Skip to content
Snippets Groups Projects
Select Git revision
  • d4af56c5c7c6781ca6ca8075e2cf5bc119ed33d1
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

nommu.c

Blame
  • nommu.c 44.71 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     *  linux/mm/nommu.c
     *
     *  Replacement code for mm functions to support CPU's that don't
     *  have any form of memory management unit (thus no virtual memory).
     *
     *  See Documentation/admin-guide/mm/nommu-mmap.rst
     *
     *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
     *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
     *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
     *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
     *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/export.h>
    #include <linux/mm.h>
    #include <linux/sched/mm.h>
    #include <linux/vmacache.h>
    #include <linux/mman.h>
    #include <linux/swap.h>
    #include <linux/file.h>
    #include <linux/highmem.h>
    #include <linux/pagemap.h>
    #include <linux/slab.h>
    #include <linux/vmalloc.h>
    #include <linux/backing-dev.h>
    #include <linux/compiler.h>
    #include <linux/mount.h>
    #include <linux/personality.h>
    #include <linux/security.h>
    #include <linux/syscalls.h>
    #include <linux/audit.h>
    #include <linux/printk.h>
    
    #include <linux/uaccess.h>
    #include <asm/tlb.h>
    #include <asm/tlbflush.h>
    #include <asm/mmu_context.h>
    #include "internal.h"
    
    void *high_memory;
    EXPORT_SYMBOL(high_memory);
    struct page *mem_map;
    unsigned long max_mapnr;
    EXPORT_SYMBOL(max_mapnr);
    unsigned long highest_memmap_pfn;
    int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
    int heap_stack_gap = 0;
    
    atomic_long_t mmap_pages_allocated;
    
    EXPORT_SYMBOL(mem_map);
    
    /* list of mapped, potentially shareable regions */
    static struct kmem_cache *vm_region_jar;
    struct rb_root nommu_region_tree = RB_ROOT;
    DECLARE_RWSEM(nommu_region_sem);
    
    const struct vm_operations_struct generic_file_vm_ops = {
    };
    
    /*
     * Return the total memory allocated for this pointer, not
     * just what the caller asked for.
     *
     * Doesn't have to be accurate, i.e. may have races.
     */
    unsigned int kobjsize(const void *objp)
    {
    	struct page *page;
    
    	/*
    	 * If the object we have should not have ksize performed on it,
    	 * return size of 0
    	 */
    	if (!objp || !virt_addr_valid(objp))
    		return 0;
    
    	page = virt_to_head_page(objp);
    
    	/*
    	 * If the allocator sets PageSlab, we know the pointer came from
    	 * kmalloc().
    	 */
    	if (PageSlab(page))
    		return ksize(objp);
    
    	/*
    	 * If it's not a compound page, see if we have a matching VMA
    	 * region. This test is intentionally done in reverse order,
    	 * so if there's no VMA, we still fall through and hand back
    	 * PAGE_SIZE for 0-order pages.
    	 */
    	if (!PageCompound(page)) {
    		struct vm_area_struct *vma;
    
    		vma = find_vma(current->mm, (unsigned long)objp);
    		if (vma)
    			return vma->vm_end - vma->vm_start;
    	}
    
    	/*
    	 * The ksize() function is only guaranteed to work for pointers
    	 * returned by kmalloc(). So handle arbitrary pointers here.
    	 */
    	return page_size(page);
    }
    
    /**
     * follow_pfn - look up PFN at a user virtual address
     * @vma: memory mapping
     * @address: user virtual address
     * @pfn: location to store found PFN
     *
     * Only IO mappings and raw PFN mappings are allowed.
     *
     * Returns zero and the pfn at @pfn on success, -ve otherwise.
     */
    int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    	unsigned long *pfn)
    {
    	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    		return -EINVAL;
    
    	*pfn = address >> PAGE_SHIFT;
    	return 0;
    }
    EXPORT_SYMBOL(follow_pfn);
    
    LIST_HEAD(vmap_area_list);
    
    void vfree(const void *addr)
    {
    	kfree(addr);
    }
    EXPORT_SYMBOL(vfree);
    
    void *__vmalloc(unsigned long size, gfp_t gfp_mask)
    {
    	/*
    	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
    	 * returns only a logical address.
    	 */
    	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
    }
    EXPORT_SYMBOL(__vmalloc);
    
    void *__vmalloc_node_range(unsigned long size, unsigned long align,
    		unsigned long start, unsigned long end, gfp_t gfp_mask,
    		pgprot_t prot, unsigned long vm_flags, int node,
    		const void *caller)
    {
    	return __vmalloc(size, gfp_mask);
    }
    
    void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
    		int node, const void *caller)
    {
    	return __vmalloc(size, gfp_mask);
    }
    
    static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
    {
    	void *ret;
    
    	ret = __vmalloc(size, flags);
    	if (ret) {
    		struct vm_area_struct *vma;
    
    		mmap_write_lock(current->mm);
    		vma = find_vma(current->mm, (unsigned long)ret);
    		if (vma)
    			vma->vm_flags |= VM_USERMAP;
    		mmap_write_unlock(current->mm);
    	}
    
    	return ret;
    }
    
    void *vmalloc_user(unsigned long size)
    {
    	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
    }
    EXPORT_SYMBOL(vmalloc_user);
    
    struct page *vmalloc_to_page(const void *addr)
    {
    	return virt_to_page(addr);
    }
    EXPORT_SYMBOL(vmalloc_to_page);
    
    unsigned long vmalloc_to_pfn(const void *addr)
    {
    	return page_to_pfn(virt_to_page(addr));
    }
    EXPORT_SYMBOL(vmalloc_to_pfn);
    
    long vread(char *buf, char *addr, unsigned long count)
    {
    	/* Don't allow overflow */
    	if ((unsigned long) buf + count < count)
    		count = -(unsigned long) buf;
    
    	memcpy(buf, addr, count);
    	return count;
    }
    
    /*
     *	vmalloc  -  allocate virtually contiguous memory
     *
     *	@size:		allocation size
     *
     *	Allocate enough pages to cover @size from the page level
     *	allocator and map them into contiguous kernel virtual space.
     *
     *	For tight control over page level allocator and protection flags
     *	use __vmalloc() instead.
     */
    void *vmalloc(unsigned long size)
    {
    	return __vmalloc(size, GFP_KERNEL);
    }
    EXPORT_SYMBOL(vmalloc);
    
    void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
    
    /*
     *	vzalloc - allocate virtually contiguous memory with zero fill
     *
     *	@size:		allocation size
     *
     *	Allocate enough pages to cover @size from the page level
     *	allocator and map them into contiguous kernel virtual space.
     *	The memory allocated is set to zero.
     *
     *	For tight control over page level allocator and protection flags
     *	use __vmalloc() instead.
     */
    void *vzalloc(unsigned long size)
    {
    	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
    }
    EXPORT_SYMBOL(vzalloc);
    
