Skip to content
Snippets Groups Projects
Select Git revision
  • d0cc11477b9f8c2e03e9c4dad82b71ec5a2e63c7
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

fs_enet-main.c

Blame
  • fs_enet-main.c 25.94 KiB
    /*
     * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
     *
     * Copyright (c) 2003 Intracom S.A.
     *  by Pantelis Antoniou <panto@intracom.gr>
     *
     * 2005 (c) MontaVista Software, Inc.
     * Vitaly Bordug <vbordug@ru.mvista.com>
     *
     * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
     * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
     *
     * This file is licensed under the terms of the GNU General Public License
     * version 2. This program is licensed "as is" without any warranty of any
     * kind, whether express or implied.
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ptrace.h>
    #include <linux/errno.h>
    #include <linux/ioport.h>
    #include <linux/slab.h>
    #include <linux/interrupt.h>
    #include <linux/delay.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/skbuff.h>
    #include <linux/spinlock.h>
    #include <linux/mii.h>
    #include <linux/ethtool.h>
    #include <linux/bitops.h>
    #include <linux/fs.h>
    #include <linux/platform_device.h>
    #include <linux/phy.h>
    #include <linux/of.h>
    #include <linux/of_mdio.h>
    #include <linux/of_platform.h>
    #include <linux/of_gpio.h>
    #include <linux/of_net.h>
    
    #include <linux/vmalloc.h>
    #include <asm/pgtable.h>
    #include <asm/irq.h>
    #include <asm/uaccess.h>
    
    #include "fs_enet.h"
    
    /*************************************************/
    
    MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
    MODULE_DESCRIPTION("Freescale Ethernet Driver");
    MODULE_LICENSE("GPL");
    MODULE_VERSION(DRV_MODULE_VERSION);
    
    static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
    module_param(fs_enet_debug, int, 0);
    MODULE_PARM_DESC(fs_enet_debug,
    		 "Freescale bitmapped debugging message enable value");
    
    #ifdef CONFIG_NET_POLL_CONTROLLER
    static void fs_enet_netpoll(struct net_device *dev);
    #endif
    
    static void fs_set_multicast_list(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    
    	(*fep->ops->set_multicast_list)(dev);
    }
    
    static void skb_align(struct sk_buff *skb, int align)
    {
    	int off = ((unsigned long)skb->data) & (align - 1);
    
    	if (off)
    		skb_reserve(skb, align - off);
    }
    
    /* NAPI receive function */
    static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
    {
    	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
    	struct net_device *dev = fep->ndev;
    	const struct fs_platform_info *fpi = fep->fpi;
    	cbd_t __iomem *bdp;
    	struct sk_buff *skb, *skbn;
    	int received = 0;
    	u16 pkt_len, sc;
    	int curidx;
    
    	if (budget <= 0)
    		return received;
    
    	/*
    	 * First, grab all of the stats for the incoming packet.
    	 * These get messed up if we get called due to a busy condition.
    	 */
    	bdp = fep->cur_rx;
    
    	/* clear RX status bits for napi*/
    	(*fep->ops->napi_clear_rx_event)(dev);
    
    	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
    		curidx = bdp - fep->rx_bd_base;
    
    		/*
    		 * Since we have allocated space to hold a complete frame,
    		 * the last indicator should be set.
    		 */
    		if ((sc & BD_ENET_RX_LAST) == 0)
    			dev_warn(fep->dev, "rcv is not +last\n");
    
    		/*
    		 * Check for errors.
    		 */
    		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
    			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
    			fep->stats.rx_errors++;
    			/* Frame too long or too short. */
    			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
    				fep->stats.rx_length_errors++;
    			/* Frame alignment */
    			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
    				fep->stats.rx_frame_errors++;
    			/* CRC Error */
    			if (sc & BD_ENET_RX_CR)
    				fep->stats.rx_crc_errors++;
    			/* FIFO overrun */
    			if (sc & BD_ENET_RX_OV)
    				fep->stats.rx_crc_errors++;
    
    			skb = fep->rx_skbuff[curidx];
    
