Skip to content
Snippets Groups Projects
Select Git revision
  • d507e2ebd2c7be9138e5cf5c0cb1931c90c42ab1
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

page_alloc.c

Blame
  • socket.c 79.50 KiB
    /*
     * NET		An implementation of the SOCKET network access protocol.
     *
     * Version:	@(#)socket.c	1.1.93	18/02/95
     *
     * Authors:	Orest Zborowski, <obz@Kodak.COM>
     *		Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *
     * Fixes:
     *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
     *					shutdown()
     *		Alan Cox	:	verify_area() fixes
     *		Alan Cox	:	Removed DDI
     *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
     *		Alan Cox	:	Moved a load of checks to the very
     *					top level.
     *		Alan Cox	:	Move address structures to/from user
     *					mode above the protocol layers.
     *		Rob Janssen	:	Allow 0 length sends.
     *		Alan Cox	:	Asynchronous I/O support (cribbed from the
     *					tty drivers).
     *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
     *		Jeff Uphoff	:	Made max number of sockets command-line
     *					configurable.
     *		Matti Aarnio	:	Made the number of sockets dynamic,
     *					to be allocated when needed, and mr.
     *					Uphoff's max is used as max to be
     *					allowed to allocate.
     *		Linus		:	Argh. removed all the socket allocation
     *					altogether: it's in the inode now.
     *		Alan Cox	:	Made sock_alloc()/sock_release() public
     *					for NetROM and future kernel nfsd type
     *					stuff.
     *		Alan Cox	:	sendmsg/recvmsg basics.
     *		Tom Dyas	:	Export net symbols.
     *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
     *		Alan Cox	:	Added thread locking to sys_* calls
     *					for sockets. May have errors at the
     *					moment.
     *		Kevin Buhr	:	Fixed the dumb errors in the above.
     *		Andi Kleen	:	Some small cleanups, optimizations,
     *					and fixed a copy_from_user() bug.
     *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
     *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
     *					protocol-independent
     *
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or (at your option) any later version.
     *
     *
     *	This module is effectively the top level interface to the BSD socket
     *	paradigm.
     *
     *	Based upon Swansea University Computer Society NET3.039
     */
    
    #include <linux/mm.h>
    #include <linux/socket.h>
    #include <linux/file.h>
    #include <linux/net.h>
    #include <linux/interrupt.h>
    #include <linux/thread_info.h>
    #include <linux/rcupdate.h>
    #include <linux/netdevice.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/mutex.h>
    #include <linux/if_bridge.h>
    #include <linux/if_frad.h>
    #include <linux/if_vlan.h>
    #include <linux/ptp_classify.h>
    #include <linux/init.h>
    #include <linux/poll.h>
    #include <linux/cache.h>
    #include <linux/module.h>
    #include <linux/highmem.h>
    #include <linux/mount.h>
    #include <linux/security.h>
    #include <linux/syscalls.h>
    #include <linux/compat.h>
    #include <linux/kmod.h>
    #include <linux/audit.h>
    #include <linux/wireless.h>
    #include <linux/nsproxy.h>
    #include <linux/magic.h>
    #include <linux/slab.h>
    #include <linux/xattr.h>
    
    #include <asm/uaccess.h>
    #include <asm/unistd.h>
    
    #include <net/compat.h>
    #include <net/wext.h>
    #include <net/cls_cgroup.h>
    
    #include <net/sock.h>
    #include <linux/netfilter.h>
    
    #include <linux/if_tun.h>
    #include <linux/ipv6_route.h>
    #include <linux/route.h>
    #include <linux/sockios.h>
    #include <linux/atalk.h>
    #include <net/busy_poll.h>
    #include <linux/errqueue.h>
    
    #ifdef CONFIG_NET_RX_BUSY_POLL
    unsigned int sysctl_net_busy_read __read_mostly;
    unsigned int sysctl_net_busy_poll __read_mostly;
    #endif
    
    static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
    static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
    static int sock_mmap(struct file *file, struct vm_area_struct *vma);
    
    static int sock_close(struct inode *inode, struct file *file);
    static unsigned int sock_poll(struct file *file,
    			      struct poll_table_struct *wait);
    static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
    #ifdef CONFIG_COMPAT
    static long compat_sock_ioctl(struct file *file,
    			      unsigned int cmd, unsigned long arg);
    #endif
    static int sock_fasync(int fd, struct file *filp, int on);
    static ssize_t sock_sendpage(struct file *file, struct page *page,
    			     int offset, size_t size, loff_t *ppos, int more);
    static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
    				struct pipe_inode_info *pipe, size_t len,
    				unsigned int flags);
    
    /*
     *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
     *	in the operation structures but are done directly via the socketcall() multiplexor.
     */
    
    static const struct file_operations socket_file_ops = {
    	.owner =	THIS_MODULE,
    	.llseek =	no_llseek,
    	.read_iter =	sock_read_iter,
    	.write_iter =	sock_write_iter,
    	.poll =		sock_poll,
    	.unlocked_ioctl = sock_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl = compat_sock_ioctl,
    #endif
    	.mmap =		sock_mmap,
    	.release =	sock_close,
    	.fasync =	sock_fasync,
    	.sendpage =	sock_sendpage,
    	.splice_write = generic_splice_sendpage,
    	.splice_read =	sock_splice_read,
    };
    
    /*
     *	The protocol list. Each protocol is registered in here.
     */
    
    static DEFINE_SPINLOCK(net_family_lock);
    static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
    
    /*
     *	Statistics counters of the socket lists
     */
    
    static DEFINE_PER_CPU(int, sockets_in_use);
    
    /*
     * Support routines.
     * Move socket addresses back and forth across the kernel/user
     * divide and look after the messy bits.
     */
    
    /**
     *	move_addr_to_kernel	-	copy a socket address into kernel space
     *	@uaddr: Address in user space
     *	@kaddr: Address in kernel space
     *	@ulen: Length in user space
     *
     *	The address is copied into kernel space. If the provided address is
     *	too long an error code of -EINVAL is returned. If the copy gives
     *	invalid addresses -EFAULT is returned. On a success 0 is returned.
     */
    
    int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
    {
    	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
    		return -EINVAL;
    	if (ulen == 0)
    		return 0;
    	if (copy_from_user(kaddr, uaddr, ulen))
    		return -EFAULT;
    	return audit_sockaddr(ulen, kaddr);
    }
    
    /**
     *	move_addr_to_user	-	copy an address to user space
     *	@kaddr: kernel space address
     *	@klen: length of address in kernel
     *	@uaddr: user space address
     *	@ulen: pointer to user length field
     *
     *	The value pointed to by ulen on entry is the buffer length available.
     *	This is overwritten with the buffer space used. -EINVAL is returned
     *	if an overlong buffer is specified or a negative buffer size. -EFAULT
     *	is returned if either the buffer or the length field are not
     *	accessible.
     *	After copying the data up to the limit the user specifies, the true
     *	length of the data is written over the length limit the user
     *	specified. Zero is returned for a success.
     */
    
    static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
    			     void __user *uaddr, int __user *ulen)
    {
    	int err;
    	int len;
    
    	BUG_ON(klen > sizeof(struct sockaddr_storage));
    	err = get_user(len, ulen);
    	if (err)
    		return err;
    	if (len > klen)
    		len = klen;
    	if (len < 0)
    		return -EINVAL;
    	if (len) {
    		if (audit_sockaddr(klen, kaddr))
    			return -ENOMEM;
    		if (copy_to_user(uaddr, kaddr, len))
    			return -EFAULT;
    	}
    	/*
    	 *      "fromlen shall refer to the value before truncation.."
    	 *                      1003.1g
    	 */
    	return __put_user(klen, ulen);
    }
    
    static struct kmem_cache *sock_inode_cachep __read_mostly;
    
    static struct inode *sock_alloc_inode(struct super_block *sb)
    {
    	struct socket_alloc *ei;
    	struct socket_wq *wq;
    
    	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
    	if (!ei)
    		return NULL;
    	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
    	if (!wq) {
    		kmem_cache_free(sock_inode_cachep, ei);
    		return NULL;
    	}
    	init_waitqueue_head(&wq->wait);
    	wq->fasync_list = NULL;
    	RCU_INIT_POINTER(ei->socket.wq, wq);
    
    	ei->socket.state = SS_UNCONNECTED;
    	ei->socket.flags = 0;
    	ei->socket.ops = NULL;
    	ei->socket.sk = NULL;
    	ei->socket.file = NULL;
    
    	return &ei->vfs_inode;
    }
    
    static void sock_destroy_inode(struct inode *inode)
    {
    	struct socket_alloc *ei;
    	struct socket_wq *wq;
    
    	ei = container_of(inode, struct socket_alloc, vfs_inode);
    	wq = rcu_dereference_protected(ei->socket.wq, 1);
    	kfree_rcu(wq, rcu);
    	kmem_cache_free(sock_inode_cachep, ei);
    }
    
    static void init_once(void *foo)
    {
    	struct socket_alloc *ei = (struct socket_alloc *)foo;
    
    	inode_init_once(&ei->vfs_inode);
    }
    
    static int init_inodecache(void)
    {
    	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
    					      sizeof(struct socket_alloc),
    					      0,
    					      (SLAB_HWCACHE_ALIGN |
    					       SLAB_RECLAIM_ACCOUNT |
    					       SLAB_MEM_SPREAD),
    					      init_once);
    	if (sock_inode_cachep == NULL)
    		return -ENOMEM;
    	return 0;
    }
    
    static const struct super_operations sockfs_ops = {
    	.alloc_inode	= sock_alloc_inode,
    	.destroy_inode	= sock_destroy_inode,
    	.statfs		= simple_statfs,
    };
    
    /*
     * sockfs_dname() is called from d_path().
     */
    static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
    {
    	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
    				d_inode(dentry)->i_ino);
    }
    
    static const struct dentry_operations sockfs_dentry_operations = {
    	.d_dname  = sockfs_dname,
    };
    
    static struct dentry *sockfs_mount(struct file_system_type *fs_type,
    			 int flags, const char *dev_name, void *data)
    {
    	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
    		&sockfs_dentry_operations, SOCKFS_MAGIC);
    }
    
    static struct vfsmount *sock_mnt __read_mostly;
    
    static struct file_system_type sock_fs_type = {
    	.name =		"sockfs",
    	.mount =	sockfs_mount,
    	.kill_sb =	kill_anon_super,
    };
    
