Skip to content
Snippets Groups Projects
Select Git revision
  • de348ee022175401e77d7662b7ca6e231a94e3fd
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

disk-io.c

Blame
  • disk-io.c 112.50 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/fs.h>
    #include <linux/blkdev.h>
    #include <linux/scatterlist.h>
    #include <linux/swap.h>
    #include <linux/radix-tree.h>
    #include <linux/writeback.h>
    #include <linux/buffer_head.h>
    #include <linux/workqueue.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/slab.h>
    #include <linux/migrate.h>
    #include <linux/ratelimit.h>
    #include <linux/uuid.h>
    #include <linux/semaphore.h>
    #include <asm/unaligned.h>
    #include "ctree.h"
    #include "disk-io.h"
    #include "hash.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "volumes.h"
    #include "print-tree.h"
    #include "async-thread.h"
    #include "locking.h"
    #include "tree-log.h"
    #include "free-space-cache.h"
    #include "inode-map.h"
    #include "check-integrity.h"
    #include "rcu-string.h"
    #include "dev-replace.h"
    #include "raid56.h"
    #include "sysfs.h"
    
    #ifdef CONFIG_X86
    #include <asm/cpufeature.h>
    #endif
    
    static struct extent_io_ops btree_extent_io_ops;
    static void end_workqueue_fn(struct btrfs_work *work);
    static void free_fs_root(struct btrfs_root *root);
    static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
    				    int read_only);
    static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
    					     struct btrfs_root *root);
    static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
    static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
    				      struct btrfs_root *root);
    static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
    static int btrfs_destroy_marked_extents(struct btrfs_root *root,
    					struct extent_io_tree *dirty_pages,
    					int mark);
    static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
    				       struct extent_io_tree *pinned_extents);
    static int btrfs_cleanup_transaction(struct btrfs_root *root);
    static void btrfs_error_commit_super(struct btrfs_root *root);
    
    /*
     * end_io_wq structs are used to do processing in task context when an IO is
     * complete.  This is used during reads to verify checksums, and it is used
     * by writes to insert metadata for new file extents after IO is complete.
     */
    struct end_io_wq {
    	struct bio *bio;
    	bio_end_io_t *end_io;
    	void *private;
    	struct btrfs_fs_info *info;
    	int error;
    	int metadata;
    	struct list_head list;
    	struct btrfs_work work;
    };
    
    /*
     * async submit bios are used to offload expensive checksumming
     * onto the worker threads.  They checksum file and metadata bios
     * just before they are sent down the IO stack.
     */
    struct async_submit_bio {
    	struct inode *inode;
    	struct bio *bio;
    	struct list_head list;
    	extent_submit_bio_hook_t *submit_bio_start;
    	extent_submit_bio_hook_t *submit_bio_done;
    	int rw;
    	int mirror_num;
    	unsigned long bio_flags;
    	/*
    	 * bio_offset is optional, can be used if the pages in the bio
    	 * can't tell us where in the file the bio should go
    	 */
    	u64 bio_offset;
    	struct btrfs_work work;
    	int error;
    };
    
    /*
     * Lockdep class keys for extent_buffer->lock's in this root.  For a given
     * eb, the lockdep key is determined by the btrfs_root it belongs to and
     * the level the eb occupies in the tree.
     *
     * Different roots are used for different purposes and may nest inside each
     * other and they require separate keysets.  As lockdep keys should be
     * static, assign keysets according to the purpose of the root as indicated
     * by btrfs_root->objectid.  This ensures that all special purpose roots
     * have separate keysets.
     *
     * Lock-nesting across peer nodes is always done with the immediate parent
     * node locked thus preventing deadlock.  As lockdep doesn't know this, use
     * subclass to avoid triggering lockdep warning in such cases.
     *
     * The key is set by the readpage_end_io_hook after the buffer has passed
     * csum validation but before the pages are unlocked.  It is also set by
     * btrfs_init_new_buffer on freshly allocated blocks.
     *
     * We also add a check to make sure the highest level of the tree is the
     * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
     * needs update as well.
     */
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    # if BTRFS_MAX_LEVEL != 8
    #  error
    # endif
    
    static struct btrfs_lockdep_keyset {
    	u64			id;		/* root objectid */
    	const char		*name_stem;	/* lock name stem */
    	char			names[BTRFS_MAX_LEVEL + 1][20];
    	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
    } btrfs_lockdep_keysets[] = {
    	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
    	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
    	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
    	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
    	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
    	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
    	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
    	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
    	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
    	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
    	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
    	{ .id = 0,				.name_stem = "tree"	},
    };
    
    void __init btrfs_init_lockdep(void)
    {
    	int i, j;
    
    	/* initialize lockdep class names */
    	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
    		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
    
    		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
    			snprintf(ks->names[j], sizeof(ks->names[j]),
    				 "btrfs-%s-%02d", ks->name_stem, j);
    	}
    }
    
    void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
    				    int level)
    {
    	struct btrfs_lockdep_keyset *ks;
    
    	BUG_ON(level >= ARRAY_SIZE(ks->keys));
    
    	/* find the matching keyset, id 0 is the default entry */
    	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
    		if (ks->id == objectid)
    			break;
    
    	lockdep_set_class_and_name(&eb->lock,
    				   &ks->keys[level], ks->names[level]);
    }
    
    #endif
    
    /*
     * extents on the btree inode are pretty simple, there's one extent
     * that covers the entire device
     */
    static struct extent_map *btree_get_extent(struct inode *inode,
    		struct page *page, size_t pg_offset, u64 start, u64 len,
    		int create)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_map *em;
    	int ret;
    
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, start, len);
    	if (em) {
    		em->bdev =
    			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    		read_unlock(&em_tree->lock);
    		goto out;
    	}
    	read_unlock(&em_tree->lock);
    
    	em = alloc_extent_map();
    	if (!em) {
    		em = ERR_PTR(-ENOMEM);
    		goto out;
    	}
    	em->start = 0;
    	em->len = (u64)-1;
    	em->block_len = (u64)-1;
    	em->block_start = 0;
    	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    
    	write_lock(&em_tree->lock);
    	ret = add_extent_mapping(em_tree, em, 0);
    	if (ret == -EEXIST) {
    		free_extent_map(em);
    		em = lookup_extent_mapping(em_tree, start, len);
    		if (!em)
    			em = ERR_PTR(-EIO);
    	} else if (ret) {
    		free_extent_map(em);
    		em = ERR_PTR(ret);
    	}
    	write_unlock(&em_tree->lock);
    
    out:
    	return em;
    }
    
    u32 btrfs_csum_data(char *data, u32 seed, size_t len)
    {
    	return btrfs_crc32c(seed, data, len);
    }
    
    void btrfs_csum_final(u32 crc, char *result)
    {
    	put_unaligned_le32(~crc, result);
    }
    
    /*
     * compute the csum for a btree block, and either verify it or write it
     * into the csum field of the block.
     */
    static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
    			   int verify)
    {
    	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
    	char *result = NULL;
    	unsigned long len;
    	unsigned long cur_len;
    	unsigned long offset = BTRFS_CSUM_SIZE;
    	char *kaddr;
    	unsigned long map_start;
    	unsigned long map_len;
    	int err;
    	u32 crc = ~(u32)0;
    	unsigned long inline_result;
    
    	len = buf->len - offset;
    	while (len > 0) {
    		err = map_private_extent_buffer(buf, offset, 32,
    					&kaddr, &map_start, &map_len);
    		if (err)
    			return 1;
    		cur_len = min(len, map_len - (offset - map_start));
    		crc = btrfs_csum_data(kaddr + offset - map_start,
    				      crc, cur_len);
    		len -= cur_len;
    		offset += cur_len;
    	}
    	if (csum_size > sizeof(inline_result)) {
    		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
    		if (!result)
    			return 1;
    	} else {
    		result = (char *)&inline_result;
    	}
    
    	btrfs_csum_final(crc, result);
    
    	if (verify) {
    		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
    			u32 val;
    			u32 found = 0;
    			memcpy(&found, result, csum_size);
    
    			read_extent_buffer(buf, &val, 0, csum_size);
    			printk_ratelimited(KERN_INFO
    				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
    				"level %d\n",
    				root->fs_info->sb->s_id, buf->start,
    				val, found, btrfs_header_level(buf));
    			if (result != (char *)&inline_result)
    				kfree(result);
    			return 1;
    		}
    	} else {
    		write_extent_buffer(buf, result, 0, csum_size);
    	}
    	if (result != (char *)&inline_result)
    		kfree(result);
    	return 0;
    }
    
    /*
     * we can't consider a given block up to date unless the transid of the
     * block matches the transid in the parent node's pointer.  This is how we
     * detect blocks that either didn't get written at all or got written
     * in the wrong place.
     */
    static int verify_parent_transid(struct extent_io_tree *io_tree,
    				 struct extent_buffer *eb, u64 parent_transid,
    				 int atomic)
    {
    	struct extent_state *cached_state = NULL;
    	int ret;
    	bool need_lock = (current->journal_info ==
    			  (void *)BTRFS_SEND_TRANS_STUB);
    
