Skip to content
Snippets Groups Projects
Select Git revision
  • d3ddcf471ea90d7ff711dbaa371ef379ed625ec0
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

checkpatch.pl

Blame
  • vmscan.c 123.65 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Swap reorganised 29.12.95, Stephen Tweedie.
     *  kswapd added: 7.1.96  sct
     *  Removed kswapd_ctl limits, and swap out as many pages as needed
     *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
     *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
     *  Multiqueue VM started 5.8.00, Rik van Riel.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/mm.h>
    #include <linux/sched/mm.h>
    #include <linux/module.h>
    #include <linux/gfp.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/pagemap.h>
    #include <linux/init.h>
    #include <linux/highmem.h>
    #include <linux/vmpressure.h>
    #include <linux/vmstat.h>
    #include <linux/file.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/buffer_head.h>	/* for try_to_release_page(),
    					buffer_heads_over_limit */
    #include <linux/mm_inline.h>
    #include <linux/backing-dev.h>
    #include <linux/rmap.h>
    #include <linux/topology.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/compaction.h>
    #include <linux/notifier.h>
    #include <linux/rwsem.h>
    #include <linux/delay.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/memcontrol.h>
    #include <linux/delayacct.h>
    #include <linux/sysctl.h>
    #include <linux/oom.h>
    #include <linux/pagevec.h>
    #include <linux/prefetch.h>
    #include <linux/printk.h>
    #include <linux/dax.h>
    #include <linux/psi.h>
    
    #include <asm/tlbflush.h>
    #include <asm/div64.h>
    
    #include <linux/swapops.h>
    #include <linux/balloon_compaction.h>
    
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/vmscan.h>
    
    struct scan_control {
    	/* How many pages shrink_list() should reclaim */
    	unsigned long nr_to_reclaim;
    
    	/*
    	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
    	 * are scanned.
    	 */
    	nodemask_t	*nodemask;
    
    	/*
    	 * The memory cgroup that hit its limit and as a result is the
    	 * primary target of this reclaim invocation.
    	 */
    	struct mem_cgroup *target_mem_cgroup;
    
    	/*
    	 * Scan pressure balancing between anon and file LRUs
    	 */
    	unsigned long	anon_cost;
    	unsigned long	file_cost;
    
    	/* Can active pages be deactivated as part of reclaim? */
    #define DEACTIVATE_ANON 1
    #define DEACTIVATE_FILE 2
    	unsigned int may_deactivate:2;
    	unsigned int force_deactivate:1;
    	unsigned int skipped_deactivate:1;
    
    	/* Writepage batching in laptop mode; RECLAIM_WRITE */
    	unsigned int may_writepage:1;
    
    	/* Can mapped pages be reclaimed? */
    	unsigned int may_unmap:1;
    
    	/* Can pages be swapped as part of reclaim? */
    	unsigned int may_swap:1;
    
    	/*
    	 * Cgroups are not reclaimed below their configured memory.low,
    	 * unless we threaten to OOM. If any cgroups are skipped due to
    	 * memory.low and nothing was reclaimed, go back for memory.low.
    	 */
    	unsigned int memcg_low_reclaim:1;
    	unsigned int memcg_low_skipped:1;
    
    	unsigned int hibernation_mode:1;
    
    	/* One of the zones is ready for compaction */
    	unsigned int compaction_ready:1;
    
    	/* There is easily reclaimable cold cache in the current node */
    	unsigned int cache_trim_mode:1;
    
    	/* The file pages on the current node are dangerously low */
    	unsigned int file_is_tiny:1;
    
    	/* Allocation order */
    	s8 order;
    
    	/* Scan (total_size >> priority) pages at once */
    	s8 priority;
    
    	/* The highest zone to isolate pages for reclaim from */
    	s8 reclaim_idx;
    
    	/* This context's GFP mask */
    	gfp_t gfp_mask;
    
    	/* Incremented by the number of inactive pages that were scanned */
    	unsigned long nr_scanned;
    
    	/* Number of pages freed so far during a call to shrink_zones() */
    	unsigned long nr_reclaimed;
    
    	struct {
    		unsigned int dirty;
    		unsigned int unqueued_dirty;
    		unsigned int congested;
    		unsigned int writeback;
    		unsigned int immediate;
    		unsigned int file_taken;
    		unsigned int taken;
    	} nr;
    
    	/* for recording the reclaimed slab by now */
    	struct reclaim_state reclaim_state;
    };
    
    #ifdef ARCH_HAS_PREFETCHW
    #define prefetchw_prev_lru_page(_page, _base, _field)			\
    	do {								\
    		if ((_page)->lru.prev != _base) {			\
    			struct page *prev;				\
    									\
    			prev = lru_to_page(&(_page->lru));		\
    			prefetchw(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
    #endif
    
    /*
     * From 0 .. 200.  Higher means more swappy.
     */
    int vm_swappiness = 60;
    
    static void set_task_reclaim_state(struct task_struct *task,
    				   struct reclaim_state *rs)
    {
    	/* Check for an overwrite */
    	WARN_ON_ONCE(rs && task->reclaim_state);
    
    	/* Check for the nulling of an already-nulled member */
    	WARN_ON_ONCE(!rs && !task->reclaim_state);
    
    	task->reclaim_state = rs;
    }
    
    static LIST_HEAD(shrinker_list);
    static DECLARE_RWSEM(shrinker_rwsem);
    
    #ifdef CONFIG_MEMCG
    /*
     * We allow subsystems to populate their shrinker-related
     * LRU lists before register_shrinker_prepared() is called
     * for the shrinker, since we don't want to impose
     * restrictions on their internal registration order.
     * In this case shrink_slab_memcg() may find corresponding
     * bit is set in the shrinkers map.
     *
     * This value is used by the function to detect registering
     * shrinkers and to skip do_shrink_slab() calls for them.
     */
    #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
    
    static DEFINE_IDR(shrinker_idr);
    static int shrinker_nr_max;
    
    static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    {
    	int id, ret = -ENOMEM;
    
    	down_write(&shrinker_rwsem);
    	/* This may call shrinker, so it must use down_read_trylock() */
    	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
    	if (id < 0)
    		goto unlock;
    
    	if (id >= shrinker_nr_max) {
    		if (memcg_expand_shrinker_maps(id)) {
    			idr_remove(&shrinker_idr, id);
    			goto unlock;
    		}
    
    		shrinker_nr_max = id + 1;
    	}
    	shrinker->id = id;
    	ret = 0;
    unlock:
    	up_write(&shrinker_rwsem);
    	return ret;
    }
    
    static void unregister_memcg_shrinker(struct shrinker *shrinker)
    {
    	int id = shrinker->id;
    
    	BUG_ON(id < 0);
    
    	down_write(&shrinker_rwsem);
    	idr_remove(&shrinker_idr, id);
    	up_write(&shrinker_rwsem);
    }
    
    static bool cgroup_reclaim(struct scan_control *sc)
    {
    	return sc->target_mem_cgroup;
    }
    
    /**
     * writeback_throttling_sane - is the usual dirty throttling mechanism available?
     * @sc: scan_control in question
     *
     * The normal page dirty throttling mechanism in balance_dirty_pages() is
     * completely broken with the legacy memcg and direct stalling in
     * shrink_page_list() is used for throttling instead, which lacks all the
     * niceties such as fairness, adaptive pausing, bandwidth proportional
     * allocation and configurability.
     *
     * This function tests whether the vmscan currently in progress can assume
     * that the normal dirty throttling mechanism is operational.
     */
    static bool writeback_throttling_sane(struct scan_control *sc)
    {
    	if (!cgroup_reclaim(sc))
    		return true;
    #ifdef CONFIG_CGROUP_WRITEBACK
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		return true;
    #endif
    	return false;
    }
    #else
    static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    {
    	return 0;
    }
    
    static void unregister_memcg_shrinker(struct shrinker *shrinker)
    {
    }
    
    static bool cgroup_reclaim(struct scan_control *sc)
    {
    	return false;
    }
    
    static bool writeback_throttling_sane(struct scan_control *sc)
    {
    	return true;
    }
    #endif
    
    /*
     * This misses isolated pages which are not accounted for to save counters.
     * As the data only determines if reclaim or compaction continues, it is
     * not expected that isolated pages will be a dominating factor.
     */
    unsigned long zone_reclaimable_pages(struct zone *zone)
    {
    	unsigned long nr;
    
    	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
    		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
    	if (get_nr_swap_pages() > 0)
    		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
    			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
    
    	return nr;
    }
    
    /**
     * lruvec_lru_size -  Returns the number of pages on the given LRU list.
     * @lruvec: lru vector
     * @lru: lru to use
     * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
     */
    static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
    				     int zone_idx)
    {
    	unsigned long size = 0;
    	int zid;
    
    	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
    		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
    
    		if (!managed_zone(zone))
    			continue;
    
    		if (!mem_cgroup_disabled())
    			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
    		else
    			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
    	}
    	return size;
    }
    
    /*
     * Add a shrinker callback to be called from the vm.
     */
    int prealloc_shrinker(struct shrinker *shrinker)
    {
    	unsigned int size = sizeof(*shrinker->nr_deferred);
    
    	if (shrinker->flags & SHRINKER_NUMA_AWARE)
    		size *= nr_node_ids;
    
    	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
    	if (!shrinker->nr_deferred)
    		return -ENOMEM;
    
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
    		if (prealloc_memcg_shrinker(shrinker))
    			goto free_deferred;
    	}
    
    	return 0;
    
    free_deferred:
    	kfree(shrinker->nr_deferred);
    	shrinker->nr_deferred = NULL;
    	return -ENOMEM;
    }
    
    void free_prealloced_shrinker(struct shrinker *shrinker)
    {
    	if (!shrinker->nr_deferred)
    		return;
    
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
    		unregister_memcg_shrinker(shrinker);
    
    	kfree(shrinker->nr_deferred);
    	shrinker->nr_deferred = NULL;
    }
    
    void register_shrinker_prepared(struct shrinker *shrinker)
    {
    	down_write(&shrinker_rwsem);
    	list_add_tail(&shrinker->list, &shrinker_list);
    #ifdef CONFIG_MEMCG
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
    		idr_replace(&shrinker_idr, shrinker, shrinker->id);
    #endif
    	up_write(&shrinker_rwsem);
    }
    
    int register_shrinker(struct shrinker *shrinker)
    {
    	int err = prealloc_shrinker(shrinker);
    
    	if (err)
    		return err;
    	register_shrinker_prepared(shrinker);
    	return 0;
    }
    EXPORT_SYMBOL(register_shrinker);
    
    /*
     * Remove one
     */
    void unregister_shrinker(struct shrinker *shrinker)
    {
    	if (!shrinker->nr_deferred)
    		return;
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
    		unregister_memcg_shrinker(shrinker);
    	down_write(&shrinker_rwsem);
    	list_del(&shrinker->list);
    	up_write(&shrinker_rwsem);
    	kfree(shrinker->nr_deferred);
    	shrinker->nr_deferred = NULL;
    }
    EXPORT_SYMBOL(unregister_shrinker);
    
    #define SHRINK_BATCH 128
    
    static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
    				    struct shrinker *shrinker, int priority)
    {
    	unsigned long freed = 0;
    	unsigned long long delta;
    	long total_scan;
    	long freeable;
    	long nr;
    	long new_nr;
    	int nid = shrinkctl->nid;
    	long batch_size = shrinker->batch ? shrinker->batch
    					  : SHRINK_BATCH;
    	long scanned = 0, next_deferred;
    
    	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    		nid = 0;
    
    	freeable = shrinker->count_objects(shrinker, shrinkctl);
    	if (freeable == 0 || freeable == SHRINK_EMPTY)
    		return freeable;
    
    	/*
    	 * copy the current shrinker scan count into a local variable
    	 * and zero it so that other concurrent shrinker invocations
    	 * don't also do this scanning work.
    	 */
    	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
    
    	total_scan = nr;
    	if (shrinker->seeks) {
    		delta = freeable >> priority;
    		delta *= 4;
    		do_div(delta, shrinker->seeks);
    	} else {
    		/*
    		 * These objects don't require any IO to create. Trim
    		 * them aggressively under memory pressure to keep
    		 * them from causing refetches in the IO caches.
    		 */
    		delta = freeable / 2;
    	}
    
    	total_scan += delta;
    	if (total_scan < 0) {
    		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
    		       shrinker->scan_objects, total_scan);
    		total_scan = freeable;
    		next_deferred = nr;
    	} else
    		next_deferred = total_scan;
    
    	/*
    	 * We need to avoid excessive windup on filesystem shrinkers
    	 * due to large numbers of GFP_NOFS allocations causing the
    	 * shrinkers to return -1 all the time. This results in a large
    	 * nr being built up so when a shrink that can do some work
    	 * comes along it empties the entire cache due to nr >>>
    	 * freeable. This is bad for sustaining a working set in
    	 * memory.
    	 *
    	 * Hence only allow the shrinker to scan the entire cache when
    	 * a large delta change is calculated directly.
    	 */
    	if (delta < freeable / 4)
    		total_scan = min(total_scan, freeable / 2);
    
    	/*
    	 * Avoid risking looping forever due to too large nr value:
    	 * never try to free more than twice the estimate number of
    	 * freeable entries.
    	 */
    	if (total_scan > freeable * 2)
    		total_scan = freeable * 2;
    
    	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
    				   freeable, delta, total_scan, priority);
    
    	/*
    	 * Normally, we should not scan less than batch_size objects in one
    	 * pass to avoid too frequent shrinker calls, but if the slab has less
    	 * than batch_size objects in total and we are really tight on memory,
    	 * we will try to reclaim all available objects, otherwise we can end
    	 * up failing allocations although there are plenty of reclaimable
    	 * objects spread over several slabs with usage less than the
    	 * batch_size.
    	 *
    	 * We detect the "tight on memory" situations by looking at the total
    	 * number of objects we want to scan (total_scan). If it is greater
    	 * than the total number of objects on slab (freeable), we must be
    	 * scanning at high prio and therefore should try to reclaim as much as
    	 * possible.
    	 */
    	while (total_scan >= batch_size ||
    	       total_scan >= freeable) {
    		unsigned long ret;
    		unsigned long nr_to_scan = min(batch_size, total_scan);
    
    		shrinkctl->nr_to_scan = nr_to_scan;
    		shrinkctl->nr_scanned = nr_to_scan;
    		ret = shrinker->scan_objects(shrinker, shrinkctl);
    		if (ret == SHRINK_STOP)
    			break;
    		freed += ret;
    
    		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
    		total_scan -= shrinkctl->nr_scanned;
    		scanned += shrinkctl->nr_scanned;
    
    		cond_resched();
    	}
    
    	if (next_deferred >= scanned)
    		next_deferred -= scanned;
    	else
    		next_deferred = 0;
    	/*
    	 * move the unused scan count back into the shrinker in a
    	 * manner that handles concurrent updates. If we exhausted the
    	 * scan, there is no need to do an update.
    	 */
    	if (next_deferred > 0)
    		new_nr = atomic_long_add_return(next_deferred,
    						&shrinker->nr_deferred[nid]);
    	else
    		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
    
    	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
    	return freed;
    }
    
    #ifdef CONFIG_MEMCG
    static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    			struct mem_cgroup *memcg, int priority)
    {
    	struct memcg_shrinker_map *map;
    	unsigned long ret, freed = 0;
    	int i;
    
    	if (!mem_cgroup_online(memcg))
    		return 0;
    
    	if (!down_read_trylock(&shrinker_rwsem))
    		return 0;
    
    	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
    					true);
    	if (unlikely(!map))
    		goto unlock;
    
    	for_each_set_bit(i, map->map, shrinker_nr_max) {
    		struct shrink_control sc = {
    			.gfp_mask = gfp_mask,
    			.nid = nid,
    			.memcg = memcg,
    		};
    		struct shrinker *shrinker;
    
    		shrinker = idr_find(&shrinker_idr, i);
    		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
    			if (!shrinker)
    				clear_bit(i, map->map);
    			continue;
    		}
    