    /*
     *	Obtains the first available file descriptor and sets it up for use.
     *
     *	These functions create file structures and maps them to fd space
     *	of the current process. On success it returns file descriptor
     *	and file struct implicitly stored in sock->file.
     *	Note that another thread may close file descriptor before we return
     *	from this function. We use the fact that now we do not refer
     *	to socket after mapping. If one day we will need it, this
     *	function will increment ref. count on file by 1.
     *
     *	In any case returned fd MAY BE not valid!
     *	This race condition is unavoidable
     *	with shared fd spaces, we cannot solve it inside kernel,
     *	but we take care of internal coherence yet.
     */
    
    struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
    {
    	struct qstr name = { .name = "" };
    	struct path path;
    	struct file *file;
    
    	if (dname) {
    		name.name = dname;
    		name.len = strlen(name.name);
    	} else if (sock->sk) {
    		name.name = sock->sk->sk_prot_creator->name;
    		name.len = strlen(name.name);
    	}
    	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
    	if (unlikely(!path.dentry))
    		return ERR_PTR(-ENOMEM);
    	path.mnt = mntget(sock_mnt);
    
    	d_instantiate(path.dentry, SOCK_INODE(sock));
    
    	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
    		  &socket_file_ops);
    	if (IS_ERR(file)) {
    		/* drop dentry, keep inode */
    		ihold(d_inode(path.dentry));
    		path_put(&path);
    		return file;
    	}
    
    	sock->file = file;
    	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
    	file->private_data = sock;
    	return file;
    }
    EXPORT_SYMBOL(sock_alloc_file);
    
    static int sock_map_fd(struct socket *sock, int flags)
    {
    	struct file *newfile;
    	int fd = get_unused_fd_flags(flags);
    	if (unlikely(fd < 0))
    		return fd;
    
    	newfile = sock_alloc_file(sock, flags, NULL);
    	if (likely(!IS_ERR(newfile))) {
    		fd_install(fd, newfile);
    		return fd;
    	}
    
    	put_unused_fd(fd);
    	return PTR_ERR(newfile);
    }
    
    struct socket *sock_from_file(struct file *file, int *err)
    {
    	if (file->f_op == &socket_file_ops)
    		return file->private_data;	/* set in sock_map_fd */
    
    	*err = -ENOTSOCK;
    	return NULL;
    }
    EXPORT_SYMBOL(sock_from_file);
    
    /**
     *	sockfd_lookup - Go from a file number to its socket slot
     *	@fd: file handle
     *	@err: pointer to an error code return
     *
     *	The file handle passed in is locked and the socket it is bound
     *	too is returned. If an error occurs the err pointer is overwritten
     *	with a negative errno code and NULL is returned. The function checks
     *	for both invalid handles and passing a handle which is not a socket.
     *
     *	On a success the socket object pointer is returned.
     */
    
    struct socket *sockfd_lookup(int fd, int *err)
    {
    	struct file *file;
    	struct socket *sock;
    
    	file = fget(fd);
    	if (!file) {
    		*err = -EBADF;
    		return NULL;
    	}
    
    	sock = sock_from_file(file, err);
    	if (!sock)
    		fput(file);
    	return sock;
    }
    EXPORT_SYMBOL(sockfd_lookup);
    
    static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
    {
    	struct fd f = fdget(fd);
    	struct socket *sock;
    
    	*err = -EBADF;
    	if (f.file) {
    		sock = sock_from_file(f.file, err);
    		if (likely(sock)) {
    			*fput_needed = f.flags;
    			return sock;
    		}
    		fdput(f);
    	}
    	return NULL;
    }
    
    #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
    #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
    #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
    static ssize_t sockfs_getxattr(struct dentry *dentry,
    			       const char *name, void *value, size_t size)
    {
    	const char *proto_name;
    	size_t proto_size;
    	int error;
    
    	error = -ENODATA;
    	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
    		proto_name = dentry->d_name.name;
    		proto_size = strlen(proto_name);
    
    		if (value) {
    			error = -ERANGE;
    			if (proto_size + 1 > size)
    				goto out;
    
    			strncpy(value, proto_name, proto_size + 1);
    		}
    		error = proto_size + 1;
    	}
    
    out:
    	return error;
    }
    
    static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
    				size_t size)
    {
    	ssize_t len;
    	ssize_t used = 0;
    
    	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
    	if (len < 0)
    		return len;
    	used += len;
    	if (buffer) {
    		if (size < used)
    			return -ERANGE;
    		buffer += len;
    	}
    
    	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
    	used += len;
    	if (buffer) {
    		if (size < used)
    			return -ERANGE;
    		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
    		buffer += len;
    	}
    
    	return used;
    }
    
    static const struct inode_operations sockfs_inode_ops = {
    	.getxattr = sockfs_getxattr,
    	.listxattr = sockfs_listxattr,
    };
    
    /**
     *	sock_alloc	-	allocate a socket
     *
     *	Allocate a new inode and socket object. The two are bound together
     *	and initialised. The socket is then returned. If we are out of inodes
     *	NULL is returned.
     */
    
    static struct socket *sock_alloc(void)
    {
    	struct inode *inode;
    	struct socket *sock;
    
    	inode = new_inode_pseudo(sock_mnt->mnt_sb);
    	if (!inode)
    		return NULL;
    
    	sock = SOCKET_I(inode);
    
    	kmemcheck_annotate_bitfield(sock, type);
    	inode->i_ino = get_next_ino();
    	inode->i_mode = S_IFSOCK | S_IRWXUGO;
    	inode->i_uid = current_fsuid();
    	inode->i_gid = current_fsgid();
    	inode->i_op = &sockfs_inode_ops;
    
    	this_cpu_add(sockets_in_use, 1);
    	return sock;
    }
    
    /**
     *	sock_release	-	close a socket
     *	@sock: socket to close
     *
     *	The socket is released from the protocol stack if it has a release
     *	callback, and the inode is then released if the socket is bound to
     *	an inode not a file.
     */
    
    void sock_release(struct socket *sock)
    {
    	if (sock->ops) {
    		struct module *owner = sock->ops->owner;
    
    		sock->ops->release(sock);
    		sock->ops = NULL;
    		module_put(owner);
    	}
    
    	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
    		pr_err("%s: fasync list not empty!\n", __func__);
    
    	this_cpu_sub(sockets_in_use, 1);
    	if (!sock->file) {
    		iput(SOCK_INODE(sock));
    		return;
    	}
    	sock->file = NULL;
    }
    EXPORT_SYMBOL(sock_release);
    
    void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
    {
    	u8 flags = *tx_flags;
    
    	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
    		flags |= SKBTX_HW_TSTAMP;
    
    	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
    		flags |= SKBTX_SW_TSTAMP;
    
    	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
    		flags |= SKBTX_SCHED_TSTAMP;
    
    	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
    		flags |= SKBTX_ACK_TSTAMP;
    
    	*tx_flags = flags;
    }
    EXPORT_SYMBOL(__sock_tx_timestamp);
    
    static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
    {
    	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
    	BUG_ON(ret == -EIOCBQUEUED);
    	return ret;
    }
    
    int sock_sendmsg(struct socket *sock, struct msghdr *msg)
    {
    	int err = security_socket_sendmsg(sock, msg,
    					  msg_data_left(msg));
    
    	return err ?: sock_sendmsg_nosec(sock, msg);
    }
    EXPORT_SYMBOL(sock_sendmsg);
    
    int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
    		   struct kvec *vec, size_t num, size_t size)
    {
    	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
    	return sock_sendmsg(sock, msg);
    }
    EXPORT_SYMBOL(kernel_sendmsg);
    
    /*
     * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
     */
    void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
    	struct sk_buff *skb)
    {
    	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
    	struct scm_timestamping tss;
    	int empty = 1;
    	struct skb_shared_hwtstamps *shhwtstamps =
    		skb_hwtstamps(skb);
    
    	/* Race occurred between timestamp enabling and packet
    	   receiving.  Fill in the current time for now. */
    	if (need_software_tstamp && skb->tstamp.tv64 == 0)
    		__net_timestamp(skb);
    
    	if (need_software_tstamp) {
    		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
    			struct timeval tv;
    			skb_get_timestamp(skb, &tv);
    			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
    				 sizeof(tv), &tv);
    		} else {
    			struct timespec ts;
    			skb_get_timestampns(skb, &ts);
    			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
    				 sizeof(ts), &ts);
    		}
    	}
    
    	memset(&tss, 0, sizeof(tss));
    	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
    	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
    		empty = 0;
    	if (shhwtstamps &&
    	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
    	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
    		empty = 0;
    	if (!empty)
    		put_cmsg(msg, SOL_SOCKET,
    			 SCM_TIMESTAMPING, sizeof(tss), &tss);
    }
    EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
    
    void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
    	struct sk_buff *skb)
    {
    	int ack;
    
    	if (!sock_flag(sk, SOCK_WIFI_STATUS))
    		return;
    	if (!skb->wifi_acked_valid)
    		return;
    
    	ack = skb->wifi_acked;
    
    	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
    }
    EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
    
    static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
    				   struct sk_buff *skb)
    {
    	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
    		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
    			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
    }
    
    void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
    	struct sk_buff *skb)
    {
    	sock_recv_timestamp(msg, sk, skb);
    	sock_recv_drops(msg, sk, skb);
    }
    EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
    
    static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
    				     size_t size, int flags)
    {
    	return sock->ops->recvmsg(sock, msg, size, flags);
    }
    
    int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
    		 int flags)
    {
    	int err = security_socket_recvmsg(sock, msg, size, flags);
    
    	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
    }
    EXPORT_SYMBOL(sock_recvmsg);
    
    /**
     * kernel_recvmsg - Receive a message from a socket (kernel space)
     * @sock:       The socket to receive the message from
     * @msg:        Received message
     * @vec:        Input s/g array for message data
     * @num:        Size of input s/g array
     * @size:       Number of bytes to read
     * @flags:      Message flags (MSG_DONTWAIT, etc...)
     *
     * On return the msg structure contains the scatter/gather array passed in the
     * vec argument. The array is modified so that it consists of the unfilled
     * portion of the original array.
     *
     * The returned value is the total number of bytes received, or an error.
     */
    int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
    		   struct kvec *vec, size_t num, size_t size, int flags)
    {
    	mm_segment_t oldfs = get_fs();
    	int result;
    
    	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
    	set_fs(KERNEL_DS);
    	result = sock_recvmsg(sock, msg, size, flags);
    	set_fs(oldfs);
    	return result;
    }
    EXPORT_SYMBOL(kernel_recvmsg);
    
    static ssize_t sock_sendpage(struct file *file, struct page *page,
    			     int offset, size_t size, loff_t *ppos, int more)
    {
    	struct socket *sock;
    	int flags;
    
    	sock = file->private_data;
    
    	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
    	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
    	flags |= more;
    
    	return kernel_sendpage(sock, page, offset, size, flags);
    }
    
    static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
    				struct pipe_inode_info *pipe, size_t len,
    				unsigned int flags)
    {
    	struct socket *sock = file->private_data;
    
    	if (unlikely(!sock->ops->splice_read))
    		return -EINVAL;
    