    			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
    				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
    				DMA_FROM_DEVICE);
    
    			skbn = skb;
    
    		} else {
    			skb = fep->rx_skbuff[curidx];
    
    			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
    				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
    				DMA_FROM_DEVICE);
    
    			/*
    			 * Process the incoming frame.
    			 */
    			fep->stats.rx_packets++;
    			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
    			fep->stats.rx_bytes += pkt_len + 4;
    
    			if (pkt_len <= fpi->rx_copybreak) {
    				/* +2 to make IP header L1 cache aligned */
    				skbn = netdev_alloc_skb(dev, pkt_len + 2);
    				if (skbn != NULL) {
    					skb_reserve(skbn, 2);	/* align IP header */
    					skb_copy_from_linear_data(skb,
    						      skbn->data, pkt_len);
    					swap(skb, skbn);
    				}
    			} else {
    				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
    
    				if (skbn)
    					skb_align(skbn, ENET_RX_ALIGN);
    			}
    
    			if (skbn != NULL) {
    				skb_put(skb, pkt_len);	/* Make room */
    				skb->protocol = eth_type_trans(skb, dev);
    				received++;
    				netif_receive_skb(skb);
    			} else {
    				fep->stats.rx_dropped++;
    				skbn = skb;
    			}
    		}
    
    		fep->rx_skbuff[curidx] = skbn;
    		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
    			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
    			     DMA_FROM_DEVICE));
    		CBDW_DATLEN(bdp, 0);
    		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
    
    		/*
    		 * Update BD pointer to next entry.
    		 */
    		if ((sc & BD_ENET_RX_WRAP) == 0)
    			bdp++;
    		else
    			bdp = fep->rx_bd_base;
    
    		(*fep->ops->rx_bd_done)(dev);
    
    		if (received >= budget)
    			break;
    	}
    
    	fep->cur_rx = bdp;
    
    	if (received < budget) {
    		/* done */
    		napi_complete(napi);
    		(*fep->ops->napi_enable_rx)(dev);
    	}
    	return received;
    }
    
    static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
    {
    	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
    						   napi_tx);
    	struct net_device *dev = fep->ndev;
    	cbd_t __iomem *bdp;
    	struct sk_buff *skb;
    	int dirtyidx, do_wake, do_restart;
    	u16 sc;
    	int has_tx_work = 0;
    
    	spin_lock(&fep->tx_lock);
    	bdp = fep->dirty_tx;
    
    	/* clear TX status bits for napi*/
    	(*fep->ops->napi_clear_tx_event)(dev);
    
    	do_wake = do_restart = 0;
    	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
    		dirtyidx = bdp - fep->tx_bd_base;
    
    		if (fep->tx_free == fep->tx_ring)
    			break;
    
    		skb = fep->tx_skbuff[dirtyidx];
    
    		/*
    		 * Check for errors.
    		 */
    		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
    			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
    
    			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
    				fep->stats.tx_heartbeat_errors++;
    			if (sc & BD_ENET_TX_LC)	/* Late collision */
    				fep->stats.tx_window_errors++;
    			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
    				fep->stats.tx_aborted_errors++;
    			if (sc & BD_ENET_TX_UN)	/* Underrun */
    				fep->stats.tx_fifo_errors++;
    			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
    				fep->stats.tx_carrier_errors++;
    
    			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
    				fep->stats.tx_errors++;
    				do_restart = 1;
    			}
    		} else
    			fep->stats.tx_packets++;
    
    		if (sc & BD_ENET_TX_READY) {
    			dev_warn(fep->dev,
    				 "HEY! Enet xmit interrupt and TX_READY.\n");
    		}
    
    		/*
    		 * Deferred means some collisions occurred during transmit,
    		 * but we eventually sent the packet OK.
    		 */
    		if (sc & BD_ENET_TX_DEF)
    			fep->stats.collisions++;
    