    	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
    		return 0;
    
    	if (atomic)
    		return -EAGAIN;
    
    	if (need_lock) {
    		btrfs_tree_read_lock(eb);
    		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
    	}
    
    	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
    			 0, &cached_state);
    	if (extent_buffer_uptodate(eb) &&
    	    btrfs_header_generation(eb) == parent_transid) {
    		ret = 0;
    		goto out;
    	}
    	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
    		       "found %llu\n",
    		       eb->start, parent_transid, btrfs_header_generation(eb));
    	ret = 1;
    
    	/*
    	 * Things reading via commit roots that don't have normal protection,
    	 * like send, can have a really old block in cache that may point at a
    	 * block that has been free'd and re-allocated.  So don't clear uptodate
    	 * if we find an eb that is under IO (dirty/writeback) because we could
    	 * end up reading in the stale data and then writing it back out and
    	 * making everybody very sad.
    	 */
    	if (!extent_buffer_under_io(eb))
    		clear_extent_buffer_uptodate(eb);
    out:
    	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
    			     &cached_state, GFP_NOFS);
    	btrfs_tree_read_unlock_blocking(eb);
    	return ret;
    }
    
    /*
     * Return 0 if the superblock checksum type matches the checksum value of that
     * algorithm. Pass the raw disk superblock data.
     */
    static int btrfs_check_super_csum(char *raw_disk_sb)
    {
    	struct btrfs_super_block *disk_sb =
    		(struct btrfs_super_block *)raw_disk_sb;
    	u16 csum_type = btrfs_super_csum_type(disk_sb);
    	int ret = 0;
    
    	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
    		u32 crc = ~(u32)0;
    		const int csum_size = sizeof(crc);
    		char result[csum_size];
    
    		/*
    		 * The super_block structure does not span the whole
    		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
    		 * is filled with zeros and is included in the checkum.
    		 */
    		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
    				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
    		btrfs_csum_final(crc, result);
    
    		if (memcmp(raw_disk_sb, result, csum_size))
    			ret = 1;
    
    		if (ret && btrfs_super_generation(disk_sb) < 10) {
    			printk(KERN_WARNING
    				"BTRFS: super block crcs don't match, older mkfs detected\n");
    			ret = 0;
    		}
    	}
    
    	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
    		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
    				csum_type);
    		ret = 1;
    	}
    
    	return ret;
    }
    
    /*
     * helper to read a given tree block, doing retries as required when
     * the checksums don't match and we have alternate mirrors to try.
     */
    static int btree_read_extent_buffer_pages(struct btrfs_root *root,
    					  struct extent_buffer *eb,
    					  u64 start, u64 parent_transid)
    {
    	struct extent_io_tree *io_tree;
    	int failed = 0;
    	int ret;
    	int num_copies = 0;
    	int mirror_num = 0;
    	int failed_mirror = 0;
    
    	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
    	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
    	while (1) {
    		ret = read_extent_buffer_pages(io_tree, eb, start,
    					       WAIT_COMPLETE,
    					       btree_get_extent, mirror_num);
    		if (!ret) {
    			if (!verify_parent_transid(io_tree, eb,
    						   parent_transid, 0))
    				break;
    			else
    				ret = -EIO;
    		}
    
    		/*
    		 * This buffer's crc is fine, but its contents are corrupted, so
    		 * there is no reason to read the other copies, they won't be
    		 * any less wrong.
    		 */
    		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
    			break;
    
    		num_copies = btrfs_num_copies(root->fs_info,
    					      eb->start, eb->len);
    		if (num_copies == 1)
    			break;
    
    		if (!failed_mirror) {
    			failed = 1;
    			failed_mirror = eb->read_mirror;
    		}
    
    		mirror_num++;
    		if (mirror_num == failed_mirror)
    			mirror_num++;
    
    		if (mirror_num > num_copies)
    			break;
    	}
    
    	if (failed && !ret && failed_mirror)
    		repair_eb_io_failure(root, eb, failed_mirror);
    
    	return ret;
    }
    
    /*
     * checksum a dirty tree block before IO.  This has extra checks to make sure
     * we only fill in the checksum field in the first page of a multi-page block
     */
    
    static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
    {
    	u64 start = page_offset(page);
    	u64 found_start;
    	struct extent_buffer *eb;
    
    	eb = (struct extent_buffer *)page->private;
    	if (page != eb->pages[0])
    		return 0;
    	found_start = btrfs_header_bytenr(eb);
    	if (WARN_ON(found_start != start || !PageUptodate(page)))
    		return 0;
    	csum_tree_block(root, eb, 0);
    	return 0;
    }
    
    static int check_tree_block_fsid(struct btrfs_root *root,
    				 struct extent_buffer *eb)
    {
    	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
    	u8 fsid[BTRFS_UUID_SIZE];
    	int ret = 1;
    
    	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
    	while (fs_devices) {
    		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
    			ret = 0;
    			break;
    		}
    		fs_devices = fs_devices->seed;
    	}
    	return ret;
    }
    
    #define CORRUPT(reason, eb, root, slot)				\
    	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
    		   "root=%llu, slot=%d", reason,			\
    	       btrfs_header_bytenr(eb),	root->objectid, slot)
    
    static noinline int check_leaf(struct btrfs_root *root,
    			       struct extent_buffer *leaf)
    {
    	struct btrfs_key key;
    	struct btrfs_key leaf_key;
    	u32 nritems = btrfs_header_nritems(leaf);
    	int slot;
    
    	if (nritems == 0)
    		return 0;
    
    	/* Check the 0 item */
    	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
    	    BTRFS_LEAF_DATA_SIZE(root)) {
    		CORRUPT("invalid item offset size pair", leaf, root, 0);
    		return -EIO;
    	}
    
    	/*
    	 * Check to make sure each items keys are in the correct order and their
    	 * offsets make sense.  We only have to loop through nritems-1 because
    	 * we check the current slot against the next slot, which verifies the
    	 * next slot's offset+size makes sense and that the current's slot
    	 * offset is correct.
    	 */
    	for (slot = 0; slot < nritems - 1; slot++) {
    		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
    		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
    
    		/* Make sure the keys are in the right order */
    		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
    			CORRUPT("bad key order", leaf, root, slot);
    			return -EIO;
    		}
    
    		/*
    		 * Make sure the offset and ends are right, remember that the
    		 * item data starts at the end of the leaf and grows towards the
    		 * front.
    		 */
    		if (btrfs_item_offset_nr(leaf, slot) !=
    			btrfs_item_end_nr(leaf, slot + 1)) {
    			CORRUPT("slot offset bad", leaf, root, slot);
    			return -EIO;
    		}
    
    		/*
    		 * Check to make sure that we don't point outside of the leaf,
    		 * just incase all the items are consistent to eachother, but
    		 * all point outside of the leaf.
    		 */
    		if (btrfs_item_end_nr(leaf, slot) >
    		    BTRFS_LEAF_DATA_SIZE(root)) {
    			CORRUPT("slot end outside of leaf", leaf, root, slot);
    			return -EIO;
    		}
    	}
    
    	return 0;
    }
    
    static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
    				      u64 phy_offset, struct page *page,
    				      u64 start, u64 end, int mirror)
    {
    	u64 found_start;
    	int found_level;
    	struct extent_buffer *eb;
    	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
    	int ret = 0;
    	int reads_done;
    
    	if (!page->private)
    		goto out;
    
    	eb = (struct extent_buffer *)page->private;
    
    	/* the pending IO might have been the only thing that kept this buffer
    	 * in memory.  Make sure we have a ref for all this other checks
    	 */
    	extent_buffer_get(eb);
    
    	reads_done = atomic_dec_and_test(&eb->io_pages);
    	if (!reads_done)
    		goto err;
    
    	eb->read_mirror = mirror;
    	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
    		ret = -EIO;
    		goto err;
    	}
    
    	found_start = btrfs_header_bytenr(eb);
    	if (found_start != eb->start) {
    		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
    			       "%llu %llu\n",
    			       found_start, eb->start);
    		ret = -EIO;
    		goto err;
    	}
    	if (check_tree_block_fsid(root, eb)) {
    		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
    			       eb->start);
    		ret = -EIO;
    		goto err;
    	}
    	found_level = btrfs_header_level(eb);
    	if (found_level >= BTRFS_MAX_LEVEL) {
    		btrfs_info(root->fs_info, "bad tree block level %d",
    			   (int)btrfs_header_level(eb));
    		ret = -EIO;
    		goto err;
    	}
    
    	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
    				       eb, found_level);
    
    	ret = csum_tree_block(root, eb, 1);
    	if (ret) {
    		ret = -EIO;
    		goto err;
    	}
    