    	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
    }
    
    static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
    {
    	struct file *file = iocb->ki_filp;
    	struct socket *sock = file->private_data;
    	struct msghdr msg = {.msg_iter = *to,
    			     .msg_iocb = iocb};
    	ssize_t res;
    
    	if (file->f_flags & O_NONBLOCK)
    		msg.msg_flags = MSG_DONTWAIT;
    
    	if (iocb->ki_pos != 0)
    		return -ESPIPE;
    
    	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
    		return 0;
    
    	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
    	*to = msg.msg_iter;
    	return res;
    }
    
    static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
    {
    	struct file *file = iocb->ki_filp;
    	struct socket *sock = file->private_data;
    	struct msghdr msg = {.msg_iter = *from,
    			     .msg_iocb = iocb};
    	ssize_t res;
    
    	if (iocb->ki_pos != 0)
    		return -ESPIPE;
    
    	if (file->f_flags & O_NONBLOCK)
    		msg.msg_flags = MSG_DONTWAIT;
    
    	if (sock->type == SOCK_SEQPACKET)
    		msg.msg_flags |= MSG_EOR;
    
    	res = sock_sendmsg(sock, &msg);
    	*from = msg.msg_iter;
    	return res;
    }
    
    /*
     * Atomic setting of ioctl hooks to avoid race
     * with module unload.
     */
    
    static DEFINE_MUTEX(br_ioctl_mutex);
    static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
    
    void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
    {
    	mutex_lock(&br_ioctl_mutex);
    	br_ioctl_hook = hook;
    	mutex_unlock(&br_ioctl_mutex);
    }
    EXPORT_SYMBOL(brioctl_set);
    
    static DEFINE_MUTEX(vlan_ioctl_mutex);
    static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
    
    void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
    {
    	mutex_lock(&vlan_ioctl_mutex);
    	vlan_ioctl_hook = hook;
    	mutex_unlock(&vlan_ioctl_mutex);
    }
    EXPORT_SYMBOL(vlan_ioctl_set);
    
    static DEFINE_MUTEX(dlci_ioctl_mutex);
    static int (*dlci_ioctl_hook) (unsigned int, void __user *);
    
    void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
    {
    	mutex_lock(&dlci_ioctl_mutex);
    	dlci_ioctl_hook = hook;
    	mutex_unlock(&dlci_ioctl_mutex);
    }
    EXPORT_SYMBOL(dlci_ioctl_set);
    
    static long sock_do_ioctl(struct net *net, struct socket *sock,
    				 unsigned int cmd, unsigned long arg)
    {
    	int err;
    	void __user *argp = (void __user *)arg;
    
    	err = sock->ops->ioctl(sock, cmd, arg);
    
    	/*
    	 * If this ioctl is unknown try to hand it down
    	 * to the NIC driver.
    	 */
    	if (err == -ENOIOCTLCMD)
    		err = dev_ioctl(net, cmd, argp);
    
    	return err;
    }
    
    /*
     *	With an ioctl, arg may well be a user mode pointer, but we don't know
     *	what to do with it - that's up to the protocol still.
     */
    
    static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
    {
    	struct socket *sock;
    	struct sock *sk;
    	void __user *argp = (void __user *)arg;
    	int pid, err;
    	struct net *net;
    
    	sock = file->private_data;
    	sk = sock->sk;
    	net = sock_net(sk);
    	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
    		err = dev_ioctl(net, cmd, argp);
    	} else
    #ifdef CONFIG_WEXT_CORE
    	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
    		err = dev_ioctl(net, cmd, argp);
    	} else
    #endif
    		switch (cmd) {
    		case FIOSETOWN:
    		case SIOCSPGRP:
    			err = -EFAULT;
    			if (get_user(pid, (int __user *)argp))
    				break;
    			f_setown(sock->file, pid, 1);
    			err = 0;
    			break;
    		case FIOGETOWN:
    		case SIOCGPGRP:
    			err = put_user(f_getown(sock->file),
    				       (int __user *)argp);
    			break;
    		case SIOCGIFBR:
    		case SIOCSIFBR:
    		case SIOCBRADDBR:
    		case SIOCBRDELBR:
    			err = -ENOPKG;
    			if (!br_ioctl_hook)
    				request_module("bridge");
    
    			mutex_lock(&br_ioctl_mutex);
    			if (br_ioctl_hook)
    				err = br_ioctl_hook(net, cmd, argp);
    			mutex_unlock(&br_ioctl_mutex);
    			break;
    		case SIOCGIFVLAN:
    		case SIOCSIFVLAN:
    			err = -ENOPKG;
    			if (!vlan_ioctl_hook)
    				request_module("8021q");
    
    			mutex_lock(&vlan_ioctl_mutex);
    			if (vlan_ioctl_hook)
    				err = vlan_ioctl_hook(net, argp);
    			mutex_unlock(&vlan_ioctl_mutex);
    			break;
    		case SIOCADDDLCI:
    		case SIOCDELDLCI:
    			err = -ENOPKG;
    			if (!dlci_ioctl_hook)
    				request_module("dlci");
    
    			mutex_lock(&dlci_ioctl_mutex);
    			if (dlci_ioctl_hook)
    				err = dlci_ioctl_hook(cmd, argp);
    			mutex_unlock(&dlci_ioctl_mutex);
    			break;
    		default:
    			err = sock_do_ioctl(net, sock, cmd, arg);
    			break;
    		}
    	return err;
    }
    
    int sock_create_lite(int family, int type, int protocol, struct socket **res)
    {
    	int err;
    	struct socket *sock = NULL;
    
    	err = security_socket_create(family, type, protocol, 1);
    	if (err)
    		goto out;
    
    	sock = sock_alloc();
    	if (!sock) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	sock->type = type;
    	err = security_socket_post_create(sock, family, type, protocol, 1);
    	if (err)
    		goto out_release;
    
    out:
    	*res = sock;
    	return err;
    out_release:
    	sock_release(sock);
    	sock = NULL;
    	goto out;
    }
    EXPORT_SYMBOL(sock_create_lite);
    
    /* No kernel lock held - perfect */
    static unsigned int sock_poll(struct file *file, poll_table *wait)
    {
    	unsigned int busy_flag = 0;
    	struct socket *sock;
    
    	/*
    	 *      We can't return errors to poll, so it's either yes or no.
    	 */
    	sock = file->private_data;
    
    	if (sk_can_busy_loop(sock->sk)) {
    		/* this socket can poll_ll so tell the system call */
    		busy_flag = POLL_BUSY_LOOP;
    
    		/* once, only if requested by syscall */
    		if (wait && (wait->_key & POLL_BUSY_LOOP))
    			sk_busy_loop(sock->sk, 1);
    	}
    
    	return busy_flag | sock->ops->poll(file, sock, wait);
    }
    
    static int sock_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	struct socket *sock = file->private_data;
    
    	return sock->ops->mmap(file, sock, vma);
    }
    
    static int sock_close(struct inode *inode, struct file *filp)
    {
    	sock_release(SOCKET_I(inode));
    	return 0;
    }
    
    /*
     *	Update the socket async list
     *
     *	Fasync_list locking strategy.
     *
     *	1. fasync_list is modified only under process context socket lock
     *	   i.e. under semaphore.
     *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
     *	   or under socket lock
     */
    
    static int sock_fasync(int fd, struct file *filp, int on)
    {
    	struct socket *sock = filp->private_data;
    	struct sock *sk = sock->sk;
    	struct socket_wq *wq;
    
    	if (sk == NULL)
    		return -EINVAL;
    
    	lock_sock(sk);
    	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
    	fasync_helper(fd, filp, on, &wq->fasync_list);
    
    	if (!wq->fasync_list)
    		sock_reset_flag(sk, SOCK_FASYNC);
    	else
    		sock_set_flag(sk, SOCK_FASYNC);
    
    	release_sock(sk);
    	return 0;
    }
    
    /* This function may be called only under rcu_lock */
    
    int sock_wake_async(struct socket_wq *wq, int how, int band)
    {
    	if (!wq || !wq->fasync_list)
    		return -1;
    
    	switch (how) {
    	case SOCK_WAKE_WAITD:
    		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
    			break;
    		goto call_kill;
    	case SOCK_WAKE_SPACE:
    		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
    			break;
    		/* fall through */
    	case SOCK_WAKE_IO:
    call_kill:
    		kill_fasync(&wq->fasync_list, SIGIO, band);
    		break;
    	case SOCK_WAKE_URG:
    		kill_fasync(&wq->fasync_list, SIGURG, band);
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL(sock_wake_async);
    
    int __sock_create(struct net *net, int family, int type, int protocol,
    			 struct socket **res, int kern)
    {
    	int err;
    	struct socket *sock;
    	const struct net_proto_family *pf;
    
    	/*
    	 *      Check protocol is in range
    	 */
    	if (family < 0 || family >= NPROTO)
    		return -EAFNOSUPPORT;
    	if (type < 0 || type >= SOCK_MAX)
    		return -EINVAL;
    
    	/* Compatibility.
    
    	   This uglymoron is moved from INET layer to here to avoid
    	   deadlock in module load.
    	 */
    	if (family == PF_INET && type == SOCK_PACKET) {
    		static int warned;
    		if (!warned) {
    			warned = 1;
    			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
    				current->comm);
    		}
    		family = PF_PACKET;
    	}
    
    	err = security_socket_create(family, type, protocol, kern);
    	if (err)
    		return err;
    
    	/*
    	 *	Allocate the socket and allow the family to set things up. if
    	 *	the protocol is 0, the family is instructed to select an appropriate
    	 *	default.
    	 */
    	sock = sock_alloc();
    	if (!sock) {
    		net_warn_ratelimited("socket: no more sockets\n");
    		return -ENFILE;	/* Not exactly a match, but its the
    				   closest posix thing */
    	}
    
    	sock->type = type;
    
    #ifdef CONFIG_MODULES
    	/* Attempt to load a protocol module if the find failed.
    	 *
    	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
    	 * requested real, full-featured networking support upon configuration.
    	 * Otherwise module support will break!
    	 */
    	if (rcu_access_pointer(net_families[family]) == NULL)
    		request_module("net-pf-%d", family);
    #endif
    
    	rcu_read_lock();
    	pf = rcu_dereference(net_families[family]);
    	err = -EAFNOSUPPORT;
    	if (!pf)
    		goto out_release;
    
    	/*
    	 * We will call the ->create function, that possibly is in a loadable
    	 * module, so we have to bump that loadable module refcnt first.
    	 */
    	if (!try_module_get(pf->owner))
    		goto out_release;
    
    	/* Now protected by module ref count */
    	rcu_read_unlock();
    
    	err = pf->create(net, sock, protocol, kern);
    	if (err < 0)
    		goto out_module_put;
    
    	/*
    	 * Now to bump the refcnt of the [loadable] module that owns this
    	 * socket at sock_release time we decrement its refcnt.
    	 */
    	if (!try_module_get(sock->ops->owner))
    		goto out_module_busy;
    