    		/* unmap */
    		if (fep->mapped_as_page[dirtyidx])
    			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
    				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
    		else
    			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
    					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
    
    		/*
    		 * Free the sk buffer associated with this last transmit.
    		 */
    		if (skb) {
    			dev_kfree_skb(skb);
    			fep->tx_skbuff[dirtyidx] = NULL;
    		}
    
    		/*
    		 * Update pointer to next buffer descriptor to be transmitted.
    		 */
    		if ((sc & BD_ENET_TX_WRAP) == 0)
    			bdp++;
    		else
    			bdp = fep->tx_bd_base;
    
    		/*
    		 * Since we have freed up a buffer, the ring is no longer
    		 * full.
    		 */
    		if (++fep->tx_free >= MAX_SKB_FRAGS)
    			do_wake = 1;
    		has_tx_work = 1;
    	}
    
    	fep->dirty_tx = bdp;
    
    	if (do_restart)
    		(*fep->ops->tx_restart)(dev);
    
    	if (!has_tx_work) {
    		napi_complete(napi);
    		(*fep->ops->napi_enable_tx)(dev);
    	}
    
    	spin_unlock(&fep->tx_lock);
    
    	if (do_wake)
    		netif_wake_queue(dev);
    
    	if (has_tx_work)
    		return budget;
    	return 0;
    }
    
    /*
     * The interrupt handler.
     * This is called from the MPC core interrupt.
     */
    static irqreturn_t
    fs_enet_interrupt(int irq, void *dev_id)
    {
    	struct net_device *dev = dev_id;
    	struct fs_enet_private *fep;
    	const struct fs_platform_info *fpi;
    	u32 int_events;
    	u32 int_clr_events;
    	int nr, napi_ok;
    	int handled;
    
    	fep = netdev_priv(dev);
    	fpi = fep->fpi;
    
    	nr = 0;
    	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
    		nr++;
    
    		int_clr_events = int_events;
    		int_clr_events &= ~fep->ev_napi_rx;
    
    		(*fep->ops->clear_int_events)(dev, int_clr_events);
    
    		if (int_events & fep->ev_err)
    			(*fep->ops->ev_error)(dev, int_events);
    
    		if (int_events & fep->ev_rx) {
    			napi_ok = napi_schedule_prep(&fep->napi);
    
    			(*fep->ops->napi_disable_rx)(dev);
    			(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
    
    			/* NOTE: it is possible for FCCs in NAPI mode    */
    			/* to submit a spurious interrupt while in poll  */
    			if (napi_ok)
    				__napi_schedule(&fep->napi);
    		}
    
    		if (int_events & fep->ev_tx) {
    			napi_ok = napi_schedule_prep(&fep->napi_tx);
    
    			(*fep->ops->napi_disable_tx)(dev);
    			(*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
    
    			/* NOTE: it is possible for FCCs in NAPI mode    */
    			/* to submit a spurious interrupt while in poll  */
    			if (napi_ok)
    				__napi_schedule(&fep->napi_tx);
    		}
    	}
    
    	handled = nr > 0;
    	return IRQ_RETVAL(handled);
    }
    
    void fs_init_bds(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	cbd_t __iomem *bdp;
    	struct sk_buff *skb;
    	int i;
    
    	fs_cleanup_bds(dev);
    
    	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
    	fep->tx_free = fep->tx_ring;
    	fep->cur_rx = fep->rx_bd_base;
    
    	/*
    	 * Initialize the receive buffer descriptors.
    	 */
    	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
    		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
    		if (skb == NULL)
    			break;
    
    		skb_align(skb, ENET_RX_ALIGN);
    		fep->rx_skbuff[i] = skb;
    		CBDW_BUFADDR(bdp,
    			dma_map_single(fep->dev, skb->data,
    				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
    				DMA_FROM_DEVICE));
    		CBDW_DATLEN(bdp, 0);	/* zero */
    		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
    			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
    	}
    	/*
    	 * if we failed, fillup remainder
    	 */
    	for (; i < fep->rx_ring; i++, bdp++) {
    		fep->rx_skbuff[i] = NULL;
    		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
    	}
    