    		/* Call non-slab shrinkers even though kmem is disabled */
    		if (!memcg_kmem_enabled() &&
    		    !(shrinker->flags & SHRINKER_NONSLAB))
    			continue;
    
    		ret = do_shrink_slab(&sc, shrinker, priority);
    		if (ret == SHRINK_EMPTY) {
    			clear_bit(i, map->map);
    			/*
    			 * After the shrinker reported that it had no objects to
    			 * free, but before we cleared the corresponding bit in
    			 * the memcg shrinker map, a new object might have been
    			 * added. To make sure, we have the bit set in this
    			 * case, we invoke the shrinker one more time and reset
    			 * the bit if it reports that it is not empty anymore.
    			 * The memory barrier here pairs with the barrier in
    			 * memcg_set_shrinker_bit():
    			 *
    			 * list_lru_add()     shrink_slab_memcg()
    			 *   list_add_tail()    clear_bit()
    			 *   <MB>               <MB>
    			 *   set_bit()          do_shrink_slab()
    			 */
    			smp_mb__after_atomic();
    			ret = do_shrink_slab(&sc, shrinker, priority);
    			if (ret == SHRINK_EMPTY)
    				ret = 0;
    			else
    				memcg_set_shrinker_bit(memcg, nid, i);
    		}
    		freed += ret;
    
    		if (rwsem_is_contended(&shrinker_rwsem)) {
    			freed = freed ? : 1;
    			break;
    		}
    	}
    unlock:
    	up_read(&shrinker_rwsem);
    	return freed;
    }
    #else /* CONFIG_MEMCG */
    static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    			struct mem_cgroup *memcg, int priority)
    {
    	return 0;
    }
    #endif /* CONFIG_MEMCG */
    
    /**
     * shrink_slab - shrink slab caches
     * @gfp_mask: allocation context
     * @nid: node whose slab caches to target
     * @memcg: memory cgroup whose slab caches to target
     * @priority: the reclaim priority
     *
     * Call the shrink functions to age shrinkable caches.
     *
     * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
     * unaware shrinkers will receive a node id of 0 instead.
     *
     * @memcg specifies the memory cgroup to target. Unaware shrinkers
     * are called only if it is the root cgroup.
     *
     * @priority is sc->priority, we take the number of objects and >> by priority
     * in order to get the scan target.
     *
     * Returns the number of reclaimed slab objects.
     */
    static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
    				 struct mem_cgroup *memcg,
    				 int priority)
    {
    	unsigned long ret, freed = 0;
    	struct shrinker *shrinker;
    
    	/*
    	 * The root memcg might be allocated even though memcg is disabled
    	 * via "cgroup_disable=memory" boot parameter.  This could make
    	 * mem_cgroup_is_root() return false, then just run memcg slab
    	 * shrink, but skip global shrink.  This may result in premature
    	 * oom.
    	 */
    	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
    		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
    
    	if (!down_read_trylock(&shrinker_rwsem))
    		goto out;
    
    	list_for_each_entry(shrinker, &shrinker_list, list) {
    		struct shrink_control sc = {
    			.gfp_mask = gfp_mask,
    			.nid = nid,
    			.memcg = memcg,
    		};
    
    		ret = do_shrink_slab(&sc, shrinker, priority);
    		if (ret == SHRINK_EMPTY)
    			ret = 0;
    		freed += ret;
    		/*
    		 * Bail out if someone want to register a new shrinker to
    		 * prevent the registration from being stalled for long periods
    		 * by parallel ongoing shrinking.
    		 */
    		if (rwsem_is_contended(&shrinker_rwsem)) {
    			freed = freed ? : 1;
    			break;
    		}
    	}
    
    	up_read(&shrinker_rwsem);
    out:
    	cond_resched();
    	return freed;
    }
    
    void drop_slab_node(int nid)
    {
    	unsigned long freed;
    
    	do {
    		struct mem_cgroup *memcg = NULL;
    
    		if (fatal_signal_pending(current))
    			return;
    
    		freed = 0;
    		memcg = mem_cgroup_iter(NULL, NULL, NULL);
    		do {
    			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
    		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    	} while (freed > 10);
    }
    
    void drop_slab(void)
    {
    	int nid;
    
    	for_each_online_node(nid)
    		drop_slab_node(nid);
    }
    
    static inline int is_page_cache_freeable(struct page *page)
    {
    	/*
    	 * A freeable page cache page is referenced only by the caller
    	 * that isolated the page, the page cache and optional buffer
    	 * heads at page->private.
    	 */
    	int page_cache_pins = thp_nr_pages(page);
    	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
    }
    
    static int may_write_to_inode(struct inode *inode)
    {
    	if (current->flags & PF_SWAPWRITE)
    		return 1;
    	if (!inode_write_congested(inode))
    		return 1;
    	if (inode_to_bdi(inode) == current->backing_dev_info)
    		return 1;
    	return 0;
    }
    
    /*
     * We detected a synchronous write error writing a page out.  Probably
     * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     * fsync(), msync() or close().
     *
     * The tricky part is that after writepage we cannot touch the mapping: nothing
     * prevents it from being freed up.  But we have a ref on the page and once
     * that page is locked, the mapping is pinned.
     *
     * We're allowed to run sleeping lock_page() here because we know the caller has
     * __GFP_FS.
     */
    static void handle_write_error(struct address_space *mapping,
    				struct page *page, int error)
    {
    	lock_page(page);
    	if (page_mapping(page) == mapping)
    		mapping_set_error(mapping, error);
    	unlock_page(page);
    }
    
    /* possible outcome of pageout() */
    typedef enum {
    	/* failed to write page out, page is locked */
    	PAGE_KEEP,
    	/* move page to the active list, page is locked */
    	PAGE_ACTIVATE,
    	/* page has been sent to the disk successfully, page is unlocked */
    	PAGE_SUCCESS,
    	/* page is clean and locked */
    	PAGE_CLEAN,
    } pageout_t;
    
    /*
     * pageout is called by shrink_page_list() for each dirty page.
     * Calls ->writepage().
     */
    static pageout_t pageout(struct page *page, struct address_space *mapping)
    {
    	/*
    	 * If the page is dirty, only perform writeback if that write
    	 * will be non-blocking.  To prevent this allocation from being
    	 * stalled by pagecache activity.  But note that there may be
    	 * stalls if we need to run get_block().  We could test
    	 * PagePrivate for that.
    	 *
    	 * If this process is currently in __generic_file_write_iter() against
    	 * this page's queue, we can perform writeback even if that
    	 * will block.
    	 *
    	 * If the page is swapcache, write it back even if that would
    	 * block, for some throttling. This happens by accident, because
    	 * swap_backing_dev_info is bust: it doesn't reflect the
    	 * congestion state of the swapdevs.  Easy to fix, if needed.
    	 */
    	if (!is_page_cache_freeable(page))
    		return PAGE_KEEP;
    	if (!mapping) {
    		/*
    		 * Some data journaling orphaned pages can have
    		 * page->mapping == NULL while being dirty with clean buffers.
    		 */
    		if (page_has_private(page)) {
    			if (try_to_free_buffers(page)) {
    				ClearPageDirty(page);
    				pr_info("%s: orphaned page\n", __func__);
    				return PAGE_CLEAN;
    			}
    		}
    		return PAGE_KEEP;
    	}
    	if (mapping->a_ops->writepage == NULL)
    		return PAGE_ACTIVATE;
    	if (!may_write_to_inode(mapping->host))
    		return PAGE_KEEP;
    
    	if (clear_page_dirty_for_io(page)) {
    		int res;
    		struct writeback_control wbc = {
    			.sync_mode = WB_SYNC_NONE,
    			.nr_to_write = SWAP_CLUSTER_MAX,
    			.range_start = 0,
    			.range_end = LLONG_MAX,
    			.for_reclaim = 1,
    		};
    
    		SetPageReclaim(page);
    		res = mapping->a_ops->writepage(page, &wbc);
    		if (res < 0)
    			handle_write_error(mapping, page, res);
    		if (res == AOP_WRITEPAGE_ACTIVATE) {
    			ClearPageReclaim(page);
    			return PAGE_ACTIVATE;
    		}
    
    		if (!PageWriteback(page)) {
    			/* synchronous write or broken a_ops? */
    			ClearPageReclaim(page);
    		}
    		trace_mm_vmscan_writepage(page);
    		inc_node_page_state(page, NR_VMSCAN_WRITE);
    		return PAGE_SUCCESS;
    	}
    
    	return PAGE_CLEAN;
    }
    
    /*
     * Same as remove_mapping, but if the page is removed from the mapping, it
     * gets returned with a refcount of 0.
     */
    static int __remove_mapping(struct address_space *mapping, struct page *page,
    			    bool reclaimed, struct mem_cgroup *target_memcg)
    {
    	unsigned long flags;
    	int refcount;
    	void *shadow = NULL;
    
    	BUG_ON(!PageLocked(page));
    	BUG_ON(mapping != page_mapping(page));
    
    	xa_lock_irqsave(&mapping->i_pages, flags);
    	/*
    	 * The non racy check for a busy page.
    	 *
    	 * Must be careful with the order of the tests. When someone has
    	 * a ref to the page, it may be possible that they dirty it then
    	 * drop the reference. So if PageDirty is tested before page_count
    	 * here, then the following race may occur:
    	 *
    	 * get_user_pages(&page);
    	 * [user mapping goes away]
    	 * write_to(page);
    	 *				!PageDirty(page)    [good]
    	 * SetPageDirty(page);
    	 * put_page(page);
    	 *				!page_count(page)   [good, discard it]
    	 *
    	 * [oops, our write_to data is lost]
    	 *
    	 * Reversing the order of the tests ensures such a situation cannot
    	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
    	 * load is not satisfied before that of page->_refcount.
    	 *
    	 * Note that if SetPageDirty is always performed via set_page_dirty,
    	 * and thus under the i_pages lock, then this ordering is not required.
    	 */
    	refcount = 1 + compound_nr(page);
    	if (!page_ref_freeze(page, refcount))
    		goto cannot_free;
    	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
    	if (unlikely(PageDirty(page))) {
    		page_ref_unfreeze(page, refcount);
    		goto cannot_free;
    	}
    
    	if (PageSwapCache(page)) {
    		swp_entry_t swap = { .val = page_private(page) };
    		mem_cgroup_swapout(page, swap);
    		if (reclaimed && !mapping_exiting(mapping))
    			shadow = workingset_eviction(page, target_memcg);
    		__delete_from_swap_cache(page, swap, shadow);
    		xa_unlock_irqrestore(&mapping->i_pages, flags);
    		put_swap_page(page, swap);
    	} else {
    		void (*freepage)(struct page *);
    
    		freepage = mapping->a_ops->freepage;
    		/*
    		 * Remember a shadow entry for reclaimed file cache in
    		 * order to detect refaults, thus thrashing, later on.
    		 *
    		 * But don't store shadows in an address space that is
    		 * already exiting.  This is not just an optimization,
    		 * inode reclaim needs to empty out the radix tree or
    		 * the nodes are lost.  Don't plant shadows behind its
    		 * back.
    		 *
    		 * We also don't store shadows for DAX mappings because the
    		 * only page cache pages found in these are zero pages
    		 * covering holes, and because we don't want to mix DAX
    		 * exceptional entries and shadow exceptional entries in the
    		 * same address_space.
    		 */
    		if (reclaimed && page_is_file_lru(page) &&
    		    !mapping_exiting(mapping) && !dax_mapping(mapping))
    			shadow = workingset_eviction(page, target_memcg);
    		__delete_from_page_cache(page, shadow);
    		xa_unlock_irqrestore(&mapping->i_pages, flags);
    
    		if (freepage != NULL)
    			freepage(page);
    	}
    
    	return 1;
    
    cannot_free:
    	xa_unlock_irqrestore(&mapping->i_pages, flags);
    	return 0;
    }
    
    /*
     * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
     * someone else has a ref on the page, abort and return 0.  If it was
     * successfully detached, return 1.  Assumes the caller has a single ref on
     * this page.
     */
    int remove_mapping(struct address_space *mapping, struct page *page)
    {
    	if (__remove_mapping(mapping, page, false, NULL)) {
    		/*
    		 * Unfreezing the refcount with 1 rather than 2 effectively
    		 * drops the pagecache ref for us without requiring another
    		 * atomic operation.
    		 */
    		page_ref_unfreeze(page, 1);
    		return 1;
    	}
    	return 0;
    }
    
    /**
     * putback_lru_page - put previously isolated page onto appropriate LRU list
     * @page: page to be put back to appropriate lru list
     *
     * Add previously isolated @page to appropriate LRU list.
     * Page may still be unevictable for other reasons.
     *
     * lru_lock must not be held, interrupts must be enabled.
     */
    void putback_lru_page(struct page *page)
    {
    	lru_cache_add(page);
    	put_page(page);		/* drop ref from isolate */
    }
    
    enum page_references {
    	PAGEREF_RECLAIM,
    	PAGEREF_RECLAIM_CLEAN,
    	PAGEREF_KEEP,
    	PAGEREF_ACTIVATE,
    };
    
    static enum page_references page_check_references(struct page *page,
    						  struct scan_control *sc)
    {
    	int referenced_ptes, referenced_page;
    	unsigned long vm_flags;
    
    	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
    					  &vm_flags);
    	referenced_page = TestClearPageReferenced(page);
    
    	/*
    	 * Mlock lost the isolation race with us.  Let try_to_unmap()
    	 * move the page to the unevictable list.
    	 */
    	if (vm_flags & VM_LOCKED)
    		return PAGEREF_RECLAIM;
    
    	if (referenced_ptes) {
    		/*
    		 * All mapped pages start out with page table
    		 * references from the instantiating fault, so we need
    		 * to look twice if a mapped file page is used more
    		 * than once.
    		 *
    		 * Mark it and spare it for another trip around the
    		 * inactive list.  Another page table reference will
    		 * lead to its activation.
    		 *
    		 * Note: the mark is set for activated pages as well
    		 * so that recently deactivated but used pages are
    		 * quickly recovered.
    		 */
    		SetPageReferenced(page);
    
    		if (referenced_page || referenced_ptes > 1)
    			return PAGEREF_ACTIVATE;
    
    		/*
    		 * Activate file-backed executable pages after first usage.
    		 */
    		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
    			return PAGEREF_ACTIVATE;
    
    		return PAGEREF_KEEP;
    	}
    
    	/* Reclaim if clean, defer dirty pages to writeback */
    	if (referenced_page && !PageSwapBacked(page))
    		return PAGEREF_RECLAIM_CLEAN;
    
    	return PAGEREF_RECLAIM;
    }
    
    /* Check if a page is dirty or under writeback */
    static void page_check_dirty_writeback(struct page *page,
    				       bool *dirty, bool *writeback)
    {
    	struct address_space *mapping;
    
    	/*
    	 * Anonymous pages are not handled by flushers and must be written
    	 * from reclaim context. Do not stall reclaim based on them
    	 */
    	if (!page_is_file_lru(page) ||
    	    (PageAnon(page) && !PageSwapBacked(page))) {
    		*dirty = false;
    		*writeback = false;
    		return;
    	}
    
    	/* By default assume that the page flags are accurate */
    	*dirty = PageDirty(page);
    	*writeback = PageWriteback(page);
    
    	/* Verify dirty/writeback state if the filesystem supports it */
    	if (!page_has_private(page))
    		return;
    
    	mapping = page_mapping(page);
    	if (mapping && mapping->a_ops->is_dirty_writeback)
    		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
    }
    