    	/*
    	 * Now that we're done with the ->create function, the [loadable]
    	 * module can have its refcnt decremented
    	 */
    	module_put(pf->owner);
    	err = security_socket_post_create(sock, family, type, protocol, kern);
    	if (err)
    		goto out_sock_release;
    	*res = sock;
    
    	return 0;
    
    out_module_busy:
    	err = -EAFNOSUPPORT;
    out_module_put:
    	sock->ops = NULL;
    	module_put(pf->owner);
    out_sock_release:
    	sock_release(sock);
    	return err;
    
    out_release:
    	rcu_read_unlock();
    	goto out_sock_release;
    }
    EXPORT_SYMBOL(__sock_create);
    
    int sock_create(int family, int type, int protocol, struct socket **res)
    {
    	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
    }
    EXPORT_SYMBOL(sock_create);
    
    int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
    {
    	return __sock_create(net, family, type, protocol, res, 1);
    }
    EXPORT_SYMBOL(sock_create_kern);
    
    SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
    {
    	int retval;
    	struct socket *sock;
    	int flags;
    
    	/* Check the SOCK_* constants for consistency.  */
    	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
    	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
    	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
    	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
    
    	flags = type & ~SOCK_TYPE_MASK;
    	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
    		return -EINVAL;
    	type &= SOCK_TYPE_MASK;
    
    	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
    		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
    
    	retval = sock_create(family, type, protocol, &sock);
    	if (retval < 0)
    		goto out;
    
    	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
    	if (retval < 0)
    		goto out_release;
    
    out:
    	/* It may be already another descriptor 8) Not kernel problem. */
    	return retval;
    
    out_release:
    	sock_release(sock);
    	return retval;
    }
    
    /*
     *	Create a pair of connected sockets.
     */
    
    SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
    		int __user *, usockvec)
    {
    	struct socket *sock1, *sock2;
    	int fd1, fd2, err;
    	struct file *newfile1, *newfile2;
    	int flags;
    
    	flags = type & ~SOCK_TYPE_MASK;
    	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
    		return -EINVAL;
    	type &= SOCK_TYPE_MASK;
    
    	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
    		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
    
    	/*
    	 * Obtain the first socket and check if the underlying protocol
    	 * supports the socketpair call.
    	 */
    
    	err = sock_create(family, type, protocol, &sock1);
    	if (err < 0)
    		goto out;
    
    	err = sock_create(family, type, protocol, &sock2);
    	if (err < 0)
    		goto out_release_1;
    
    	err = sock1->ops->socketpair(sock1, sock2);
    	if (err < 0)
    		goto out_release_both;
    
    	fd1 = get_unused_fd_flags(flags);
    	if (unlikely(fd1 < 0)) {
    		err = fd1;
    		goto out_release_both;
    	}
    
    	fd2 = get_unused_fd_flags(flags);
    	if (unlikely(fd2 < 0)) {
    		err = fd2;
    		goto out_put_unused_1;
    	}
    
    	newfile1 = sock_alloc_file(sock1, flags, NULL);
    	if (IS_ERR(newfile1)) {
    		err = PTR_ERR(newfile1);
    		goto out_put_unused_both;
    	}
    
    	newfile2 = sock_alloc_file(sock2, flags, NULL);
    	if (IS_ERR(newfile2)) {
    		err = PTR_ERR(newfile2);
    		goto out_fput_1;
    	}
    
    	err = put_user(fd1, &usockvec[0]);
    	if (err)
    		goto out_fput_both;
    
    	err = put_user(fd2, &usockvec[1]);
    	if (err)
    		goto out_fput_both;
    
    	audit_fd_pair(fd1, fd2);
    
    	fd_install(fd1, newfile1);
    	fd_install(fd2, newfile2);
    	/* fd1 and fd2 may be already another descriptors.
    	 * Not kernel problem.
    	 */
    
    	return 0;
    
    out_fput_both:
    	fput(newfile2);
    	fput(newfile1);
    	put_unused_fd(fd2);
    	put_unused_fd(fd1);
    	goto out;
    
    out_fput_1:
    	fput(newfile1);
    	put_unused_fd(fd2);
    	put_unused_fd(fd1);
    	sock_release(sock2);
    	goto out;
    
    out_put_unused_both:
    	put_unused_fd(fd2);
    out_put_unused_1:
    	put_unused_fd(fd1);
    out_release_both:
    	sock_release(sock2);
    out_release_1:
    	sock_release(sock1);
    out:
    	return err;
    }
    
    /*
     *	Bind a name to a socket. Nothing much to do here since it's
     *	the protocol's responsibility to handle the local address.
     *
     *	We move the socket address to kernel space before we call
     *	the protocol layer (having also checked the address is ok).
     */
    
    SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int err, fput_needed;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock) {
    		err = move_addr_to_kernel(umyaddr, addrlen, &address);
    		if (err >= 0) {
    			err = security_socket_bind(sock,
    						   (struct sockaddr *)&address,
    						   addrlen);
    			if (!err)
    				err = sock->ops->bind(sock,
    						      (struct sockaddr *)
    						      &address, addrlen);
    		}
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /*
     *	Perform a listen. Basically, we allow the protocol to do anything
     *	necessary for a listen, and if that works, we mark the socket as
     *	ready for listening.
     */
    
    SYSCALL_DEFINE2(listen, int, fd, int, backlog)
    {
    	struct socket *sock;
    	int err, fput_needed;
    	int somaxconn;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock) {
    		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
    		if ((unsigned int)backlog > somaxconn)
    			backlog = somaxconn;
    
    		err = security_socket_listen(sock, backlog);
    		if (!err)
    			err = sock->ops->listen(sock, backlog);
    
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /*
     *	For accept, we attempt to create a new socket, set up the link
     *	with the client, wake up the client, then return the new
     *	connected fd. We collect the address of the connector in kernel
     *	space and move it to user at the very end. This is unclean because
     *	we open the socket then return an error.
     *
     *	1003.1g adds the ability to recvmsg() to query connection pending
     *	status to recvmsg. We need to add that support in a way thats
     *	clean when we restucture accept also.
     */
    
    SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
    		int __user *, upeer_addrlen, int, flags)
    {
    	struct socket *sock, *newsock;
    	struct file *newfile;
    	int err, len, newfd, fput_needed;
    	struct sockaddr_storage address;
    
    	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
    		return -EINVAL;
    
    	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
    		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	err = -ENFILE;
    	newsock = sock_alloc();
    	if (!newsock)
    		goto out_put;
    
    	newsock->type = sock->type;
    	newsock->ops = sock->ops;
    
    	/*
    	 * We don't need try_module_get here, as the listening socket (sock)
    	 * has the protocol module (sock->ops->owner) held.
    	 */
    	__module_get(newsock->ops->owner);
    
    	newfd = get_unused_fd_flags(flags);
    	if (unlikely(newfd < 0)) {
    		err = newfd;
    		sock_release(newsock);
    		goto out_put;
    	}
    	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
    	if (IS_ERR(newfile)) {
    		err = PTR_ERR(newfile);
    		put_unused_fd(newfd);
    		sock_release(newsock);
    		goto out_put;
    	}
    
    	err = security_socket_accept(sock, newsock);
    	if (err)
    		goto out_fd;
    
    	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
    	if (err < 0)
    		goto out_fd;
    
    	if (upeer_sockaddr) {
    		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
    					  &len, 2) < 0) {
    			err = -ECONNABORTED;
    			goto out_fd;
    		}
    		err = move_addr_to_user(&address,
    					len, upeer_sockaddr, upeer_addrlen);
    		if (err < 0)
    			goto out_fd;
    	}
    
    	/* File flags are not inherited via accept() unlike another OSes. */
    
    	fd_install(newfd, newfile);
    	err = newfd;
    
    out_put:
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    out_fd:
    	fput(newfile);
    	put_unused_fd(newfd);
    	goto out_put;
    }
    
    SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
    		int __user *, upeer_addrlen)
    {
    	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
    }
    
    /*
     *	Attempt to connect to a socket with the server address.  The address
     *	is in user space so we verify it is OK and move it to kernel space.
     *
     *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
     *	break bindings
     *
     *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
     *	other SEQPACKET protocols that take time to connect() as it doesn't
     *	include the -EINPROGRESS status for such sockets.
     */
    
    SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
    		int, addrlen)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int err, fput_needed;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    	err = move_addr_to_kernel(uservaddr, addrlen, &address);
    	if (err < 0)
    		goto out_put;
    
    	err =
    	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
    	if (err)
    		goto out_put;
    
    	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
    				 sock->file->f_flags);
    out_put:
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    /*
     *	Get the local address ('name') of a socket object. Move the obtained
     *	name to user space.
     */
    
    SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
    		int __user *, usockaddr_len)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int len, err, fput_needed;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	err = security_socket_getsockname(sock);
    	if (err)
    		goto out_put;
    
    	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
    	if (err)
    		goto out_put;
    	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
    
    out_put:
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    /*
     *	Get the remote address ('name') of a socket object. Move the obtained
     *	name to user space.
     */
    
    SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
    		int __user *, usockaddr_len)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int len, err, fput_needed;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock != NULL) {
    		err = security_socket_getpeername(sock);
    		if (err) {
    			fput_light(sock->file, fput_needed);
    			return err;
    		}
    
    		err =
    		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
    				       1);
    		if (!err)
    			err = move_addr_to_user(&address, len, usockaddr,
    						usockaddr_len);
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /*
     *	Send a datagram to a given address. We move the address into kernel
     *	space and check the user space data area is readable before invoking
     *	the protocol.
     */
    
    SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
    		unsigned int, flags, struct sockaddr __user *, addr,
    		int, addr_len)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int err;
    	struct msghdr msg;
    	struct iovec iov;
    	int fput_needed;
    
    	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
    	if (unlikely(err))
    		return err;
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	msg.msg_name = NULL;
    	msg.msg_control = NULL;
    	msg.msg_controllen = 0;
    	msg.msg_namelen = 0;
    	if (addr) {
    		err = move_addr_to_kernel(addr, addr_len, &address);
    		if (err < 0)
    			goto out_put;
    		msg.msg_name = (struct sockaddr *)&address;
    		msg.msg_namelen = addr_len;
    	}
    	if (sock->file->f_flags & O_NONBLOCK)
    		flags |= MSG_DONTWAIT;
    	msg.msg_flags = flags;
    	err = sock_sendmsg(sock, &msg);
    
    out_put:
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    /*
     *	Send a datagram down a socket.
     */
    
    SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
    		unsigned int, flags)
    {
    	return sys_sendto(fd, buff, len, flags, NULL, 0);
    }
    
    /*
     *	Receive a frame from the socket and optionally record the address of the
     *	sender. We verify the buffers are writable and if needed move the
     *	sender address from kernel to user space.
     */
    
    SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
    		unsigned int, flags, struct sockaddr __user *, addr,
    		int __user *, addr_len)
    {
    	struct socket *sock;
    	struct iovec iov;
    	struct msghdr msg;
    	struct sockaddr_storage address;
    	int err, err2;
    	int fput_needed;
    
    	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
    	if (unlikely(err))
    		return err;
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	msg.msg_control = NULL;
    	msg.msg_controllen = 0;
    	/* Save some cycles and don't copy the address if not needed */
    	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
    	/* We assume all kernel code knows the size of sockaddr_storage */
    	msg.msg_namelen = 0;
    	msg.msg_iocb = NULL;
    	if (sock->file->f_flags & O_NONBLOCK)
    		flags |= MSG_DONTWAIT;
    	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
    
    	if (err >= 0 && addr != NULL) {
    		err2 = move_addr_to_user(&address,
    					 msg.msg_namelen, addr, addr_len);
    		if (err2 < 0)
    			err = err2;
    	}
    
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    /*
     *	Receive a datagram from a socket.
     */
    
    SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
    		unsigned int, flags)
    {
    	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
    }
    
    /*
     *	Set a socket option. Because we don't know the option lengths we have
     *	to pass the user mode parameter for the protocols to sort out.
     */
    
    SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
    		char __user *, optval, int, optlen)
    {
    	int err, fput_needed;
    	struct socket *sock;
    
    	if (optlen < 0)
    		return -EINVAL;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock != NULL) {
    		err = security_socket_setsockopt(sock, level, optname);
    		if (err)
    			goto out_put;
    
    		if (level == SOL_SOCKET)
    			err =
    			    sock_setsockopt(sock, level, optname, optval,
    					    optlen);
    		else
    			err =
    			    sock->ops->setsockopt(sock, level, optname, optval,
    						  optlen);
    out_put:
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /*
     *	Get a socket option. Because we don't know the option lengths we have
     *	to pass a user mode parameter for the protocols to sort out.
     */
    
    SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
    		char __user *, optval, int __user *, optlen)
    {
    	int err, fput_needed;
    	struct socket *sock;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock != NULL) {
    		err = security_socket_getsockopt(sock, level, optname);
    		if (err)
    			goto out_put;
    
    		if (level == SOL_SOCKET)
    			err =
    			    sock_getsockopt(sock, level, optname, optval,
    					    optlen);
    		else
    			err =
    			    sock->ops->getsockopt(sock, level, optname, optval,
    						  optlen);
    out_put:
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /*
     *	Shutdown a socket.
     */
    
    SYSCALL_DEFINE2(shutdown, int, fd, int, how)
    {
    	int err, fput_needed;
    	struct socket *sock;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (sock != NULL) {
    		err = security_socket_shutdown(sock, how);
    		if (!err)
    			err = sock->ops->shutdown(sock, how);
    		fput_light(sock->file, fput_needed);
    	}
    	return err;
    }
    
    /* A couple of helpful macros for getting the address of the 32/64 bit
     * fields which are the same type (int / unsigned) on our platforms.
     */
    #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
    #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
    #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
    
    struct used_address {
    	struct sockaddr_storage name;
    	unsigned int name_len;
    };
    
    static int copy_msghdr_from_user(struct msghdr *kmsg,
    				 struct user_msghdr __user *umsg,
    				 struct sockaddr __user **save_addr,
    				 struct iovec **iov)
    {
    	struct sockaddr __user *uaddr;
    	struct iovec __user *uiov;
    	size_t nr_segs;
    	ssize_t err;
    
    	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
    	    __get_user(uaddr, &umsg->msg_name) ||
    	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
    	    __get_user(uiov, &umsg->msg_iov) ||
    	    __get_user(nr_segs, &umsg->msg_iovlen) ||
    	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
    	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
    	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
    		return -EFAULT;
    
    	if (!uaddr)
    		kmsg->msg_namelen = 0;
    
    	if (kmsg->msg_namelen < 0)
    		return -EINVAL;
    
    	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
    		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
    
    	if (save_addr)
    		*save_addr = uaddr;
    
    	if (uaddr && kmsg->msg_namelen) {
    		if (!save_addr) {
    			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
    						  kmsg->msg_name);
    			if (err < 0)
    				return err;
    		}
    	} else {
    		kmsg->msg_name = NULL;
    		kmsg->msg_namelen = 0;
    	}
    
    	if (nr_segs > UIO_MAXIOV)
    		return -EMSGSIZE;
    
    	kmsg->msg_iocb = NULL;
    
    	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
    			    UIO_FASTIOV, iov, &kmsg->msg_iter);
    }
    
    static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
    			 struct msghdr *msg_sys, unsigned int flags,
    			 struct used_address *used_address)
    {
    	struct compat_msghdr __user *msg_compat =
    	    (struct compat_msghdr __user *)msg;
    	struct sockaddr_storage address;
    	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
    	unsigned char ctl[sizeof(struct cmsghdr) + 20]
    	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
    	/* 20 is size of ipv6_pktinfo */
    	unsigned char *ctl_buf = ctl;
    	int ctl_len;
    	ssize_t err;
    
    	msg_sys->msg_name = &address;
    
    	if (MSG_CMSG_COMPAT & flags)
    		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
    	else
    		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
    	if (err < 0)
    		return err;
    
    	err = -ENOBUFS;
    
    	if (msg_sys->msg_controllen > INT_MAX)
    		goto out_freeiov;
    	ctl_len = msg_sys->msg_controllen;
    	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
    		err =
    		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
    						     sizeof(ctl));
    		if (err)
    			goto out_freeiov;
    		ctl_buf = msg_sys->msg_control;
    		ctl_len = msg_sys->msg_controllen;
    	} else if (ctl_len) {
    		if (ctl_len > sizeof(ctl)) {
    			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
    			if (ctl_buf == NULL)
    				goto out_freeiov;
    		}
    		err = -EFAULT;
    		/*
    		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
    		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
    		 * checking falls down on this.
    		 */
    		if (copy_from_user(ctl_buf,
    				   (void __user __force *)msg_sys->msg_control,
    				   ctl_len))
    			goto out_freectl;
    		msg_sys->msg_control = ctl_buf;
    	}
    	msg_sys->msg_flags = flags;
    
    	if (sock->file->f_flags & O_NONBLOCK)
    		msg_sys->msg_flags |= MSG_DONTWAIT;
    	/*
    	 * If this is sendmmsg() and current destination address is same as
    	 * previously succeeded address, omit asking LSM's decision.
    	 * used_address->name_len is initialized to UINT_MAX so that the first
    	 * destination address never matches.
    	 */
    	if (used_address && msg_sys->msg_name &&
    	    used_address->name_len == msg_sys->msg_namelen &&
    	    !memcmp(&used_address->name, msg_sys->msg_name,
    		    used_address->name_len)) {
    		err = sock_sendmsg_nosec(sock, msg_sys);
    		goto out_freectl;
    	}
    	err = sock_sendmsg(sock, msg_sys);
    	/*
    	 * If this is sendmmsg() and sending to current destination address was
    	 * successful, remember it.
    	 */
    	if (used_address && err >= 0) {
    		used_address->name_len = msg_sys->msg_namelen;
    		if (msg_sys->msg_name)
    			memcpy(&used_address->name, msg_sys->msg_name,
    			       used_address->name_len);
    	}
    
    out_freectl:
    	if (ctl_buf != ctl)
    		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
    out_freeiov:
    	kfree(iov);
    	return err;
    }
    
    /*
     *	BSD sendmsg interface
     */
    
    long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
    {
    	int fput_needed, err;
    	struct msghdr msg_sys;
    	struct socket *sock;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
    
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
    {
    	if (flags & MSG_CMSG_COMPAT)
    		return -EINVAL;
    	return __sys_sendmsg(fd, msg, flags);
    }
    
    /*
     *	Linux sendmmsg interface
     */
    
    int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
    		   unsigned int flags)
    {
    	int fput_needed, err, datagrams;
    	struct socket *sock;
    	struct mmsghdr __user *entry;
    	struct compat_mmsghdr __user *compat_entry;
    	struct msghdr msg_sys;
    	struct used_address used_address;
    
    	if (vlen > UIO_MAXIOV)
    		vlen = UIO_MAXIOV;
    
    	datagrams = 0;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		return err;
    
    	used_address.name_len = UINT_MAX;
    	entry = mmsg;
    	compat_entry = (struct compat_mmsghdr __user *)mmsg;
    	err = 0;
    
    	while (datagrams < vlen) {
    		if (MSG_CMSG_COMPAT & flags) {
    			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
    					     &msg_sys, flags, &used_address);
    			if (err < 0)
    				break;
    			err = __put_user(err, &compat_entry->msg_len);
    			++compat_entry;
    		} else {
    			err = ___sys_sendmsg(sock,
    					     (struct user_msghdr __user *)entry,
    					     &msg_sys, flags, &used_address);
    			if (err < 0)
    				break;
    			err = put_user(err, &entry->msg_len);
    			++entry;
    		}
    
    		if (err)
    			break;
    		++datagrams;
    	}
    
    	fput_light(sock->file, fput_needed);
    
    	/* We only return an error if no datagrams were able to be sent */
    	if (datagrams != 0)
    		return datagrams;
    
    	return err;
    }
    
    SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
    		unsigned int, vlen, unsigned int, flags)
    {
    	if (flags & MSG_CMSG_COMPAT)
    		return -EINVAL;
    	return __sys_sendmmsg(fd, mmsg, vlen, flags);
    }
    
    static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
    			 struct msghdr *msg_sys, unsigned int flags, int nosec)
    {
    	struct compat_msghdr __user *msg_compat =
    	    (struct compat_msghdr __user *)msg;
    	struct iovec iovstack[UIO_FASTIOV];
    	struct iovec *iov = iovstack;
    	unsigned long cmsg_ptr;
    	int total_len, len;
    	ssize_t err;
    
    	/* kernel mode address */
    	struct sockaddr_storage addr;
    
    	/* user mode address pointers */
    	struct sockaddr __user *uaddr;
    	int __user *uaddr_len = COMPAT_NAMELEN(msg);
    
    	msg_sys->msg_name = &addr;
    
    	if (MSG_CMSG_COMPAT & flags)
    		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
    	else
    		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
    	if (err < 0)
    		return err;
    	total_len = iov_iter_count(&msg_sys->msg_iter);
    
    	cmsg_ptr = (unsigned long)msg_sys->msg_control;
    	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
    