    /**
     * vmalloc_node - allocate memory on a specific node
     * @size:	allocation size
     * @node:	numa node
     *
     * Allocate enough pages to cover @size from the page level
     * allocator and map them into contiguous kernel virtual space.
     *
     * For tight control over page level allocator and protection flags
     * use __vmalloc() instead.
     */
    void *vmalloc_node(unsigned long size, int node)
    {
    	return vmalloc(size);
    }
    EXPORT_SYMBOL(vmalloc_node);
    
    /**
     * vzalloc_node - allocate memory on a specific node with zero fill
     * @size:	allocation size
     * @node:	numa node
     *
     * Allocate enough pages to cover @size from the page level
     * allocator and map them into contiguous kernel virtual space.
     * The memory allocated is set to zero.
     *
     * For tight control over page level allocator and protection flags
     * use __vmalloc() instead.
     */
    void *vzalloc_node(unsigned long size, int node)
    {
    	return vzalloc(size);
    }
    EXPORT_SYMBOL(vzalloc_node);
    
    /**
     * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
     *	@size:		allocation size
     *
     *	Allocate enough 32bit PA addressable pages to cover @size from the
     *	page level allocator and map them into contiguous kernel virtual space.
     */
    void *vmalloc_32(unsigned long size)
    {
    	return __vmalloc(size, GFP_KERNEL);
    }
    EXPORT_SYMBOL(vmalloc_32);
    
    /**
     * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
     *	@size:		allocation size
     *
     * The resulting memory area is 32bit addressable and zeroed so it can be
     * mapped to userspace without leaking data.
     *
     * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
     * remap_vmalloc_range() are permissible.
     */
    void *vmalloc_32_user(unsigned long size)
    {
    	/*
    	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
    	 * but for now this can simply use vmalloc_user() directly.
    	 */
    	return vmalloc_user(size);
    }
    EXPORT_SYMBOL(vmalloc_32_user);
    
    void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
    {
    	BUG();
    	return NULL;
    }
    EXPORT_SYMBOL(vmap);
    
    void vunmap(const void *addr)
    {
    	BUG();
    }
    EXPORT_SYMBOL(vunmap);
    
    void *vm_map_ram(struct page **pages, unsigned int count, int node)
    {
    	BUG();
    	return NULL;
    }
    EXPORT_SYMBOL(vm_map_ram);
    
    void vm_unmap_ram(const void *mem, unsigned int count)
    {
    	BUG();
    }
    EXPORT_SYMBOL(vm_unmap_ram);
    
    void vm_unmap_aliases(void)
    {
    }
    EXPORT_SYMBOL_GPL(vm_unmap_aliases);
    
    void free_vm_area(struct vm_struct *area)
    {
    	BUG();
    }
    EXPORT_SYMBOL_GPL(free_vm_area);
    
    int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
    		   struct page *page)
    {
    	return -EINVAL;
    }
    EXPORT_SYMBOL(vm_insert_page);
    
    int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    			unsigned long num)
    {
    	return -EINVAL;
    }
    EXPORT_SYMBOL(vm_map_pages);
    
    int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    				unsigned long num)
    {
    	return -EINVAL;
    }
    EXPORT_SYMBOL(vm_map_pages_zero);
    
    /*
     *  sys_brk() for the most part doesn't need the global kernel
     *  lock, except when an application is doing something nasty
     *  like trying to un-brk an area that has already been mapped
     *  to a regular file.  in this case, the unmapping will need
     *  to invoke file system routines that need the global lock.
     */
    SYSCALL_DEFINE1(brk, unsigned long, brk)
    {
    	struct mm_struct *mm = current->mm;
    
    	if (brk < mm->start_brk || brk > mm->context.end_brk)
    		return mm->brk;
    
    	if (mm->brk == brk)
    		return mm->brk;
    
    	/*
    	 * Always allow shrinking brk
    	 */
    	if (brk <= mm->brk) {
    		mm->brk = brk;
    		return brk;
    	}
    
    	/*
    	 * Ok, looks good - let it rip.
    	 */
    	flush_icache_user_range(mm->brk, brk);
    	return mm->brk = brk;
    }
    
    /*
     * initialise the percpu counter for VM and region record slabs
     */
    void __init mmap_init(void)
    {
    	int ret;
    
    	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
    	VM_BUG_ON(ret);
    	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
    }
    
    /*
     * validate the region tree
     * - the caller must hold the region lock
     */
    #ifdef CONFIG_DEBUG_NOMMU_REGIONS
    static noinline void validate_nommu_regions(void)
    {
    	struct vm_region *region, *last;
    	struct rb_node *p, *lastp;
    
    	lastp = rb_first(&nommu_region_tree);
    	if (!lastp)
    		return;
    
    	last = rb_entry(lastp, struct vm_region, vm_rb);
    	BUG_ON(last->vm_end <= last->vm_start);
    	BUG_ON(last->vm_top < last->vm_end);
    
    	while ((p = rb_next(lastp))) {
    		region = rb_entry(p, struct vm_region, vm_rb);
    		last = rb_entry(lastp, struct vm_region, vm_rb);
    
    		BUG_ON(region->vm_end <= region->vm_start);
    		BUG_ON(region->vm_top < region->vm_end);
    		BUG_ON(region->vm_start < last->vm_top);
    
    		lastp = p;
    	}
    }
    #else
    static void validate_nommu_regions(void)
    {
    }
    #endif
    
    /*
     * add a region into the global tree
     */
    static void add_nommu_region(struct vm_region *region)
    {
    	struct vm_region *pregion;
    	struct rb_node **p, *parent;
    
    	validate_nommu_regions();
    
    	parent = NULL;
    	p = &nommu_region_tree.rb_node;
    	while (*p) {
    		parent = *p;
    		pregion = rb_entry(parent, struct vm_region, vm_rb);
    		if (region->vm_start < pregion->vm_start)
    			p = &(*p)->rb_left;
    		else if (region->vm_start > pregion->vm_start)
    			p = &(*p)->rb_right;
    		else if (pregion == region)
    			return;
    		else
    			BUG();
    	}
    
    	rb_link_node(&region->vm_rb, parent, p);
    	rb_insert_color(&region->vm_rb, &nommu_region_tree);
    
    	validate_nommu_regions();
    }
    
    /*
     * delete a region from the global tree
     */
    static void delete_nommu_region(struct vm_region *region)
    {
    	BUG_ON(!nommu_region_tree.rb_node);
    
    	validate_nommu_regions();
    	rb_erase(&region->vm_rb, &nommu_region_tree);
    	validate_nommu_regions();
    }
    