    /*
     * shrink_page_list() returns the number of reclaimed pages
     */
    static unsigned int shrink_page_list(struct list_head *page_list,
    				     struct pglist_data *pgdat,
    				     struct scan_control *sc,
    				     struct reclaim_stat *stat,
    				     bool ignore_references)
    {
    	LIST_HEAD(ret_pages);
    	LIST_HEAD(free_pages);
    	unsigned int nr_reclaimed = 0;
    	unsigned int pgactivate = 0;
    
    	memset(stat, 0, sizeof(*stat));
    	cond_resched();
    
    	while (!list_empty(page_list)) {
    		struct address_space *mapping;
    		struct page *page;
    		enum page_references references = PAGEREF_RECLAIM;
    		bool dirty, writeback, may_enter_fs;
    		unsigned int nr_pages;
    
    		cond_resched();
    
    		page = lru_to_page(page_list);
    		list_del(&page->lru);
    
    		if (!trylock_page(page))
    			goto keep;
    
    		VM_BUG_ON_PAGE(PageActive(page), page);
    
    		nr_pages = compound_nr(page);
    
    		/* Account the number of base pages even though THP */
    		sc->nr_scanned += nr_pages;
    
    		if (unlikely(!page_evictable(page)))
    			goto activate_locked;
    
    		if (!sc->may_unmap && page_mapped(page))
    			goto keep_locked;
    
    		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
    			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
    
    		/*
    		 * The number of dirty pages determines if a node is marked
    		 * reclaim_congested which affects wait_iff_congested. kswapd
    		 * will stall and start writing pages if the tail of the LRU
    		 * is all dirty unqueued pages.
    		 */
    		page_check_dirty_writeback(page, &dirty, &writeback);
    		if (dirty || writeback)
    			stat->nr_dirty++;
    
    		if (dirty && !writeback)
    			stat->nr_unqueued_dirty++;
    
    		/*
    		 * Treat this page as congested if the underlying BDI is or if
    		 * pages are cycling through the LRU so quickly that the
    		 * pages marked for immediate reclaim are making it to the
    		 * end of the LRU a second time.
    		 */
    		mapping = page_mapping(page);
    		if (((dirty || writeback) && mapping &&
    		     inode_write_congested(mapping->host)) ||
    		    (writeback && PageReclaim(page)))
    			stat->nr_congested++;
    
    		/*
    		 * If a page at the tail of the LRU is under writeback, there
    		 * are three cases to consider.
    		 *
    		 * 1) If reclaim is encountering an excessive number of pages
    		 *    under writeback and this page is both under writeback and
    		 *    PageReclaim then it indicates that pages are being queued
    		 *    for IO but are being recycled through the LRU before the
    		 *    IO can complete. Waiting on the page itself risks an
    		 *    indefinite stall if it is impossible to writeback the
    		 *    page due to IO error or disconnected storage so instead
    		 *    note that the LRU is being scanned too quickly and the
    		 *    caller can stall after page list has been processed.
    		 *
    		 * 2) Global or new memcg reclaim encounters a page that is
    		 *    not marked for immediate reclaim, or the caller does not
    		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
    		 *    not to fs). In this case mark the page for immediate
    		 *    reclaim and continue scanning.
    		 *
    		 *    Require may_enter_fs because we would wait on fs, which
    		 *    may not have submitted IO yet. And the loop driver might
    		 *    enter reclaim, and deadlock if it waits on a page for
    		 *    which it is needed to do the write (loop masks off
    		 *    __GFP_IO|__GFP_FS for this reason); but more thought
    		 *    would probably show more reasons.
    		 *
    		 * 3) Legacy memcg encounters a page that is already marked
    		 *    PageReclaim. memcg does not have any dirty pages
    		 *    throttling so we could easily OOM just because too many
    		 *    pages are in writeback and there is nothing else to
    		 *    reclaim. Wait for the writeback to complete.
    		 *
    		 * In cases 1) and 2) we activate the pages to get them out of
    		 * the way while we continue scanning for clean pages on the
    		 * inactive list and refilling from the active list. The
    		 * observation here is that waiting for disk writes is more
    		 * expensive than potentially causing reloads down the line.
    		 * Since they're marked for immediate reclaim, they won't put
    		 * memory pressure on the cache working set any longer than it
    		 * takes to write them to disk.
    		 */
    		if (PageWriteback(page)) {
    			/* Case 1 above */
    			if (current_is_kswapd() &&
    			    PageReclaim(page) &&
    			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
    				stat->nr_immediate++;
    				goto activate_locked;
    
    			/* Case 2 above */
    			} else if (writeback_throttling_sane(sc) ||
    			    !PageReclaim(page) || !may_enter_fs) {
    				/*
    				 * This is slightly racy - end_page_writeback()
    				 * might have just cleared PageReclaim, then
    				 * setting PageReclaim here end up interpreted
    				 * as PageReadahead - but that does not matter
    				 * enough to care.  What we do want is for this
    				 * page to have PageReclaim set next time memcg
    				 * reclaim reaches the tests above, so it will
    				 * then wait_on_page_writeback() to avoid OOM;
    				 * and it's also appropriate in global reclaim.
    				 */
    				SetPageReclaim(page);
    				stat->nr_writeback++;
    				goto activate_locked;
    
    			/* Case 3 above */
    			} else {
    				unlock_page(page);
    				wait_on_page_writeback(page);
    				/* then go back and try same page again */
    				list_add_tail(&page->lru, page_list);
    				continue;
    			}
    		}
    
    		if (!ignore_references)
    			references = page_check_references(page, sc);
    
    		switch (references) {
    		case PAGEREF_ACTIVATE:
    			goto activate_locked;
    		case PAGEREF_KEEP:
    			stat->nr_ref_keep += nr_pages;
    			goto keep_locked;
    		case PAGEREF_RECLAIM:
    		case PAGEREF_RECLAIM_CLEAN:
    			; /* try to reclaim the page below */
    		}
    
    		/*
    		 * Anonymous process memory has backing store?
    		 * Try to allocate it some swap space here.
    		 * Lazyfree page could be freed directly
    		 */
    		if (PageAnon(page) && PageSwapBacked(page)) {
    			if (!PageSwapCache(page)) {
    				if (!(sc->gfp_mask & __GFP_IO))
    					goto keep_locked;
    				if (page_maybe_dma_pinned(page))
    					goto keep_locked;
    				if (PageTransHuge(page)) {
    					/* cannot split THP, skip it */
    					if (!can_split_huge_page(page, NULL))
    						goto activate_locked;
    					/*
    					 * Split pages without a PMD map right
    					 * away. Chances are some or all of the
    					 * tail pages can be freed without IO.
    					 */
    					if (!compound_mapcount(page) &&
    					    split_huge_page_to_list(page,
    								    page_list))
    						goto activate_locked;
    				}
    				if (!add_to_swap(page)) {
    					if (!PageTransHuge(page))
    						goto activate_locked_split;
    					/* Fallback to swap normal pages */
    					if (split_huge_page_to_list(page,
    								    page_list))
    						goto activate_locked;
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    					count_vm_event(THP_SWPOUT_FALLBACK);
    #endif
    					if (!add_to_swap(page))
    						goto activate_locked_split;
    				}
    
    				may_enter_fs = true;
    
    				/* Adding to swap updated mapping */
    				mapping = page_mapping(page);
    			}
    		} else if (unlikely(PageTransHuge(page))) {
    			/* Split file THP */
    			if (split_huge_page_to_list(page, page_list))
    				goto keep_locked;
    		}
    
    		/*
    		 * THP may get split above, need minus tail pages and update
    		 * nr_pages to avoid accounting tail pages twice.
    		 *
    		 * The tail pages that are added into swap cache successfully
    		 * reach here.
    		 */
    		if ((nr_pages > 1) && !PageTransHuge(page)) {
    			sc->nr_scanned -= (nr_pages - 1);
    			nr_pages = 1;
    		}
    
    		/*
    		 * The page is mapped into the page tables of one or more
    		 * processes. Try to unmap it here.
    		 */
    		if (page_mapped(page)) {
    			enum ttu_flags flags = TTU_BATCH_FLUSH;
    			bool was_swapbacked = PageSwapBacked(page);
    
    			if (unlikely(PageTransHuge(page)))
    				flags |= TTU_SPLIT_HUGE_PMD;
    
    			if (!try_to_unmap(page, flags)) {
    				stat->nr_unmap_fail += nr_pages;
    				if (!was_swapbacked && PageSwapBacked(page))
    					stat->nr_lazyfree_fail += nr_pages;
    				goto activate_locked;
    			}
    		}
    
    		if (PageDirty(page)) {
    			/*
    			 * Only kswapd can writeback filesystem pages
    			 * to avoid risk of stack overflow. But avoid
    			 * injecting inefficient single-page IO into
    			 * flusher writeback as much as possible: only
    			 * write pages when we've encountered many
    			 * dirty pages, and when we've already scanned
    			 * the rest of the LRU for clean pages and see
    			 * the same dirty pages again (PageReclaim).
    			 */
    			if (page_is_file_lru(page) &&
    			    (!current_is_kswapd() || !PageReclaim(page) ||
    			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
    				/*
    				 * Immediately reclaim when written back.
    				 * Similar in principal to deactivate_page()
    				 * except we already have the page isolated
    				 * and know it's dirty
    				 */
    				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
    				SetPageReclaim(page);
    
    				goto activate_locked;
    			}
    
    			if (references == PAGEREF_RECLAIM_CLEAN)
    				goto keep_locked;
    			if (!may_enter_fs)
    				goto keep_locked;
    			if (!sc->may_writepage)
    				goto keep_locked;
    
    			/*
    			 * Page is dirty. Flush the TLB if a writable entry
    			 * potentially exists to avoid CPU writes after IO
    			 * starts and then write it out here.
    			 */
    			try_to_unmap_flush_dirty();
    			switch (pageout(page, mapping)) {
    			case PAGE_KEEP:
    				goto keep_locked;
    			case PAGE_ACTIVATE:
    				goto activate_locked;
    			case PAGE_SUCCESS:
    				stat->nr_pageout += thp_nr_pages(page);
    
    				if (PageWriteback(page))
    					goto keep;
    				if (PageDirty(page))
    					goto keep;
    
    				/*
    				 * A synchronous write - probably a ramdisk.  Go
    				 * ahead and try to reclaim the page.
    				 */
    				if (!trylock_page(page))
    					goto keep;
    				if (PageDirty(page) || PageWriteback(page))
    					goto keep_locked;
    				mapping = page_mapping(page);
    				fallthrough;
    			case PAGE_CLEAN:
    				; /* try to free the page below */
    			}
    		}
    
    		/*
    		 * If the page has buffers, try to free the buffer mappings
    		 * associated with this page. If we succeed we try to free
    		 * the page as well.
    		 *
    		 * We do this even if the page is PageDirty().
    		 * try_to_release_page() does not perform I/O, but it is
    		 * possible for a page to have PageDirty set, but it is actually
    		 * clean (all its buffers are clean).  This happens if the
    		 * buffers were written out directly, with submit_bh(). ext3
    		 * will do this, as well as the blockdev mapping.
    		 * try_to_release_page() will discover that cleanness and will
    		 * drop the buffers and mark the page clean - it can be freed.
    		 *
    		 * Rarely, pages can have buffers and no ->mapping.  These are
    		 * the pages which were not successfully invalidated in
    		 * truncate_cleanup_page().  We try to drop those buffers here
    		 * and if that worked, and the page is no longer mapped into
    		 * process address space (page_count == 1) it can be freed.
    		 * Otherwise, leave the page on the LRU so it is swappable.
    		 */
    		if (page_has_private(page)) {
    			if (!try_to_release_page(page, sc->gfp_mask))
    				goto activate_locked;
    			if (!mapping && page_count(page) == 1) {
    				unlock_page(page);
    				if (put_page_testzero(page))
    					goto free_it;
    				else {
    					/*
    					 * rare race with speculative reference.
    					 * the speculative reference will free
    					 * this page shortly, so we may
    					 * increment nr_reclaimed here (and
    					 * leave it off the LRU).
    					 */
    					nr_reclaimed++;
    					continue;
    				}
    			}
    		}
    
    		if (PageAnon(page) && !PageSwapBacked(page)) {
    			/* follow __remove_mapping for reference */
    			if (!page_ref_freeze(page, 1))
    				goto keep_locked;
    			if (PageDirty(page)) {
    				page_ref_unfreeze(page, 1);
    				goto keep_locked;
    			}
    
    			count_vm_event(PGLAZYFREED);
    			count_memcg_page_event(page, PGLAZYFREED);
    		} else if (!mapping || !__remove_mapping(mapping, page, true,
    							 sc->target_mem_cgroup))
    			goto keep_locked;
    
    		unlock_page(page);
    free_it:
    		/*
    		 * THP may get swapped out in a whole, need account
    		 * all base pages.
    		 */
    		nr_reclaimed += nr_pages;
    
    		/*
    		 * Is there need to periodically free_page_list? It would
    		 * appear not as the counts should be low
    		 */
    		if (unlikely(PageTransHuge(page)))
    			destroy_compound_page(page);
    		else
    			list_add(&page->lru, &free_pages);
    		continue;
    
    activate_locked_split:
    		/*
    		 * The tail pages that are failed to add into swap cache
    		 * reach here.  Fixup nr_scanned and nr_pages.
    		 */
    		if (nr_pages > 1) {
    			sc->nr_scanned -= (nr_pages - 1);
    			nr_pages = 1;
    		}
    activate_locked:
    		/* Not a candidate for swapping, so reclaim swap space. */
    		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
    						PageMlocked(page)))
    			try_to_free_swap(page);
    		VM_BUG_ON_PAGE(PageActive(page), page);
    		if (!PageMlocked(page)) {
    			int type = page_is_file_lru(page);
    			SetPageActive(page);
    			stat->nr_activate[type] += nr_pages;
    			count_memcg_page_event(page, PGACTIVATE);
    		}
    keep_locked:
    		unlock_page(page);
    keep:
    		list_add(&page->lru, &ret_pages);
    		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
    	}
    
    	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
    
    	mem_cgroup_uncharge_list(&free_pages);
    	try_to_unmap_flush();
    	free_unref_page_list(&free_pages);
    
    	list_splice(&ret_pages, page_list);
    	count_vm_events(PGACTIVATE, pgactivate);
    
    	return nr_reclaimed;
    }
    
    unsigned int reclaim_clean_pages_from_list(struct zone *zone,
    					    struct list_head *page_list)
    {
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.priority = DEF_PRIORITY,
    		.may_unmap = 1,
    	};
    	struct reclaim_stat stat;
    	unsigned int nr_reclaimed;
    	struct page *page, *next;
    	LIST_HEAD(clean_pages);
    
    	list_for_each_entry_safe(page, next, page_list, lru) {
    		if (page_is_file_lru(page) && !PageDirty(page) &&
    		    !__PageMovable(page) && !PageUnevictable(page)) {
    			ClearPageActive(page);
    			list_move(&page->lru, &clean_pages);
    		}
    	}
    
    	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
    					&stat, true);
    	list_splice(&clean_pages, page_list);
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    			    -(long)nr_reclaimed);
    	/*
    	 * Since lazyfree pages are isolated from file LRU from the beginning,
    	 * they will rotate back to anonymous LRU in the end if it failed to
    	 * discard so isolated count will be mismatched.
    	 * Compensate the isolated count for both LRU lists.
    	 */
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
    			    stat.nr_lazyfree_fail);
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    			    -(long)stat.nr_lazyfree_fail);
    	return nr_reclaimed;
    }
    
    /*
     * Attempt to remove the specified page from its LRU.  Only take this page
     * if it is of the appropriate PageActive status.  Pages which are being
     * freed elsewhere are also ignored.
     *
     * page:	page to consider
     * mode:	one of the LRU isolation modes defined above
     *
     * returns true on success, false on failure.
     */
    bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
    {
    	/* Only take pages on the LRU. */
    	if (!PageLRU(page))
    		return false;
    
    	/* Compaction should not handle unevictable pages but CMA can do so */
    	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
    		return false;
    
    	/*
    	 * To minimise LRU disruption, the caller can indicate that it only
    	 * wants to isolate pages it will be able to operate on without
    	 * blocking - clean pages for the most part.
    	 *
    	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
    	 * that it is possible to migrate without blocking
    	 */
    	if (mode & ISOLATE_ASYNC_MIGRATE) {
    		/* All the caller can do on PageWriteback is block */
    		if (PageWriteback(page))
    			return false;
    
    		if (PageDirty(page)) {
    			struct address_space *mapping;
    			bool migrate_dirty;
    