    	/*
    	 * ...and the same for transmit.
    	 */
    	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
    		fep->tx_skbuff[i] = NULL;
    		CBDW_BUFADDR(bdp, 0);
    		CBDW_DATLEN(bdp, 0);
    		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
    	}
    }
    
    void fs_cleanup_bds(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	struct sk_buff *skb;
    	cbd_t __iomem *bdp;
    	int i;
    
    	/*
    	 * Reset SKB transmit buffers.
    	 */
    	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
    		if ((skb = fep->tx_skbuff[i]) == NULL)
    			continue;
    
    		/* unmap */
    		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
    				skb->len, DMA_TO_DEVICE);
    
    		fep->tx_skbuff[i] = NULL;
    		dev_kfree_skb(skb);
    	}
    
    	/*
    	 * Reset SKB receive buffers
    	 */
    	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
    		if ((skb = fep->rx_skbuff[i]) == NULL)
    			continue;
    
    		/* unmap */
    		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
    			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
    			DMA_FROM_DEVICE);
    
    		fep->rx_skbuff[i] = NULL;
    
    		dev_kfree_skb(skb);
    	}
    }
    
    /**********************************************************************************/
    
    #ifdef CONFIG_FS_ENET_MPC5121_FEC
    /*
     * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
     */
    static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
    					       struct sk_buff *skb)
    {
    	struct sk_buff *new_skb;
    
    	/* Alloc new skb */
    	new_skb = netdev_alloc_skb(dev, skb->len + 4);
    	if (!new_skb)
    		return NULL;
    
    	/* Make sure new skb is properly aligned */
    	skb_align(new_skb, 4);
    
    	/* Copy data to new skb ... */
    	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
    	skb_put(new_skb, skb->len);
    
    	/* ... and free an old one */
    	dev_kfree_skb_any(skb);
    
    	return new_skb;
    }
    #endif
    
    static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	cbd_t __iomem *bdp;
    	int curidx;
    	u16 sc;
    	int nr_frags = skb_shinfo(skb)->nr_frags;
    	skb_frag_t *frag;
    	int len;
    
    #ifdef CONFIG_FS_ENET_MPC5121_FEC
    	if (((unsigned long)skb->data) & 0x3) {
    		skb = tx_skb_align_workaround(dev, skb);
    		if (!skb) {
    			/*
    			 * We have lost packet due to memory allocation error
    			 * in tx_skb_align_workaround(). Hopefully original
    			 * skb is still valid, so try transmit it later.
    			 */
    			return NETDEV_TX_BUSY;
    		}
    	}
    #endif
    	spin_lock(&fep->tx_lock);
    
    	/*
    	 * Fill in a Tx ring entry
    	 */
    	bdp = fep->cur_tx;
    
    	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
    		netif_stop_queue(dev);
    		spin_unlock(&fep->tx_lock);
    
    		/*
    		 * Ooops.  All transmit buffers are full.  Bail out.
    		 * This should not happen, since the tx queue should be stopped.
    		 */
    		dev_warn(fep->dev, "tx queue full!.\n");
    		return NETDEV_TX_BUSY;
    	}
    
    	curidx = bdp - fep->tx_bd_base;
    
    	len = skb->len;
    	fep->stats.tx_bytes += len;
    	if (nr_frags)
    		len -= skb->data_len;
    	fep->tx_free -= nr_frags + 1;
    	/*
    	 * Push the data cache so the CPM does not get stale memory data.
    	 */
    	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
    				skb->data, len, DMA_TO_DEVICE));
    	CBDW_DATLEN(bdp, len);
    
    	fep->mapped_as_page[curidx] = 0;
    	frag = skb_shinfo(skb)->frags;
    	while (nr_frags) {
    		CBDC_SC(bdp,
    			BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC);
    		CBDS_SC(bdp, BD_ENET_TX_READY);
    