    /*
     * free a contiguous series of pages
     */
    static void free_page_series(unsigned long from, unsigned long to)
    {
    	for (; from < to; from += PAGE_SIZE) {
    		struct page *page = virt_to_page((void *)from);
    
    		atomic_long_dec(&mmap_pages_allocated);
    		put_page(page);
    	}
    }
    
    /*
     * release a reference to a region
     * - the caller must hold the region semaphore for writing, which this releases
     * - the region may not have been added to the tree yet, in which case vm_top
     *   will equal vm_start
     */
    static void __put_nommu_region(struct vm_region *region)
    	__releases(nommu_region_sem)
    {
    	BUG_ON(!nommu_region_tree.rb_node);
    
    	if (--region->vm_usage == 0) {
    		if (region->vm_top > region->vm_start)
    			delete_nommu_region(region);
    		up_write(&nommu_region_sem);
    
    		if (region->vm_file)
    			fput(region->vm_file);
    
    		/* IO memory and memory shared directly out of the pagecache
    		 * from ramfs/tmpfs mustn't be released here */
    		if (region->vm_flags & VM_MAPPED_COPY)
    			free_page_series(region->vm_start, region->vm_top);
    		kmem_cache_free(vm_region_jar, region);
    	} else {
    		up_write(&nommu_region_sem);
    	}
    }
    
    /*
     * release a reference to a region
     */
    static void put_nommu_region(struct vm_region *region)
    {
    	down_write(&nommu_region_sem);
    	__put_nommu_region(region);
    }
    
    void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
    {
    	mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
    	mas_store_prealloc(mas, vma);
    }
    
    void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
    {
    	mas->index = vma->vm_start;
    	mas->last = vma->vm_end - 1;
    	mas_store_prealloc(mas, NULL);
    }
    
    /*
     * add a VMA into a process's mm_struct in the appropriate place in the list
     * and tree and add to the address space's page tree also if not an anonymous
     * page
     * - should be called with mm->mmap_lock held writelocked
     */
    static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
    {
    	struct vm_area_struct *pvma, *prev;
    	struct address_space *mapping;
    	struct rb_node **p, *parent, *rb_prev;
    
    	BUG_ON(!vma->vm_region);
    
    	mm->map_count++;
    	vma->vm_mm = mm;
    
    	/* add the VMA to the mapping */
    	if (vma->vm_file) {
    		mapping = vma->vm_file->f_mapping;
    
    		i_mmap_lock_write(mapping);
    		flush_dcache_mmap_lock(mapping);
    		vma_interval_tree_insert(vma, &mapping->i_mmap);
    		flush_dcache_mmap_unlock(mapping);
    		i_mmap_unlock_write(mapping);
    	}
    
    	/* add the VMA to the tree */
    	parent = rb_prev = NULL;
    	p = &mm->mm_rb.rb_node;
    	while (*p) {
    		parent = *p;
    		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
    
    		/* sort by: start addr, end addr, VMA struct addr in that order
    		 * (the latter is necessary as we may get identical VMAs) */
    		if (vma->vm_start < pvma->vm_start)
    			p = &(*p)->rb_left;
    		else if (vma->vm_start > pvma->vm_start) {
    			rb_prev = parent;
    			p = &(*p)->rb_right;
    		} else if (vma->vm_end < pvma->vm_end)
    			p = &(*p)->rb_left;
    		else if (vma->vm_end > pvma->vm_end) {
    			rb_prev = parent;
    			p = &(*p)->rb_right;
    		} else if (vma < pvma)
    			p = &(*p)->rb_left;
    		else if (vma > pvma) {
    			rb_prev = parent;
    			p = &(*p)->rb_right;
    		} else
    			BUG();
    	}
    
    	rb_link_node(&vma->vm_rb, parent, p);
    	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
    
    	/* add VMA to the VMA list also */
    	prev = NULL;
    	if (rb_prev)
    		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
    
    	__vma_link_list(mm, vma, prev);
    }
    
    /*
     * delete a VMA from its owning mm_struct and address space
     */
    static void delete_vma_from_mm(struct vm_area_struct *vma)
    {
    	int i;
    	struct address_space *mapping;
    	struct mm_struct *mm = vma->vm_mm;
    	struct task_struct *curr = current;
    
    	mm->map_count--;
    	for (i = 0; i < VMACACHE_SIZE; i++) {
    		/* if the vma is cached, invalidate the entire cache */
    		if (curr->vmacache.vmas[i] == vma) {
    			vmacache_invalidate(mm);
    			break;
    		}
    	}
    
    	/* remove the VMA from the mapping */
    	if (vma->vm_file) {
    		mapping = vma->vm_file->f_mapping;
    
    		i_mmap_lock_write(mapping);
    		flush_dcache_mmap_lock(mapping);
    		vma_interval_tree_remove(vma, &mapping->i_mmap);
    		flush_dcache_mmap_unlock(mapping);
    		i_mmap_unlock_write(mapping);
    	}
    
    	/* remove from the MM's tree and list */
    	rb_erase(&vma->vm_rb, &mm->mm_rb);
    
    	__vma_unlink_list(mm, vma);
    }
    
    /*
     * destroy a VMA record
     */
    static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
    {
    	if (vma->vm_ops && vma->vm_ops->close)
    		vma->vm_ops->close(vma);
    	if (vma->vm_file)
    		fput(vma->vm_file);
    	put_nommu_region(vma->vm_region);
    	vm_area_free(vma);
    }
    
    /*
     * look up the first VMA in which addr resides, NULL if none
     * - should be called with mm->mmap_lock at least held readlocked
     */
    struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
    {
    	struct vm_area_struct *vma;
    
    	/* check the cache first */
    	vma = vmacache_find(mm, addr);
    	if (likely(vma))
    		return vma;
    
    	/* trawl the list (there may be multiple mappings in which addr
    	 * resides) */
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (vma->vm_start > addr)
    			return NULL;
    		if (vma->vm_end > addr) {
    			vmacache_update(addr, vma);
    			return vma;
    		}
    	}
    
    	return NULL;
    }
    EXPORT_SYMBOL(find_vma);
    