    			/*
    			 * Only pages without mappings or that have a
    			 * ->migratepage callback are possible to migrate
    			 * without blocking. However, we can be racing with
    			 * truncation so it's necessary to lock the page
    			 * to stabilise the mapping as truncation holds
    			 * the page lock until after the page is removed
    			 * from the page cache.
    			 */
    			if (!trylock_page(page))
    				return false;
    
    			mapping = page_mapping(page);
    			migrate_dirty = !mapping || mapping->a_ops->migratepage;
    			unlock_page(page);
    			if (!migrate_dirty)
    				return false;
    		}
    	}
    
    	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
    		return false;
    
    	return true;
    }
    
    /*
     * Update LRU sizes after isolating pages. The LRU size updates must
     * be complete before mem_cgroup_update_lru_size due to a sanity check.
     */
    static __always_inline void update_lru_sizes(struct lruvec *lruvec,
    			enum lru_list lru, unsigned long *nr_zone_taken)
    {
    	int zid;
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		if (!nr_zone_taken[zid])
    			continue;
    
    		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
    	}
    
    }
    
    /**
     * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
     *
     * lruvec->lru_lock is heavily contended.  Some of the functions that
     * shrink the lists perform better by taking out a batch of pages
     * and working on them outside the LRU lock.
     *
     * For pagecache intensive workloads, this function is the hottest
     * spot in the kernel (apart from copy_*_user functions).
     *
     * Lru_lock must be held before calling this function.
     *
     * @nr_to_scan:	The number of eligible pages to look through on the list.
     * @lruvec:	The LRU vector to pull pages from.
     * @dst:	The temp list to put pages on to.
     * @nr_scanned:	The number of pages that were scanned.
     * @sc:		The scan_control struct for this reclaim session
     * @lru:	LRU list id for isolating
     *
     * returns how many pages were moved onto *@dst.
     */
    static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
    		struct lruvec *lruvec, struct list_head *dst,
    		unsigned long *nr_scanned, struct scan_control *sc,
    		enum lru_list lru)
    {
    	struct list_head *src = &lruvec->lists[lru];
    	unsigned long nr_taken = 0;
    	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
    	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
    	unsigned long skipped = 0;
    	unsigned long scan, total_scan, nr_pages;
    	LIST_HEAD(pages_skipped);
    	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
    
    	total_scan = 0;
    	scan = 0;
    	while (scan < nr_to_scan && !list_empty(src)) {
    		struct page *page;
    
    		page = lru_to_page(src);
    		prefetchw_prev_lru_page(page, src, flags);
    
    		nr_pages = compound_nr(page);
    		total_scan += nr_pages;
    
    		if (page_zonenum(page) > sc->reclaim_idx) {
    			list_move(&page->lru, &pages_skipped);
    			nr_skipped[page_zonenum(page)] += nr_pages;
    			continue;
    		}
    
    		/*
    		 * Do not count skipped pages because that makes the function
    		 * return with no isolated pages if the LRU mostly contains
    		 * ineligible pages.  This causes the VM to not reclaim any
    		 * pages, triggering a premature OOM.
    		 *
    		 * Account all tail pages of THP.  This would not cause
    		 * premature OOM since __isolate_lru_page() returns -EBUSY
    		 * only when the page is being freed somewhere else.
    		 */
    		scan += nr_pages;
    		if (!__isolate_lru_page_prepare(page, mode)) {
    			/* It is being freed elsewhere */
    			list_move(&page->lru, src);
    			continue;
    		}
    		/*
    		 * Be careful not to clear PageLRU until after we're
    		 * sure the page is not being freed elsewhere -- the
    		 * page release code relies on it.
    		 */
    		if (unlikely(!get_page_unless_zero(page))) {
    			list_move(&page->lru, src);
    			continue;
    		}
    
    		if (!TestClearPageLRU(page)) {
    			/* Another thread is already isolating this page */
    			put_page(page);
    			list_move(&page->lru, src);
    			continue;
    		}
    
    		nr_taken += nr_pages;
    		nr_zone_taken[page_zonenum(page)] += nr_pages;
    		list_move(&page->lru, dst);
    	}
    
    	/*
    	 * Splice any skipped pages to the start of the LRU list. Note that
    	 * this disrupts the LRU order when reclaiming for lower zones but
    	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
    	 * scanning would soon rescan the same pages to skip and put the
    	 * system at risk of premature OOM.
    	 */
    	if (!list_empty(&pages_skipped)) {
    		int zid;
    
    		list_splice(&pages_skipped, src);
    		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    			if (!nr_skipped[zid])
    				continue;
    
    			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
    			skipped += nr_skipped[zid];
    		}
    	}
    	*nr_scanned = total_scan;
    	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
    				    total_scan, skipped, nr_taken, mode, lru);
    	update_lru_sizes(lruvec, lru, nr_zone_taken);
    	return nr_taken;
    }
    
    /**
     * isolate_lru_page - tries to isolate a page from its LRU list
     * @page: page to isolate from its LRU list
     *
     * Isolates a @page from an LRU list, clears PageLRU and adjusts the
     * vmstat statistic corresponding to whatever LRU list the page was on.
     *
     * Returns 0 if the page was removed from an LRU list.
     * Returns -EBUSY if the page was not on an LRU list.
     *
     * The returned page will have PageLRU() cleared.  If it was found on
     * the active list, it will have PageActive set.  If it was found on
     * the unevictable list, it will have the PageUnevictable bit set. That flag
     * may need to be cleared by the caller before letting the page go.
     *
     * The vmstat statistic corresponding to the list on which the page was
     * found will be decremented.
     *
     * Restrictions:
     *
     * (1) Must be called with an elevated refcount on the page. This is a
     *     fundamental difference from isolate_lru_pages (which is called
     *     without a stable reference).
     * (2) the lru_lock must not be held.
     * (3) interrupts must be enabled.
     */
    int isolate_lru_page(struct page *page)
    {
    	int ret = -EBUSY;
    
    	VM_BUG_ON_PAGE(!page_count(page), page);
    	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
    
    	if (TestClearPageLRU(page)) {
    		struct lruvec *lruvec;
    
    		get_page(page);
    		lruvec = lock_page_lruvec_irq(page);
    		del_page_from_lru_list(page, lruvec);
    		unlock_page_lruvec_irq(lruvec);
    		ret = 0;
    	}
    
    	return ret;
    }
    
    /*
     * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
     * then get rescheduled. When there are massive number of tasks doing page
     * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
     * the LRU list will go small and be scanned faster than necessary, leading to
     * unnecessary swapping, thrashing and OOM.
     */
    static int too_many_isolated(struct pglist_data *pgdat, int file,
    		struct scan_control *sc)
    {
    	unsigned long inactive, isolated;
    
    	if (current_is_kswapd())
    		return 0;
    
    	if (!writeback_throttling_sane(sc))
    		return 0;
    
    	if (file) {
    		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
    		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
    	} else {
    		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
    		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
    	}
    
    	/*
    	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
    	 * won't get blocked by normal direct-reclaimers, forming a circular
    	 * deadlock.
    	 */
    	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    		inactive >>= 3;
    
    	return isolated > inactive;
    }
    
    /*
     * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
     * On return, @list is reused as a list of pages to be freed by the caller.
     *
     * Returns the number of pages moved to the given lruvec.
     */
    static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
    						     struct list_head *list)
    {
    	int nr_pages, nr_moved = 0;
    	LIST_HEAD(pages_to_free);
    	struct page *page;
    
    	while (!list_empty(list)) {
    		page = lru_to_page(list);
    		VM_BUG_ON_PAGE(PageLRU(page), page);
    		list_del(&page->lru);
    		if (unlikely(!page_evictable(page))) {
    			spin_unlock_irq(&lruvec->lru_lock);
    			putback_lru_page(page);
    			spin_lock_irq(&lruvec->lru_lock);
    			continue;
    		}
    
    		/*
    		 * The SetPageLRU needs to be kept here for list integrity.
    		 * Otherwise:
    		 *   #0 move_pages_to_lru             #1 release_pages
    		 *   if !put_page_testzero
    		 *				      if (put_page_testzero())
    		 *				        !PageLRU //skip lru_lock
    		 *     SetPageLRU()
    		 *     list_add(&page->lru,)
    		 *                                        list_add(&page->lru,)
    		 */
    		SetPageLRU(page);
    
    		if (unlikely(put_page_testzero(page))) {
    			__clear_page_lru_flags(page);
    
    			if (unlikely(PageCompound(page))) {
    				spin_unlock_irq(&lruvec->lru_lock);
    				destroy_compound_page(page);
    				spin_lock_irq(&lruvec->lru_lock);
    			} else
    				list_add(&page->lru, &pages_to_free);
    
    			continue;
    		}
    
    		/*
    		 * All pages were isolated from the same lruvec (and isolation
    		 * inhibits memcg migration).
    		 */
    		VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
    		add_page_to_lru_list(page, lruvec);
    		nr_pages = thp_nr_pages(page);
    		nr_moved += nr_pages;
    		if (PageActive(page))
    			workingset_age_nonresident(lruvec, nr_pages);
    	}
    
    	/*
    	 * To save our caller's stack, now use input list for pages to free.
    	 */
    	list_splice(&pages_to_free, list);
    
    	return nr_moved;
    }
    
    /*
     * If a kernel thread (such as nfsd for loop-back mounts) services
     * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
     * In that case we should only throttle if the backing device it is
     * writing to is congested.  In other cases it is safe to throttle.
     */
    static int current_may_throttle(void)
    {
    	return !(current->flags & PF_LOCAL_THROTTLE) ||
    		current->backing_dev_info == NULL ||
    		bdi_write_congested(current->backing_dev_info);
    }
    
    /*
     * shrink_inactive_list() is a helper for shrink_node().  It returns the number
     * of reclaimed pages
     */
    static noinline_for_stack unsigned long
    shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
    		     struct scan_control *sc, enum lru_list lru)
    {
    	LIST_HEAD(page_list);
    	unsigned long nr_scanned;
    	unsigned int nr_reclaimed = 0;
    	unsigned long nr_taken;
    	struct reclaim_stat stat;
    	bool file = is_file_lru(lru);
    	enum vm_event_item item;
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    	bool stalled = false;
    
    	while (unlikely(too_many_isolated(pgdat, file, sc))) {
    		if (stalled)
    			return 0;
    
    		/* wait a bit for the reclaimer. */
    		msleep(100);
    		stalled = true;
    
    		/* We are about to die and free our memory. Return now. */
    		if (fatal_signal_pending(current))
    			return SWAP_CLUSTER_MAX;
    	}
    
    	lru_add_drain();
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
    				     &nr_scanned, sc, lru);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(item, nr_scanned);
    	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
    	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	if (nr_taken == 0)
    		return 0;
    
    	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
    
    	spin_lock_irq(&lruvec->lru_lock);
    	move_pages_to_lru(lruvec, &page_list);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(item, nr_reclaimed);
    	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
    	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	lru_note_cost(lruvec, file, stat.nr_pageout);
    	mem_cgroup_uncharge_list(&page_list);
    	free_unref_page_list(&page_list);
    
    	/*
    	 * If dirty pages are scanned that are not queued for IO, it
    	 * implies that flushers are not doing their job. This can
    	 * happen when memory pressure pushes dirty pages to the end of
    	 * the LRU before the dirty limits are breached and the dirty
    	 * data has expired. It can also happen when the proportion of
    	 * dirty pages grows not through writes but through memory
    	 * pressure reclaiming all the clean cache. And in some cases,
    	 * the flushers simply cannot keep up with the allocation
    	 * rate. Nudge the flusher threads in case they are asleep.
    	 */
    	if (stat.nr_unqueued_dirty == nr_taken)
    		wakeup_flusher_threads(WB_REASON_VMSCAN);
    
    	sc->nr.dirty += stat.nr_dirty;
    	sc->nr.congested += stat.nr_congested;
    	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
    	sc->nr.writeback += stat.nr_writeback;
    	sc->nr.immediate += stat.nr_immediate;
    	sc->nr.taken += nr_taken;
    	if (file)
    		sc->nr.file_taken += nr_taken;
    
    	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
    			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
    	return nr_reclaimed;
    }
    
    /*
     * shrink_active_list() moves pages from the active LRU to the inactive LRU.
     *
     * We move them the other way if the page is referenced by one or more
     * processes.
     *
     * If the pages are mostly unmapped, the processing is fast and it is
     * appropriate to hold lru_lock across the whole operation.  But if
     * the pages are mapped, the processing is slow (page_referenced()), so
     * we should drop lru_lock around each page.  It's impossible to balance
     * this, so instead we remove the pages from the LRU while processing them.
     * It is safe to rely on PG_active against the non-LRU pages in here because
     * nobody will play with that bit on a non-LRU page.
     *
     * The downside is that we have to touch page->_refcount against each page.
     * But we had to alter page->flags anyway.
     */
    static void shrink_active_list(unsigned long nr_to_scan,
    			       struct lruvec *lruvec,
    			       struct scan_control *sc,
    			       enum lru_list lru)
    {
    	unsigned long nr_taken;
    	unsigned long nr_scanned;
    	unsigned long vm_flags;
    	LIST_HEAD(l_hold);	/* The pages which were snipped off */
    	LIST_HEAD(l_active);
    	LIST_HEAD(l_inactive);
    	struct page *page;
    	unsigned nr_deactivate, nr_activate;
    	unsigned nr_rotated = 0;
    	int file = is_file_lru(lru);
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    
    	lru_add_drain();
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
    				     &nr_scanned, sc, lru);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(PGREFILL, nr_scanned);
    	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	while (!list_empty(&l_hold)) {
    		cond_resched();
    		page = lru_to_page(&l_hold);
    		list_del(&page->lru);
    
    		if (unlikely(!page_evictable(page))) {
    			putback_lru_page(page);
    			continue;
    		}
    
    		if (unlikely(buffer_heads_over_limit)) {
    			if (page_has_private(page) && trylock_page(page)) {
    				if (page_has_private(page))
    					try_to_release_page(page, 0);
    				unlock_page(page);
    			}
    		}
    
    		if (page_referenced(page, 0, sc->target_mem_cgroup,
    				    &vm_flags)) {
    			/*
    			 * Identify referenced, file-backed active pages and
    			 * give them one more trip around the active list. So
    			 * that executable code get better chances to stay in
    			 * memory under moderate memory pressure.  Anon pages
    			 * are not likely to be evicted by use-once streaming
    			 * IO, plus JVM can create lots of anon VM_EXEC pages,
    			 * so we ignore them here.
    			 */
    			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
    				nr_rotated += thp_nr_pages(page);
    				list_add(&page->lru, &l_active);
    				continue;
    			}
    		}
    
    		ClearPageActive(page);	/* we are de-activating */
    		SetPageWorkingset(page);
    		list_add(&page->lru, &l_inactive);
    	}
    
    	/*
    	 * Move pages back to the lru list.
    	 */
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_activate = move_pages_to_lru(lruvec, &l_active);
    	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
    	/* Keep all free pages in l_active list */
    	list_splice(&l_inactive, &l_active);
    