    		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
    			bdp++, curidx++;
    		else
    			bdp = fep->tx_bd_base, curidx = 0;
    
    		len = skb_frag_size(frag);
    		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
    						   DMA_TO_DEVICE));
    		CBDW_DATLEN(bdp, len);
    
    		fep->tx_skbuff[curidx] = NULL;
    		fep->mapped_as_page[curidx] = 1;
    
    		frag++;
    		nr_frags--;
    	}
    
    	/* Trigger transmission start */
    	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
    	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
    
    	/* note that while FEC does not have this bit
    	 * it marks it as available for software use
    	 * yay for hw reuse :) */
    	if (skb->len <= 60)
    		sc |= BD_ENET_TX_PAD;
    	CBDC_SC(bdp, BD_ENET_TX_STATS);
    	CBDS_SC(bdp, sc);
    
    	/* Save skb pointer. */
    	fep->tx_skbuff[curidx] = skb;
    
    	/* If this was the last BD in the ring, start at the beginning again. */
    	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
    		bdp++;
    	else
    		bdp = fep->tx_bd_base;
    	fep->cur_tx = bdp;
    
    	if (fep->tx_free < MAX_SKB_FRAGS)
    		netif_stop_queue(dev);
    
    	skb_tx_timestamp(skb);
    
    	(*fep->ops->tx_kickstart)(dev);
    
    	spin_unlock(&fep->tx_lock);
    
    	return NETDEV_TX_OK;
    }
    
    static void fs_timeout(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	unsigned long flags;
    	int wake = 0;
    
    	fep->stats.tx_errors++;
    
    	spin_lock_irqsave(&fep->lock, flags);
    
    	if (dev->flags & IFF_UP) {
    		phy_stop(fep->phydev);
    		(*fep->ops->stop)(dev);
    		(*fep->ops->restart)(dev);
    		phy_start(fep->phydev);
    	}
    
    	phy_start(fep->phydev);
    	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
    	spin_unlock_irqrestore(&fep->lock, flags);
    
    	if (wake)
    		netif_wake_queue(dev);
    }
    
    /*-----------------------------------------------------------------------------
     *  generic link-change handler - should be sufficient for most cases
     *-----------------------------------------------------------------------------*/
    static void generic_adjust_link(struct  net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	struct phy_device *phydev = fep->phydev;
    	int new_state = 0;
    
    	if (phydev->link) {
    		/* adjust to duplex mode */
    		if (phydev->duplex != fep->oldduplex) {
    			new_state = 1;
    			fep->oldduplex = phydev->duplex;
    		}
    
    		if (phydev->speed != fep->oldspeed) {
    			new_state = 1;
    			fep->oldspeed = phydev->speed;
    		}
    
    		if (!fep->oldlink) {
    			new_state = 1;
    			fep->oldlink = 1;
    		}
    
    		if (new_state)
    			fep->ops->restart(dev);
    	} else if (fep->oldlink) {
    		new_state = 1;
    		fep->oldlink = 0;
    		fep->oldspeed = 0;
    		fep->oldduplex = -1;
    	}
    
    	if (new_state && netif_msg_link(fep))
    		phy_print_status(phydev);
    }
    
    
    static void fs_adjust_link(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	unsigned long flags;
    
    	spin_lock_irqsave(&fep->lock, flags);
    
    	if(fep->ops->adjust_link)
    		fep->ops->adjust_link(dev);
    	else
    		generic_adjust_link(dev);
    
    	spin_unlock_irqrestore(&fep->lock, flags);
    }
    
    static int fs_init_phy(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	struct phy_device *phydev;
    	phy_interface_t iface;
    
    	fep->oldlink = 0;
    	fep->oldspeed = 0;
    	fep->oldduplex = -1;
    
    	iface = fep->fpi->use_rmii ?
    		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
    
    	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
    				iface);
    	if (!phydev) {
    		dev_err(&dev->dev, "Could not attach to PHY\n");
    		return -ENODEV;
    	}
    
    	fep->phydev = phydev;
    
    	return 0;
    }
    
    static int fs_enet_open(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	int r;
    	int err;
    