    /*
     * find a VMA
     * - we don't extend stack VMAs under NOMMU conditions
     */
    struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
    {
    	return find_vma(mm, addr);
    }
    
    /*
     * expand a stack to a given address
     * - not supported under NOMMU conditions
     */
    int expand_stack(struct vm_area_struct *vma, unsigned long address)
    {
    	return -ENOMEM;
    }
    
    /*
     * look up the first VMA exactly that exactly matches addr
     * - should be called with mm->mmap_lock at least held readlocked
     */
    static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
    					     unsigned long addr,
    					     unsigned long len)
    {
    	struct vm_area_struct *vma;
    	unsigned long end = addr + len;
    
    	/* check the cache first */
    	vma = vmacache_find_exact(mm, addr, end);
    	if (vma)
    		return vma;
    
    	/* trawl the list (there may be multiple mappings in which addr
    	 * resides) */
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (vma->vm_start < addr)
    			continue;
    		if (vma->vm_start > addr)
    			return NULL;
    		if (vma->vm_end == end) {
    			vmacache_update(addr, vma);
    			return vma;
    		}
    	}
    
    	return NULL;
    }
    
    /*
     * determine whether a mapping should be permitted and, if so, what sort of
     * mapping we're capable of supporting
     */
    static int validate_mmap_request(struct file *file,
    				 unsigned long addr,
    				 unsigned long len,
    				 unsigned long prot,
    				 unsigned long flags,
    				 unsigned long pgoff,
    				 unsigned long *_capabilities)
    {
    	unsigned long capabilities, rlen;
    	int ret;
    
    	/* do the simple checks first */
    	if (flags & MAP_FIXED)
    		return -EINVAL;
    
    	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
    	    (flags & MAP_TYPE) != MAP_SHARED)
    		return -EINVAL;
    
    	if (!len)
    		return -EINVAL;
    
    	/* Careful about overflows.. */
    	rlen = PAGE_ALIGN(len);
    	if (!rlen || rlen > TASK_SIZE)
    		return -ENOMEM;
    
    	/* offset overflow? */
    	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
    		return -EOVERFLOW;
    
    	if (file) {
    		/* files must support mmap */
    		if (!file->f_op->mmap)
    			return -ENODEV;
    
    		/* work out if what we've got could possibly be shared
    		 * - we support chardevs that provide their own "memory"
    		 * - we support files/blockdevs that are memory backed
    		 */
    		if (file->f_op->mmap_capabilities) {
    			capabilities = file->f_op->mmap_capabilities(file);
    		} else {
    			/* no explicit capabilities set, so assume some
    			 * defaults */
    			switch (file_inode(file)->i_mode & S_IFMT) {
    			case S_IFREG:
    			case S_IFBLK:
    				capabilities = NOMMU_MAP_COPY;
    				break;
    
    			case S_IFCHR:
    				capabilities =
    					NOMMU_MAP_DIRECT |
    					NOMMU_MAP_READ |
    					NOMMU_MAP_WRITE;
    				break;
    
    			default:
    				return -EINVAL;
    			}
    		}
    
    		/* eliminate any capabilities that we can't support on this
    		 * device */
    		if (!file->f_op->get_unmapped_area)
    			capabilities &= ~NOMMU_MAP_DIRECT;
    		if (!(file->f_mode & FMODE_CAN_READ))
    			capabilities &= ~NOMMU_MAP_COPY;
    
    		/* The file shall have been opened with read permission. */
    		if (!(file->f_mode & FMODE_READ))
    			return -EACCES;
    
    		if (flags & MAP_SHARED) {
    			/* do checks for writing, appending and locking */
    			if ((prot & PROT_WRITE) &&
    			    !(file->f_mode & FMODE_WRITE))
    				return -EACCES;
    
    			if (IS_APPEND(file_inode(file)) &&
    			    (file->f_mode & FMODE_WRITE))
    				return -EACCES;
    
    			if (!(capabilities & NOMMU_MAP_DIRECT))
    				return -ENODEV;
    
    			/* we mustn't privatise shared mappings */
    			capabilities &= ~NOMMU_MAP_COPY;
    		} else {
    			/* we're going to read the file into private memory we
    			 * allocate */
    			if (!(capabilities & NOMMU_MAP_COPY))
    				return -ENODEV;
    
    			/* we don't permit a private writable mapping to be
    			 * shared with the backing device */
    			if (prot & PROT_WRITE)
    				capabilities &= ~NOMMU_MAP_DIRECT;
    		}
    
    		if (capabilities & NOMMU_MAP_DIRECT) {
    			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
    			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
    			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
    			    ) {
    				capabilities &= ~NOMMU_MAP_DIRECT;
    				if (flags & MAP_SHARED) {
    					pr_warn("MAP_SHARED not completely supported on !MMU\n");
    					return -EINVAL;
    				}
    			}
    		}
    
    		/* handle executable mappings and implied executable
    		 * mappings */
    		if (path_noexec(&file->f_path)) {
    			if (prot & PROT_EXEC)
    				return -EPERM;
    		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
    			/* handle implication of PROT_EXEC by PROT_READ */
    			if (current->personality & READ_IMPLIES_EXEC) {
    				if (capabilities & NOMMU_MAP_EXEC)
    					prot |= PROT_EXEC;
    			}
    		} else if ((prot & PROT_READ) &&
    			 (prot & PROT_EXEC) &&
    			 !(capabilities & NOMMU_MAP_EXEC)
    			 ) {
    			/* backing file is not executable, try to copy */
    			capabilities &= ~NOMMU_MAP_DIRECT;
    		}
    	} else {
    		/* anonymous mappings are always memory backed and can be
    		 * privately mapped
    		 */
    		capabilities = NOMMU_MAP_COPY;
    
    		/* handle PROT_EXEC implication by PROT_READ */
    		if ((prot & PROT_READ) &&
    		    (current->personality & READ_IMPLIES_EXEC))
    			prot |= PROT_EXEC;
    	}
    
    	/* allow the security API to have its say */
    	ret = security_mmap_addr(addr);
    	if (ret < 0)
    		return ret;
    
    	/* looks okay */
    	*_capabilities = capabilities;
    	return 0;
    }
    
    /*
     * we've determined that we can make the mapping, now translate what we
     * now know into VMA flags
     */
    static unsigned long determine_vm_flags(struct file *file,
    					unsigned long prot,
    					unsigned long flags,
    					unsigned long capabilities)
    {
    	unsigned long vm_flags;
    