    	__count_vm_events(PGDEACTIVATE, nr_deactivate);
    	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	mem_cgroup_uncharge_list(&l_active);
    	free_unref_page_list(&l_active);
    	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
    			nr_deactivate, nr_rotated, sc->priority, file);
    }
    
    unsigned long reclaim_pages(struct list_head *page_list)
    {
    	int nid = NUMA_NO_NODE;
    	unsigned int nr_reclaimed = 0;
    	LIST_HEAD(node_page_list);
    	struct reclaim_stat dummy_stat;
    	struct page *page;
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.priority = DEF_PRIORITY,
    		.may_writepage = 1,
    		.may_unmap = 1,
    		.may_swap = 1,
    	};
    
    	while (!list_empty(page_list)) {
    		page = lru_to_page(page_list);
    		if (nid == NUMA_NO_NODE) {
    			nid = page_to_nid(page);
    			INIT_LIST_HEAD(&node_page_list);
    		}
    
    		if (nid == page_to_nid(page)) {
    			ClearPageActive(page);
    			list_move(&page->lru, &node_page_list);
    			continue;
    		}
    
    		nr_reclaimed += shrink_page_list(&node_page_list,
    						NODE_DATA(nid),
    						&sc, &dummy_stat, false);
    		while (!list_empty(&node_page_list)) {
    			page = lru_to_page(&node_page_list);
    			list_del(&page->lru);
    			putback_lru_page(page);
    		}
    
    		nid = NUMA_NO_NODE;
    	}
    
    	if (!list_empty(&node_page_list)) {
    		nr_reclaimed += shrink_page_list(&node_page_list,
    						NODE_DATA(nid),
    						&sc, &dummy_stat, false);
    		while (!list_empty(&node_page_list)) {
    			page = lru_to_page(&node_page_list);
    			list_del(&page->lru);
    			putback_lru_page(page);
    		}
    	}
    
    	return nr_reclaimed;
    }
    
    static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
    				 struct lruvec *lruvec, struct scan_control *sc)
    {
    	if (is_active_lru(lru)) {
    		if (sc->may_deactivate & (1 << is_file_lru(lru)))
    			shrink_active_list(nr_to_scan, lruvec, sc, lru);
    		else
    			sc->skipped_deactivate = 1;
    		return 0;
    	}
    
    	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
    }
    
    /*
     * The inactive anon list should be small enough that the VM never has
     * to do too much work.
     *
     * The inactive file list should be small enough to leave most memory
     * to the established workingset on the scan-resistant active list,
     * but large enough to avoid thrashing the aggregate readahead window.
     *
     * Both inactive lists should also be large enough that each inactive
     * page has a chance to be referenced again before it is reclaimed.
     *
     * If that fails and refaulting is observed, the inactive list grows.
     *
     * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
     * on this LRU, maintained by the pageout code. An inactive_ratio
     * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
     *
     * total     target    max
     * memory    ratio     inactive
     * -------------------------------------
     *   10MB       1         5MB
     *  100MB       1        50MB
     *    1GB       3       250MB
     *   10GB      10       0.9GB
     *  100GB      31         3GB
     *    1TB     101        10GB
     *   10TB     320        32GB
     */
    static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
    {
    	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
    	unsigned long inactive, active;
    	unsigned long inactive_ratio;
    	unsigned long gb;
    
    	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
    	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
    
    	gb = (inactive + active) >> (30 - PAGE_SHIFT);
    	if (gb)
    		inactive_ratio = int_sqrt(10 * gb);
    	else
    		inactive_ratio = 1;
    
    	return inactive * inactive_ratio < active;
    }
    
    enum scan_balance {
    	SCAN_EQUAL,
    	SCAN_FRACT,
    	SCAN_ANON,
    	SCAN_FILE,
    };
    
    /*
     * Determine how aggressively the anon and file LRU lists should be
     * scanned.  The relative value of each set of LRU lists is determined
     * by looking at the fraction of the pages scanned we did rotate back
     * onto the active list instead of evict.
     *
     * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
     * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
     */
    static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
    			   unsigned long *nr)
    {
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	unsigned long anon_cost, file_cost, total_cost;
    	int swappiness = mem_cgroup_swappiness(memcg);
    	u64 fraction[ANON_AND_FILE];
    	u64 denominator = 0;	/* gcc */
    	enum scan_balance scan_balance;
    	unsigned long ap, fp;
    	enum lru_list lru;
    
    	/* If we have no swap space, do not bother scanning anon pages. */
    	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	/*
    	 * Global reclaim will swap to prevent OOM even with no
    	 * swappiness, but memcg users want to use this knob to
    	 * disable swapping for individual groups completely when
    	 * using the memory controller's swap limit feature would be
    	 * too expensive.
    	 */
    	if (cgroup_reclaim(sc) && !swappiness) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	/*
    	 * Do not apply any pressure balancing cleverness when the
    	 * system is close to OOM, scan both anon and file equally
    	 * (unless the swappiness setting disagrees with swapping).
    	 */
    	if (!sc->priority && swappiness) {
    		scan_balance = SCAN_EQUAL;
    		goto out;
    	}
    
    	/*
    	 * If the system is almost out of file pages, force-scan anon.
    	 */
    	if (sc->file_is_tiny) {
    		scan_balance = SCAN_ANON;
    		goto out;
    	}
    
    	/*
    	 * If there is enough inactive page cache, we do not reclaim
    	 * anything from the anonymous working right now.
    	 */
    	if (sc->cache_trim_mode) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	scan_balance = SCAN_FRACT;
    	/*
    	 * Calculate the pressure balance between anon and file pages.
    	 *
    	 * The amount of pressure we put on each LRU is inversely
    	 * proportional to the cost of reclaiming each list, as
    	 * determined by the share of pages that are refaulting, times
    	 * the relative IO cost of bringing back a swapped out
    	 * anonymous page vs reloading a filesystem page (swappiness).
    	 *
    	 * Although we limit that influence to ensure no list gets
    	 * left behind completely: at least a third of the pressure is
    	 * applied, before swappiness.
    	 *
    	 * With swappiness at 100, anon and file have equal IO cost.
    	 */
    	total_cost = sc->anon_cost + sc->file_cost;
    	anon_cost = total_cost + sc->anon_cost;
    	file_cost = total_cost + sc->file_cost;
    	total_cost = anon_cost + file_cost;
    
    	ap = swappiness * (total_cost + 1);
    	ap /= anon_cost + 1;
    
    	fp = (200 - swappiness) * (total_cost + 1);
    	fp /= file_cost + 1;
    
    	fraction[0] = ap;
    	fraction[1] = fp;
    	denominator = ap + fp;
    out:
    	for_each_evictable_lru(lru) {
    		int file = is_file_lru(lru);
    		unsigned long lruvec_size;
    		unsigned long scan;
    		unsigned long protection;
    
    		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
    		protection = mem_cgroup_protection(sc->target_mem_cgroup,
    						   memcg,
    						   sc->memcg_low_reclaim);
    
    		if (protection) {
    			/*
    			 * Scale a cgroup's reclaim pressure by proportioning
    			 * its current usage to its memory.low or memory.min
    			 * setting.
    			 *
    			 * This is important, as otherwise scanning aggression
    			 * becomes extremely binary -- from nothing as we
    			 * approach the memory protection threshold, to totally
    			 * nominal as we exceed it.  This results in requiring
    			 * setting extremely liberal protection thresholds. It
    			 * also means we simply get no protection at all if we
    			 * set it too low, which is not ideal.
    			 *
    			 * If there is any protection in place, we reduce scan
    			 * pressure by how much of the total memory used is
    			 * within protection thresholds.
    			 *
    			 * There is one special case: in the first reclaim pass,
    			 * we skip over all groups that are within their low
    			 * protection. If that fails to reclaim enough pages to
    			 * satisfy the reclaim goal, we come back and override
    			 * the best-effort low protection. However, we still
    			 * ideally want to honor how well-behaved groups are in
    			 * that case instead of simply punishing them all
    			 * equally. As such, we reclaim them based on how much
    			 * memory they are using, reducing the scan pressure
    			 * again by how much of the total memory used is under
    			 * hard protection.
    			 */
    			unsigned long cgroup_size = mem_cgroup_size(memcg);
    
    			/* Avoid TOCTOU with earlier protection check */
    			cgroup_size = max(cgroup_size, protection);
    
    			scan = lruvec_size - lruvec_size * protection /
    				cgroup_size;
    
    			/*
    			 * Minimally target SWAP_CLUSTER_MAX pages to keep
    			 * reclaim moving forwards, avoiding decrementing
    			 * sc->priority further than desirable.
    			 */
    			scan = max(scan, SWAP_CLUSTER_MAX);
    		} else {
    			scan = lruvec_size;
    		}
    
    		scan >>= sc->priority;
    
    		/*
    		 * If the cgroup's already been deleted, make sure to
    		 * scrape out the remaining cache.
    		 */
    		if (!scan && !mem_cgroup_online(memcg))
    			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
    
    		switch (scan_balance) {
    		case SCAN_EQUAL:
    			/* Scan lists relative to size */
    			break;
    		case SCAN_FRACT:
    			/*
    			 * Scan types proportional to swappiness and
    			 * their relative recent reclaim efficiency.
    			 * Make sure we don't miss the last page on
    			 * the offlined memory cgroups because of a
    			 * round-off error.
    			 */
    			scan = mem_cgroup_online(memcg) ?
    			       div64_u64(scan * fraction[file], denominator) :
    			       DIV64_U64_ROUND_UP(scan * fraction[file],
    						  denominator);
    			break;
    		case SCAN_FILE:
    		case SCAN_ANON:
    			/* Scan one type exclusively */
    			if ((scan_balance == SCAN_FILE) != file)
    				scan = 0;
    			break;
    		default:
    			/* Look ma, no brain */
    			BUG();
    		}
    
    		nr[lru] = scan;
    	}
    }
    
    static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    {
    	unsigned long nr[NR_LRU_LISTS];
    	unsigned long targets[NR_LRU_LISTS];
    	unsigned long nr_to_scan;
    	enum lru_list lru;
    	unsigned long nr_reclaimed = 0;
    	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
    	struct blk_plug plug;
    	bool scan_adjusted;
    
    	get_scan_count(lruvec, sc, nr);
    
    	/* Record the original scan target for proportional adjustments later */
    	memcpy(targets, nr, sizeof(nr));
    
    	/*
    	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
    	 * event that can occur when there is little memory pressure e.g.
    	 * multiple streaming readers/writers. Hence, we do not abort scanning
    	 * when the requested number of pages are reclaimed when scanning at
    	 * DEF_PRIORITY on the assumption that the fact we are direct
    	 * reclaiming implies that kswapd is not keeping up and it is best to
    	 * do a batch of work at once. For memcg reclaim one check is made to
    	 * abort proportional reclaim if either the file or anon lru has already
    	 * dropped to zero at the first pass.
    	 */
    	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
    			 sc->priority == DEF_PRIORITY);
    
    	blk_start_plug(&plug);
    	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
    					nr[LRU_INACTIVE_FILE]) {
    		unsigned long nr_anon, nr_file, percentage;
    		unsigned long nr_scanned;
    
    		for_each_evictable_lru(lru) {
    			if (nr[lru]) {
    				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
    				nr[lru] -= nr_to_scan;
    
    				nr_reclaimed += shrink_list(lru, nr_to_scan,
    							    lruvec, sc);
    			}
    		}
    
    		cond_resched();
    
    		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
    			continue;
    
    		/*
    		 * For kswapd and memcg, reclaim at least the number of pages
    		 * requested. Ensure that the anon and file LRUs are scanned
    		 * proportionally what was requested by get_scan_count(). We
    		 * stop reclaiming one LRU and reduce the amount scanning
    		 * proportional to the original scan target.
    		 */
    		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
    		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
    
    		/*
    		 * It's just vindictive to attack the larger once the smaller
    		 * has gone to zero.  And given the way we stop scanning the
    		 * smaller below, this makes sure that we only make one nudge
    		 * towards proportionality once we've got nr_to_reclaim.
    		 */
    		if (!nr_file || !nr_anon)
    			break;
    
    		if (nr_file > nr_anon) {
    			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
    						targets[LRU_ACTIVE_ANON] + 1;
    			lru = LRU_BASE;
    			percentage = nr_anon * 100 / scan_target;
    		} else {
    			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
    						targets[LRU_ACTIVE_FILE] + 1;
    			lru = LRU_FILE;
    			percentage = nr_file * 100 / scan_target;
    		}
    
    		/* Stop scanning the smaller of the LRU */
    		nr[lru] = 0;
    		nr[lru + LRU_ACTIVE] = 0;
    
    		/*
    		 * Recalculate the other LRU scan count based on its original
    		 * scan target and the percentage scanning already complete
    		 */
    		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
    		nr_scanned = targets[lru] - nr[lru];
    		nr[lru] = targets[lru] * (100 - percentage) / 100;
    		nr[lru] -= min(nr[lru], nr_scanned);
    
    		lru += LRU_ACTIVE;
    		nr_scanned = targets[lru] - nr[lru];
    		nr[lru] = targets[lru] * (100 - percentage) / 100;
    		nr[lru] -= min(nr[lru], nr_scanned);
    
    		scan_adjusted = true;
    	}
    	blk_finish_plug(&plug);
    	sc->nr_reclaimed += nr_reclaimed;
    
    	/*
    	 * Even if we did not try to evict anon pages at all, we want to
    	 * rebalance the anon lru active/inactive ratio.
    	 */
    	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    				   sc, LRU_ACTIVE_ANON);
    }
    
    /* Use reclaim/compaction for costly allocs or under memory pressure */
    static bool in_reclaim_compaction(struct scan_control *sc)
    {
    	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
    			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
    			 sc->priority < DEF_PRIORITY - 2))
    		return true;
    
    	return false;
    }
    
    /*
     * Reclaim/compaction is used for high-order allocation requests. It reclaims
     * order-0 pages before compacting the zone. should_continue_reclaim() returns
     * true if more pages should be reclaimed such that when the page allocator
     * calls try_to_compact_pages() that it will have enough free pages to succeed.
     * It will give up earlier than that if there is difficulty reclaiming pages.
     */
    static inline bool should_continue_reclaim(struct pglist_data *pgdat,
    					unsigned long nr_reclaimed,
    					struct scan_control *sc)
    {
    	unsigned long pages_for_compaction;
    	unsigned long inactive_lru_pages;
    	int z;
    
    	/* If not in reclaim/compaction mode, stop */
    	if (!in_reclaim_compaction(sc))
    		return false;
    
    	/*
    	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
    	 * number of pages that were scanned. This will return to the caller
    	 * with the risk reclaim/compaction and the resulting allocation attempt
    	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
    	 * allocations through requiring that the full LRU list has been scanned
    	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
    	 * scan, but that approximation was wrong, and there were corner cases
    	 * where always a non-zero amount of pages were scanned.
    	 */
    	if (!nr_reclaimed)
    		return false;
    
    	/* If compaction would go ahead or the allocation would succeed, stop */
    	for (z = 0; z <= sc->reclaim_idx; z++) {
    		struct zone *zone = &pgdat->node_zones[z];
    		if (!managed_zone(zone))
    			continue;
    
    		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
    		case COMPACT_SUCCESS:
    		case COMPACT_CONTINUE:
    			return false;
    		default:
    			/* check next zone */
    			;
    		}
    	}
    
    	/*
    	 * If we have not reclaimed enough pages for compaction and the
    	 * inactive lists are large enough, continue reclaiming
    	 */
    	pages_for_compaction = compact_gap(sc->order);
    	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
    	if (get_nr_swap_pages() > 0)
    		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
    
    	return inactive_lru_pages > pages_for_compaction;
    }
    
    static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
    {
    	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
    	struct mem_cgroup *memcg;
    
    	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
    	do {
    		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    		unsigned long reclaimed;
    		unsigned long scanned;
    
    		/*
    		 * This loop can become CPU-bound when target memcgs
    		 * aren't eligible for reclaim - either because they
    		 * don't have any reclaimable pages, or because their
    		 * memory is explicitly protected. Avoid soft lockups.
    		 */
    		cond_resched();
    
    		mem_cgroup_calculate_protection(target_memcg, memcg);
    
    		if (mem_cgroup_below_min(memcg)) {
    			/*
    			 * Hard protection.
    			 * If there is no reclaimable memory, OOM.
    			 */
    			continue;
    		} else if (mem_cgroup_below_low(memcg)) {
    			/*
    			 * Soft protection.
    			 * Respect the protection only as long as
    			 * there is an unprotected supply
    			 * of reclaimable memory from other cgroups.
    			 */
    			if (!sc->memcg_low_reclaim) {
    				sc->memcg_low_skipped = 1;
    				continue;
    			}
    			memcg_memory_event(memcg, MEMCG_LOW);
    		}
    
    		reclaimed = sc->nr_reclaimed;
    		scanned = sc->nr_scanned;
    
    		shrink_lruvec(lruvec, sc);
    