    	/* to initialize the fep->cur_rx,... */
    	/* not doing this, will cause a crash in fs_enet_rx_napi */
    	fs_init_bds(fep->ndev);
    
    	napi_enable(&fep->napi);
    	napi_enable(&fep->napi_tx);
    
    	/* Install our interrupt handler. */
    	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
    			"fs_enet-mac", dev);
    	if (r != 0) {
    		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
    		napi_disable(&fep->napi);
    		napi_disable(&fep->napi_tx);
    		return -EINVAL;
    	}
    
    	err = fs_init_phy(dev);
    	if (err) {
    		free_irq(fep->interrupt, dev);
    		napi_disable(&fep->napi);
    		napi_disable(&fep->napi_tx);
    		return err;
    	}
    	phy_start(fep->phydev);
    
    	netif_start_queue(dev);
    
    	return 0;
    }
    
    static int fs_enet_close(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	unsigned long flags;
    
    	netif_stop_queue(dev);
    	netif_carrier_off(dev);
    	napi_disable(&fep->napi);
    	napi_disable(&fep->napi_tx);
    	phy_stop(fep->phydev);
    
    	spin_lock_irqsave(&fep->lock, flags);
    	spin_lock(&fep->tx_lock);
    	(*fep->ops->stop)(dev);
    	spin_unlock(&fep->tx_lock);
    	spin_unlock_irqrestore(&fep->lock, flags);
    
    	/* release any irqs */
    	phy_disconnect(fep->phydev);
    	fep->phydev = NULL;
    	free_irq(fep->interrupt, dev);
    
    	return 0;
    }
    
    static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	return &fep->stats;
    }
    
    /*************************************************************************/
    
    static void fs_get_drvinfo(struct net_device *dev,
    			    struct ethtool_drvinfo *info)
    {
    	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
    	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
    }
    
    static int fs_get_regs_len(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    
    	return (*fep->ops->get_regs_len)(dev);
    }
    
    static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
    			 void *p)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	unsigned long flags;
    	int r, len;
    
    	len = regs->len;
    
    	spin_lock_irqsave(&fep->lock, flags);
    	r = (*fep->ops->get_regs)(dev, p, &len);
    	spin_unlock_irqrestore(&fep->lock, flags);
    
    	if (r == 0)
    		regs->version = 0;
    }
    
    static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    
    	if (!fep->phydev)
    		return -ENODEV;
    
    	return phy_ethtool_gset(fep->phydev, cmd);
    }
    
    static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    
    	if (!fep->phydev)
    		return -ENODEV;
    
    	return phy_ethtool_sset(fep->phydev, cmd);
    }
    
    static int fs_nway_reset(struct net_device *dev)
    {
    	return 0;
    }
    
    static u32 fs_get_msglevel(struct net_device *dev)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	return fep->msg_enable;
    }
    
    static void fs_set_msglevel(struct net_device *dev, u32 value)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    	fep->msg_enable = value;
    }
    
    static const struct ethtool_ops fs_ethtool_ops = {
    	.get_drvinfo = fs_get_drvinfo,
    	.get_regs_len = fs_get_regs_len,
    	.get_settings = fs_get_settings,
    	.set_settings = fs_set_settings,
    	.nway_reset = fs_nway_reset,
    	.get_link = ethtool_op_get_link,
    	.get_msglevel = fs_get_msglevel,
    	.set_msglevel = fs_set_msglevel,
    	.get_regs = fs_get_regs,
    	.get_ts_info = ethtool_op_get_ts_info,
    };
    
    static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
    {
    	struct fs_enet_private *fep = netdev_priv(dev);
    
    	if (!netif_running(dev))
    		return -EINVAL;
    
    	return phy_mii_ioctl(fep->phydev, rq, cmd);
    }
    
    extern int fs_mii_connect(struct net_device *dev);
    extern void fs_mii_disconnect(struct net_device *dev);
    
