    	key->page_match = 1;
    
    	if (wait_page->bit_nr != key->bit_nr)
    		return false;
    
    	return true;
    }
    
    extern void __lock_page(struct page *page);
    extern int __lock_page_killable(struct page *page);
    extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
    extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
    				unsigned int flags);
    extern void unlock_page(struct page *page);
    
    /*
     * Return true if the page was successfully locked
     */
    static inline int trylock_page(struct page *page)
    {
    	page = compound_head(page);
    	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
    }
    
    /*
     * lock_page may only be called if we have the page's inode pinned.
     */
    static inline void lock_page(struct page *page)
    {
    	might_sleep();
    	if (!trylock_page(page))
    		__lock_page(page);
    }
    
    /*
     * lock_page_killable is like lock_page but can be interrupted by fatal
     * signals.  It returns 0 if it locked the page and -EINTR if it was
     * killed while waiting.
     */
    static inline int lock_page_killable(struct page *page)
    {
    	might_sleep();
    	if (!trylock_page(page))
    		return __lock_page_killable(page);
    	return 0;
    }
    
    /*
     * lock_page_async - Lock the page, unless this would block. If the page
     * is already locked, then queue a callback when the page becomes unlocked.
     * This callback can then retry the operation.
     *
     * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
     * was already locked and the callback defined in 'wait' was queued.
     */
    static inline int lock_page_async(struct page *page,
    				  struct wait_page_queue *wait)
    {
    	if (!trylock_page(page))
    		return __lock_page_async(page, wait);
    	return 0;
    }
    
    /*
     * lock_page_or_retry - Lock the page, unless this would block and the
     * caller indicated that it can handle a retry.
     *
     * Return value and mmap_lock implications depend on flags; see
     * __lock_page_or_retry().
     */
    static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
    				     unsigned int flags)
    {
    	might_sleep();
    	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
    }
    
    /*
     * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
     * and should not be used directly.
     */
    extern void wait_on_page_bit(struct page *page, int bit_nr);
    extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
    
    /* 
     * Wait for a page to be unlocked.
     *
     * This must be called with the caller "holding" the page,
     * ie with increased "page->count" so that the page won't
     * go away during the wait..
     */
    static inline void wait_on_page_locked(struct page *page)
    {
    	if (PageLocked(page))
    		wait_on_page_bit(compound_head(page), PG_locked);
    }
    
    static inline int wait_on_page_locked_killable(struct page *page)
    {
    	if (!PageLocked(page))
    		return 0;
    	return wait_on_page_bit_killable(compound_head(page), PG_locked);
    }
    
    int put_and_wait_on_page_locked(struct page *page, int state);
    void wait_on_page_writeback(struct page *page);
    extern void end_page_writeback(struct page *page);
    void wait_for_stable_page(struct page *page);
    
    void page_endio(struct page *page, bool is_write, int err);
    
    /*
     * Add an arbitrary waiter to a page's wait queue
     */
    extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
    
    /*
     * Fault everything in given userspace address range in.
     */
    static inline int fault_in_pages_writeable(char __user *uaddr, int size)
    {
    	char __user *end = uaddr + size - 1;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	if (unlikely(uaddr > end))
    		return -EFAULT;
    	/*
    	 * Writing zeroes into userspace here is OK, because we know that if
    	 * the zero gets there, we'll be overwriting it.
    	 */
    	do {
    		if (unlikely(__put_user(0, uaddr) != 0))
    			return -EFAULT;
    		uaddr += PAGE_SIZE;
    	} while (uaddr <= end);
    
    	/* Check whether the range spilled into the next page. */
    	if (((unsigned long)uaddr & PAGE_MASK) ==
    			((unsigned long)end & PAGE_MASK))
    		return __put_user(0, end);
    
    	return 0;
    }
    
    static inline int fault_in_pages_readable(const char __user *uaddr, int size)
    {
    	volatile char c;
    	const char __user *end = uaddr + size - 1;
    
    	if (unlikely(size == 0))
    		return 0;
    
    	if (unlikely(uaddr > end))
    		return -EFAULT;
    
    	do {
    		if (unlikely(__get_user(c, uaddr) != 0))
    			return -EFAULT;
    		uaddr += PAGE_SIZE;
    	} while (uaddr <= end);
    
    	/* Check whether the range spilled into the next page. */
    	if (((unsigned long)uaddr & PAGE_MASK) ==
    			((unsigned long)end & PAGE_MASK)) {
    		return __get_user(c, end);
    	}
    