    		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
    			    sc->priority);
    
    		/* Record the group's reclaim efficiency */
    		vmpressure(sc->gfp_mask, memcg, false,
    			   sc->nr_scanned - scanned,
    			   sc->nr_reclaimed - reclaimed);
    
    	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
    }
    
    static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
    {
    	struct reclaim_state *reclaim_state = current->reclaim_state;
    	unsigned long nr_reclaimed, nr_scanned;
    	struct lruvec *target_lruvec;
    	bool reclaimable = false;
    	unsigned long file;
    
    	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
    
    again:
    	memset(&sc->nr, 0, sizeof(sc->nr));
    
    	nr_reclaimed = sc->nr_reclaimed;
    	nr_scanned = sc->nr_scanned;
    
    	/*
    	 * Determine the scan balance between anon and file LRUs.
    	 */
    	spin_lock_irq(&target_lruvec->lru_lock);
    	sc->anon_cost = target_lruvec->anon_cost;
    	sc->file_cost = target_lruvec->file_cost;
    	spin_unlock_irq(&target_lruvec->lru_lock);
    
    	/*
    	 * Target desirable inactive:active list ratios for the anon
    	 * and file LRU lists.
    	 */
    	if (!sc->force_deactivate) {
    		unsigned long refaults;
    
    		refaults = lruvec_page_state(target_lruvec,
    				WORKINGSET_ACTIVATE_ANON);
    		if (refaults != target_lruvec->refaults[0] ||
    			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
    			sc->may_deactivate |= DEACTIVATE_ANON;
    		else
    			sc->may_deactivate &= ~DEACTIVATE_ANON;
    
    		/*
    		 * When refaults are being observed, it means a new
    		 * workingset is being established. Deactivate to get
    		 * rid of any stale active pages quickly.
    		 */
    		refaults = lruvec_page_state(target_lruvec,
    				WORKINGSET_ACTIVATE_FILE);
    		if (refaults != target_lruvec->refaults[1] ||
    		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
    			sc->may_deactivate |= DEACTIVATE_FILE;
    		else
    			sc->may_deactivate &= ~DEACTIVATE_FILE;
    	} else
    		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
    
    	/*
    	 * If we have plenty of inactive file pages that aren't
    	 * thrashing, try to reclaim those first before touching
    	 * anonymous pages.
    	 */
    	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
    	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
    		sc->cache_trim_mode = 1;
    	else
    		sc->cache_trim_mode = 0;
    
    	/*
    	 * Prevent the reclaimer from falling into the cache trap: as
    	 * cache pages start out inactive, every cache fault will tip
    	 * the scan balance towards the file LRU.  And as the file LRU
    	 * shrinks, so does the window for rotation from references.
    	 * This means we have a runaway feedback loop where a tiny
    	 * thrashing file LRU becomes infinitely more attractive than
    	 * anon pages.  Try to detect this based on file LRU size.
    	 */
    	if (!cgroup_reclaim(sc)) {
    		unsigned long total_high_wmark = 0;
    		unsigned long free, anon;
    		int z;
    
    		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
    		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
    			   node_page_state(pgdat, NR_INACTIVE_FILE);
    
    		for (z = 0; z < MAX_NR_ZONES; z++) {
    			struct zone *zone = &pgdat->node_zones[z];
    			if (!managed_zone(zone))
    				continue;
    
    			total_high_wmark += high_wmark_pages(zone);
    		}
    
    		/*
    		 * Consider anon: if that's low too, this isn't a
    		 * runaway file reclaim problem, but rather just
    		 * extreme pressure. Reclaim as per usual then.
    		 */
    		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
    
    		sc->file_is_tiny =
    			file + free <= total_high_wmark &&
    			!(sc->may_deactivate & DEACTIVATE_ANON) &&
    			anon >> sc->priority;
    	}
    
    	shrink_node_memcgs(pgdat, sc);
    
    	if (reclaim_state) {
    		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
    		reclaim_state->reclaimed_slab = 0;
    	}
    
    	/* Record the subtree's reclaim efficiency */
    	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
    		   sc->nr_scanned - nr_scanned,
    		   sc->nr_reclaimed - nr_reclaimed);
    
    	if (sc->nr_reclaimed - nr_reclaimed)
    		reclaimable = true;
    
    	if (current_is_kswapd()) {
    		/*
    		 * If reclaim is isolating dirty pages under writeback,
    		 * it implies that the long-lived page allocation rate
    		 * is exceeding the page laundering rate. Either the
    		 * global limits are not being effective at throttling
    		 * processes due to the page distribution throughout
    		 * zones or there is heavy usage of a slow backing
    		 * device. The only option is to throttle from reclaim
    		 * context which is not ideal as there is no guarantee
    		 * the dirtying process is throttled in the same way
    		 * balance_dirty_pages() manages.
    		 *
    		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
    		 * count the number of pages under pages flagged for
    		 * immediate reclaim and stall if any are encountered
    		 * in the nr_immediate check below.
    		 */
    		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
    			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
    
    		/* Allow kswapd to start writing pages during reclaim.*/
    		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
    			set_bit(PGDAT_DIRTY, &pgdat->flags);
    
    		/*
    		 * If kswapd scans pages marked for immediate
    		 * reclaim and under writeback (nr_immediate), it
    		 * implies that pages are cycling through the LRU
    		 * faster than they are written so also forcibly stall.
    		 */
    		if (sc->nr.immediate)
    			congestion_wait(BLK_RW_ASYNC, HZ/10);
    	}
    
    	/*
    	 * Tag a node/memcg as congested if all the dirty pages
    	 * scanned were backed by a congested BDI and
    	 * wait_iff_congested will stall.
    	 *
    	 * Legacy memcg will stall in page writeback so avoid forcibly
    	 * stalling in wait_iff_congested().
    	 */
    	if ((current_is_kswapd() ||
    	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
    	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
    		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
    
    	/*
    	 * Stall direct reclaim for IO completions if underlying BDIs
    	 * and node is congested. Allow kswapd to continue until it
    	 * starts encountering unqueued dirty pages or cycling through
    	 * the LRU too quickly.
    	 */
    	if (!current_is_kswapd() && current_may_throttle() &&
    	    !sc->hibernation_mode &&
    	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
    		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
    
    	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
    				    sc))
    		goto again;
    
    	/*
    	 * Kswapd gives up on balancing particular nodes after too
    	 * many failures to reclaim anything from them and goes to
    	 * sleep. On reclaim progress, reset the failure counter. A
    	 * successful direct reclaim run will revive a dormant kswapd.
    	 */
    	if (reclaimable)
    		pgdat->kswapd_failures = 0;
    }
    
    /*
     * Returns true if compaction should go ahead for a costly-order request, or
     * the allocation would already succeed without compaction. Return false if we
     * should reclaim first.
     */
    static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
    {
    	unsigned long watermark;
    	enum compact_result suitable;
    
    	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
    	if (suitable == COMPACT_SUCCESS)
    		/* Allocation should succeed already. Don't reclaim. */
    		return true;
    	if (suitable == COMPACT_SKIPPED)
    		/* Compaction cannot yet proceed. Do reclaim. */
    		return false;
    
    	/*
    	 * Compaction is already possible, but it takes time to run and there
    	 * are potentially other callers using the pages just freed. So proceed
    	 * with reclaim to make a buffer of free pages available to give
    	 * compaction a reasonable chance of completing and allocating the page.
    	 * Note that we won't actually reclaim the whole buffer in one attempt
    	 * as the target watermark in should_continue_reclaim() is lower. But if
    	 * we are already above the high+gap watermark, don't reclaim at all.
    	 */
    	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
    
    	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
    }
    
    /*
     * This is the direct reclaim path, for page-allocating processes.  We only
     * try to reclaim pages from zones which will satisfy the caller's allocation
     * request.
     *
     * If a zone is deemed to be full of pinned pages then just give it a light
     * scan then give up on it.
     */
    static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	gfp_t orig_mask;
    	pg_data_t *last_pgdat = NULL;
    
    	/*
    	 * If the number of buffer_heads in the machine exceeds the maximum
    	 * allowed level, force direct reclaim to scan the highmem zone as
    	 * highmem pages could be pinning lowmem pages storing buffer_heads
    	 */
    	orig_mask = sc->gfp_mask;
    	if (buffer_heads_over_limit) {
    		sc->gfp_mask |= __GFP_HIGHMEM;
    		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
    	}
    
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    					sc->reclaim_idx, sc->nodemask) {
    		/*
    		 * Take care memory controller reclaiming has small influence
    		 * to global LRU.
    		 */
    		if (!cgroup_reclaim(sc)) {
    			if (!cpuset_zone_allowed(zone,
    						 GFP_KERNEL | __GFP_HARDWALL))
    				continue;
    
    			/*
    			 * If we already have plenty of memory free for
    			 * compaction in this zone, don't free any more.
    			 * Even though compaction is invoked for any
    			 * non-zero order, only frequent costly order
    			 * reclamation is disruptive enough to become a
    			 * noticeable problem, like transparent huge
    			 * page allocations.
    			 */
    			if (IS_ENABLED(CONFIG_COMPACTION) &&
    			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
    			    compaction_ready(zone, sc)) {
    				sc->compaction_ready = true;
    				continue;
    			}
    
    			/*
    			 * Shrink each node in the zonelist once. If the
    			 * zonelist is ordered by zone (not the default) then a
    			 * node may be shrunk multiple times but in that case
    			 * the user prefers lower zones being preserved.
    			 */
    			if (zone->zone_pgdat == last_pgdat)
    				continue;
    
    			/*
    			 * This steals pages from memory cgroups over softlimit
    			 * and returns the number of reclaimed pages and
    			 * scanned pages. This works for global memory pressure
    			 * and balancing, not for a memcg's limit.
    			 */
    			nr_soft_scanned = 0;
    			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
    						sc->order, sc->gfp_mask,
    						&nr_soft_scanned);
    			sc->nr_reclaimed += nr_soft_reclaimed;
    			sc->nr_scanned += nr_soft_scanned;
    			/* need some check for avoid more shrink_zone() */
    		}
    
    		/* See comment about same check for global reclaim above */
    		if (zone->zone_pgdat == last_pgdat)
    			continue;
    		last_pgdat = zone->zone_pgdat;
    		shrink_node(zone->zone_pgdat, sc);
    	}
    
    	/*
    	 * Restore to original mask to avoid the impact on the caller if we
    	 * promoted it to __GFP_HIGHMEM.
    	 */
    	sc->gfp_mask = orig_mask;
    }
    
    static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
    {
    	struct lruvec *target_lruvec;
    	unsigned long refaults;
    
    	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
    	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
    	target_lruvec->refaults[0] = refaults;
    	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
    	target_lruvec->refaults[1] = refaults;
    }
    
    /*
     * This is the main entry point to direct page reclaim.
     *
     * If a full scan of the inactive list fails to free enough memory then we
     * are "out of memory" and something needs to be killed.
     *
     * If the caller is !__GFP_FS then the probability of a failure is reasonably
     * high - the zone may be full of dirty or under-writeback pages, which this
     * caller can't do much about.  We kick the writeback threads and take explicit
     * naps in the hope that some of these pages can be written.  But if the
     * allocating task holds filesystem locks which prevent writeout this might not
     * work, and the allocation attempt will fail.
     *
     * returns:	0, if no pages reclaimed
     * 		else, the number of pages reclaimed
     */
    static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
    					  struct scan_control *sc)
    {
    	int initial_priority = sc->priority;
    	pg_data_t *last_pgdat;
    	struct zoneref *z;
    	struct zone *zone;
    retry:
    	delayacct_freepages_start();
    
    	if (!cgroup_reclaim(sc))
    		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
    
    	do {
    		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
    				sc->priority);
    		sc->nr_scanned = 0;
    		shrink_zones(zonelist, sc);
    
    		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
    			break;
    
    		if (sc->compaction_ready)
    			break;
    
    		/*
    		 * If we're getting trouble reclaiming, start doing
    		 * writepage even in laptop mode.
    		 */
    		if (sc->priority < DEF_PRIORITY - 2)
    			sc->may_writepage = 1;
    	} while (--sc->priority >= 0);
    
    	last_pgdat = NULL;
    	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
    					sc->nodemask) {
    		if (zone->zone_pgdat == last_pgdat)
    			continue;
    		last_pgdat = zone->zone_pgdat;
    
    		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
    
    		if (cgroup_reclaim(sc)) {
    			struct lruvec *lruvec;
    
    			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
    						   zone->zone_pgdat);
    			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    		}
    	}
    
    	delayacct_freepages_end();
    
    	if (sc->nr_reclaimed)
    		return sc->nr_reclaimed;
    
    	/* Aborted reclaim to try compaction? don't OOM, then */
    	if (sc->compaction_ready)
    		return 1;
    
    	/*
    	 * We make inactive:active ratio decisions based on the node's
    	 * composition of memory, but a restrictive reclaim_idx or a
    	 * memory.low cgroup setting can exempt large amounts of
    	 * memory from reclaim. Neither of which are very common, so
    	 * instead of doing costly eligibility calculations of the
    	 * entire cgroup subtree up front, we assume the estimates are
    	 * good, and retry with forcible deactivation if that fails.
    	 */
    	if (sc->skipped_deactivate) {
    		sc->priority = initial_priority;
    		sc->force_deactivate = 1;
    		sc->skipped_deactivate = 0;
    		goto retry;
    	}
    
    	/* Untapped cgroup reserves?  Don't OOM, retry. */
    	if (sc->memcg_low_skipped) {
    		sc->priority = initial_priority;
    		sc->force_deactivate = 0;
    		sc->memcg_low_reclaim = 1;
    		sc->memcg_low_skipped = 0;
    		goto retry;
    	}
    
    	return 0;
    }
    
    static bool allow_direct_reclaim(pg_data_t *pgdat)
    {
    	struct zone *zone;
    	unsigned long pfmemalloc_reserve = 0;
    	unsigned long free_pages = 0;
    	int i;
    	bool wmark_ok;
    
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    		return true;
    
    	for (i = 0; i <= ZONE_NORMAL; i++) {
    		zone = &pgdat->node_zones[i];
    		if (!managed_zone(zone))
    			continue;
    
    		if (!zone_reclaimable_pages(zone))
    			continue;
    
    		pfmemalloc_reserve += min_wmark_pages(zone);
    		free_pages += zone_page_state(zone, NR_FREE_PAGES);
    	}
    
    	/* If there are no reserves (unexpected config) then do not throttle */
    	if (!pfmemalloc_reserve)
    		return true;
    
    	wmark_ok = free_pages > pfmemalloc_reserve / 2;
    
    	/* kswapd must be awake if processes are being throttled */
    	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
    		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
    			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
    
    		wake_up_interruptible(&pgdat->kswapd_wait);
    	}
    
    	return wmark_ok;
    }
    
    /*
     * Throttle direct reclaimers if backing storage is backed by the network
     * and the PFMEMALLOC reserve for the preferred node is getting dangerously
     * depleted. kswapd will continue to make progress and wake the processes
     * when the low watermark is reached.
     *
     * Returns true if a fatal signal was delivered during throttling. If this
     * happens, the page allocator should not consider triggering the OOM killer.
     */
    static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
    					nodemask_t *nodemask)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	pg_data_t *pgdat = NULL;
    
    	/*
    	 * Kernel threads should not be throttled as they may be indirectly
    	 * responsible for cleaning pages necessary for reclaim to make forward
    	 * progress. kjournald for example may enter direct reclaim while
    	 * committing a transaction where throttling it could forcing other
    	 * processes to block on log_wait_commit().
    	 */
    	if (current->flags & PF_KTHREAD)
    		goto out;
    
