Skip to content
Snippets Groups Projects
Select Git revision
  • d96938daae2a2ae20e5d3d38ddb85d8afdaee628
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

bugs.c

Blame
  • bugs.c 12.79 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * This is for all the tests related to logic bugs (e.g. bad dereferences,
     * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
     * lockups) along with other things that don't fit well into existing LKDTM
     * test source files.
     */
    #include "lkdtm.h"
    #include <linux/list.h>
    #include <linux/sched.h>
    #include <linux/sched/signal.h>
    #include <linux/sched/task_stack.h>
    #include <linux/uaccess.h>
    #include <linux/slab.h>
    
    #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
    #include <asm/desc.h>
    #endif
    
    struct lkdtm_list {
    	struct list_head node;
    };
    
    /*
     * Make sure our attempts to over run the kernel stack doesn't trigger
     * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
     * recurse past the end of THREAD_SIZE by default.
     */
    #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
    #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
    #else
    #define REC_STACK_SIZE (THREAD_SIZE / 8)
    #endif
    #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
    
    static int recur_count = REC_NUM_DEFAULT;
    
    static DEFINE_SPINLOCK(lock_me_up);
    
    /*
     * Make sure compiler does not optimize this function or stack frame away:
     * - function marked noinline
     * - stack variables are marked volatile
     * - stack variables are written (memset()) and read (pr_info())
     * - function has external effects (pr_info())
     * */
    static int noinline recursive_loop(int remaining)
    {
    	volatile char buf[REC_STACK_SIZE];
    
    	memset((void *)buf, remaining & 0xFF, sizeof(buf));
    	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
    		recur_count);
    	if (!remaining)
    		return 0;
    	else
    		return recursive_loop(remaining - 1);
    }
    
    /* If the depth is negative, use the default, otherwise keep parameter. */
    void __init lkdtm_bugs_init(int *recur_param)
    {
    	if (*recur_param < 0)
    		*recur_param = recur_count;
    	else
    		recur_count = *recur_param;
    }
    
    void lkdtm_PANIC(void)
    {
    	panic("dumptest");
    }
    
    void lkdtm_BUG(void)
    {
    	BUG();
    }
    
    static int warn_counter;
    
    void lkdtm_WARNING(void)
    {
    	WARN_ON(++warn_counter);
    }
    
    void lkdtm_WARNING_MESSAGE(void)
    {
    	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
    }
    
    void lkdtm_EXCEPTION(void)
    {
    	*((volatile int *) 0) = 0;
    }
    
    void lkdtm_LOOP(void)
    {
    	for (;;)
    		;
    }
    
    void lkdtm_EXHAUST_STACK(void)
    {
    	pr_info("Calling function with %lu frame size to depth %d ...\n",
    		REC_STACK_SIZE, recur_count);
    	recursive_loop(recur_count);
    	pr_info("FAIL: survived without exhausting stack?!\n");
    }
    
    static noinline void __lkdtm_CORRUPT_STACK(void *stack)
    {
    	memset(stack, '\xff', 64);
    }
    
    /* This should trip the stack canary, not corrupt the return address. */
    noinline void lkdtm_CORRUPT_STACK(void)
    {
    	/* Use default char array length that triggers stack protection. */
    	char data[8] __aligned(sizeof(void *));
    
    	pr_info("Corrupting stack containing char array ...\n");
    	__lkdtm_CORRUPT_STACK((void *)&data);
    }
    
    /* Same as above but will only get a canary with -fstack-protector-strong */
    noinline void lkdtm_CORRUPT_STACK_STRONG(void)
    {
    	union {
    		unsigned short shorts[4];
    		unsigned long *ptr;
    	} data __aligned(sizeof(void *));
    
    	pr_info("Corrupting stack containing union ...\n");
    	__lkdtm_CORRUPT_STACK((void *)&data);
    }
    
    void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
    {
    	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
    	u32 *p;
    	u32 val = 0x12345678;
    
    	p = (u32 *)(data + 1);
    	if (*p == 0)
    		val = 0x87654321;
    	*p = val;
    }
    
    void lkdtm_SOFTLOCKUP(void)
    {
    	preempt_disable();
    	for (;;)
    		cpu_relax();
    }
    
    void lkdtm_HARDLOCKUP(void)
    {
    	local_irq_disable();
    	for (;;)
    		cpu_relax();
    }
    
    void lkdtm_SPINLOCKUP(void)
    {
    	/* Must be called twice to trigger. */
    	spin_lock(&lock_me_up);
    	/* Let sparse know we intended to exit holding the lock. */
    	__release(&lock_me_up);
    }
    
    void lkdtm_HUNG_TASK(void)
    {
    	set_current_state(TASK_UNINTERRUPTIBLE);
    	schedule();
    }
    
    volatile unsigned int huge = INT_MAX - 2;
    volatile unsigned int ignored;
    
    void lkdtm_OVERFLOW_SIGNED(void)
    {
    	int value;
    
    	value = huge;
    	pr_info("Normal signed addition ...\n");
    	value += 1;
    	ignored = value;
    
    	pr_info("Overflowing signed addition ...\n");
    	value += 4;
    	ignored = value;
    }
    
    
    void lkdtm_OVERFLOW_UNSIGNED(void)
    {
    	unsigned int value;
    
    	value = huge;
    	pr_info("Normal unsigned addition ...\n");
    	value += 1;
    	ignored = value;
    
    	pr_info("Overflowing unsigned addition ...\n");
    	value += 4;
    	ignored = value;
    }
    