    	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
    	/* vm_flags |= mm->def_flags; */
    
    	if (!(capabilities & NOMMU_MAP_DIRECT)) {
    		/* attempt to share read-only copies of mapped file chunks */
    		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
    		if (file && !(prot & PROT_WRITE))
    			vm_flags |= VM_MAYSHARE;
    	} else {
    		/* overlay a shareable mapping on the backing device or inode
    		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
    		 * romfs/cramfs */
    		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
    		if (flags & MAP_SHARED)
    			vm_flags |= VM_SHARED;
    	}
    
    	/* refuse to let anyone share private mappings with this process if
    	 * it's being traced - otherwise breakpoints set in it may interfere
    	 * with another untraced process
    	 */
    	if ((flags & MAP_PRIVATE) && current->ptrace)
    		vm_flags &= ~VM_MAYSHARE;
    
    	return vm_flags;
    }
    
    /*
     * set up a shared mapping on a file (the driver or filesystem provides and
     * pins the storage)
     */
    static int do_mmap_shared_file(struct vm_area_struct *vma)
    {
    	int ret;
    
    	ret = call_mmap(vma->vm_file, vma);
    	if (ret == 0) {
    		vma->vm_region->vm_top = vma->vm_region->vm_end;
    		return 0;
    	}
    	if (ret != -ENOSYS)
    		return ret;
    
    	/* getting -ENOSYS indicates that direct mmap isn't possible (as
    	 * opposed to tried but failed) so we can only give a suitable error as
    	 * it's not possible to make a private copy if MAP_SHARED was given */
    	return -ENODEV;
    }
    
    /*
     * set up a private mapping or an anonymous shared mapping
     */
    static int do_mmap_private(struct vm_area_struct *vma,
    			   struct vm_region *region,
    			   unsigned long len,
    			   unsigned long capabilities)
    {
    	unsigned long total, point;
    	void *base;
    	int ret, order;
    
    	/* invoke the file's mapping function so that it can keep track of
    	 * shared mappings on devices or memory
    	 * - VM_MAYSHARE will be set if it may attempt to share
    	 */
    	if (capabilities & NOMMU_MAP_DIRECT) {
    		ret = call_mmap(vma->vm_file, vma);
    		if (ret == 0) {
    			/* shouldn't return success if we're not sharing */
    			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
    			vma->vm_region->vm_top = vma->vm_region->vm_end;
    			return 0;
    		}
    		if (ret != -ENOSYS)
    			return ret;
    
    		/* getting an ENOSYS error indicates that direct mmap isn't
    		 * possible (as opposed to tried but failed) so we'll try to
    		 * make a private copy of the data and map that instead */
    	}
    
    
    	/* allocate some memory to hold the mapping
    	 * - note that this may not return a page-aligned address if the object
    	 *   we're allocating is smaller than a page
    	 */
    	order = get_order(len);
    	total = 1 << order;
    	point = len >> PAGE_SHIFT;
    
    	/* we don't want to allocate a power-of-2 sized page set */
    	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
    		total = point;
    
    	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
    	if (!base)
    		goto enomem;
    
    	atomic_long_add(total, &mmap_pages_allocated);
    
    	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
    	region->vm_start = (unsigned long) base;
    	region->vm_end   = region->vm_start + len;
    	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
    
    	vma->vm_start = region->vm_start;
    	vma->vm_end   = region->vm_start + len;
    
    	if (vma->vm_file) {
    		/* read the contents of a file into the copy */
    		loff_t fpos;
    
    		fpos = vma->vm_pgoff;
    		fpos <<= PAGE_SHIFT;
    
    		ret = kernel_read(vma->vm_file, base, len, &fpos);
    		if (ret < 0)
    			goto error_free;
    
    		/* clear the last little bit */
    		if (ret < len)
    			memset(base + ret, 0, len - ret);
    
    	} else {
    		vma_set_anonymous(vma);
    	}
    
    	return 0;
    
    error_free:
    	free_page_series(region->vm_start, region->vm_top);
    	region->vm_start = vma->vm_start = 0;
    	region->vm_end   = vma->vm_end = 0;
    	region->vm_top   = 0;
    	return ret;
    
    enomem:
    	pr_err("Allocation of length %lu from process %d (%s) failed\n",
    	       len, current->pid, current->comm);
    	show_free_areas(0, NULL);
    	return -ENOMEM;
    }
    
    /*
     * handle mapping creation for uClinux
     */
    unsigned long do_mmap(struct file *file,
    			unsigned long addr,
    			unsigned long len,
    			unsigned long prot,
    			unsigned long flags,
    			unsigned long pgoff,
    			unsigned long *populate,
    			struct list_head *uf)
    {
    	struct vm_area_struct *vma;
    	struct vm_region *region;
    	struct rb_node *rb;
    	vm_flags_t vm_flags;
    	unsigned long capabilities, result;
    	int ret;
    
    	*populate = 0;
    
    	/* decide whether we should attempt the mapping, and if so what sort of
    	 * mapping */
    	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
    				    &capabilities);
    	if (ret < 0)
    		return ret;
    
    	/* we ignore the address hint */
    	addr = 0;
    	len = PAGE_ALIGN(len);
    
    	/* we've determined that we can make the mapping, now translate what we
    	 * now know into VMA flags */
    	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
    
    	/* we're going to need to record the mapping */
    	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
    	if (!region)
    		goto error_getting_region;
    
    	vma = vm_area_alloc(current->mm);
    	if (!vma)
    		goto error_getting_vma;
    
    	region->vm_usage = 1;
    	region->vm_flags = vm_flags;
    	region->vm_pgoff = pgoff;
    
    	vma->vm_flags = vm_flags;
    	vma->vm_pgoff = pgoff;
    
    	if (file) {
    		region->vm_file = get_file(file);
    		vma->vm_file = get_file(file);
    	}
    
    	down_write(&nommu_region_sem);
    
    	/* if we want to share, we need to check for regions created by other
    	 * mmap() calls that overlap with our proposed mapping
    	 * - we can only share with a superset match on most regular files
    	 * - shared mappings on character devices and memory backed files are
    	 *   permitted to overlap inexactly as far as we are concerned for in
    	 *   these cases, sharing is handled in the driver or filesystem rather
    	 *   than here
    	 */
    	if (vm_flags & VM_MAYSHARE) {
    		struct vm_region *pregion;
    		unsigned long pglen, rpglen, pgend, rpgend, start;
    
    		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
    		pgend = pgoff + pglen;
    
    		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
    			pregion = rb_entry(rb, struct vm_region, vm_rb);
    
    			if (!(pregion->vm_flags & VM_MAYSHARE))
    				continue;
    