    	/* We assume all kernel code knows the size of sockaddr_storage */
    	msg_sys->msg_namelen = 0;
    
    	if (sock->file->f_flags & O_NONBLOCK)
    		flags |= MSG_DONTWAIT;
    	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
    							  total_len, flags);
    	if (err < 0)
    		goto out_freeiov;
    	len = err;
    
    	if (uaddr != NULL) {
    		err = move_addr_to_user(&addr,
    					msg_sys->msg_namelen, uaddr,
    					uaddr_len);
    		if (err < 0)
    			goto out_freeiov;
    	}
    	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
    			 COMPAT_FLAGS(msg));
    	if (err)
    		goto out_freeiov;
    	if (MSG_CMSG_COMPAT & flags)
    		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
    				 &msg_compat->msg_controllen);
    	else
    		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
    				 &msg->msg_controllen);
    	if (err)
    		goto out_freeiov;
    	err = len;
    
    out_freeiov:
    	kfree(iov);
    	return err;
    }
    
    /*
     *	BSD recvmsg interface
     */
    
    long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
    {
    	int fput_needed, err;
    	struct msghdr msg_sys;
    	struct socket *sock;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
    
    	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
    
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
    		unsigned int, flags)
    {
    	if (flags & MSG_CMSG_COMPAT)
    		return -EINVAL;
    	return __sys_recvmsg(fd, msg, flags);
    }
    
    /*
     *     Linux recvmmsg interface
     */
    
    int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
    		   unsigned int flags, struct timespec *timeout)
    {
    	int fput_needed, err, datagrams;
    	struct socket *sock;
    	struct mmsghdr __user *entry;
    	struct compat_mmsghdr __user *compat_entry;
    	struct msghdr msg_sys;
    	struct timespec end_time;
    
    	if (timeout &&
    	    poll_select_set_timeout(&end_time, timeout->tv_sec,
    				    timeout->tv_nsec))
    		return -EINVAL;
    
    	datagrams = 0;
    
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		return err;
    
    	err = sock_error(sock->sk);
    	if (err)
    		goto out_put;
    
    	entry = mmsg;
    	compat_entry = (struct compat_mmsghdr __user *)mmsg;
    
    	while (datagrams < vlen) {
    		/*
    		 * No need to ask LSM for more than the first datagram.
    		 */
    		if (MSG_CMSG_COMPAT & flags) {
    			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
    					     &msg_sys, flags & ~MSG_WAITFORONE,
    					     datagrams);
    			if (err < 0)
    				break;
    			err = __put_user(err, &compat_entry->msg_len);
    			++compat_entry;
    		} else {
    			err = ___sys_recvmsg(sock,
    					     (struct user_msghdr __user *)entry,
    					     &msg_sys, flags & ~MSG_WAITFORONE,
    					     datagrams);
    			if (err < 0)
    				break;
    			err = put_user(err, &entry->msg_len);
    			++entry;
    		}
    
    		if (err)
    			break;
    		++datagrams;
    
    		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
    		if (flags & MSG_WAITFORONE)
    			flags |= MSG_DONTWAIT;
    
    		if (timeout) {
    			ktime_get_ts(timeout);
    			*timeout = timespec_sub(end_time, *timeout);
    			if (timeout->tv_sec < 0) {
    				timeout->tv_sec = timeout->tv_nsec = 0;
    				break;
    			}
    
    			/* Timeout, return less than vlen datagrams */
    			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
    				break;
    		}
    
    		/* Out of band data, return right away */
    		if (msg_sys.msg_flags & MSG_OOB)
    			break;
    	}
    
    out_put:
    	fput_light(sock->file, fput_needed);
    
    	if (err == 0)
    		return datagrams;
    
    	if (datagrams != 0) {
    		/*
    		 * We may return less entries than requested (vlen) if the
    		 * sock is non block and there aren't enough datagrams...
    		 */
    		if (err != -EAGAIN) {
    			/*
    			 * ... or  if recvmsg returns an error after we
    			 * received some datagrams, where we record the
    			 * error to return on the next call or if the
    			 * app asks about it using getsockopt(SO_ERROR).
    			 */
    			sock->sk->sk_err = -err;
    		}
    
    		return datagrams;
    	}
    
    	return err;
    }
    
    SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
    		unsigned int, vlen, unsigned int, flags,
    		struct timespec __user *, timeout)
    {
    	int datagrams;
    	struct timespec timeout_sys;
    
    	if (flags & MSG_CMSG_COMPAT)
    		return -EINVAL;
    
    	if (!timeout)
    		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
    
    	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
    		return -EFAULT;
    
    	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
    
    	if (datagrams > 0 &&
    	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
    		datagrams = -EFAULT;
    
    	return datagrams;
    }
    
    #ifdef __ARCH_WANT_SYS_SOCKETCALL
    /* Argument list sizes for sys_socketcall */
    #define AL(x) ((x) * sizeof(unsigned long))
    static const unsigned char nargs[21] = {
    	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
    	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
    	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
    	AL(4), AL(5), AL(4)
    };
    
    #undef AL
    
    /*
     *	System call vectors.
     *
     *	Argument checking cleaned up. Saved 20% in size.
     *  This function doesn't need to set the kernel lock because
     *  it is set by the callees.
     */
    
    SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
    {
    	unsigned long a[AUDITSC_ARGS];
    	unsigned long a0, a1;
    	int err;
    	unsigned int len;
    
    	if (call < 1 || call > SYS_SENDMMSG)
    		return -EINVAL;
    
    	len = nargs[call];
    	if (len > sizeof(a))
    		return -EINVAL;
    
    	/* copy_from_user should be SMP safe. */
    	if (copy_from_user(a, args, len))
    		return -EFAULT;
    
    	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
    	if (err)
    		return err;
    
    	a0 = a[0];
    	a1 = a[1];
    
    	switch (call) {
    	case SYS_SOCKET:
    		err = sys_socket(a0, a1, a[2]);
    		break;
    	case SYS_BIND:
    		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
    		break;
    	case SYS_CONNECT:
    		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
    		break;
    	case SYS_LISTEN:
    		err = sys_listen(a0, a1);
    		break;
    	case SYS_ACCEPT:
    		err = sys_accept4(a0, (struct sockaddr __user *)a1,
    				  (int __user *)a[2], 0);
    		break;
    	case SYS_GETSOCKNAME:
    		err =
    		    sys_getsockname(a0, (struct sockaddr __user *)a1,
    				    (int __user *)a[2]);
    		break;
    	case SYS_GETPEERNAME:
    		err =
    		    sys_getpeername(a0, (struct sockaddr __user *)a1,
    				    (int __user *)a[2]);
    		break;
    	case SYS_SOCKETPAIR:
    		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
    		break;
    	case SYS_SEND:
    		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
    		break;
    	case SYS_SENDTO:
    		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
    				 (struct sockaddr __user *)a[4], a[5]);
    		break;
    	case SYS_RECV:
    		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
    		break;
    	case SYS_RECVFROM:
    		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
    				   (struct sockaddr __user *)a[4],
    				   (int __user *)a[5]);
    		break;
    	case SYS_SHUTDOWN:
    		err = sys_shutdown(a0, a1);
    		break;
    	case SYS_SETSOCKOPT:
    		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
    		break;
    	case SYS_GETSOCKOPT:
    		err =
    		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
    				   (int __user *)a[4]);
    		break;
    	case SYS_SENDMSG:
    		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
    		break;
    	case SYS_SENDMMSG:
    		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
    		break;
    	case SYS_RECVMSG:
    		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
    		break;
    	case SYS_RECVMMSG:
    		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
    				   (struct timespec __user *)a[4]);
    		break;
    	case SYS_ACCEPT4:
    		err = sys_accept4(a0, (struct sockaddr __user *)a1,
    				  (int __user *)a[2], a[3]);
    		break;
    	default:
    		err = -EINVAL;
    		break;
    	}
    	return err;
    }
    
    #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
    
    /**
     *	sock_register - add a socket protocol handler
     *	@ops: description of protocol
     *
     *	This function is called by a protocol handler that wants to
     *	advertise its address family, and have it linked into the
     *	socket interface. The value ops->family corresponds to the
     *	socket system call protocol family.
     */
    int sock_register(const struct net_proto_family *ops)
    {
    	int err;
    
    	if (ops->family >= NPROTO) {
    		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
    		return -ENOBUFS;
    	}
    
    	spin_lock(&net_family_lock);
    	if (rcu_dereference_protected(net_families[ops->family],
    				      lockdep_is_held(&net_family_lock)))
    		err = -EEXIST;
    	else {
    		rcu_assign_pointer(net_families[ops->family], ops);
    		err = 0;
    	}
    	spin_unlock(&net_family_lock);
    
    	pr_info("NET: Registered protocol family %d\n", ops->family);
    	return err;
    }
    EXPORT_SYMBOL(sock_register);
    
    /**
     *	sock_unregister - remove a protocol handler
     *	@family: protocol family to remove
     *
     *	This function is called by a protocol handler that wants to
     *	remove its address family, and have it unlinked from the
     *	new socket creation.
     *
     *	If protocol handler is a module, then it can use module reference
     *	counts to protect against new references. If protocol handler is not
     *	a module then it needs to provide its own protection in
     *	the ops->create routine.
     */
    void sock_unregister(int family)
    {
    	BUG_ON(family < 0 || family >= NPROTO);
    
    	spin_lock(&net_family_lock);
    	RCU_INIT_POINTER(net_families[family], NULL);
    	spin_unlock(&net_family_lock);
    
    	synchronize_rcu();
    
    	pr_info("NET: Unregistered protocol family %d\n", family);
    }
    EXPORT_SYMBOL(sock_unregister);
    
    static int __init sock_init(void)
    {
    	int err;
    	/*
    	 *      Initialize the network sysctl infrastructure.
    	 */
    	err = net_sysctl_init();
    	if (err)
    		goto out;
    
    	/*
    	 *      Initialize skbuff SLAB cache
    	 */
    	skb_init();
    
    	/*
    	 *      Initialize the protocols module.
    	 */
    
    	init_inodecache();
    
    	err = register_filesystem(&sock_fs_type);
    	if (err)
    		goto out_fs;
    	sock_mnt = kern_mount(&sock_fs_type);
    	if (IS_ERR(sock_mnt)) {
    		err = PTR_ERR(sock_mnt);
    		goto out_mount;
    	}
    
    	/* The real protocol initialization is performed in later initcalls.
    	 */
    
    #ifdef CONFIG_NETFILTER
    	err = netfilter_init();
    	if (err)
    		goto out;
    #endif
    
    	ptp_classifier_init();
    
    out:
    	return err;
    
    out_mount:
    	unregister_filesystem(&sock_fs_type);
    out_fs:
    	goto out;
    }
    
    core_initcall(sock_init);	/* early initcall */
    
    #ifdef CONFIG_PROC_FS
    void socket_seq_show(struct seq_file *seq)
    {
    	int cpu;
    	int counter = 0;
    
    	for_each_possible_cpu(cpu)
    	    counter += per_cpu(sockets_in_use, cpu);
    