    	/*
    	 * If this is a leaf block and it is corrupt, set the corrupt bit so
    	 * that we don't try and read the other copies of this block, just
    	 * return -EIO.
    	 */
    	if (found_level == 0 && check_leaf(root, eb)) {
    		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
    		ret = -EIO;
    	}
    
    	if (!ret)
    		set_extent_buffer_uptodate(eb);
    err:
    	if (reads_done &&
    	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
    		btree_readahead_hook(root, eb, eb->start, ret);
    
    	if (ret) {
    		/*
    		 * our io error hook is going to dec the io pages
    		 * again, we have to make sure it has something
    		 * to decrement
    		 */
    		atomic_inc(&eb->io_pages);
    		clear_extent_buffer_uptodate(eb);
    	}
    	free_extent_buffer(eb);
    out:
    	return ret;
    }
    
    static int btree_io_failed_hook(struct page *page, int failed_mirror)
    {
    	struct extent_buffer *eb;
    	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
    
    	eb = (struct extent_buffer *)page->private;
    	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
    	eb->read_mirror = failed_mirror;
    	atomic_dec(&eb->io_pages);
    	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
    		btree_readahead_hook(root, eb, eb->start, -EIO);
    	return -EIO;	/* we fixed nothing */
    }
    
    static void end_workqueue_bio(struct bio *bio, int err)
    {
    	struct end_io_wq *end_io_wq = bio->bi_private;
    	struct btrfs_fs_info *fs_info;
    
    	fs_info = end_io_wq->info;
    	end_io_wq->error = err;
    	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
    
    	if (bio->bi_rw & REQ_WRITE) {
    		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
    			btrfs_queue_work(fs_info->endio_meta_write_workers,
    					 &end_io_wq->work);
    		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
    			btrfs_queue_work(fs_info->endio_freespace_worker,
    					 &end_io_wq->work);
    		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
    			btrfs_queue_work(fs_info->endio_raid56_workers,
    					 &end_io_wq->work);
    		else
    			btrfs_queue_work(fs_info->endio_write_workers,
    					 &end_io_wq->work);
    	} else {
    		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
    			btrfs_queue_work(fs_info->endio_raid56_workers,
    					 &end_io_wq->work);
    		else if (end_io_wq->metadata)
    			btrfs_queue_work(fs_info->endio_meta_workers,
    					 &end_io_wq->work);
    		else
    			btrfs_queue_work(fs_info->endio_workers,
    					 &end_io_wq->work);
    	}
    }
    
    /*
     * For the metadata arg you want
     *
     * 0 - if data
     * 1 - if normal metadta
     * 2 - if writing to the free space cache area
     * 3 - raid parity work
     */
    int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
    			int metadata)
    {
    	struct end_io_wq *end_io_wq;
    	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
    	if (!end_io_wq)
    		return -ENOMEM;
    
    	end_io_wq->private = bio->bi_private;
    	end_io_wq->end_io = bio->bi_end_io;
    	end_io_wq->info = info;
    	end_io_wq->error = 0;
    	end_io_wq->bio = bio;
    	end_io_wq->metadata = metadata;
    
    	bio->bi_private = end_io_wq;
    	bio->bi_end_io = end_workqueue_bio;
    	return 0;
    }
    
    unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
    {
    	unsigned long limit = min_t(unsigned long,
    				    info->thread_pool_size,
    				    info->fs_devices->open_devices);
    	return 256 * limit;
    }
    
    static void run_one_async_start(struct btrfs_work *work)
    {
    	struct async_submit_bio *async;
    	int ret;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
    				      async->mirror_num, async->bio_flags,
    				      async->bio_offset);
    	if (ret)
    		async->error = ret;
    }
    
    static void run_one_async_done(struct btrfs_work *work)
    {
    	struct btrfs_fs_info *fs_info;
    	struct async_submit_bio *async;
    	int limit;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	fs_info = BTRFS_I(async->inode)->root->fs_info;
    
    	limit = btrfs_async_submit_limit(fs_info);
    	limit = limit * 2 / 3;
    
    	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
    	    waitqueue_active(&fs_info->async_submit_wait))
    		wake_up(&fs_info->async_submit_wait);
    
    	/* If an error occured we just want to clean up the bio and move on */
    	if (async->error) {
    		bio_endio(async->bio, async->error);
    		return;
    	}
    
    	async->submit_bio_done(async->inode, async->rw, async->bio,
    			       async->mirror_num, async->bio_flags,
    			       async->bio_offset);
    }
    
    static void run_one_async_free(struct btrfs_work *work)
    {
    	struct async_submit_bio *async;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	kfree(async);
    }
    
    int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
    			int rw, struct bio *bio, int mirror_num,
    			unsigned long bio_flags,
    			u64 bio_offset,
    			extent_submit_bio_hook_t *submit_bio_start,
    			extent_submit_bio_hook_t *submit_bio_done)
    {
    	struct async_submit_bio *async;
    
    	async = kmalloc(sizeof(*async), GFP_NOFS);
    	if (!async)
    		return -ENOMEM;
    
    	async->inode = inode;
    	async->rw = rw;
    	async->bio = bio;
    	async->mirror_num = mirror_num;
    	async->submit_bio_start = submit_bio_start;
    	async->submit_bio_done = submit_bio_done;
    
    	btrfs_init_work(&async->work, run_one_async_start,
    			run_one_async_done, run_one_async_free);
    
    	async->bio_flags = bio_flags;
    	async->bio_offset = bio_offset;
    
    	async->error = 0;
    
    	atomic_inc(&fs_info->nr_async_submits);
    
    	if (rw & REQ_SYNC)
    		btrfs_set_work_high_priority(&async->work);
    
    	btrfs_queue_work(fs_info->workers, &async->work);
    
    	while (atomic_read(&fs_info->async_submit_draining) &&
    	      atomic_read(&fs_info->nr_async_submits)) {
    		wait_event(fs_info->async_submit_wait,
    			   (atomic_read(&fs_info->nr_async_submits) == 0));
    	}
    
    	return 0;
    }
    
    static int btree_csum_one_bio(struct bio *bio)
    {
    	struct bio_vec *bvec;
    	struct btrfs_root *root;
    	int i, ret = 0;
    
    	bio_for_each_segment_all(bvec, bio, i) {
    		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
    		ret = csum_dirty_buffer(root, bvec->bv_page);
    		if (ret)
    			break;
    	}
    
    	return ret;
    }
    
    static int __btree_submit_bio_start(struct inode *inode, int rw,
    				    struct bio *bio, int mirror_num,
    				    unsigned long bio_flags,
    				    u64 bio_offset)
    {
    	/*
    	 * when we're called for a write, we're already in the async
    	 * submission context.  Just jump into btrfs_map_bio
    	 */
    	return btree_csum_one_bio(bio);
    }
    
    static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
    				 int mirror_num, unsigned long bio_flags,
    				 u64 bio_offset)
    {
    	int ret;
    
    	/*
    	 * when we're called for a write, we're already in the async
    	 * submission context.  Just jump into btrfs_map_bio
    	 */
    	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
    	if (ret)
    		bio_endio(bio, ret);
    	return ret;
    }
    
    static int check_async_write(struct inode *inode, unsigned long bio_flags)
    {
    	if (bio_flags & EXTENT_BIO_TREE_LOG)
    		return 0;
    #ifdef CONFIG_X86
    	if (cpu_has_xmm4_2)
    		return 0;
    #endif
    	return 1;
    }
    
    static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
    				 int mirror_num, unsigned long bio_flags,
    				 u64 bio_offset)
    {
    	int async = check_async_write(inode, bio_flags);
    	int ret;
    
    	if (!(rw & REQ_WRITE)) {
    		/*
    		 * called for a read, do the setup so that checksum validation
    		 * can happen in the async kernel threads
    		 */
    		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
    					  bio, 1);
    		if (ret)
    			goto out_w_error;
    		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
    				    mirror_num, 0);
    	} else if (!async) {
    		ret = btree_csum_one_bio(bio);
    		if (ret)
    			goto out_w_error;
    		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
    				    mirror_num, 0);
    	} else {
    		/*
    		 * kthread helpers are used to submit writes so that
    		 * checksumming can happen in parallel across all CPUs
    		 */
    		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
    					  inode, rw, bio, mirror_num, 0,
    					  bio_offset,
    					  __btree_submit_bio_start,
    					  __btree_submit_bio_done);
    	}
    
    	if (ret) {
    out_w_error:
    		bio_endio(bio, ret);
    	}
    	return ret;
    }
    