    			/* search for overlapping mappings on the same file */
    			if (file_inode(pregion->vm_file) !=
    			    file_inode(file))
    				continue;
    
    			if (pregion->vm_pgoff >= pgend)
    				continue;
    
    			rpglen = pregion->vm_end - pregion->vm_start;
    			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    			rpgend = pregion->vm_pgoff + rpglen;
    			if (pgoff >= rpgend)
    				continue;
    
    			/* handle inexactly overlapping matches between
    			 * mappings */
    			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
    			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
    				/* new mapping is not a subset of the region */
    				if (!(capabilities & NOMMU_MAP_DIRECT))
    					goto sharing_violation;
    				continue;
    			}
    
    			/* we've found a region we can share */
    			pregion->vm_usage++;
    			vma->vm_region = pregion;
    			start = pregion->vm_start;
    			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
    			vma->vm_start = start;
    			vma->vm_end = start + len;
    
    			if (pregion->vm_flags & VM_MAPPED_COPY)
    				vma->vm_flags |= VM_MAPPED_COPY;
    			else {
    				ret = do_mmap_shared_file(vma);
    				if (ret < 0) {
    					vma->vm_region = NULL;
    					vma->vm_start = 0;
    					vma->vm_end = 0;
    					pregion->vm_usage--;
    					pregion = NULL;
    					goto error_just_free;
    				}
    			}
    			fput(region->vm_file);
    			kmem_cache_free(vm_region_jar, region);
    			region = pregion;
    			result = start;
    			goto share;
    		}
    
    		/* obtain the address at which to make a shared mapping
    		 * - this is the hook for quasi-memory character devices to
    		 *   tell us the location of a shared mapping
    		 */
    		if (capabilities & NOMMU_MAP_DIRECT) {
    			addr = file->f_op->get_unmapped_area(file, addr, len,
    							     pgoff, flags);
    			if (IS_ERR_VALUE(addr)) {
    				ret = addr;
    				if (ret != -ENOSYS)
    					goto error_just_free;
    
    				/* the driver refused to tell us where to site
    				 * the mapping so we'll have to attempt to copy
    				 * it */
    				ret = -ENODEV;
    				if (!(capabilities & NOMMU_MAP_COPY))
    					goto error_just_free;
    
    				capabilities &= ~NOMMU_MAP_DIRECT;
    			} else {
    				vma->vm_start = region->vm_start = addr;
    				vma->vm_end = region->vm_end = addr + len;
    			}
    		}
    	}
    
    	vma->vm_region = region;
    
    	/* set up the mapping
    	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
    	 */
    	if (file && vma->vm_flags & VM_SHARED)
    		ret = do_mmap_shared_file(vma);
    	else
    		ret = do_mmap_private(vma, region, len, capabilities);
    	if (ret < 0)
    		goto error_just_free;
    	add_nommu_region(region);
    
    	/* clear anonymous mappings that don't ask for uninitialized data */
    	if (!vma->vm_file &&
    	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
    	     !(flags & MAP_UNINITIALIZED)))
    		memset((void *)region->vm_start, 0,
    		       region->vm_end - region->vm_start);
    
    	/* okay... we have a mapping; now we have to register it */
    	result = vma->vm_start;
    
    	current->mm->total_vm += len >> PAGE_SHIFT;
    
    share:
    	add_vma_to_mm(current->mm, vma);
    
    	/* we flush the region from the icache only when the first executable
    	 * mapping of it is made  */
    	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
    		flush_icache_user_range(region->vm_start, region->vm_end);
    		region->vm_icache_flushed = true;
    	}
    
    	up_write(&nommu_region_sem);
    
    	return result;
    
    error_just_free:
    	up_write(&nommu_region_sem);
    error:
    	if (region->vm_file)
    		fput(region->vm_file);
    	kmem_cache_free(vm_region_jar, region);
    	if (vma->vm_file)
    		fput(vma->vm_file);
    	vm_area_free(vma);
    	return ret;
    
    sharing_violation:
    	up_write(&nommu_region_sem);
    	pr_warn("Attempt to share mismatched mappings\n");
    	ret = -EINVAL;
    	goto error;
    
    error_getting_vma:
    	kmem_cache_free(vm_region_jar, region);
    	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
    			len, current->pid);
    	show_free_areas(0, NULL);
    	return -ENOMEM;
    
    error_getting_region:
    	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
    			len, current->pid);
    	show_free_areas(0, NULL);
    	return -ENOMEM;
    }
    
    unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
    			      unsigned long prot, unsigned long flags,
    			      unsigned long fd, unsigned long pgoff)
    {
    	struct file *file = NULL;
    	unsigned long retval = -EBADF;
    
    	audit_mmap_fd(fd, flags);
    	if (!(flags & MAP_ANONYMOUS)) {
    		file = fget(fd);
    		if (!file)
    			goto out;
    	}
    
    	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
    
    	if (file)
    		fput(file);
    out:
    	return retval;
    }
    
    SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
    		unsigned long, prot, unsigned long, flags,
    		unsigned long, fd, unsigned long, pgoff)
    {
    	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
    }
    
    #ifdef __ARCH_WANT_SYS_OLD_MMAP
    struct mmap_arg_struct {
    	unsigned long addr;
    	unsigned long len;
    	unsigned long prot;
    	unsigned long flags;
    	unsigned long fd;
    	unsigned long offset;
    };
    
    SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
    {
    	struct mmap_arg_struct a;
    
    	if (copy_from_user(&a, arg, sizeof(a)))
    		return -EFAULT;
    	if (offset_in_page(a.offset))
    		return -EINVAL;
    
    	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
    			       a.offset >> PAGE_SHIFT);
    }
    #endif /* __ARCH_WANT_SYS_OLD_MMAP */
    
    /*
     * split a vma into two pieces at address 'addr', a new vma is allocated either
     * for the first part or the tail.
     */
    int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
    	      unsigned long addr, int new_below)
    {
    	struct vm_area_struct *new;
    	struct vm_region *region;
    	unsigned long npages;
    
    	/* we're only permitted to split anonymous regions (these should have
    	 * only a single usage on the region) */
    	if (vma->vm_file)
    		return -ENOMEM;
    
    	if (mm->map_count >= sysctl_max_map_count)
    		return -ENOMEM;
    
    	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
    	if (!region)
    		return -ENOMEM;
    
    	new = vm_area_dup(vma);
    	if (!new) {
    		kmem_cache_free(vm_region_jar, region);
    		return -ENOMEM;
    	}
    