    	(void)c;
    	return 0;
    }
    
    int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
    				pgoff_t index, gfp_t gfp_mask);
    extern void delete_from_page_cache(struct page *page);
    extern void __delete_from_page_cache(struct page *page, void *shadow);
    void replace_page_cache_page(struct page *old, struct page *new);
    void delete_from_page_cache_batch(struct address_space *mapping,
    				  struct pagevec *pvec);
    loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
    		int whence);
    
    /*
     * Like add_to_page_cache_locked, but used to add newly allocated pages:
     * the page is new, so we can just run __SetPageLocked() against it.
     */
    static inline int add_to_page_cache(struct page *page,
    		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
    {
    	int error;
    
    	__SetPageLocked(page);
    	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
    	if (unlikely(error))
    		__ClearPageLocked(page);
    	return error;
    }
    
    /**
     * struct readahead_control - Describes a readahead request.
     *
     * A readahead request is for consecutive pages.  Filesystems which
     * implement the ->readahead method should call readahead_page() or
     * readahead_page_batch() in a loop and attempt to start I/O against
     * each page in the request.
     *
     * Most of the fields in this struct are private and should be accessed
     * by the functions below.
     *
     * @file: The file, used primarily by network filesystems for authentication.
     *	  May be NULL if invoked internally by the filesystem.
     * @mapping: Readahead this filesystem object.
     */
    struct readahead_control {
    	struct file *file;
    	struct address_space *mapping;
    /* private: use the readahead_* accessors instead */
    	pgoff_t _index;
    	unsigned int _nr_pages;
    	unsigned int _batch_count;
    };
    
    #define DEFINE_READAHEAD(rac, f, m, i)					\
    	struct readahead_control rac = {				\
    		.file = f,						\
    		.mapping = m,						\
    		._index = i,						\
    	}
    
    #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
    
    void page_cache_ra_unbounded(struct readahead_control *,
    		unsigned long nr_to_read, unsigned long lookahead_count);
    void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
    		unsigned long req_count);
    void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
    		struct page *, unsigned long req_count);
    
    /**
     * page_cache_sync_readahead - generic file readahead
     * @mapping: address_space which holds the pagecache and I/O vectors
     * @ra: file_ra_state which holds the readahead state
     * @file: Used by the filesystem for authentication.
     * @index: Index of first page to be read.
     * @req_count: Total number of pages being read by the caller.
     *
     * page_cache_sync_readahead() should be called when a cache miss happened:
     * it will submit the read.  The readahead logic may decide to piggyback more
     * pages onto the read request if access patterns suggest it will improve
     * performance.
     */
    static inline
    void page_cache_sync_readahead(struct address_space *mapping,
    		struct file_ra_state *ra, struct file *file, pgoff_t index,
    		unsigned long req_count)
    {
    	DEFINE_READAHEAD(ractl, file, mapping, index);
    	page_cache_sync_ra(&ractl, ra, req_count);
    }
    
    /**
     * page_cache_async_readahead - file readahead for marked pages
     * @mapping: address_space which holds the pagecache and I/O vectors
     * @ra: file_ra_state which holds the readahead state
     * @file: Used by the filesystem for authentication.
     * @page: The page at @index which triggered the readahead call.
     * @index: Index of first page to be read.
     * @req_count: Total number of pages being read by the caller.
     *
     * page_cache_async_readahead() should be called when a page is used which
     * is marked as PageReadahead; this is a marker to suggest that the application
     * has used up enough of the readahead window that we should start pulling in
     * more pages.
     */
    static inline
    void page_cache_async_readahead(struct address_space *mapping,
    		struct file_ra_state *ra, struct file *file,
    		struct page *page, pgoff_t index, unsigned long req_count)
    {
    	DEFINE_READAHEAD(ractl, file, mapping, index);
    	page_cache_async_ra(&ractl, ra, page, req_count);
    }
    
    /**
     * readahead_page - Get the next page to read.
     * @rac: The current readahead request.
     *
     * Context: The page is locked and has an elevated refcount.  The caller
     * should decreases the refcount once the page has been submitted for I/O
     * and unlock the page once all I/O to that page has completed.
     * Return: A pointer to the next page, or %NULL if we are done.
     */
    static inline struct page *readahead_page(struct readahead_control *rac)
    {
    	struct page *page;
    