    #ifdef CONFIG_MIGRATION
    static int btree_migratepage(struct address_space *mapping,
    			struct page *newpage, struct page *page,
    			enum migrate_mode mode)
    {
    	/*
    	 * we can't safely write a btree page from here,
    	 * we haven't done the locking hook
    	 */
    	if (PageDirty(page))
    		return -EAGAIN;
    	/*
    	 * Buffers may be managed in a filesystem specific way.
    	 * We must have no buffers or drop them.
    	 */
    	if (page_has_private(page) &&
    	    !try_to_release_page(page, GFP_KERNEL))
    		return -EAGAIN;
    	return migrate_page(mapping, newpage, page, mode);
    }
    #endif
    
    
    static int btree_writepages(struct address_space *mapping,
    			    struct writeback_control *wbc)
    {
    	struct btrfs_fs_info *fs_info;
    	int ret;
    
    	if (wbc->sync_mode == WB_SYNC_NONE) {
    
    		if (wbc->for_kupdate)
    			return 0;
    
    		fs_info = BTRFS_I(mapping->host)->root->fs_info;
    		/* this is a bit racy, but that's ok */
    		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
    					     BTRFS_DIRTY_METADATA_THRESH);
    		if (ret < 0)
    			return 0;
    	}
    	return btree_write_cache_pages(mapping, wbc);
    }
    
    static int btree_readpage(struct file *file, struct page *page)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	return extent_read_full_page(tree, page, btree_get_extent, 0);
    }
    
    static int btree_releasepage(struct page *page, gfp_t gfp_flags)
    {
    	if (PageWriteback(page) || PageDirty(page))
    		return 0;
    
    	return try_release_extent_buffer(page);
    }
    
    static void btree_invalidatepage(struct page *page, unsigned int offset,
    				 unsigned int length)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	extent_invalidatepage(tree, page, offset);
    	btree_releasepage(page, GFP_NOFS);
    	if (PagePrivate(page)) {
    		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
    			   "page private not zero on page %llu",
    			   (unsigned long long)page_offset(page));
    		ClearPagePrivate(page);
    		set_page_private(page, 0);
    		page_cache_release(page);
    	}
    }
    
    static int btree_set_page_dirty(struct page *page)
    {
    #ifdef DEBUG
    	struct extent_buffer *eb;
    
    	BUG_ON(!PagePrivate(page));
    	eb = (struct extent_buffer *)page->private;
    	BUG_ON(!eb);
    	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
    	BUG_ON(!atomic_read(&eb->refs));
    	btrfs_assert_tree_locked(eb);
    #endif
    	return __set_page_dirty_nobuffers(page);
    }
    
    static const struct address_space_operations btree_aops = {
    	.readpage	= btree_readpage,
    	.writepages	= btree_writepages,
    	.releasepage	= btree_releasepage,
    	.invalidatepage = btree_invalidatepage,
    #ifdef CONFIG_MIGRATION
    	.migratepage	= btree_migratepage,
    #endif
    	.set_page_dirty = btree_set_page_dirty,
    };
    
    int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
    			 u64 parent_transid)
    {
    	struct extent_buffer *buf = NULL;
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	int ret = 0;
    
    	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
    	if (!buf)
    		return 0;
    	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
    				 buf, 0, WAIT_NONE, btree_get_extent, 0);
    	free_extent_buffer(buf);
    	return ret;
    }
    
    int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
    			 int mirror_num, struct extent_buffer **eb)
    {
    	struct extent_buffer *buf = NULL;
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
    	int ret;
    
    	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
    	if (!buf)
    		return 0;
    
    	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
    
    	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
    				       btree_get_extent, mirror_num);
    	if (ret) {
    		free_extent_buffer(buf);
    		return ret;
    	}
    
    	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
    		free_extent_buffer(buf);
    		return -EIO;
    	} else if (extent_buffer_uptodate(buf)) {
    		*eb = buf;
    	} else {
    		free_extent_buffer(buf);
    	}
    	return 0;
    }
    
    struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
    					    u64 bytenr, u32 blocksize)
    {
    	return find_extent_buffer(root->fs_info, bytenr);
    }
    
    struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
    						 u64 bytenr, u32 blocksize)
    {
    	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
    }
    
    
    int btrfs_write_tree_block(struct extent_buffer *buf)
    {
    	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
    					buf->start + buf->len - 1);
    }
    
    int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
    {
    	return filemap_fdatawait_range(buf->pages[0]->mapping,
    				       buf->start, buf->start + buf->len - 1);
    }
    
    struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
    				      u32 blocksize, u64 parent_transid)
    {
    	struct extent_buffer *buf = NULL;
    	int ret;
    
    	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
    	if (!buf)
    		return NULL;
    
    	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
    	if (ret) {
    		free_extent_buffer(buf);
    		return NULL;
    	}
    	return buf;
    
    }
    
    void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
    		      struct extent_buffer *buf)
    {
    	struct btrfs_fs_info *fs_info = root->fs_info;
    
    	if (btrfs_header_generation(buf) ==
    	    fs_info->running_transaction->transid) {
    		btrfs_assert_tree_locked(buf);
    
    		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
    			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
    					     -buf->len,
    					     fs_info->dirty_metadata_batch);
    			/* ugh, clear_extent_buffer_dirty needs to lock the page */
    			btrfs_set_lock_blocking(buf);
    			clear_extent_buffer_dirty(buf);
    		}
    	}
    }
    
    static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
    {
    	struct btrfs_subvolume_writers *writers;
    	int ret;
    
    	writers = kmalloc(sizeof(*writers), GFP_NOFS);
    	if (!writers)
    		return ERR_PTR(-ENOMEM);
    
    	ret = percpu_counter_init(&writers->counter, 0);
    	if (ret < 0) {
    		kfree(writers);
    		return ERR_PTR(ret);
    	}
    
    	init_waitqueue_head(&writers->wait);
    	return writers;
    }
    
    static void
    btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
    {
    	percpu_counter_destroy(&writers->counter);
    	kfree(writers);
    }
    
    static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
    			 u32 stripesize, struct btrfs_root *root,
    			 struct btrfs_fs_info *fs_info,
    			 u64 objectid)
    {
    	root->node = NULL;
    	root->commit_root = NULL;
    	root->sectorsize = sectorsize;
    	root->nodesize = nodesize;
    	root->leafsize = leafsize;
    	root->stripesize = stripesize;
    	root->state = 0;
    	root->orphan_cleanup_state = 0;
    
    	root->objectid = objectid;
    	root->last_trans = 0;
    	root->highest_objectid = 0;
    	root->nr_delalloc_inodes = 0;
    	root->nr_ordered_extents = 0;
    	root->name = NULL;
    	root->inode_tree = RB_ROOT;
    	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
    	root->block_rsv = NULL;
    	root->orphan_block_rsv = NULL;
    
    	INIT_LIST_HEAD(&root->dirty_list);
    	INIT_LIST_HEAD(&root->root_list);
    	INIT_LIST_HEAD(&root->delalloc_inodes);
    	INIT_LIST_HEAD(&root->delalloc_root);
    	INIT_LIST_HEAD(&root->ordered_extents);
    	INIT_LIST_HEAD(&root->ordered_root);
    	INIT_LIST_HEAD(&root->logged_list[0]);
    	INIT_LIST_HEAD(&root->logged_list[1]);
    	spin_lock_init(&root->orphan_lock);
    	spin_lock_init(&root->inode_lock);
    	spin_lock_init(&root->delalloc_lock);
    	spin_lock_init(&root->ordered_extent_lock);
    	spin_lock_init(&root->accounting_lock);
    	spin_lock_init(&root->log_extents_lock[0]);
    	spin_lock_init(&root->log_extents_lock[1]);
    	mutex_init(&root->objectid_mutex);
    	mutex_init(&root->log_mutex);
    	mutex_init(&root->ordered_extent_mutex);
    	mutex_init(&root->delalloc_mutex);
    	init_waitqueue_head(&root->log_writer_wait);
    	init_waitqueue_head(&root->log_commit_wait[0]);
    	init_waitqueue_head(&root->log_commit_wait[1]);
    	INIT_LIST_HEAD(&root->log_ctxs[0]);
    	INIT_LIST_HEAD(&root->log_ctxs[1]);
    	atomic_set(&root->log_commit[0], 0);
    	atomic_set(&root->log_commit[1], 0);
    	atomic_set(&root->log_writers, 0);
    	atomic_set(&root->log_batch, 0);
    	atomic_set(&root->orphan_inodes, 0);
    	atomic_set(&root->refs, 1);
    	atomic_set(&root->will_be_snapshoted, 0);
    	root->log_transid = 0;
    	root->log_transid_committed = -1;
    	root->last_log_commit = 0;
    	if (fs_info)
    		extent_io_tree_init(&root->dirty_log_pages,
    				     fs_info->btree_inode->i_mapping);
    
    	memset(&root->root_key, 0, sizeof(root->root_key));
    	memset(&root->root_item, 0, sizeof(root->root_item));
    	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
    	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
    	if (fs_info)
    		root->defrag_trans_start = fs_info->generation;
    	else
    		root->defrag_trans_start = 0;
    	init_completion(&root->kobj_unregister);
    	root->root_key.objectid = objectid;
    	root->anon_dev = 0;
    
    	spin_lock_init(&root->root_item_lock);
    }
    
    static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
    	if (root)
    		root->fs_info = fs_info;
    	return root;
    }
    