    	/* most fields are the same, copy all, and then fixup */
    	*region = *vma->vm_region;
    	new->vm_region = region;
    
    	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
    
    	if (new_below) {
    		region->vm_top = region->vm_end = new->vm_end = addr;
    	} else {
    		region->vm_start = new->vm_start = addr;
    		region->vm_pgoff = new->vm_pgoff += npages;
    	}
    
    	if (new->vm_ops && new->vm_ops->open)
    		new->vm_ops->open(new);
    
    	delete_vma_from_mm(vma);
    	down_write(&nommu_region_sem);
    	delete_nommu_region(vma->vm_region);
    	if (new_below) {
    		vma->vm_region->vm_start = vma->vm_start = addr;
    		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
    	} else {
    		vma->vm_region->vm_end = vma->vm_end = addr;
    		vma->vm_region->vm_top = addr;
    	}
    	add_nommu_region(vma->vm_region);
    	add_nommu_region(new->vm_region);
    	up_write(&nommu_region_sem);
    	add_vma_to_mm(mm, vma);
    	add_vma_to_mm(mm, new);
    	return 0;
    }
    
    /*
     * shrink a VMA by removing the specified chunk from either the beginning or
     * the end
     */
    static int shrink_vma(struct mm_struct *mm,
    		      struct vm_area_struct *vma,
    		      unsigned long from, unsigned long to)
    {
    	struct vm_region *region;
    
    	/* adjust the VMA's pointers, which may reposition it in the MM's tree
    	 * and list */
    	delete_vma_from_mm(vma);
    	if (from > vma->vm_start)
    		vma->vm_end = from;
    	else
    		vma->vm_start = to;
    	add_vma_to_mm(mm, vma);
    
    	/* cut the backing region down to size */
    	region = vma->vm_region;
    	BUG_ON(region->vm_usage != 1);
    
    	down_write(&nommu_region_sem);
    	delete_nommu_region(region);
    	if (from > region->vm_start) {
    		to = region->vm_top;
    		region->vm_top = region->vm_end = from;
    	} else {
    		region->vm_start = to;
    	}
    	add_nommu_region(region);
    	up_write(&nommu_region_sem);
    
    	free_page_series(from, to);
    	return 0;
    }
    
    /*
     * release a mapping
     * - under NOMMU conditions the chunk to be unmapped must be backed by a single
     *   VMA, though it need not cover the whole VMA
     */
    int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
    {
    	struct vm_area_struct *vma;
    	unsigned long end;
    	int ret;
    
    	len = PAGE_ALIGN(len);
    	if (len == 0)
    		return -EINVAL;
    
    	end = start + len;
    
    	/* find the first potentially overlapping VMA */
    	vma = find_vma(mm, start);
    	if (!vma) {
    		static int limit;
    		if (limit < 5) {
    			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
    					current->pid, current->comm,
    					start, start + len - 1);
    			limit++;
    		}
    		return -EINVAL;
    	}
    
    	/* we're allowed to split an anonymous VMA but not a file-backed one */
    	if (vma->vm_file) {
    		do {
    			if (start > vma->vm_start)
    				return -EINVAL;
    			if (end == vma->vm_end)
    				goto erase_whole_vma;
    			vma = vma->vm_next;
    		} while (vma);
    		return -EINVAL;
    	} else {
    		/* the chunk must be a subset of the VMA found */
    		if (start == vma->vm_start && end == vma->vm_end)
    			goto erase_whole_vma;
    		if (start < vma->vm_start || end > vma->vm_end)
    			return -EINVAL;
    		if (offset_in_page(start))
    			return -EINVAL;
    		if (end != vma->vm_end && offset_in_page(end))
    			return -EINVAL;
    		if (start != vma->vm_start && end != vma->vm_end) {
    			ret = split_vma(mm, vma, start, 1);
    			if (ret < 0)
    				return ret;
    		}
    		return shrink_vma(mm, vma, start, end);
    	}
    
    erase_whole_vma:
    	delete_vma_from_mm(vma);
    	delete_vma(mm, vma);
    	return 0;
    }
    
    int vm_munmap(unsigned long addr, size_t len)
    {
    	struct mm_struct *mm = current->mm;
    	int ret;
    
    	mmap_write_lock(mm);
    	ret = do_munmap(mm, addr, len, NULL);
    	mmap_write_unlock(mm);
    	return ret;
    }
    EXPORT_SYMBOL(vm_munmap);
    
    SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
    {
    	return vm_munmap(addr, len);
    }
    
    /*
     * release all the mappings made in a process's VM space
     */
    void exit_mmap(struct mm_struct *mm)
    {
    	struct vm_area_struct *vma;
    
    	if (!mm)
    		return;
    
    	mm->total_vm = 0;
    
    	while ((vma = mm->mmap)) {
    		mm->mmap = vma->vm_next;
    		delete_vma_from_mm(vma);
    		delete_vma(mm, vma);
    		cond_resched();
    	}
    }
    
    int vm_brk(unsigned long addr, unsigned long len)
    {
    	return -ENOMEM;
    }
    
    /*
     * expand (or shrink) an existing mapping, potentially moving it at the same
     * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
     *
     * under NOMMU conditions, we only permit changing a mapping's size, and only
     * as long as it stays within the region allocated by do_mmap_private() and the
     * block is not shareable
     *
     * MREMAP_FIXED is not supported under NOMMU conditions
     */
    static unsigned long do_mremap(unsigned long addr,
    			unsigned long old_len, unsigned long new_len,
    			unsigned long flags, unsigned long new_addr)
    {
    	struct vm_area_struct *vma;
    
    	/* insanity checks first */
    	old_len = PAGE_ALIGN(old_len);
    	new_len = PAGE_ALIGN(new_len);
    	if (old_len == 0 || new_len == 0)
    		return (unsigned long) -EINVAL;
    
    	if (offset_in_page(addr))
    		return -EINVAL;
    
    	if (flags & MREMAP_FIXED && new_addr != addr)
    		return (unsigned long) -EINVAL;
    
    	vma = find_vma_exact(current->mm, addr, old_len);
    	if (!vma)
    		return (unsigned long) -EINVAL;
    
    	if (vma->vm_end != vma->vm_start + old_len)
    		return (unsigned long) -EFAULT;
    
    	if (vma->vm_flags & VM_MAYSHARE)
    		return (unsigned long) -EPERM;
    
    	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
    		return (unsigned long) -ENOMEM;
    
    	/* all checks complete - do it */
    	vma->vm_end = vma->vm_start + new_len;
    	return vma->vm_start;
    }
    
    SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
    		unsigned long, new_len, unsigned long, flags,
    		unsigned long, new_addr)
    {
    	unsigned long ret;
    
    	mmap_write_lock(current->mm);
    	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
    	mmap_write_unlock(current->mm);
    	return ret;
    }
    
    struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
    			 unsigned int foll_flags)
    {
    	return NULL;
    }
    
    int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
    		unsigned long pfn, unsigned long size, pgprot_t prot)
    {
    	if (addr != (pfn << PAGE_SHIFT))
    		return -EINVAL;
    
    	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
    	return 0;
    }
    EXPORT_SYMBOL(remap_pfn_range);
    
    int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
    {
    	unsigned long pfn = start >> PAGE_SHIFT;
    	unsigned long vm_len = vma->vm_end - vma->vm_start;
    
    	pfn += vma->vm_pgoff;
    	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
    }
    EXPORT_SYMBOL(vm_iomap_memory);
    
    int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
    			unsigned long pgoff)
    {
    	unsigned int size = vma->vm_end - vma->vm_start;
    
    	if (!(vma->vm_flags & VM_USERMAP))
    		return -EINVAL;
    
    	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
    	vma->vm_end = vma->vm_start + size;
    
    	return 0;
    }
    EXPORT_SYMBOL(remap_vmalloc_range);
    
    vm_fault_t filemap_fault(struct vm_fault *vmf)
    {
    	BUG();
    	return 0;
    }
    EXPORT_SYMBOL(filemap_fault);
    
    vm_fault_t filemap_map_pages(struct vm_fault *vmf,
    		pgoff_t start_pgoff, pgoff_t end_pgoff)
    {
    	BUG();
    	return 0;
    }
    EXPORT_SYMBOL(filemap_map_pages);
    
    int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
    		       int len, unsigned int gup_flags)
    {
    	struct vm_area_struct *vma;
    	int write = gup_flags & FOLL_WRITE;
    
    	if (mmap_read_lock_killable(mm))
    		return 0;
    
    	/* the access must start within one of the target process's mappings */
    	vma = find_vma(mm, addr);
    	if (vma) {
    		/* don't overrun this mapping */
    		if (addr + len >= vma->vm_end)
    			len = vma->vm_end - addr;
    
    		/* only read or write mappings where it is permitted */
    		if (write && vma->vm_flags & VM_MAYWRITE)
    			copy_to_user_page(vma, NULL, addr,
    					 (void *) addr, buf, len);
    		else if (!write && vma->vm_flags & VM_MAYREAD)
    			copy_from_user_page(vma, NULL, addr,
    					    buf, (void *) addr, len);
    		else
    			len = 0;
    	} else {
    		len = 0;
    	}
    
    	mmap_read_unlock(mm);
    
    	return len;
    }
    
    /**
     * access_remote_vm - access another process' address space
     * @mm:		the mm_struct of the target address space
     * @addr:	start address to access
     * @buf:	source or destination buffer
     * @len:	number of bytes to transfer
     * @gup_flags:	flags modifying lookup behaviour
     *
     * The caller must hold a reference on @mm.
     */
    int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    		void *buf, int len, unsigned int gup_flags)
    {
    	return __access_remote_vm(mm, addr, buf, len, gup_flags);
    }
    
    /*
     * Access another process' address space.
     * - source/target buffer must be kernel space
     */
    int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
    		unsigned int gup_flags)
    {
    	struct mm_struct *mm;
    
    	if (addr + len < addr)
    		return 0;
    
    	mm = get_task_mm(tsk);
    	if (!mm)
    		return 0;
    
    	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
    
    	mmput(mm);
    	return len;
    }
    EXPORT_SYMBOL_GPL(access_process_vm);
    
    /**
     * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
     * @inode: The inode to check
     * @size: The current filesize of the inode
     * @newsize: The proposed filesize of the inode
     *
     * Check the shared mappings on an inode on behalf of a shrinking truncate to
     * make sure that any outstanding VMAs aren't broken and then shrink the
     * vm_regions that extend beyond so that do_mmap() doesn't
     * automatically grant mappings that are too large.
     */
    int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
    				size_t newsize)
    {
    	struct vm_area_struct *vma;
    	struct vm_region *region;
    	pgoff_t low, high;
    	size_t r_size, r_top;
    
    	low = newsize >> PAGE_SHIFT;
    	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
    
    	down_write(&nommu_region_sem);
    	i_mmap_lock_read(inode->i_mapping);
    
    	/* search for VMAs that fall within the dead zone */
    	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
    		/* found one - only interested if it's shared out of the page
    		 * cache */
    		if (vma->vm_flags & VM_SHARED) {
    			i_mmap_unlock_read(inode->i_mapping);
    			up_write(&nommu_region_sem);
    			return -ETXTBSY; /* not quite true, but near enough */
    		}
    	}
    
    	/* reduce any regions that overlap the dead zone - if in existence,
    	 * these will be pointed to by VMAs that don't overlap the dead zone
    	 *
    	 * we don't check for any regions that start beyond the EOF as there
    	 * shouldn't be any
    	 */
    	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
    		if (!(vma->vm_flags & VM_SHARED))
    			continue;
    
    		region = vma->vm_region;
    		r_size = region->vm_top - region->vm_start;
    		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
    
    		if (r_top > newsize) {
    			region->vm_top -= r_top - newsize;
    			if (region->vm_end > region->vm_top)
    				region->vm_end = region->vm_top;
    		}
    	}
    
    	i_mmap_unlock_read(inode->i_mapping);
    	up_write(&nommu_region_sem);
    	return 0;
    }
    
    /*
     * Initialise sysctl_user_reserve_kbytes.
     *
     * This is intended to prevent a user from starting a single memory hogging
     * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
     * mode.
     *
     * The default value is min(3% of free memory, 128MB)
     * 128MB is enough to recover with sshd/login, bash, and top/kill.
     */
    static int __meminit init_user_reserve(void)
    {
    	unsigned long free_kbytes;
    
    	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
    
    	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
    	return 0;
    }
    subsys_initcall(init_user_reserve);
    
    /*
     * Initialise sysctl_admin_reserve_kbytes.
     *
     * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
     * to log in and kill a memory hogging process.
     *
     * Systems with more than 256MB will reserve 8MB, enough to recover
     * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
     * only reserve 3% of free pages by default.
     */
    static int __meminit init_admin_reserve(void)
    {
    	unsigned long free_kbytes;
    
    	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
    
    	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
    	return 0;
    }
    subsys_initcall(init_admin_reserve);