    /* Intentionally using old-style flex array definition of 1 byte. */
    struct array_bounds_flex_array {
    	int one;
    	int two;
    	char data[1];
    };
    
    struct array_bounds {
    	int one;
    	int two;
    	char data[8];
    	int three;
    };
    
    void lkdtm_ARRAY_BOUNDS(void)
    {
    	struct array_bounds_flex_array *not_checked;
    	struct array_bounds *checked;
    	volatile int i;
    
    	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
    	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
    
    	pr_info("Array access within bounds ...\n");
    	/* For both, touch all bytes in the actual member size. */
    	for (i = 0; i < sizeof(checked->data); i++)
    		checked->data[i] = 'A';
    	/*
    	 * For the uninstrumented flex array member, also touch 1 byte
    	 * beyond to verify it is correctly uninstrumented.
    	 */
    	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
    		not_checked->data[i] = 'A';
    
    	pr_info("Array access beyond bounds ...\n");
    	for (i = 0; i < sizeof(checked->data) + 1; i++)
    		checked->data[i] = 'B';
    
    	kfree(not_checked);
    	kfree(checked);
    	pr_err("FAIL: survived array bounds overflow!\n");
    }
    
    void lkdtm_CORRUPT_LIST_ADD(void)
    {
    	/*
    	 * Initially, an empty list via LIST_HEAD:
    	 *	test_head.next = &test_head
    	 *	test_head.prev = &test_head
    	 */
    	LIST_HEAD(test_head);
    	struct lkdtm_list good, bad;
    	void *target[2] = { };
    	void *redirection = &target;
    
    	pr_info("attempting good list addition\n");
    
    	/*
    	 * Adding to the list performs these actions:
    	 *	test_head.next->prev = &good.node
    	 *	good.node.next = test_head.next
    	 *	good.node.prev = test_head
    	 *	test_head.next = good.node
    	 */
    	list_add(&good.node, &test_head);
    
    	pr_info("attempting corrupted list addition\n");
    	/*
    	 * In simulating this "write what where" primitive, the "what" is
    	 * the address of &bad.node, and the "where" is the address held
    	 * by "redirection".
    	 */
    	test_head.next = redirection;
    	list_add(&bad.node, &test_head);
    
    	if (target[0] == NULL && target[1] == NULL)
    		pr_err("Overwrite did not happen, but no BUG?!\n");
    	else
    		pr_err("list_add() corruption not detected!\n");
    }
    
    void lkdtm_CORRUPT_LIST_DEL(void)
    {
    	LIST_HEAD(test_head);
    	struct lkdtm_list item;
    	void *target[2] = { };
    	void *redirection = &target;
    
    	list_add(&item.node, &test_head);
    
    	pr_info("attempting good list removal\n");
    	list_del(&item.node);
    
    	pr_info("attempting corrupted list removal\n");
    	list_add(&item.node, &test_head);
    
    	/* As with the list_add() test above, this corrupts "next". */
    	item.node.next = redirection;
    	list_del(&item.node);
    
    	if (target[0] == NULL && target[1] == NULL)
    		pr_err("Overwrite did not happen, but no BUG?!\n");
    	else
    		pr_err("list_del() corruption not detected!\n");
    }
    
    /* Test that VMAP_STACK is actually allocating with a leading guard page */
    void lkdtm_STACK_GUARD_PAGE_LEADING(void)
    {
    	const unsigned char *stack = task_stack_page(current);
    	const unsigned char *ptr = stack - 1;
    	volatile unsigned char byte;
    
    	pr_info("attempting bad read from page below current stack\n");
    
    	byte = *ptr;
    
    	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
    }
    
    /* Test that VMAP_STACK is actually allocating with a trailing guard page */
    void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
    {
    	const unsigned char *stack = task_stack_page(current);
    	const unsigned char *ptr = stack + THREAD_SIZE;
    	volatile unsigned char byte;
    
    	pr_info("attempting bad read from page above current stack\n");
    
    	byte = *ptr;
    
    	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
    }
    
    void lkdtm_UNSET_SMEP(void)
    {
    #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
    #define MOV_CR4_DEPTH	64
    	void (*direct_write_cr4)(unsigned long val);
    	unsigned char *insn;
    	unsigned long cr4;
    	int i;
    
    	cr4 = native_read_cr4();
    
    	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
    		pr_err("FAIL: SMEP not in use\n");
    		return;
    	}
    	cr4 &= ~(X86_CR4_SMEP);
    
    	pr_info("trying to clear SMEP normally\n");
    	native_write_cr4(cr4);
    	if (cr4 == native_read_cr4()) {
    		pr_err("FAIL: pinning SMEP failed!\n");
    		cr4 |= X86_CR4_SMEP;
    		pr_info("restoring SMEP\n");
    		native_write_cr4(cr4);
    		return;
    	}
    	pr_info("ok: SMEP did not get cleared\n");
    