    #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
    /* Should only be used by the testing infrastructure */
    struct btrfs_root *btrfs_alloc_dummy_root(void)
    {
    	struct btrfs_root *root;
    
    	root = btrfs_alloc_root(NULL);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
    	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
    
    	return root;
    }
    #endif
    
    struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
    				     struct btrfs_fs_info *fs_info,
    				     u64 objectid)
    {
    	struct extent_buffer *leaf;
    	struct btrfs_root *tree_root = fs_info->tree_root;
    	struct btrfs_root *root;
    	struct btrfs_key key;
    	int ret = 0;
    	uuid_le uuid;
    
    	root = btrfs_alloc_root(fs_info);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, objectid);
    	root->root_key.objectid = objectid;
    	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
    	root->root_key.offset = 0;
    
    	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
    				      0, objectid, NULL, 0, 0, 0);
    	if (IS_ERR(leaf)) {
    		ret = PTR_ERR(leaf);
    		leaf = NULL;
    		goto fail;
    	}
    
    	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
    	btrfs_set_header_bytenr(leaf, leaf->start);
    	btrfs_set_header_generation(leaf, trans->transid);
    	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
    	btrfs_set_header_owner(leaf, objectid);
    	root->node = leaf;
    
    	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
    			    BTRFS_FSID_SIZE);
    	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
    			    btrfs_header_chunk_tree_uuid(leaf),
    			    BTRFS_UUID_SIZE);
    	btrfs_mark_buffer_dirty(leaf);
    
    	root->commit_root = btrfs_root_node(root);
    	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
    
    	root->root_item.flags = 0;
    	root->root_item.byte_limit = 0;
    	btrfs_set_root_bytenr(&root->root_item, leaf->start);
    	btrfs_set_root_generation(&root->root_item, trans->transid);
    	btrfs_set_root_level(&root->root_item, 0);
    	btrfs_set_root_refs(&root->root_item, 1);
    	btrfs_set_root_used(&root->root_item, leaf->len);
    	btrfs_set_root_last_snapshot(&root->root_item, 0);
    	btrfs_set_root_dirid(&root->root_item, 0);
    	uuid_le_gen(&uuid);
    	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
    	root->root_item.drop_level = 0;
    
    	key.objectid = objectid;
    	key.type = BTRFS_ROOT_ITEM_KEY;
    	key.offset = 0;
    	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
    	if (ret)
    		goto fail;
    
    	btrfs_tree_unlock(leaf);
    
    	return root;
    
    fail:
    	if (leaf) {
    		btrfs_tree_unlock(leaf);
    		free_extent_buffer(root->commit_root);
    		free_extent_buffer(leaf);
    	}
    	kfree(root);
    
    	return ERR_PTR(ret);
    }
    
    static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
    					 struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *root;
    	struct btrfs_root *tree_root = fs_info->tree_root;
    	struct extent_buffer *leaf;
    
    	root = btrfs_alloc_root(fs_info);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
    
    	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
    	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
    	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
    
    	/*
    	 * DON'T set REF_COWS for log trees
    	 *
    	 * log trees do not get reference counted because they go away
    	 * before a real commit is actually done.  They do store pointers
    	 * to file data extents, and those reference counts still get
    	 * updated (along with back refs to the log tree).
    	 */
    
    	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
    				      BTRFS_TREE_LOG_OBJECTID, NULL,
    				      0, 0, 0);
    	if (IS_ERR(leaf)) {
    		kfree(root);
    		return ERR_CAST(leaf);
    	}
    
    	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
    	btrfs_set_header_bytenr(leaf, leaf->start);
    	btrfs_set_header_generation(leaf, trans->transid);
    	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
    	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
    	root->node = leaf;
    
    	write_extent_buffer(root->node, root->fs_info->fsid,
    			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
    	btrfs_mark_buffer_dirty(root->node);
    	btrfs_tree_unlock(root->node);
    	return root;
    }
    
    int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
    			     struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *log_root;
    
    	log_root = alloc_log_tree(trans, fs_info);
    	if (IS_ERR(log_root))
    		return PTR_ERR(log_root);
    	WARN_ON(fs_info->log_root_tree);
    	fs_info->log_root_tree = log_root;
    	return 0;
    }
    
    int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
    		       struct btrfs_root *root)
    {
    	struct btrfs_root *log_root;
    	struct btrfs_inode_item *inode_item;
    
    	log_root = alloc_log_tree(trans, root->fs_info);
    	if (IS_ERR(log_root))
    		return PTR_ERR(log_root);
    
    	log_root->last_trans = trans->transid;
    	log_root->root_key.offset = root->root_key.objectid;
    
    	inode_item = &log_root->root_item.inode;
    	btrfs_set_stack_inode_generation(inode_item, 1);
    	btrfs_set_stack_inode_size(inode_item, 3);
    	btrfs_set_stack_inode_nlink(inode_item, 1);
    	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
    	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
    
    	btrfs_set_root_node(&log_root->root_item, log_root->node);
    
    	WARN_ON(root->log_root);
    	root->log_root = log_root;
    	root->log_transid = 0;
    	root->log_transid_committed = -1;
    	root->last_log_commit = 0;
    	return 0;
    }
    
    static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
    					       struct btrfs_key *key)
    {
    	struct btrfs_root *root;
    	struct btrfs_fs_info *fs_info = tree_root->fs_info;
    	struct btrfs_path *path;
    	u64 generation;
    	u32 blocksize;
    	int ret;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return ERR_PTR(-ENOMEM);
    
    	root = btrfs_alloc_root(fs_info);
    	if (!root) {
    		ret = -ENOMEM;
    		goto alloc_fail;
    	}
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, key->objectid);
    
    	ret = btrfs_find_root(tree_root, key, path,
    			      &root->root_item, &root->root_key);
    	if (ret) {
    		if (ret > 0)
    			ret = -ENOENT;
    		goto find_fail;
    	}
    
    	generation = btrfs_root_generation(&root->root_item);
    	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
    	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
    				     blocksize, generation);
    	if (!root->node) {
    		ret = -ENOMEM;
    		goto find_fail;
    	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
    		ret = -EIO;
    		goto read_fail;
    	}
    	root->commit_root = btrfs_root_node(root);
    out:
    	btrfs_free_path(path);
    	return root;
    
    read_fail:
    	free_extent_buffer(root->node);
    find_fail:
    	kfree(root);
    alloc_fail:
    	root = ERR_PTR(ret);
    	goto out;
    }
    
    struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
    				      struct btrfs_key *location)
    {
    	struct btrfs_root *root;
    
    	root = btrfs_read_tree_root(tree_root, location);
    	if (IS_ERR(root))
    		return root;
    
    	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
    		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
    		btrfs_check_and_init_root_item(&root->root_item);
    	}
    
    	return root;
    }
    
    int btrfs_init_fs_root(struct btrfs_root *root)
    {
    	int ret;
    	struct btrfs_subvolume_writers *writers;
    
    	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
    	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
    					GFP_NOFS);
    	if (!root->free_ino_pinned || !root->free_ino_ctl) {
    		ret = -ENOMEM;
    		goto fail;
    	}
    
    	writers = btrfs_alloc_subvolume_writers();
    	if (IS_ERR(writers)) {
    		ret = PTR_ERR(writers);
    		goto fail;
    	}
    	root->subv_writers = writers;
    
    	btrfs_init_free_ino_ctl(root);
    	spin_lock_init(&root->cache_lock);
    	init_waitqueue_head(&root->cache_wait);
    
    	ret = get_anon_bdev(&root->anon_dev);
    	if (ret)
    		goto free_writers;
    	return 0;
    
    free_writers:
    	btrfs_free_subvolume_writers(root->subv_writers);
    fail:
    	kfree(root->free_ino_ctl);
    	kfree(root->free_ino_pinned);
    	return ret;
    }
    
    static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
    					       u64 root_id)
    {
    	struct btrfs_root *root;
    
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	root = radix_tree_lookup(&fs_info->fs_roots_radix,
    				 (unsigned long)root_id);
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    	return root;
    }
    
    int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
    			 struct btrfs_root *root)
    {
    	int ret;
    
    	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
    	if (ret)
    		return ret;
    
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	ret = radix_tree_insert(&fs_info->fs_roots_radix,
    				(unsigned long)root->root_key.objectid,
    				root);
    	if (ret == 0)
    		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    	radix_tree_preload_end();
    
    	return ret;
    }
    
    struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
    				     struct btrfs_key *location,
    				     bool check_ref)
    {
    	struct btrfs_root *root;
    	int ret;
    