    	BUG_ON(rac->_batch_count > rac->_nr_pages);
    	rac->_nr_pages -= rac->_batch_count;
    	rac->_index += rac->_batch_count;
    
    	if (!rac->_nr_pages) {
    		rac->_batch_count = 0;
    		return NULL;
    	}
    
    	page = xa_load(&rac->mapping->i_pages, rac->_index);
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	rac->_batch_count = thp_nr_pages(page);
    
    	return page;
    }
    
    static inline unsigned int __readahead_batch(struct readahead_control *rac,
    		struct page **array, unsigned int array_sz)
    {
    	unsigned int i = 0;
    	XA_STATE(xas, &rac->mapping->i_pages, 0);
    	struct page *page;
    
    	BUG_ON(rac->_batch_count > rac->_nr_pages);
    	rac->_nr_pages -= rac->_batch_count;
    	rac->_index += rac->_batch_count;
    	rac->_batch_count = 0;
    
    	xas_set(&xas, rac->_index);
    	rcu_read_lock();
    	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
    		if (xas_retry(&xas, page))
    			continue;
    		VM_BUG_ON_PAGE(!PageLocked(page), page);
    		VM_BUG_ON_PAGE(PageTail(page), page);
    		array[i++] = page;
    		rac->_batch_count += thp_nr_pages(page);
    
    		/*
    		 * The page cache isn't using multi-index entries yet,
    		 * so the xas cursor needs to be manually moved to the
    		 * next index.  This can be removed once the page cache
    		 * is converted.
    		 */
    		if (PageHead(page))
    			xas_set(&xas, rac->_index + rac->_batch_count);
    
    		if (i == array_sz)
    			break;
    	}
    	rcu_read_unlock();
    
    	return i;
    }
    
    /**
     * readahead_page_batch - Get a batch of pages to read.
     * @rac: The current readahead request.
     * @array: An array of pointers to struct page.
     *
     * Context: The pages are locked and have an elevated refcount.  The caller
     * should decreases the refcount once the page has been submitted for I/O
     * and unlock the page once all I/O to that page has completed.
     * Return: The number of pages placed in the array.  0 indicates the request
     * is complete.
     */
    #define readahead_page_batch(rac, array)				\
    	__readahead_batch(rac, array, ARRAY_SIZE(array))
    
    /**
     * readahead_pos - The byte offset into the file of this readahead request.
     * @rac: The readahead request.
     */
    static inline loff_t readahead_pos(struct readahead_control *rac)
    {
    	return (loff_t)rac->_index * PAGE_SIZE;
    }
    
    /**
     * readahead_length - The number of bytes in this readahead request.
     * @rac: The readahead request.
     */
    static inline loff_t readahead_length(struct readahead_control *rac)
    {
    	return (loff_t)rac->_nr_pages * PAGE_SIZE;
    }
    
    /**
     * readahead_index - The index of the first page in this readahead request.
     * @rac: The readahead request.
     */
    static inline pgoff_t readahead_index(struct readahead_control *rac)
    {
    	return rac->_index;
    }
    
    /**
     * readahead_count - The number of pages in this readahead request.
     * @rac: The readahead request.
     */
    static inline unsigned int readahead_count(struct readahead_control *rac)
    {
    	return rac->_nr_pages;
    }
    
    static inline unsigned long dir_pages(struct inode *inode)
    {
    	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
    			       PAGE_SHIFT;
    }
    
    /**
     * page_mkwrite_check_truncate - check if page was truncated
     * @page: the page to check
     * @inode: the inode to check the page against
     *
     * Returns the number of bytes in the page up to EOF,
     * or -EFAULT if the page was truncated.
     */
    static inline int page_mkwrite_check_truncate(struct page *page,
    					      struct inode *inode)
    {
    	loff_t size = i_size_read(inode);
    	pgoff_t index = size >> PAGE_SHIFT;
    	int offset = offset_in_page(size);
    
    	if (page->mapping != inode->i_mapping)
    		return -EFAULT;
    
    	/* page is wholly inside EOF */
    	if (page->index < index)
    		return PAGE_SIZE;
    	/* page is wholly past EOF */
    	if (page->index > index || !offset)
    		return -EFAULT;
    	/* page is partially inside EOF */
    	return offset;
    }
    
    /**
     * i_blocks_per_page - How many blocks fit in this page.
     * @inode: The inode which contains the blocks.
     * @page: The page (head page if the page is a THP).
     *
     * If the block size is larger than the size of this page, return zero.
     *
     * Context: The caller should hold a refcount on the page to prevent it
     * from being split.
     * Return: The number of filesystem blocks covered by this page.
     */
    static inline
    unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
    {
    	return thp_size(page) >> inode->i_blkbits;
    }
    #endif /* _LINUX_PAGEMAP_H */