    	/*
    	 * To test the post-write pinning verification we need to call
    	 * directly into the middle of native_write_cr4() where the
    	 * cr4 write happens, skipping any pinning. This searches for
    	 * the cr4 writing instruction.
    	 */
    	insn = (unsigned char *)native_write_cr4;
    	for (i = 0; i < MOV_CR4_DEPTH; i++) {
    		/* mov %rdi, %cr4 */
    		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
    			break;
    		/* mov %rdi,%rax; mov %rax, %cr4 */
    		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
    		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
    		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
    			break;
    	}
    	if (i >= MOV_CR4_DEPTH) {
    		pr_info("ok: cannot locate cr4 writing call gadget\n");
    		return;
    	}
    	direct_write_cr4 = (void *)(insn + i);
    
    	pr_info("trying to clear SMEP with call gadget\n");
    	direct_write_cr4(cr4);
    	if (native_read_cr4() & X86_CR4_SMEP) {
    		pr_info("ok: SMEP removal was reverted\n");
    	} else {
    		pr_err("FAIL: cleared SMEP not detected!\n");
    		cr4 |= X86_CR4_SMEP;
    		pr_info("restoring SMEP\n");
    		native_write_cr4(cr4);
    	}
    #else
    	pr_err("XFAIL: this test is x86_64-only\n");
    #endif
    }
    
    void lkdtm_DOUBLE_FAULT(void)
    {
    #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
    	/*
    	 * Trigger #DF by setting the stack limit to zero.  This clobbers
    	 * a GDT TLS slot, which is okay because the current task will die
    	 * anyway due to the double fault.
    	 */
    	struct desc_struct d = {
    		.type = 3,	/* expand-up, writable, accessed data */
    		.p = 1,		/* present */
    		.d = 1,		/* 32-bit */
    		.g = 0,		/* limit in bytes */
    		.s = 1,		/* not system */
    	};
    
    	local_irq_disable();
    	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
    			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
    
    	/*
    	 * Put our zero-limit segment in SS and then trigger a fault.  The
    	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
    	 * deliver the fault will recursively cause #SS and result in #DF.
    	 * This whole process happens while NMIs and MCEs are blocked by the
    	 * MOV SS window.  This is nice because an NMI with an invalid SS
    	 * would also double-fault, resulting in the NMI or MCE being lost.
    	 */
    	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
    		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
    
    	pr_err("FAIL: tried to double fault but didn't die\n");
    #else
    	pr_err("XFAIL: this test is ia32-only\n");
    #endif
    }
    
    #ifdef CONFIG_ARM64
    static noinline void change_pac_parameters(void)
    {
    	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
    		/* Reset the keys of current task */
    		ptrauth_thread_init_kernel(current);
    		ptrauth_thread_switch_kernel(current);
    	}
    }
    #endif
    
    noinline void lkdtm_CORRUPT_PAC(void)
    {
    #ifdef CONFIG_ARM64
    #define CORRUPT_PAC_ITERATE	10
    	int i;
    
    	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
    		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
    
    	if (!system_supports_address_auth()) {
    		pr_err("FAIL: CPU lacks pointer authentication feature\n");
    		return;
    	}
    
    	pr_info("changing PAC parameters to force function return failure...\n");
    	/*
    	 * PAC is a hash value computed from input keys, return address and
    	 * stack pointer. As pac has fewer bits so there is a chance of
    	 * collision, so iterate few times to reduce the collision probability.
    	 */
    	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
    		change_pac_parameters();
    
    	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
    #else
    	pr_err("XFAIL: this test is arm64-only\n");
    #endif
    }
    
    void lkdtm_FORTIFY_OBJECT(void)
    {
    	struct target {
    		char a[10];
    	} target[2] = {};
    	int result;
    
    	/*
    	 * Using volatile prevents the compiler from determining the value of
    	 * 'size' at compile time. Without that, we would get a compile error
    	 * rather than a runtime error.
    	 */
    	volatile int size = 11;
    
    	pr_info("trying to read past the end of a struct\n");
    
    	result = memcmp(&target[0], &target[1], size);
    
    	/* Print result to prevent the code from being eliminated */
    	pr_err("FAIL: fortify did not catch an object overread!\n"
    	       "\"%d\" was the memcmp result.\n", result);
    }
    
    void lkdtm_FORTIFY_SUBOBJECT(void)
    {
    	struct target {
    		char a[10];
    		char b[10];
    	} target;
    	char *src;
    
    	src = kmalloc(20, GFP_KERNEL);
    	strscpy(src, "over ten bytes", 20);
    
    	pr_info("trying to strcpy past the end of a member of a struct\n");
    
    	/*
    	 * strncpy(target.a, src, 20); will hit a compile error because the
    	 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
    	 * to force a runtime error.
    	 */
    	strcpy(target.a, src);
    
    	/* Use target.a to prevent the code from being eliminated */
    	pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
    	       "\"%s\" was copied.\n", target.a);
    
    	kfree(src);
    }