Skip to content
Snippets Groups Projects
Select Git revision
  • d20f7043fa65659136c1a7c3c456eeeb5c6f431f
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

ordered-data.c

Blame
    • Chris Mason's avatar
      d20f7043
      Btrfs: move data checksumming into a dedicated tree · d20f7043
      Chris Mason authored
      
      Btrfs stores checksums for each data block.  Until now, they have
      been stored in the subvolume trees, indexed by the inode that is
      referencing the data block.  This means that when we read the inode,
      we've probably read in at least some checksums as well.
      
      But, this has a few problems:
      
      * The checksums are indexed by logical offset in the file.  When
      compression is on, this means we have to do the expensive checksumming
      on the uncompressed data.  It would be faster if we could checksum
      the compressed data instead.
      
      * If we implement encryption, we'll be checksumming the plain text and
      storing that on disk.  This is significantly less secure.
      
      * For either compression or encryption, we have to get the plain text
      back before we can verify the checksum as correct.  This makes the raid
      layer balancing and extent moving much more expensive.
      
      * It makes the front end caching code more complex, as we have touch
      the subvolume and inodes as we cache extents.
      
      * There is potentitally one copy of the checksum in each subvolume
      referencing an extent.
      
      The solution used here is to store the extent checksums in a dedicated
      tree.  This allows us to index the checksums by phyiscal extent
      start and length.  It means:
      
      * The checksum is against the data stored on disk, after any compression
      or encryption is done.
      
      * The checksum is stored in a central location, and can be verified without
      following back references, or reading inodes.
      
      This makes compression significantly faster by reducing the amount of
      data that needs to be checksummed.  It will also allow much faster
      raid management code in general.
      
      The checksums are indexed by a key with a fixed objectid (a magic value
      in ctree.h) and offset set to the starting byte of the extent.  This
      allows us to copy the checksum items into the fsync log tree directly (or
      any other tree), without having to invent a second format for them.
      
      Signed-off-by: default avatarChris Mason <chris.mason@oracle.com>
      d20f7043
      History
      Btrfs: move data checksumming into a dedicated tree
      Chris Mason authored
      
      Btrfs stores checksums for each data block.  Until now, they have
      been stored in the subvolume trees, indexed by the inode that is
      referencing the data block.  This means that when we read the inode,
      we've probably read in at least some checksums as well.
      
      But, this has a few problems:
      
      * The checksums are indexed by logical offset in the file.  When
      compression is on, this means we have to do the expensive checksumming
      on the uncompressed data.  It would be faster if we could checksum
      the compressed data instead.
      
      * If we implement encryption, we'll be checksumming the plain text and
      storing that on disk.  This is significantly less secure.
      
      * For either compression or encryption, we have to get the plain text
      back before we can verify the checksum as correct.  This makes the raid
      layer balancing and extent moving much more expensive.
      
      * It makes the front end caching code more complex, as we have touch
      the subvolume and inodes as we cache extents.
      
      * There is potentitally one copy of the checksum in each subvolume
      referencing an extent.
      
      The solution used here is to store the extent checksums in a dedicated
      tree.  This allows us to index the checksums by phyiscal extent
      start and length.  It means:
      
      * The checksum is against the data stored on disk, after any compression
      or encryption is done.
      
      * The checksum is stored in a central location, and can be verified without
      following back references, or reading inodes.
      
      This makes compression significantly faster by reducing the amount of
      data that needs to be checksummed.  It will also allow much faster
      raid management code in general.
      
      The checksums are indexed by a key with a fixed objectid (a magic value
      in ctree.h) and offset set to the starting byte of the extent.  This
      allows us to copy the checksum items into the fsync log tree directly (or
      any other tree), without having to invent a second format for them.
      
      Signed-off-by: default avatarChris Mason <chris.mason@oracle.com>
    fault.c 6.79 KiB