    	/* It can be negative, by the way. 8) */
    	if (counter < 0)
    		counter = 0;
    
    	seq_printf(seq, "sockets: used %d\n", counter);
    }
    #endif				/* CONFIG_PROC_FS */
    
    #ifdef CONFIG_COMPAT
    static int do_siocgstamp(struct net *net, struct socket *sock,
    			 unsigned int cmd, void __user *up)
    {
    	mm_segment_t old_fs = get_fs();
    	struct timeval ktv;
    	int err;
    
    	set_fs(KERNEL_DS);
    	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
    	set_fs(old_fs);
    	if (!err)
    		err = compat_put_timeval(&ktv, up);
    
    	return err;
    }
    
    static int do_siocgstampns(struct net *net, struct socket *sock,
    			   unsigned int cmd, void __user *up)
    {
    	mm_segment_t old_fs = get_fs();
    	struct timespec kts;
    	int err;
    
    	set_fs(KERNEL_DS);
    	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
    	set_fs(old_fs);
    	if (!err)
    		err = compat_put_timespec(&kts, up);
    
    	return err;
    }
    
    static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
    {
    	struct ifreq __user *uifr;
    	int err;
    
    	uifr = compat_alloc_user_space(sizeof(struct ifreq));
    	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
    		return -EFAULT;
    
    	err = dev_ioctl(net, SIOCGIFNAME, uifr);
    	if (err)
    		return err;
    
    	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
    		return -EFAULT;
    
    	return 0;
    }
    
    static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
    {
    	struct compat_ifconf ifc32;
    	struct ifconf ifc;
    	struct ifconf __user *uifc;
    	struct compat_ifreq __user *ifr32;
    	struct ifreq __user *ifr;
    	unsigned int i, j;
    	int err;
    
    	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
    		return -EFAULT;
    
    	memset(&ifc, 0, sizeof(ifc));
    	if (ifc32.ifcbuf == 0) {
    		ifc32.ifc_len = 0;
    		ifc.ifc_len = 0;
    		ifc.ifc_req = NULL;
    		uifc = compat_alloc_user_space(sizeof(struct ifconf));
    	} else {
    		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
    			sizeof(struct ifreq);
    		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
    		ifc.ifc_len = len;
    		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
    		ifr32 = compat_ptr(ifc32.ifcbuf);
    		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
    			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
    				return -EFAULT;
    			ifr++;
    			ifr32++;
    		}
    	}
    	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
    		return -EFAULT;
    
    	err = dev_ioctl(net, SIOCGIFCONF, uifc);
    	if (err)
    		return err;
    
    	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
    		return -EFAULT;
    
    	ifr = ifc.ifc_req;
    	ifr32 = compat_ptr(ifc32.ifcbuf);
    	for (i = 0, j = 0;
    	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
    	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
    		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
    			return -EFAULT;
    		ifr32++;
    		ifr++;
    	}
    
    	if (ifc32.ifcbuf == 0) {
    		/* Translate from 64-bit structure multiple to
    		 * a 32-bit one.
    		 */
    		i = ifc.ifc_len;
    		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
    		ifc32.ifc_len = i;
    	} else {
    		ifc32.ifc_len = i;
    	}
    	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
    		return -EFAULT;
    
    	return 0;
    }
    
    static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
    {
    	struct compat_ethtool_rxnfc __user *compat_rxnfc;
    	bool convert_in = false, convert_out = false;
    	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
    	struct ethtool_rxnfc __user *rxnfc;
    	struct ifreq __user *ifr;
    	u32 rule_cnt = 0, actual_rule_cnt;
    	u32 ethcmd;
    	u32 data;
    	int ret;
    
    	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
    		return -EFAULT;
    
    	compat_rxnfc = compat_ptr(data);
    
    	if (get_user(ethcmd, &compat_rxnfc->cmd))
    		return -EFAULT;
    
    	/* Most ethtool structures are defined without padding.
    	 * Unfortunately struct ethtool_rxnfc is an exception.
    	 */
    	switch (ethcmd) {
    	default:
    		break;
    	case ETHTOOL_GRXCLSRLALL:
    		/* Buffer size is variable */
    		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
    			return -EFAULT;
    		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
    			return -ENOMEM;
    		buf_size += rule_cnt * sizeof(u32);
    		/* fall through */
    	case ETHTOOL_GRXRINGS:
    	case ETHTOOL_GRXCLSRLCNT:
    	case ETHTOOL_GRXCLSRULE:
    	case ETHTOOL_SRXCLSRLINS:
    		convert_out = true;
    		/* fall through */
    	case ETHTOOL_SRXCLSRLDEL:
    		buf_size += sizeof(struct ethtool_rxnfc);
    		convert_in = true;
    		break;
    	}
    
    	ifr = compat_alloc_user_space(buf_size);
    	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
    
    	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
    		return -EFAULT;
    
    	if (put_user(convert_in ? rxnfc : compat_ptr(data),
    		     &ifr->ifr_ifru.ifru_data))
    		return -EFAULT;
    
    	if (convert_in) {
    		/* We expect there to be holes between fs.m_ext and
    		 * fs.ring_cookie and at the end of fs, but nowhere else.
    		 */
    		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
    			     sizeof(compat_rxnfc->fs.m_ext) !=
    			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
    			     sizeof(rxnfc->fs.m_ext));
    		BUILD_BUG_ON(
    			offsetof(struct compat_ethtool_rxnfc, fs.location) -
    			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
    			offsetof(struct ethtool_rxnfc, fs.location) -
    			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
    
    		if (copy_in_user(rxnfc, compat_rxnfc,
    				 (void __user *)(&rxnfc->fs.m_ext + 1) -
    				 (void __user *)rxnfc) ||
    		    copy_in_user(&rxnfc->fs.ring_cookie,
    				 &compat_rxnfc->fs.ring_cookie,
    				 (void __user *)(&rxnfc->fs.location + 1) -
    				 (void __user *)&rxnfc->fs.ring_cookie) ||
    		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
    				 sizeof(rxnfc->rule_cnt)))
    			return -EFAULT;
    	}
    
    	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
    	if (ret)
    		return ret;
    
    	if (convert_out) {
    		if (copy_in_user(compat_rxnfc, rxnfc,
    				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
    				 (const void __user *)rxnfc) ||
    		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
    				 &rxnfc->fs.ring_cookie,
    				 (const void __user *)(&rxnfc->fs.location + 1) -
    				 (const void __user *)&rxnfc->fs.ring_cookie) ||
    		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
    				 sizeof(rxnfc->rule_cnt)))
    			return -EFAULT;
    
    		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
    			/* As an optimisation, we only copy the actual
    			 * number of rules that the underlying
    			 * function returned.  Since Mallory might
    			 * change the rule count in user memory, we
    			 * check that it is less than the rule count
    			 * originally given (as the user buffer size),
    			 * which has been range-checked.
    			 */
    			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
    				return -EFAULT;
    			if (actual_rule_cnt < rule_cnt)
    				rule_cnt = actual_rule_cnt;
    			if (copy_in_user(&compat_rxnfc->rule_locs[0],
    					 &rxnfc->rule_locs[0],
    					 rule_cnt * sizeof(u32)))
    				return -EFAULT;
    		}
    	}
    
    	return 0;
    }
    
    static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
    {
    	void __user *uptr;
    	compat_uptr_t uptr32;
    	struct ifreq __user *uifr;
    
    	uifr = compat_alloc_user_space(sizeof(*uifr));
    	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
    		return -EFAULT;
    
    	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
    		return -EFAULT;
    
    	uptr = compat_ptr(uptr32);
    
    	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
    		return -EFAULT;
    
    	return dev_ioctl(net, SIOCWANDEV, uifr);
    }
    
    static int bond_ioctl(struct net *net, unsigned int cmd,
    			 struct compat_ifreq __user *ifr32)
    {
    	struct ifreq kifr;
    	mm_segment_t old_fs;
    	int err;
    
    	switch (cmd) {
    	case SIOCBONDENSLAVE:
    	case SIOCBONDRELEASE:
    	case SIOCBONDSETHWADDR:
    	case SIOCBONDCHANGEACTIVE:
    		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
    			return -EFAULT;
    
    		old_fs = get_fs();
    		set_fs(KERNEL_DS);
    		err = dev_ioctl(net, cmd,
    				(struct ifreq __user __force *) &kifr);
    		set_fs(old_fs);
    
    		return err;
    	default:
    		return -ENOIOCTLCMD;
    	}
    }
    
    /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
    static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
    				 struct compat_ifreq __user *u_ifreq32)
    {
    	struct ifreq __user *u_ifreq64;
    	char tmp_buf[IFNAMSIZ];
    	void __user *data64;
    	u32 data32;
    
    	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
    			   IFNAMSIZ))
    		return -EFAULT;
    	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
    		return -EFAULT;
    	data64 = compat_ptr(data32);
    
    	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
    
    	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
    			 IFNAMSIZ))
    		return -EFAULT;
    	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
    		return -EFAULT;
    
    	return dev_ioctl(net, cmd, u_ifreq64);
    }
    
    static int dev_ifsioc(struct net *net, struct socket *sock,
    			 unsigned int cmd, struct compat_ifreq __user *uifr32)
    {
    	struct ifreq __user *uifr;
    	int err;
    
    	uifr = compat_alloc_user_space(sizeof(*uifr));
    	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
    		return -EFAULT;
    
    	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
    
    	if (!err) {
    		switch (cmd) {
    		case SIOCGIFFLAGS:
    		case SIOCGIFMETRIC:
    		case SIOCGIFMTU:
    		case SIOCGIFMEM:
    		case SIOCGIFHWADDR:
    		case SIOCGIFINDEX:
    		case SIOCGIFADDR:
    		case SIOCGIFBRDADDR:
    		case SIOCGIFDSTADDR:
    		case SIOCGIFNETMASK:
    		case SIOCGIFPFLAGS:
    		case SIOCGIFTXQLEN:
    		case SIOCGMIIPHY:
    		case SIOCGMIIREG:
    			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
    				err = -EFAULT;
    			break;
    		}
    	}
    	return err;
    }
    
    static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
    			struct compat_ifreq __user *uifr32)
    {
    	struct ifreq ifr;
    	struct compat_ifmap __user *uifmap32;
    	mm_segment_t old_fs;
    	int err;
    
    	uifmap32 = &uifr32->ifr_ifru.ifru_map;
    	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
    	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
    	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
    	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
    	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
    	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
    	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
    	if (err)
    		return -EFAULT;
    
    	old_fs = get_fs();
    	set_fs(KERNEL_DS);
    	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
    	set_fs(old_fs);
    
    	if (cmd == SIOCGIFMAP && !err) {
    		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
    		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
    		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
    		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
    		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
    		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
    		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
    		if (err)
    			err = -EFAULT;
    	}
    	return err;
    }
    
    struct rtentry32 {
    	u32		rt_pad1;
    	struct sockaddr rt_dst;         /* target address               */
    	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
    	struct sockaddr rt_genmask;     /* target network mask (IP)     */
    	unsigned short	rt_flags;
    	short		rt_pad2;
    	u32		rt_pad3;
    	unsigned char	rt_tos;
    	unsigned char	rt_class;
    	short		rt_pad4;
    	short		rt_metric;      /* +1 for binary compatibility! */
    	/* char * */ u32 rt_dev;        /* forcing the device at add    */
    	u32		rt_mtu;         /* per route MTU/Window         */
    	u32		rt_window;      /* Window clamping              */
    	unsigned short  rt_irtt;        /* Initial RTT                  */
    };
    
    struct in6_rtmsg32 {
    	struct in6_addr		rtmsg_dst;
    	struct in6_addr		rtmsg_src;
    	struct in6_addr		rtmsg_gateway;
    	u32			rtmsg_type;
    	u16			rtmsg_dst_len;
    	u16			rtmsg_src_len;
    	u32			rtmsg_metric;
    	u32			rtmsg_info;
    	u32			rtmsg_flags;
    	s32			rtmsg_ifindex;
    };
    
    static int routing_ioctl(struct net *net, struct socket *sock,
    			 unsigned int cmd, void __user *argp)
    {
    	int ret;
    	void *r = NULL;
    	struct in6_rtmsg r6;
    	struct rtentry r4;
    	char devname[16];
    	u32 rtdev;
    	mm_segment_t old_fs = get_fs();
    