    /**************************************************************************************/
    
    #ifdef CONFIG_FS_ENET_HAS_FEC
    #define IS_FEC(match) ((match)->data == &fs_fec_ops)
    #else
    #define IS_FEC(match) 0
    #endif
    
    static const struct net_device_ops fs_enet_netdev_ops = {
    	.ndo_open		= fs_enet_open,
    	.ndo_stop		= fs_enet_close,
    	.ndo_get_stats		= fs_enet_get_stats,
    	.ndo_start_xmit		= fs_enet_start_xmit,
    	.ndo_tx_timeout		= fs_timeout,
    	.ndo_set_rx_mode	= fs_set_multicast_list,
    	.ndo_do_ioctl		= fs_ioctl,
    	.ndo_validate_addr	= eth_validate_addr,
    	.ndo_set_mac_address	= eth_mac_addr,
    	.ndo_change_mtu		= eth_change_mtu,
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	.ndo_poll_controller	= fs_enet_netpoll,
    #endif
    };
    
    static const struct of_device_id fs_enet_match[];
    static int fs_enet_probe(struct platform_device *ofdev)
    {
    	const struct of_device_id *match;
    	struct net_device *ndev;
    	struct fs_enet_private *fep;
    	struct fs_platform_info *fpi;
    	const u32 *data;
    	struct clk *clk;
    	int err;
    	const u8 *mac_addr;
    	const char *phy_connection_type;
    	int privsize, len, ret = -ENODEV;
    
    	match = of_match_device(fs_enet_match, &ofdev->dev);
    	if (!match)
    		return -EINVAL;
    
    	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
    	if (!fpi)
    		return -ENOMEM;
    
    	if (!IS_FEC(match)) {
    		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
    		if (!data || len != 4)
    			goto out_free_fpi;
    
    		fpi->cp_command = *data;
    	}
    
    	fpi->rx_ring = 32;
    	fpi->tx_ring = 64;
    	fpi->rx_copybreak = 240;
    	fpi->napi_weight = 17;
    	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
    	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
    		err = of_phy_register_fixed_link(ofdev->dev.of_node);
    		if (err)
    			goto out_free_fpi;
    
    		/* In the case of a fixed PHY, the DT node associated
    		 * to the PHY is the Ethernet MAC DT node.
    		 */
    		fpi->phy_node = of_node_get(ofdev->dev.of_node);
    	}
    
    	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
    		phy_connection_type = of_get_property(ofdev->dev.of_node,
    						"phy-connection-type", NULL);
    		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
    			fpi->use_rmii = 1;
    	}
    
    	/* make clock lookup non-fatal (the driver is shared among platforms),
    	 * but require enable to succeed when a clock was specified/found,
    	 * keep a reference to the clock upon successful acquisition
    	 */
    	clk = devm_clk_get(&ofdev->dev, "per");
    	if (!IS_ERR(clk)) {
    		err = clk_prepare_enable(clk);
    		if (err) {
    			ret = err;
    			goto out_free_fpi;
    		}
    		fpi->clk_per = clk;
    	}
    
    	privsize = sizeof(*fep) +
    	           sizeof(struct sk_buff **) *
    		     (fpi->rx_ring + fpi->tx_ring) +
    		   sizeof(char) * fpi->tx_ring;
    
    	ndev = alloc_etherdev(privsize);
    	if (!ndev) {
    		ret = -ENOMEM;
    		goto out_put;
    	}
    