    	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
    		return fs_info->tree_root;
    	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
    		return fs_info->extent_root;
    	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
    		return fs_info->chunk_root;
    	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
    		return fs_info->dev_root;
    	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
    		return fs_info->csum_root;
    	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
    		return fs_info->quota_root ? fs_info->quota_root :
    					     ERR_PTR(-ENOENT);
    	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
    		return fs_info->uuid_root ? fs_info->uuid_root :
    					    ERR_PTR(-ENOENT);
    again:
    	root = btrfs_lookup_fs_root(fs_info, location->objectid);
    	if (root) {
    		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
    			return ERR_PTR(-ENOENT);
    		return root;
    	}
    
    	root = btrfs_read_fs_root(fs_info->tree_root, location);
    	if (IS_ERR(root))
    		return root;
    
    	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
    		ret = -ENOENT;
    		goto fail;
    	}
    
    	ret = btrfs_init_fs_root(root);
    	if (ret)
    		goto fail;
    
    	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
    			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
    	if (ret < 0)
    		goto fail;
    	if (ret == 0)
    		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
    
    	ret = btrfs_insert_fs_root(fs_info, root);
    	if (ret) {
    		if (ret == -EEXIST) {
    			free_fs_root(root);
    			goto again;
    		}
    		goto fail;
    	}
    	return root;
    fail:
    	free_fs_root(root);
    	return ERR_PTR(ret);
    }
    
    static int btrfs_congested_fn(void *congested_data, int bdi_bits)
    {
    	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
    	int ret = 0;
    	struct btrfs_device *device;
    	struct backing_dev_info *bdi;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
    		if (!device->bdev)
    			continue;
    		bdi = blk_get_backing_dev_info(device->bdev);
    		if (bdi && bdi_congested(bdi, bdi_bits)) {
    			ret = 1;
    			break;
    		}
    	}
    	rcu_read_unlock();
    	return ret;
    }
    
    /*
     * If this fails, caller must call bdi_destroy() to get rid of the
     * bdi again.
     */
    static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
    {
    	int err;
    
    	bdi->capabilities = BDI_CAP_MAP_COPY;
    	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
    	if (err)
    		return err;
    
    	bdi->ra_pages	= default_backing_dev_info.ra_pages;
    	bdi->congested_fn	= btrfs_congested_fn;
    	bdi->congested_data	= info;
    	return 0;
    }
    
    /*
     * called by the kthread helper functions to finally call the bio end_io
     * functions.  This is where read checksum verification actually happens
     */
    static void end_workqueue_fn(struct btrfs_work *work)
    {
    	struct bio *bio;
    	struct end_io_wq *end_io_wq;
    	int error;
    
    	end_io_wq = container_of(work, struct end_io_wq, work);
    	bio = end_io_wq->bio;
    
    	error = end_io_wq->error;
    	bio->bi_private = end_io_wq->private;
    	bio->bi_end_io = end_io_wq->end_io;
    	kfree(end_io_wq);
    	bio_endio_nodec(bio, error);
    }
    
    static int cleaner_kthread(void *arg)
    {
    	struct btrfs_root *root = arg;
    	int again;
    
    	do {
    		again = 0;
    
    		/* Make the cleaner go to sleep early. */
    		if (btrfs_need_cleaner_sleep(root))
    			goto sleep;
    
    		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
    			goto sleep;
    
    		/*
    		 * Avoid the problem that we change the status of the fs
    		 * during the above check and trylock.
    		 */
    		if (btrfs_need_cleaner_sleep(root)) {
    			mutex_unlock(&root->fs_info->cleaner_mutex);
    			goto sleep;
    		}
    
    		btrfs_run_delayed_iputs(root);
    		again = btrfs_clean_one_deleted_snapshot(root);
    		mutex_unlock(&root->fs_info->cleaner_mutex);
    
    		/*
    		 * The defragger has dealt with the R/O remount and umount,
    		 * needn't do anything special here.
    		 */
    		btrfs_run_defrag_inodes(root->fs_info);
    sleep:
    		if (!try_to_freeze() && !again) {
    			set_current_state(TASK_INTERRUPTIBLE);
    			if (!kthread_should_stop())
    				schedule();
    			__set_current_state(TASK_RUNNING);
    		}
    	} while (!kthread_should_stop());
    	return 0;
    }
    
    static int transaction_kthread(void *arg)
    {
    	struct btrfs_root *root = arg;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_transaction *cur;
    	u64 transid;
    	unsigned long now;
    	unsigned long delay;
    	bool cannot_commit;
    
    	do {
    		cannot_commit = false;
    		delay = HZ * root->fs_info->commit_interval;
    		mutex_lock(&root->fs_info->transaction_kthread_mutex);
    
    		spin_lock(&root->fs_info->trans_lock);
    		cur = root->fs_info->running_transaction;
    		if (!cur) {
    			spin_unlock(&root->fs_info->trans_lock);
    			goto sleep;
    		}
    
    		now = get_seconds();
    		if (cur->state < TRANS_STATE_BLOCKED &&
    		    (now < cur->start_time ||
    		     now - cur->start_time < root->fs_info->commit_interval)) {
    			spin_unlock(&root->fs_info->trans_lock);
    			delay = HZ * 5;
    			goto sleep;
    		}
    		transid = cur->transid;
    		spin_unlock(&root->fs_info->trans_lock);
    
    		/* If the file system is aborted, this will always fail. */
    		trans = btrfs_attach_transaction(root);
    		if (IS_ERR(trans)) {
    			if (PTR_ERR(trans) != -ENOENT)
    				cannot_commit = true;
    			goto sleep;
    		}
    		if (transid == trans->transid) {
    			btrfs_commit_transaction(trans, root);
    		} else {
    			btrfs_end_transaction(trans, root);
    		}
    sleep:
    		wake_up_process(root->fs_info->cleaner_kthread);
    		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
    
    		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
    				      &root->fs_info->fs_state)))
    			btrfs_cleanup_transaction(root);
    		if (!try_to_freeze()) {
    			set_current_state(TASK_INTERRUPTIBLE);
    			if (!kthread_should_stop() &&
    			    (!btrfs_transaction_blocked(root->fs_info) ||
    			     cannot_commit))
    				schedule_timeout(delay);
    			__set_current_state(TASK_RUNNING);
    		}
    	} while (!kthread_should_stop());
    	return 0;
    }
    
    /*
     * this will find the highest generation in the array of
     * root backups.  The index of the highest array is returned,
     * or -1 if we can't find anything.
     *
     * We check to make sure the array is valid by comparing the
     * generation of the latest  root in the array with the generation
     * in the super block.  If they don't match we pitch it.
     */
    static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
    {
    	u64 cur;
    	int newest_index = -1;
    	struct btrfs_root_backup *root_backup;
    	int i;
    
    	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
    		root_backup = info->super_copy->super_roots + i;
    		cur = btrfs_backup_tree_root_gen(root_backup);
    		if (cur == newest_gen)
    			newest_index = i;
    	}
    
    	/* check to see if we actually wrapped around */
    	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
    		root_backup = info->super_copy->super_roots;
    		cur = btrfs_backup_tree_root_gen(root_backup);
    		if (cur == newest_gen)
    			newest_index = 0;
    	}
    	return newest_index;
    }
    
    
    /*
     * find the oldest backup so we know where to store new entries
     * in the backup array.  This will set the backup_root_index
     * field in the fs_info struct
     */
    static void find_oldest_super_backup(struct btrfs_fs_info *info,
    				     u64 newest_gen)
    {
    	int newest_index = -1;
    
    	newest_index = find_newest_super_backup(info, newest_gen);
    	/* if there was garbage in there, just move along */
    	if (newest_index == -1) {
    		info->backup_root_index = 0;
    	} else {
    		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
    	}
    }
    
    /*
     * copy all the root pointers into the super backup array.
     * this will bump the backup pointer by one when it is
     * done
     */
    static void backup_super_roots(struct btrfs_fs_info *info)
    {
    	int next_backup;
    	struct btrfs_root_backup *root_backup;
    	int last_backup;
    
    	next_backup = info->backup_root_index;
    	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
    		BTRFS_NUM_BACKUP_ROOTS;
    
    	/*
    	 * just overwrite the last backup if we're at the same generation
    	 * this happens only at umount
    	 */
    	root_backup = info->super_for_commit->super_roots + last_backup;
    	if (btrfs_backup_tree_root_gen(root_backup) ==
    	    btrfs_header_generation(info->tree_root->node))
    		next_backup = last_backup;
    
    	root_backup = info->super_for_commit->super_roots + next_backup;
    
    	/*
    	 * make sure all of our padding and empty slots get zero filled
    	 * regardless of which ones we use today
    	 */
    	memset(root_backup, 0, sizeof(*root_backup));
    