    	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
    		struct in6_rtmsg32 __user *ur6 = argp;
    		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
    			3 * sizeof(struct in6_addr));
    		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
    		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
    		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
    		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
    		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
    		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
    		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
    
    		r = (void *) &r6;
    	} else { /* ipv4 */
    		struct rtentry32 __user *ur4 = argp;
    		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
    					3 * sizeof(struct sockaddr));
    		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
    		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
    		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
    		ret |= get_user(r4.rt_window, &(ur4->rt_window));
    		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
    		ret |= get_user(rtdev, &(ur4->rt_dev));
    		if (rtdev) {
    			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
    			r4.rt_dev = (char __user __force *)devname;
    			devname[15] = 0;
    		} else
    			r4.rt_dev = NULL;
    
    		r = (void *) &r4;
    	}
    
    	if (ret) {
    		ret = -EFAULT;
    		goto out;
    	}
    
    	set_fs(KERNEL_DS);
    	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
    	set_fs(old_fs);
    
    out:
    	return ret;
    }
    
    /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
     * for some operations; this forces use of the newer bridge-utils that
     * use compatible ioctls
     */
    static int old_bridge_ioctl(compat_ulong_t __user *argp)
    {
    	compat_ulong_t tmp;
    
    	if (get_user(tmp, argp))
    		return -EFAULT;
    	if (tmp == BRCTL_GET_VERSION)
    		return BRCTL_VERSION + 1;
    	return -EINVAL;
    }
    
    static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
    			 unsigned int cmd, unsigned long arg)
    {
    	void __user *argp = compat_ptr(arg);
    	struct sock *sk = sock->sk;
    	struct net *net = sock_net(sk);
    
    	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
    		return compat_ifr_data_ioctl(net, cmd, argp);
    
    	switch (cmd) {
    	case SIOCSIFBR:
    	case SIOCGIFBR:
    		return old_bridge_ioctl(argp);
    	case SIOCGIFNAME:
    		return dev_ifname32(net, argp);
    	case SIOCGIFCONF:
    		return dev_ifconf(net, argp);
    	case SIOCETHTOOL:
    		return ethtool_ioctl(net, argp);
    	case SIOCWANDEV:
    		return compat_siocwandev(net, argp);
    	case SIOCGIFMAP:
    	case SIOCSIFMAP:
    		return compat_sioc_ifmap(net, cmd, argp);
    	case SIOCBONDENSLAVE:
    	case SIOCBONDRELEASE:
    	case SIOCBONDSETHWADDR:
    	case SIOCBONDCHANGEACTIVE:
    		return bond_ioctl(net, cmd, argp);
    	case SIOCADDRT:
    	case SIOCDELRT:
    		return routing_ioctl(net, sock, cmd, argp);
    	case SIOCGSTAMP:
    		return do_siocgstamp(net, sock, cmd, argp);
    	case SIOCGSTAMPNS:
    		return do_siocgstampns(net, sock, cmd, argp);
    	case SIOCBONDSLAVEINFOQUERY:
    	case SIOCBONDINFOQUERY:
    	case SIOCSHWTSTAMP:
    	case SIOCGHWTSTAMP:
    		return compat_ifr_data_ioctl(net, cmd, argp);
    
    	case FIOSETOWN:
    	case SIOCSPGRP:
    	case FIOGETOWN:
    	case SIOCGPGRP:
    	case SIOCBRADDBR:
    	case SIOCBRDELBR:
    	case SIOCGIFVLAN:
    	case SIOCSIFVLAN:
    	case SIOCADDDLCI:
    	case SIOCDELDLCI:
    		return sock_ioctl(file, cmd, arg);
    
    	case SIOCGIFFLAGS:
    	case SIOCSIFFLAGS:
    	case SIOCGIFMETRIC:
    	case SIOCSIFMETRIC:
    	case SIOCGIFMTU:
    	case SIOCSIFMTU:
    	case SIOCGIFMEM:
    	case SIOCSIFMEM:
    	case SIOCGIFHWADDR:
    	case SIOCSIFHWADDR:
    	case SIOCADDMULTI:
    	case SIOCDELMULTI:
    	case SIOCGIFINDEX:
    	case SIOCGIFADDR:
    	case SIOCSIFADDR:
    	case SIOCSIFHWBROADCAST:
    	case SIOCDIFADDR:
    	case SIOCGIFBRDADDR:
    	case SIOCSIFBRDADDR:
    	case SIOCGIFDSTADDR:
    	case SIOCSIFDSTADDR:
    	case SIOCGIFNETMASK:
    	case SIOCSIFNETMASK:
    	case SIOCSIFPFLAGS:
    	case SIOCGIFPFLAGS:
    	case SIOCGIFTXQLEN:
    	case SIOCSIFTXQLEN:
    	case SIOCBRADDIF:
    	case SIOCBRDELIF:
    	case SIOCSIFNAME:
    	case SIOCGMIIPHY:
    	case SIOCGMIIREG:
    	case SIOCSMIIREG:
    		return dev_ifsioc(net, sock, cmd, argp);
    
    	case SIOCSARP:
    	case SIOCGARP:
    	case SIOCDARP:
    	case SIOCATMARK:
    		return sock_do_ioctl(net, sock, cmd, arg);
    	}
    
    	return -ENOIOCTLCMD;
    }
    
    static long compat_sock_ioctl(struct file *file, unsigned int cmd,
    			      unsigned long arg)
    {
    	struct socket *sock = file->private_data;
    	int ret = -ENOIOCTLCMD;
    	struct sock *sk;
    	struct net *net;
    
    	sk = sock->sk;
    	net = sock_net(sk);
    
    	if (sock->ops->compat_ioctl)
    		ret = sock->ops->compat_ioctl(sock, cmd, arg);
    
    	if (ret == -ENOIOCTLCMD &&
    	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
    		ret = compat_wext_handle_ioctl(net, cmd, arg);
    
    	if (ret == -ENOIOCTLCMD)
    		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
    
    	return ret;
    }
    #endif
    
    int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
    {
    	return sock->ops->bind(sock, addr, addrlen);
    }
    EXPORT_SYMBOL(kernel_bind);
    
    int kernel_listen(struct socket *sock, int backlog)
    {
    	return sock->ops->listen(sock, backlog);
    }
    EXPORT_SYMBOL(kernel_listen);
    
    int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
    {
    	struct sock *sk = sock->sk;
    	int err;
    
    	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
    			       newsock);
    	if (err < 0)
    		goto done;
    
    	err = sock->ops->accept(sock, *newsock, flags);
    	if (err < 0) {
    		sock_release(*newsock);
    		*newsock = NULL;
    		goto done;
    	}
    
    	(*newsock)->ops = sock->ops;
    	__module_get((*newsock)->ops->owner);
    
    done:
    	return err;
    }
    EXPORT_SYMBOL(kernel_accept);
    
    int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
    		   int flags)
    {
    	return sock->ops->connect(sock, addr, addrlen, flags);
    }
    EXPORT_SYMBOL(kernel_connect);
    
    int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
    			 int *addrlen)
    {
    	return sock->ops->getname(sock, addr, addrlen, 0);
    }
    EXPORT_SYMBOL(kernel_getsockname);
    
    int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
    			 int *addrlen)
    {
    	return sock->ops->getname(sock, addr, addrlen, 1);
    }
    EXPORT_SYMBOL(kernel_getpeername);
    
    int kernel_getsockopt(struct socket *sock, int level, int optname,
    			char *optval, int *optlen)
    {
    	mm_segment_t oldfs = get_fs();
    	char __user *uoptval;
    	int __user *uoptlen;
    	int err;
    
    	uoptval = (char __user __force *) optval;
    	uoptlen = (int __user __force *) optlen;
    
    	set_fs(KERNEL_DS);
    	if (level == SOL_SOCKET)
    		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
    	else
    		err = sock->ops->getsockopt(sock, level, optname, uoptval,
    					    uoptlen);
    	set_fs(oldfs);
    	return err;
    }
    EXPORT_SYMBOL(kernel_getsockopt);
    
    int kernel_setsockopt(struct socket *sock, int level, int optname,
    			char *optval, unsigned int optlen)
    {
    	mm_segment_t oldfs = get_fs();
    	char __user *uoptval;
    	int err;
    
    	uoptval = (char __user __force *) optval;
    
    	set_fs(KERNEL_DS);
    	if (level == SOL_SOCKET)
    		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
    	else
    		err = sock->ops->setsockopt(sock, level, optname, uoptval,
    					    optlen);
    	set_fs(oldfs);
    	return err;
    }
    EXPORT_SYMBOL(kernel_setsockopt);
    
    int kernel_sendpage(struct socket *sock, struct page *page, int offset,
    		    size_t size, int flags)
    {
    	if (sock->ops->sendpage)
    		return sock->ops->sendpage(sock, page, offset, size, flags);
    
    	return sock_no_sendpage(sock, page, offset, size, flags);
    }
    EXPORT_SYMBOL(kernel_sendpage);
    
    int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
    {
    	mm_segment_t oldfs = get_fs();
    	int err;
    
    	set_fs(KERNEL_DS);
    	err = sock->ops->ioctl(sock, cmd, arg);
    	set_fs(oldfs);
    
    	return err;
    }
    EXPORT_SYMBOL(kernel_sock_ioctl);
    
    int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
    {
    	return sock->ops->shutdown(sock, how);
    }
    EXPORT_SYMBOL(kernel_sock_shutdown);