    	SET_NETDEV_DEV(ndev, &ofdev->dev);
    	platform_set_drvdata(ofdev, ndev);
    
    	fep = netdev_priv(ndev);
    	fep->dev = &ofdev->dev;
    	fep->ndev = ndev;
    	fep->fpi = fpi;
    	fep->ops = match->data;
    
    	ret = fep->ops->setup_data(ndev);
    	if (ret)
    		goto out_free_dev;
    
    	fep->rx_skbuff = (struct sk_buff **)&fep[1];
    	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
    	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
    				       fpi->tx_ring);
    
    	spin_lock_init(&fep->lock);
    	spin_lock_init(&fep->tx_lock);
    
    	mac_addr = of_get_mac_address(ofdev->dev.of_node);
    	if (mac_addr)
    		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
    
    	ret = fep->ops->allocate_bd(ndev);
    	if (ret)
    		goto out_cleanup_data;
    
    	fep->rx_bd_base = fep->ring_base;
    	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
    
    	fep->tx_ring = fpi->tx_ring;
    	fep->rx_ring = fpi->rx_ring;
    
    	ndev->netdev_ops = &fs_enet_netdev_ops;
    	ndev->watchdog_timeo = 2 * HZ;
    	netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
    	netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
    
    	ndev->ethtool_ops = &fs_ethtool_ops;
    
    	init_timer(&fep->phy_timer_list);
    
    	netif_carrier_off(ndev);
    
    	ndev->features |= NETIF_F_SG;
    
    	ret = register_netdev(ndev);
    	if (ret)
    		goto out_free_bd;
    
    	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
    
    	return 0;
    
    out_free_bd:
    	fep->ops->free_bd(ndev);
    out_cleanup_data:
    	fep->ops->cleanup_data(ndev);
    out_free_dev:
    	free_netdev(ndev);
    out_put:
    	of_node_put(fpi->phy_node);
    	if (fpi->clk_per)
    		clk_disable_unprepare(fpi->clk_per);
    out_free_fpi:
    	kfree(fpi);
    	return ret;
    }
    
    static int fs_enet_remove(struct platform_device *ofdev)
    {
    	struct net_device *ndev = platform_get_drvdata(ofdev);
    	struct fs_enet_private *fep = netdev_priv(ndev);
    
    	unregister_netdev(ndev);
    
    	fep->ops->free_bd(ndev);
    	fep->ops->cleanup_data(ndev);
    	dev_set_drvdata(fep->dev, NULL);
    	of_node_put(fep->fpi->phy_node);
    	if (fep->fpi->clk_per)
    		clk_disable_unprepare(fep->fpi->clk_per);
    	free_netdev(ndev);
    	return 0;
    }
    
    static const struct of_device_id fs_enet_match[] = {
    #ifdef CONFIG_FS_ENET_HAS_SCC
    	{
    		.compatible = "fsl,cpm1-scc-enet",
    		.data = (void *)&fs_scc_ops,
    	},
    	{
    		.compatible = "fsl,cpm2-scc-enet",
    		.data = (void *)&fs_scc_ops,
    	},
    #endif
    #ifdef CONFIG_FS_ENET_HAS_FCC
    	{
    		.compatible = "fsl,cpm2-fcc-enet",
    		.data = (void *)&fs_fcc_ops,
    	},
    #endif
    #ifdef CONFIG_FS_ENET_HAS_FEC
    #ifdef CONFIG_FS_ENET_MPC5121_FEC
    	{
    		.compatible = "fsl,mpc5121-fec",
    		.data = (void *)&fs_fec_ops,
    	},
    	{
    		.compatible = "fsl,mpc5125-fec",
    		.data = (void *)&fs_fec_ops,
    	},
    #else
    	{
    		.compatible = "fsl,pq1-fec-enet",
    		.data = (void *)&fs_fec_ops,
    	},
    #endif
    #endif
    	{}
    };
    MODULE_DEVICE_TABLE(of, fs_enet_match);
    
    static struct platform_driver fs_enet_driver = {
    	.driver = {
    		.name = "fs_enet",
    		.of_match_table = fs_enet_match,
    	},
    	.probe = fs_enet_probe,
    	.remove = fs_enet_remove,
    };
    
    #ifdef CONFIG_NET_POLL_CONTROLLER
    static void fs_enet_netpoll(struct net_device *dev)
    {
           disable_irq(dev->irq);
           fs_enet_interrupt(dev->irq, dev);
           enable_irq(dev->irq);
    }
    #endif
    
    module_platform_driver(fs_enet_driver);