    	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
    
    	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
    	btrfs_set_backup_tree_root_gen(root_backup,
    			       btrfs_header_generation(info->tree_root->node));
    
    	btrfs_set_backup_tree_root_level(root_backup,
    			       btrfs_header_level(info->tree_root->node));
    
    	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
    	btrfs_set_backup_chunk_root_gen(root_backup,
    			       btrfs_header_generation(info->chunk_root->node));
    	btrfs_set_backup_chunk_root_level(root_backup,
    			       btrfs_header_level(info->chunk_root->node));
    
    	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
    	btrfs_set_backup_extent_root_gen(root_backup,
    			       btrfs_header_generation(info->extent_root->node));
    	btrfs_set_backup_extent_root_level(root_backup,
    			       btrfs_header_level(info->extent_root->node));
    
    	/*
    	 * we might commit during log recovery, which happens before we set
    	 * the fs_root.  Make sure it is valid before we fill it in.
    	 */
    	if (info->fs_root && info->fs_root->node) {
    		btrfs_set_backup_fs_root(root_backup,
    					 info->fs_root->node->start);
    		btrfs_set_backup_fs_root_gen(root_backup,
    			       btrfs_header_generation(info->fs_root->node));
    		btrfs_set_backup_fs_root_level(root_backup,
    			       btrfs_header_level(info->fs_root->node));
    	}
    
    	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
    	btrfs_set_backup_dev_root_gen(root_backup,
    			       btrfs_header_generation(info->dev_root->node));
    	btrfs_set_backup_dev_root_level(root_backup,
    				       btrfs_header_level(info->dev_root->node));
    
    	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
    	btrfs_set_backup_csum_root_gen(root_backup,
    			       btrfs_header_generation(info->csum_root->node));
    	btrfs_set_backup_csum_root_level(root_backup,
    			       btrfs_header_level(info->csum_root->node));
    
    	btrfs_set_backup_total_bytes(root_backup,
    			     btrfs_super_total_bytes(info->super_copy));
    	btrfs_set_backup_bytes_used(root_backup,
    			     btrfs_super_bytes_used(info->super_copy));
    	btrfs_set_backup_num_devices(root_backup,
    			     btrfs_super_num_devices(info->super_copy));
    
    	/*
    	 * if we don't copy this out to the super_copy, it won't get remembered
    	 * for the next commit
    	 */
    	memcpy(&info->super_copy->super_roots,
    	       &info->super_for_commit->super_roots,
    	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
    }
    
    /*
     * this copies info out of the root backup array and back into
     * the in-memory super block.  It is meant to help iterate through
     * the array, so you send it the number of backups you've already
     * tried and the last backup index you used.
     *
     * this returns -1 when it has tried all the backups
     */
    static noinline int next_root_backup(struct btrfs_fs_info *info,
    				     struct btrfs_super_block *super,
    				     int *num_backups_tried, int *backup_index)
    {
    	struct btrfs_root_backup *root_backup;
    	int newest = *backup_index;
    
    	if (*num_backups_tried == 0) {
    		u64 gen = btrfs_super_generation(super);
    
    		newest = find_newest_super_backup(info, gen);
    		if (newest == -1)
    			return -1;
    
    		*backup_index = newest;
    		*num_backups_tried = 1;
    	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
    		/* we've tried all the backups, all done */
    		return -1;
    	} else {
    		/* jump to the next oldest backup */
    		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
    			BTRFS_NUM_BACKUP_ROOTS;
    		*backup_index = newest;
    		*num_backups_tried += 1;
    	}
    	root_backup = super->super_roots + newest;
    
    	btrfs_set_super_generation(super,
    				   btrfs_backup_tree_root_gen(root_backup));
    	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
    	btrfs_set_super_root_level(super,
    				   btrfs_backup_tree_root_level(root_backup));
    	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
    
    	/*
    	 * fixme: the total bytes and num_devices need to match or we should
    	 * need a fsck
    	 */
    	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
    	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
    	return 0;
    }
    
    /* helper to cleanup workers */
    static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
    {
    	btrfs_destroy_workqueue(fs_info->fixup_workers);
    	btrfs_destroy_workqueue(fs_info->delalloc_workers);
    	btrfs_destroy_workqueue(fs_info->workers);
    	btrfs_destroy_workqueue(fs_info->endio_workers);
    	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
    	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
    	btrfs_destroy_workqueue(fs_info->rmw_workers);
    	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
    	btrfs_destroy_workqueue(fs_info->endio_write_workers);
    	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
    	btrfs_destroy_workqueue(fs_info->submit_workers);
    	btrfs_destroy_workqueue(fs_info->delayed_workers);
    	btrfs_destroy_workqueue(fs_info->caching_workers);
    	btrfs_destroy_workqueue(fs_info->readahead_workers);
    	btrfs_destroy_workqueue(fs_info->flush_workers);
    	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
    }
    
    static void free_root_extent_buffers(struct btrfs_root *root)
    {
    	if (root) {
    		free_extent_buffer(root->node);
    		free_extent_buffer(root->commit_root);
    		root->node = NULL;
    		root->commit_root = NULL;
    	}
    }
    
    /* helper to cleanup tree roots */
    static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
    {
    	free_root_extent_buffers(info->tree_root);
    
    	free_root_extent_buffers(info->dev_root);
    	free_root_extent_buffers(info->extent_root);
    	free_root_extent_buffers(info->csum_root);
    	free_root_extent_buffers(info->quota_root);
    	free_root_extent_buffers(info->uuid_root);
    	if (chunk_root)
    		free_root_extent_buffers(info->chunk_root);
    }
    
    static void del_fs_roots(struct btrfs_fs_info *fs_info)
    {
    	int ret;
    	struct btrfs_root *gang[8];
    	int i;
    
    	while (!list_empty(&fs_info->dead_roots)) {
    		gang[0] = list_entry(fs_info->dead_roots.next,
    				     struct btrfs_root, root_list);
    		list_del(&gang[0]->root_list);
    
    		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
    			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
    		} else {
    			free_extent_buffer(gang[0]->node);
    			free_extent_buffer(gang[0]->commit_root);
    			btrfs_put_fs_root(gang[0]);
    		}
    	}
    
    	while (1) {
    		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
    					     (void **)gang, 0,
    					     ARRAY_SIZE(gang));
    		if (!ret)
    			break;
    		for (i = 0; i < ret; i++)
    			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
    	}
    
    	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
    		btrfs_free_log_root_tree(NULL, fs_info);
    		btrfs_destroy_pinned_extent(fs_info->tree_root,
    					    fs_info->pinned_extents);
    	}
    }
    
    int open_ctree(struct super_block *sb,
    	       struct btrfs_fs_devices *fs_devices,
    	       char *options)
    {
    	u32 sectorsize;
    	u32 nodesize;
    	u32 leafsize;
    	u32 blocksize;
    	u32 stripesize;
    	u64 generation;
    	u64 features;
    	struct btrfs_key location;
    	struct buffer_head *bh;
    	struct btrfs_super_block *disk_super;
    	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
    	struct btrfs_root *tree_root;
    	struct btrfs_root *extent_root;
    	struct btrfs_root *csum_root;
    	struct btrfs_root *chunk_root;
    	struct btrfs_root *dev_root;
    	struct btrfs_root *quota_root;
    	struct btrfs_root *uuid_root;
    	struct btrfs_root *log_tree_root;
    	int ret;
    	int err = -EINVAL;
    	int num_backups_tried = 0;
    	int backup_index = 0;
    	int max_active;
    	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
    	bool create_uuid_tree;
    	bool check_uuid_tree;
    
    	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
    	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
    	if (!tree_root || !chunk_root) {
    		err = -ENOMEM;
    		goto fail;
    	}
    
    	ret = init_srcu_struct(&fs_info->subvol_srcu);
    	if (ret) {
    		err = ret;
    		goto fail;
    	}
    
    	ret = setup_bdi(fs_info, &fs_info->bdi);
    	if (ret) {
    		err = ret;
    		goto fail_srcu;
    	}
    
    	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
    	if (ret) {
    		err = ret;
    		goto fail_bdi;
    	}
    	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
    					(1 + ilog2(nr_cpu_ids));
    
    	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
    	if (ret) {
    		err = ret;
    		goto fail_dirty_metadata_bytes;
    	}
    
    	ret = percpu_counter_init(&fs_info->bio_counter, 0);
    	if (ret) {
    		err = ret;
    		goto fail_delalloc_bytes;
    	}
    
    	fs_info->btree_inode = new_inode(sb);
    	if (!fs_info->btree_inode) {
    		err = -ENOMEM;
    		goto fail_bio_counter;
    	}
    