    	/*
    	 * If a fatal signal is pending, this process should not throttle.
    	 * It should return quickly so it can exit and free its memory
    	 */
    	if (fatal_signal_pending(current))
    		goto out;
    
    	/*
    	 * Check if the pfmemalloc reserves are ok by finding the first node
    	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
    	 * GFP_KERNEL will be required for allocating network buffers when
    	 * swapping over the network so ZONE_HIGHMEM is unusable.
    	 *
    	 * Throttling is based on the first usable node and throttled processes
    	 * wait on a queue until kswapd makes progress and wakes them. There
    	 * is an affinity then between processes waking up and where reclaim
    	 * progress has been made assuming the process wakes on the same node.
    	 * More importantly, processes running on remote nodes will not compete
    	 * for remote pfmemalloc reserves and processes on different nodes
    	 * should make reasonable progress.
    	 */
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    					gfp_zone(gfp_mask), nodemask) {
    		if (zone_idx(zone) > ZONE_NORMAL)
    			continue;
    
    		/* Throttle based on the first usable node */
    		pgdat = zone->zone_pgdat;
    		if (allow_direct_reclaim(pgdat))
    			goto out;
    		break;
    	}
    
    	/* If no zone was usable by the allocation flags then do not throttle */
    	if (!pgdat)
    		goto out;
    
    	/* Account for the throttling */
    	count_vm_event(PGSCAN_DIRECT_THROTTLE);
    
    	/*
    	 * If the caller cannot enter the filesystem, it's possible that it
    	 * is due to the caller holding an FS lock or performing a journal
    	 * transaction in the case of a filesystem like ext[3|4]. In this case,
    	 * it is not safe to block on pfmemalloc_wait as kswapd could be
    	 * blocked waiting on the same lock. Instead, throttle for up to a
    	 * second before continuing.
    	 */
    	if (!(gfp_mask & __GFP_FS)) {
    		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
    			allow_direct_reclaim(pgdat), HZ);
    
    		goto check_pending;
    	}
    
    	/* Throttle until kswapd wakes the process */
    	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
    		allow_direct_reclaim(pgdat));
    
    check_pending:
    	if (fatal_signal_pending(current))
    		return true;
    
    out:
    	return false;
    }
    
    unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
    				gfp_t gfp_mask, nodemask_t *nodemask)
    {
    	unsigned long nr_reclaimed;
    	struct scan_control sc = {
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.gfp_mask = current_gfp_context(gfp_mask),
    		.reclaim_idx = gfp_zone(gfp_mask),
    		.order = order,
    		.nodemask = nodemask,
    		.priority = DEF_PRIORITY,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = 1,
    	};
    
    	/*
    	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
    	 * Confirm they are large enough for max values.
    	 */
    	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
    	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
    	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
    
    	/*
    	 * Do not enter reclaim if fatal signal was delivered while throttled.
    	 * 1 is returned so that the page allocator does not OOM kill at this
    	 * point.
    	 */
    	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
    		return 1;
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
    	set_task_reclaim_state(current, NULL);
    
    	return nr_reclaimed;
    }
    
    #ifdef CONFIG_MEMCG
    
    /* Only used by soft limit reclaim. Do not reuse for anything else. */
    unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
    						gfp_t gfp_mask, bool noswap,
    						pg_data_t *pgdat,
    						unsigned long *nr_scanned)
    {
    	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    	struct scan_control sc = {
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.target_mem_cgroup = memcg,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.may_swap = !noswap,
    	};
    
    	WARN_ON_ONCE(!current->reclaim_state);
    
    	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
    						      sc.gfp_mask);
    
    	/*
    	 * NOTE: Although we can get the priority field, using it
    	 * here is not a good idea, since it limits the pages we can scan.
    	 * if we don't reclaim here, the shrink_node from balance_pgdat
    	 * will pick up pages from other mem cgroup's as well. We hack
    	 * the priority and make it zero.
    	 */
    	shrink_lruvec(lruvec, &sc);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
    
    	*nr_scanned = sc.nr_scanned;
    
    	return sc.nr_reclaimed;
    }
    
    unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
    					   unsigned long nr_pages,
    					   gfp_t gfp_mask,
    					   bool may_swap)
    {
    	unsigned long nr_reclaimed;
    	unsigned int noreclaim_flag;
    	struct scan_control sc = {
    		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
    				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.target_mem_cgroup = memcg,
    		.priority = DEF_PRIORITY,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = may_swap,
    	};
    	/*
    	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
    	 * equal pressure on all the nodes. This is based on the assumption that
    	 * the reclaim does not bail out early.
    	 */
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
    	noreclaim_flag = memalloc_noreclaim_save();
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	memalloc_noreclaim_restore(noreclaim_flag);
    	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
    	set_task_reclaim_state(current, NULL);
    
    	return nr_reclaimed;
    }
    #endif
    
    static void age_active_anon(struct pglist_data *pgdat,
    				struct scan_control *sc)
    {
    	struct mem_cgroup *memcg;
    	struct lruvec *lruvec;
    
    	if (!total_swap_pages)
    		return;
    
    	lruvec = mem_cgroup_lruvec(NULL, pgdat);
    	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    		return;
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		lruvec = mem_cgroup_lruvec(memcg, pgdat);
    		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    				   sc, LRU_ACTIVE_ANON);
    		memcg = mem_cgroup_iter(NULL, memcg, NULL);
    	} while (memcg);
    }
    
    static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
    {
    	int i;
    	struct zone *zone;
    
    	/*
    	 * Check for watermark boosts top-down as the higher zones
    	 * are more likely to be boosted. Both watermarks and boosts
    	 * should not be checked at the same time as reclaim would
    	 * start prematurely when there is no boosting and a lower
    	 * zone is balanced.
    	 */
    	for (i = highest_zoneidx; i >= 0; i--) {
    		zone = pgdat->node_zones + i;
    		if (!managed_zone(zone))
    			continue;
    
    		if (zone->watermark_boost)
    			return true;
    	}
    
    	return false;
    }
    
    /*
     * Returns true if there is an eligible zone balanced for the request order
     * and highest_zoneidx
     */
    static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
    {
    	int i;
    	unsigned long mark = -1;
    	struct zone *zone;
    
    	/*
    	 * Check watermarks bottom-up as lower zones are more likely to
    	 * meet watermarks.
    	 */
    	for (i = 0; i <= highest_zoneidx; i++) {
    		zone = pgdat->node_zones + i;
    
    		if (!managed_zone(zone))
    			continue;
    
    		mark = high_wmark_pages(zone);
    		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
    			return true;
    	}
    
    	/*
    	 * If a node has no populated zone within highest_zoneidx, it does not
    	 * need balancing by definition. This can happen if a zone-restricted
    	 * allocation tries to wake a remote kswapd.
    	 */
    	if (mark == -1)
    		return true;
    
    	return false;
    }
    
    /* Clear pgdat state for congested, dirty or under writeback. */
    static void clear_pgdat_congested(pg_data_t *pgdat)
    {
    	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
    
    	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    	clear_bit(PGDAT_DIRTY, &pgdat->flags);
    	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
    }
    
    /*
     * Prepare kswapd for sleeping. This verifies that there are no processes
     * waiting in throttle_direct_reclaim() and that watermarks have been met.
     *
     * Returns true if kswapd is ready to sleep
     */
    static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
    				int highest_zoneidx)
    {
    	/*
    	 * The throttled processes are normally woken up in balance_pgdat() as
    	 * soon as allow_direct_reclaim() is true. But there is a potential
    	 * race between when kswapd checks the watermarks and a process gets
    	 * throttled. There is also a potential race if processes get
    	 * throttled, kswapd wakes, a large process exits thereby balancing the
    	 * zones, which causes kswapd to exit balance_pgdat() before reaching
    	 * the wake up checks. If kswapd is going to sleep, no process should
    	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
    	 * the wake up is premature, processes will wake kswapd and get
    	 * throttled again. The difference from wake ups in balance_pgdat() is
    	 * that here we are under prepare_to_wait().
    	 */
    	if (waitqueue_active(&pgdat->pfmemalloc_wait))
    		wake_up_all(&pgdat->pfmemalloc_wait);
    
    	/* Hopeless node, leave it to direct reclaim */
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    		return true;
    
    	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
    		clear_pgdat_congested(pgdat);
    		return true;
    	}
    
    	return false;
    }
    
    /*
     * kswapd shrinks a node of pages that are at or below the highest usable
     * zone that is currently unbalanced.
     *
     * Returns true if kswapd scanned at least the requested number of pages to
     * reclaim or if the lack of progress was due to pages under writeback.
     * This is used to determine if the scanning priority needs to be raised.
     */
    static bool kswapd_shrink_node(pg_data_t *pgdat,
    			       struct scan_control *sc)
    {
    	struct zone *zone;
    	int z;
    
    	/* Reclaim a number of pages proportional to the number of zones */
    	sc->nr_to_reclaim = 0;
    	for (z = 0; z <= sc->reclaim_idx; z++) {
    		zone = pgdat->node_zones + z;
    		if (!managed_zone(zone))
    			continue;
    
    		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
    	}
    
    	/*
    	 * Historically care was taken to put equal pressure on all zones but
    	 * now pressure is applied based on node LRU order.
    	 */
    	shrink_node(pgdat, sc);
    
    	/*
    	 * Fragmentation may mean that the system cannot be rebalanced for
    	 * high-order allocations. If twice the allocation size has been
    	 * reclaimed then recheck watermarks only at order-0 to prevent
    	 * excessive reclaim. Assume that a process requested a high-order
    	 * can direct reclaim/compact.
    	 */
    	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
    		sc->order = 0;
    
    	return sc->nr_scanned >= sc->nr_to_reclaim;
    }
    
    /*
     * For kswapd, balance_pgdat() will reclaim pages across a node from zones
     * that are eligible for use by the caller until at least one zone is
     * balanced.
     *
     * Returns the order kswapd finished reclaiming at.
     *
     * kswapd scans the zones in the highmem->normal->dma direction.  It skips
     * zones which have free_pages > high_wmark_pages(zone), but once a zone is
     * found to have free_pages <= high_wmark_pages(zone), any page in that zone
     * or lower is eligible for reclaim until at least one usable zone is
     * balanced.
     */
    static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
    {
    	int i;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	unsigned long pflags;
    	unsigned long nr_boost_reclaim;
    	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
    	bool boosted;
    	struct zone *zone;
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.order = order,
    		.may_unmap = 1,
    	};
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	psi_memstall_enter(&pflags);
    	__fs_reclaim_acquire();
    
    	count_vm_event(PAGEOUTRUN);
    
    	/*
    	 * Account for the reclaim boost. Note that the zone boost is left in
    	 * place so that parallel allocations that are near the watermark will
    	 * stall or direct reclaim until kswapd is finished.
    	 */
    	nr_boost_reclaim = 0;
    	for (i = 0; i <= highest_zoneidx; i++) {
    		zone = pgdat->node_zones + i;
    		if (!managed_zone(zone))
    			continue;
    
    		nr_boost_reclaim += zone->watermark_boost;
    		zone_boosts[i] = zone->watermark_boost;
    	}
    	boosted = nr_boost_reclaim;
    
    restart:
    	sc.priority = DEF_PRIORITY;
    	do {
    		unsigned long nr_reclaimed = sc.nr_reclaimed;
    		bool raise_priority = true;
    		bool balanced;
    		bool ret;
    
    		sc.reclaim_idx = highest_zoneidx;
    
    		/*
    		 * If the number of buffer_heads exceeds the maximum allowed
    		 * then consider reclaiming from all zones. This has a dual
    		 * purpose -- on 64-bit systems it is expected that
    		 * buffer_heads are stripped during active rotation. On 32-bit
    		 * systems, highmem pages can pin lowmem memory and shrinking
    		 * buffers can relieve lowmem pressure. Reclaim may still not
    		 * go ahead if all eligible zones for the original allocation
    		 * request are balanced to avoid excessive reclaim from kswapd.
    		 */
    		if (buffer_heads_over_limit) {
    			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
    				zone = pgdat->node_zones + i;
    				if (!managed_zone(zone))
    					continue;
    
    				sc.reclaim_idx = i;
    				break;
    			}
    		}
    
    		/*
    		 * If the pgdat is imbalanced then ignore boosting and preserve
    		 * the watermarks for a later time and restart. Note that the
    		 * zone watermarks will be still reset at the end of balancing
    		 * on the grounds that the normal reclaim should be enough to
    		 * re-evaluate if boosting is required when kswapd next wakes.
    		 */
    		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
    		if (!balanced && nr_boost_reclaim) {
    			nr_boost_reclaim = 0;
    			goto restart;
    		}
    
    		/*
    		 * If boosting is not active then only reclaim if there are no
    		 * eligible zones. Note that sc.reclaim_idx is not used as
    		 * buffer_heads_over_limit may have adjusted it.
    		 */
    		if (!nr_boost_reclaim && balanced)
    			goto out;
    
    		/* Limit the priority of boosting to avoid reclaim writeback */
    		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
    			raise_priority = false;
    
    		/*
    		 * Do not writeback or swap pages for boosted reclaim. The
    		 * intent is to relieve pressure not issue sub-optimal IO
    		 * from reclaim context. If no pages are reclaimed, the
    		 * reclaim will be aborted.
    		 */
    		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
    		sc.may_swap = !nr_boost_reclaim;
    
    		/*
    		 * Do some background aging of the anon list, to give
    		 * pages a chance to be referenced before reclaiming. All
    		 * pages are rotated regardless of classzone as this is
    		 * about consistent aging.
    		 */
    		age_active_anon(pgdat, &sc);
    
    		/*
    		 * If we're getting trouble reclaiming, start doing writepage
    		 * even in laptop mode.
    		 */
    		if (sc.priority < DEF_PRIORITY - 2)
    			sc.may_writepage = 1;
    
    		/* Call soft limit reclaim before calling shrink_node. */
    		sc.nr_scanned = 0;
    		nr_soft_scanned = 0;
    		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
    						sc.gfp_mask, &nr_soft_scanned);
    		sc.nr_reclaimed += nr_soft_reclaimed;
    
    		/*
    		 * There should be no need to raise the scanning priority if
    		 * enough pages are already being scanned that that high
    		 * watermark would be met at 100% efficiency.
    		 */
    		if (kswapd_shrink_node(pgdat, &sc))
    			raise_priority = false;
    
    		/*
    		 * If the low watermark is met there is no need for processes
    		 * to be throttled on pfmemalloc_wait as they should not be
    		 * able to safely make forward progress. Wake them
    		 */
    		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
    				allow_direct_reclaim(pgdat))
    			wake_up_all(&pgdat->pfmemalloc_wait);
    
    		/* Check if kswapd should be suspending */
    		__fs_reclaim_release();
    		ret = try_to_freeze();
    		__fs_reclaim_acquire();
    		if (ret || kthread_should_stop())
    			break;
    
    		/*
    		 * Raise priority if scanning rate is too low or there was no
    		 * progress in reclaiming pages
    		 */
    		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
    		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
    
    		/*
    		 * If reclaim made no progress for a boost, stop reclaim as
    		 * IO cannot be queued and it could be an infinite loop in
    		 * extreme circumstances.
    		 */
    		if (nr_boost_reclaim && !nr_reclaimed)
    			break;
    
    		if (raise_priority || !nr_reclaimed)
    			sc.priority--;
    	} while (sc.priority >= 1);
    
    	if (!sc.nr_reclaimed)
    		pgdat->kswapd_failures++;
    
    out:
    	/* If reclaim was boosted, account for the reclaim done in this pass */
    	if (boosted) {
    		unsigned long flags;
    
    		for (i = 0; i <= highest_zoneidx; i++) {
    			if (!zone_boosts[i])
    				continue;
    
    			/* Increments are under the zone lock */
    			zone = pgdat->node_zones + i;
    			spin_lock_irqsave(&zone->lock, flags);
    			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
    			spin_unlock_irqrestore(&zone->lock, flags);
    		}
    
    		/*
    		 * As there is now likely space, wakeup kcompact to defragment
    		 * pageblocks.
    		 */
    		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
    	}
    
    	snapshot_refaults(NULL, pgdat);
    	__fs_reclaim_release();
    	psi_memstall_leave(&pflags);
    	set_task_reclaim_state(current, NULL);
    
    	/*
    	 * Return the order kswapd stopped reclaiming at as
    	 * prepare_kswapd_sleep() takes it into account. If another caller
    	 * entered the allocator slow path while kswapd was awake, order will
    	 * remain at the higher level.
    	 */
    	return sc.order;
    }
    
    /*
     * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
     * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
     * not a valid index then either kswapd runs for first time or kswapd couldn't
     * sleep after previous reclaim attempt (node is still unbalanced). In that
     * case return the zone index of the previous kswapd reclaim cycle.
     */
    static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
    					   enum zone_type prev_highest_zoneidx)
    {
    	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    
    	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
    }
    
    static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
    				unsigned int highest_zoneidx)
    {
    	long remaining = 0;
    	DEFINE_WAIT(wait);
    
    	if (freezing(current) || kthread_should_stop())
    		return;
    
    	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    
    	/*
    	 * Try to sleep for a short interval. Note that kcompactd will only be
    	 * woken if it is possible to sleep for a short interval. This is
    	 * deliberate on the assumption that if reclaim cannot keep an
    	 * eligible zone balanced that it's also unlikely that compaction will
    	 * succeed.
    	 */
    	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    		/*
    		 * Compaction records what page blocks it recently failed to
    		 * isolate pages from and skips them in the future scanning.
    		 * When kswapd is going to sleep, it is reasonable to assume
    		 * that pages and compaction may succeed so reset the cache.
    		 */
    		reset_isolation_suitable(pgdat);
    
    		/*
    		 * We have freed the memory, now we should compact it to make
    		 * allocation of the requested order possible.
    		 */
    		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
    
    		remaining = schedule_timeout(HZ/10);
    
    		/*
    		 * If woken prematurely then reset kswapd_highest_zoneidx and
    		 * order. The values will either be from a wakeup request or
    		 * the previous request that slept prematurely.
    		 */
    		if (remaining) {
    			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
    					kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx));
    
    			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
    				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
    		}
    
    		finish_wait(&pgdat->kswapd_wait, &wait);
    		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    	}
    
    	/*
    	 * After a short sleep, check if it was a premature sleep. If not, then
    	 * go fully to sleep until explicitly woken up.
    	 */
    	if (!remaining &&
    	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
    
    		/*
    		 * vmstat counters are not perfectly accurate and the estimated
    		 * value for counters such as NR_FREE_PAGES can deviate from the
    		 * true value by nr_online_cpus * threshold. To avoid the zone
    		 * watermarks being breached while under pressure, we reduce the
    		 * per-cpu vmstat threshold while kswapd is awake and restore
    		 * them before going back to sleep.
    		 */
    		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
    
    		if (!kthread_should_stop())
    			schedule();
    
    		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
    	} else {
    		if (remaining)
    			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
    		else
    			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
    	}
    	finish_wait(&pgdat->kswapd_wait, &wait);
    }
    
    /*
     * The background pageout daemon, started as a kernel thread
     * from the init process.
     *
     * This basically trickles out pages so that we have _some_
     * free memory available even if there is no other activity
     * that frees anything up. This is needed for things like routing
     * etc, where we otherwise might have all activity going on in
     * asynchronous contexts that cannot page things out.
     *
     * If there are applications that are active memory-allocators
     * (most normal use), this basically shouldn't matter.
     */
    static int kswapd(void *p)
    {
    	unsigned int alloc_order, reclaim_order;
    	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
    	pg_data_t *pgdat = (pg_data_t*)p;
    	struct task_struct *tsk = current;
    	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    
    	if (!cpumask_empty(cpumask))
    		set_cpus_allowed_ptr(tsk, cpumask);
    
    	/*
    	 * Tell the memory management that we're a "memory allocator",
    	 * and that if we need more memory we should get access to it
    	 * regardless (see "__alloc_pages()"). "kswapd" should
    	 * never get caught in the normal page freeing logic.
    	 *
    	 * (Kswapd normally doesn't need memory anyway, but sometimes
    	 * you need a small amount of memory in order to be able to
    	 * page out something else, and this flag essentially protects
    	 * us from recursively trying to free more memory as we're
    	 * trying to free the first piece of memory in the first place).
    	 */
    	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
    	set_freezable();
    
    	WRITE_ONCE(pgdat->kswapd_order, 0);
    	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    	for ( ; ; ) {
    		bool ret;
    
    		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
    		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx);
    
    kswapd_try_sleep:
    		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
    					highest_zoneidx);
    
    		/* Read the new order and highest_zoneidx */
    		alloc_order = READ_ONCE(pgdat->kswapd_order);
    		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx);
    		WRITE_ONCE(pgdat->kswapd_order, 0);
    		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    
    		ret = try_to_freeze();
    		if (kthread_should_stop())
    			break;
    
    		/*
    		 * We can speed up thawing tasks if we don't call balance_pgdat
    		 * after returning from the refrigerator
    		 */
    		if (ret)
    			continue;
    
    		/*
    		 * Reclaim begins at the requested order but if a high-order
    		 * reclaim fails then kswapd falls back to reclaiming for
    		 * order-0. If that happens, kswapd will consider sleeping
    		 * for the order it finished reclaiming at (reclaim_order)
    		 * but kcompactd is woken to compact for the original
    		 * request (alloc_order).
    		 */
    		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
    						alloc_order);
    		reclaim_order = balance_pgdat(pgdat, alloc_order,
    						highest_zoneidx);
    		if (reclaim_order < alloc_order)
    			goto kswapd_try_sleep;
    	}
    
    	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
    
    	return 0;
    }
    
    /*
     * A zone is low on free memory or too fragmented for high-order memory.  If
     * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
     * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
     * has failed or is not needed, still wake up kcompactd if only compaction is
     * needed.
     */
    void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
    		   enum zone_type highest_zoneidx)
    {
    	pg_data_t *pgdat;
    	enum zone_type curr_idx;
    
    	if (!managed_zone(zone))
    		return;
    
    	if (!cpuset_zone_allowed(zone, gfp_flags))
    		return;
    
    	pgdat = zone->zone_pgdat;
    	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    
    	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
    		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
    
    	if (READ_ONCE(pgdat->kswapd_order) < order)
    		WRITE_ONCE(pgdat->kswapd_order, order);
    
    	if (!waitqueue_active(&pgdat->kswapd_wait))
    		return;
    
    	/* Hopeless node, leave it to direct reclaim if possible */
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
    	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
    	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
    		/*
    		 * There may be plenty of free memory available, but it's too
    		 * fragmented for high-order allocations.  Wake up kcompactd
    		 * and rely on compaction_suitable() to determine if it's
    		 * needed.  If it fails, it will defer subsequent attempts to
    		 * ratelimit its work.
    		 */
    		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
    			wakeup_kcompactd(pgdat, order, highest_zoneidx);
    		return;
    	}
    
    	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
    				      gfp_flags);
    	wake_up_interruptible(&pgdat->kswapd_wait);
    }
    
    #ifdef CONFIG_HIBERNATION
    /*
     * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
     * freed pages.
     *
     * Rather than trying to age LRUs the aim is to preserve the overall
     * LRU order by reclaiming preferentially
     * inactive > active > active referenced > active mapped
     */
    unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
    {
    	struct scan_control sc = {
    		.nr_to_reclaim = nr_to_reclaim,
    		.gfp_mask = GFP_HIGHUSER_MOVABLE,
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.priority = DEF_PRIORITY,
    		.may_writepage = 1,
    		.may_unmap = 1,
    		.may_swap = 1,
    		.hibernation_mode = 1,
    	};
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    	unsigned long nr_reclaimed;
    	unsigned int noreclaim_flag;
    
    	fs_reclaim_acquire(sc.gfp_mask);
    	noreclaim_flag = memalloc_noreclaim_save();
    	set_task_reclaim_state(current, &sc.reclaim_state);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	set_task_reclaim_state(current, NULL);
    	memalloc_noreclaim_restore(noreclaim_flag);
    	fs_reclaim_release(sc.gfp_mask);
    
    	return nr_reclaimed;
    }
    #endif /* CONFIG_HIBERNATION */
    
    /*
     * This kswapd start function will be called by init and node-hot-add.
     * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
     */
    int kswapd_run(int nid)
    {
    	pg_data_t *pgdat = NODE_DATA(nid);
    	int ret = 0;
    
    	if (pgdat->kswapd)
    		return 0;
    
    	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
    	if (IS_ERR(pgdat->kswapd)) {
    		/* failure at boot is fatal */
    		BUG_ON(system_state < SYSTEM_RUNNING);
    		pr_err("Failed to start kswapd on node %d\n", nid);
    		ret = PTR_ERR(pgdat->kswapd);
    		pgdat->kswapd = NULL;
    	}
    	return ret;
    }
    
    /*
     * Called by memory hotplug when all memory in a node is offlined.  Caller must
     * hold mem_hotplug_begin/end().
     */
    void kswapd_stop(int nid)
    {
    	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
    
    	if (kswapd) {
    		kthread_stop(kswapd);
    		NODE_DATA(nid)->kswapd = NULL;
    	}
    }
    
    static int __init kswapd_init(void)
    {
    	int nid;
    
    	swap_setup();
    	for_each_node_state(nid, N_MEMORY)
     		kswapd_run(nid);
    	return 0;
    }
    
    module_init(kswapd_init)
    
    #ifdef CONFIG_NUMA
    /*
     * Node reclaim mode
     *
     * If non-zero call node_reclaim when the number of free pages falls below
     * the watermarks.
     */
    int node_reclaim_mode __read_mostly;
    
    #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
    #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
    
    /*
     * Priority for NODE_RECLAIM. This determines the fraction of pages
     * of a node considered for each zone_reclaim. 4 scans 1/16th of
     * a zone.
     */
    #define NODE_RECLAIM_PRIORITY 4
    
    /*
     * Percentage of pages in a zone that must be unmapped for node_reclaim to
     * occur.
     */
    int sysctl_min_unmapped_ratio = 1;
    
    /*
     * If the number of slab pages in a zone grows beyond this percentage then
     * slab reclaim needs to occur.
     */
    int sysctl_min_slab_ratio = 5;
    
    static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
    {
    	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
    	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
    		node_page_state(pgdat, NR_ACTIVE_FILE);
    
    	/*
    	 * It's possible for there to be more file mapped pages than
    	 * accounted for by the pages on the file LRU lists because
    	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
    	 */
    	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
    }
    
    /* Work out how many page cache pages we can reclaim in this reclaim_mode */
    static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
    {
    	unsigned long nr_pagecache_reclaimable;
    	unsigned long delta = 0;
    
    	/*
    	 * If RECLAIM_UNMAP is set, then all file pages are considered
    	 * potentially reclaimable. Otherwise, we have to worry about
    	 * pages like swapcache and node_unmapped_file_pages() provides
    	 * a better estimate
    	 */
    	if (node_reclaim_mode & RECLAIM_UNMAP)
    		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
    	else
    		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
    
    	/* If we can't clean pages, remove dirty pages from consideration */
    	if (!(node_reclaim_mode & RECLAIM_WRITE))
    		delta += node_page_state(pgdat, NR_FILE_DIRTY);
    
    	/* Watch for any possible underflows due to delta */
    	if (unlikely(delta > nr_pagecache_reclaimable))
    		delta = nr_pagecache_reclaimable;
    
    	return nr_pagecache_reclaimable - delta;
    }
    
    /*
     * Try to free up some pages from this node through reclaim.
     */
    static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    {
    	/* Minimum pages needed in order to stay on node */
    	const unsigned long nr_pages = 1 << order;
    	struct task_struct *p = current;
    	unsigned int noreclaim_flag;
    	struct scan_control sc = {
    		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    		.gfp_mask = current_gfp_context(gfp_mask),
    		.order = order,
    		.priority = NODE_RECLAIM_PRIORITY,
    		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
    		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
    		.may_swap = 1,
    		.reclaim_idx = gfp_zone(gfp_mask),
    	};
    
    	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
    					   sc.gfp_mask);
    
    	cond_resched();
    	fs_reclaim_acquire(sc.gfp_mask);
    	/*
    	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
    	 * and we also need to be able to write out pages for RECLAIM_WRITE
    	 * and RECLAIM_UNMAP.
    	 */
    	noreclaim_flag = memalloc_noreclaim_save();
    	p->flags |= PF_SWAPWRITE;
    	set_task_reclaim_state(p, &sc.reclaim_state);
    
    	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
    		/*
    		 * Free memory by calling shrink node with increasing
    		 * priorities until we have enough memory freed.
    		 */
    		do {
    			shrink_node(pgdat, &sc);
    		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
    	}
    
    	set_task_reclaim_state(p, NULL);
    	current->flags &= ~PF_SWAPWRITE;
    	memalloc_noreclaim_restore(noreclaim_flag);
    	fs_reclaim_release(sc.gfp_mask);
    
    	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
    
    	return sc.nr_reclaimed >= nr_pages;
    }
    
    int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    {
    	int ret;
    
    	/*
    	 * Node reclaim reclaims unmapped file backed pages and
    	 * slab pages if we are over the defined limits.
    	 *
    	 * A small portion of unmapped file backed pages is needed for
    	 * file I/O otherwise pages read by file I/O will be immediately
    	 * thrown out if the node is overallocated. So we do not reclaim
    	 * if less than a specified percentage of the node is used by
    	 * unmapped file backed pages.
    	 */
    	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
    	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
    	    pgdat->min_slab_pages)
    		return NODE_RECLAIM_FULL;
    
    	/*
    	 * Do not scan if the allocation should not be delayed.
    	 */
    	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
    		return NODE_RECLAIM_NOSCAN;
    
    	/*
    	 * Only run node reclaim on the local node or on nodes that do not
    	 * have associated processors. This will favor the local processor
    	 * over remote processors and spread off node memory allocations
    	 * as wide as possible.
    	 */
    	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
    		return NODE_RECLAIM_NOSCAN;
    
    	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
    		return NODE_RECLAIM_NOSCAN;
    
    	ret = __node_reclaim(pgdat, gfp_mask, order);
    	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
    
    	if (!ret)
    		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
    
    	return ret;
    }
    #endif
    
    /**
     * check_move_unevictable_pages - check pages for evictability and move to
     * appropriate zone lru list
     * @pvec: pagevec with lru pages to check
     *
     * Checks pages for evictability, if an evictable page is in the unevictable
     * lru list, moves it to the appropriate evictable lru list. This function
     * should be only used for lru pages.
     */
    void check_move_unevictable_pages(struct pagevec *pvec)
    {
    	struct lruvec *lruvec = NULL;
    	int pgscanned = 0;
    	int pgrescued = 0;
    	int i;
    
    	for (i = 0; i < pvec->nr; i++) {
    		struct page *page = pvec->pages[i];
    		int nr_pages;
    
    		if (PageTransTail(page))
    			continue;
    
    		nr_pages = thp_nr_pages(page);
    		pgscanned += nr_pages;
    
    		/* block memcg migration during page moving between lru */
    		if (!TestClearPageLRU(page))
    			continue;
    
    		lruvec = relock_page_lruvec_irq(page, lruvec);
    		if (page_evictable(page) && PageUnevictable(page)) {
    			del_page_from_lru_list(page, lruvec);
    			ClearPageUnevictable(page);
    			add_page_to_lru_list(page, lruvec);
    			pgrescued += nr_pages;
    		}
    		SetPageLRU(page);
    	}
    
    	if (lruvec) {
    		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
    		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    		unlock_page_lruvec_irq(lruvec);
    	} else if (pgscanned) {
    		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    	}
    }
    EXPORT_SYMBOL_GPL(check_move_unevictable_pages);