    	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
    
    	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
    	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
    	INIT_LIST_HEAD(&fs_info->trans_list);
    	INIT_LIST_HEAD(&fs_info->dead_roots);
    	INIT_LIST_HEAD(&fs_info->delayed_iputs);
    	INIT_LIST_HEAD(&fs_info->delalloc_roots);
    	INIT_LIST_HEAD(&fs_info->caching_block_groups);
    	spin_lock_init(&fs_info->delalloc_root_lock);
    	spin_lock_init(&fs_info->trans_lock);
    	spin_lock_init(&fs_info->fs_roots_radix_lock);
    	spin_lock_init(&fs_info->delayed_iput_lock);
    	spin_lock_init(&fs_info->defrag_inodes_lock);
    	spin_lock_init(&fs_info->free_chunk_lock);
    	spin_lock_init(&fs_info->tree_mod_seq_lock);
    	spin_lock_init(&fs_info->super_lock);
    	spin_lock_init(&fs_info->buffer_lock);
    	rwlock_init(&fs_info->tree_mod_log_lock);
    	mutex_init(&fs_info->reloc_mutex);
    	mutex_init(&fs_info->delalloc_root_mutex);
    	seqlock_init(&fs_info->profiles_lock);
    
    	init_completion(&fs_info->kobj_unregister);
    	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
    	INIT_LIST_HEAD(&fs_info->space_info);
    	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
    	btrfs_mapping_init(&fs_info->mapping_tree);
    	btrfs_init_block_rsv(&fs_info->global_block_rsv,
    			     BTRFS_BLOCK_RSV_GLOBAL);
    	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
    			     BTRFS_BLOCK_RSV_DELALLOC);
    	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
    	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
    	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
    	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
    			     BTRFS_BLOCK_RSV_DELOPS);
    	atomic_set(&fs_info->nr_async_submits, 0);
    	atomic_set(&fs_info->async_delalloc_pages, 0);
    	atomic_set(&fs_info->async_submit_draining, 0);
    	atomic_set(&fs_info->nr_async_bios, 0);
    	atomic_set(&fs_info->defrag_running, 0);
    	atomic64_set(&fs_info->tree_mod_seq, 0);
    	fs_info->sb = sb;
    	fs_info->max_inline = 8192 * 1024;
    	fs_info->metadata_ratio = 0;
    	fs_info->defrag_inodes = RB_ROOT;
    	fs_info->free_chunk_space = 0;
    	fs_info->tree_mod_log = RB_ROOT;
    	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
    	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
    	/* readahead state */
    	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
    	spin_lock_init(&fs_info->reada_lock);
    
    	fs_info->thread_pool_size = min_t(unsigned long,
    					  num_online_cpus() + 2, 8);
    
    	INIT_LIST_HEAD(&fs_info->ordered_roots);
    	spin_lock_init(&fs_info->ordered_root_lock);
    	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
    					GFP_NOFS);
    	if (!fs_info->delayed_root) {
    		err = -ENOMEM;
    		goto fail_iput;
    	}
    	btrfs_init_delayed_root(fs_info->delayed_root);
    
    	mutex_init(&fs_info->scrub_lock);
    	atomic_set(&fs_info->scrubs_running, 0);
    	atomic_set(&fs_info->scrub_pause_req, 0);
    	atomic_set(&fs_info->scrubs_paused, 0);
    	atomic_set(&fs_info->scrub_cancel_req, 0);
    	init_waitqueue_head(&fs_info->replace_wait);
    	init_waitqueue_head(&fs_info->scrub_pause_wait);
    	fs_info->scrub_workers_refcnt = 0;
    #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
    	fs_info->check_integrity_print_mask = 0;
    #endif
    
    	spin_lock_init(&fs_info->balance_lock);
    	mutex_init(&fs_info->balance_mutex);
    	atomic_set(&fs_info->balance_running, 0);
    	atomic_set(&fs_info->balance_pause_req, 0);
    	atomic_set(&fs_info->balance_cancel_req, 0);
    	fs_info->balance_ctl = NULL;
    	init_waitqueue_head(&fs_info->balance_wait_q);
    	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
    
    	sb->s_blocksize = 4096;
    	sb->s_blocksize_bits = blksize_bits(4096);
    	sb->s_bdi = &fs_info->bdi;
    
    	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
    	set_nlink(fs_info->btree_inode, 1);
    	/*
    	 * we set the i_size on the btree inode to the max possible int.
    	 * the real end of the address space is determined by all of
    	 * the devices in the system
    	 */
    	fs_info->btree_inode->i_size = OFFSET_MAX;
    	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
    	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
    
    	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
    	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
    			     fs_info->btree_inode->i_mapping);
    	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
    	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
    
    	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
    
    	BTRFS_I(fs_info->btree_inode)->root = tree_root;
    	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
    	       sizeof(struct btrfs_key));
    	set_bit(BTRFS_INODE_DUMMY,
    		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
    	btrfs_insert_inode_hash(fs_info->btree_inode);
    
    	spin_lock_init(&fs_info->block_group_cache_lock);
    	fs_info->block_group_cache_tree = RB_ROOT;
    	fs_info->first_logical_byte = (u64)-1;
    
    	extent_io_tree_init(&fs_info->freed_extents[0],
    			     fs_info->btree_inode->i_mapping);
    	extent_io_tree_init(&fs_info->freed_extents[1],
    			     fs_info->btree_inode->i_mapping);
    	fs_info->pinned_extents = &fs_info->freed_extents[0];
    	fs_info->do_barriers = 1;
    
    
    	mutex_init(&fs_info->ordered_operations_mutex);
    	mutex_init(&fs_info->ordered_extent_flush_mutex);
    	mutex_init(&fs_info->tree_log_mutex);
    	mutex_init(&fs_info->chunk_mutex);
    	mutex_init(&fs_info->transaction_kthread_mutex);
    	mutex_init(&fs_info->cleaner_mutex);
    	mutex_init(&fs_info->volume_mutex);
    	init_rwsem(&fs_info->commit_root_sem);
    	init_rwsem(&fs_info->cleanup_work_sem);
    	init_rwsem(&fs_info->subvol_sem);
    	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
    	fs_info->dev_replace.lock_owner = 0;
    	atomic_set(&fs_info->dev_replace.nesting_level, 0);
    	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
    	mutex_init(&fs_info->dev_replace.lock_management_lock);
    	mutex_init(&fs_info->dev_replace.lock);
    
    	spin_lock_init(&fs_info->qgroup_lock);
    	mutex_init(&fs_info->qgroup_ioctl_lock);
    	fs_info->qgroup_tree = RB_ROOT;
    	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
    	fs_info->qgroup_seq = 1;
    	fs_info->quota_enabled = 0;
    	fs_info->pending_quota_state = 0;
    	fs_info->qgroup_ulist = NULL;
    	mutex_init(&fs_info->qgroup_rescan_lock);
    
    	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
    	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
    
    	init_waitqueue_head(&fs_info->transaction_throttle);
    	init_waitqueue_head(&fs_info->transaction_wait);
    	init_waitqueue_head(&fs_info->transaction_blocked_wait);
    	init_waitqueue_head(&fs_info->async_submit_wait);
    
    	ret = btrfs_alloc_stripe_hash_table(fs_info);
    	if (ret) {
    		err = ret;
    		goto fail_alloc;
    	}
    
    	__setup_root(4096, 4096, 4096, 4096, tree_root,
    		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
    
    	invalidate_bdev(fs_devices->latest_bdev);
    
    	/*
    	 * Read super block and check the signature bytes only
    	 */
    	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
    	if (!bh) {
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	/*
    	 * We want to check superblock checksum, the type is stored inside.
    	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
    	 */
    	if (btrfs_check_super_csum(bh->b_data)) {
    		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	/*
    	 * super_copy is zeroed at allocation time and we never touch the
    	 * following bytes up to INFO_SIZE, the checksum is calculated from
    	 * the whole block of INFO_SIZE
    	 */
    	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
    	memcpy(fs_info->super_for_commit, fs_info->super_copy,
    	       sizeof(*fs_info->super_for_commit));
    	brelse(bh);
    
    	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
    
    	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
    	if (ret) {
    		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	disk_super = fs_info->super_copy;
    	if (!btrfs_super_root(disk_super))
    		goto fail_alloc;
    
    	/* check FS state, whether FS is broken. */
    	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
    		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
    
    	/*
    	 * run through our array of backup supers and setup
    	 * our ring pointer to the oldest one
    	 */
    	generation = btrfs_super_generation(disk_super);
    	find_oldest_super_backup(fs_info, generation);
    
    	/*
    	 * In the long term, we'll store the compression type in the super
    	 * block, and it'll be used for per file compression control.
    	 */
    	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
    
    	ret = btrfs_parse_options(tree_root, options);
    	if (ret) {
    		err = ret;
    		goto fail_alloc;
    	}
    
    	features = btrfs_super_incompat_flags(disk_super) &
    		~BTRFS_FEATURE_INCOMPAT_SUPP;
    	if (features) {
    		printk(KERN_ERR "BTRFS: couldn't mount because of "
    		       "unsupported optional features (%Lx).\n",
    		       features);
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	if (btrfs_super_leafsize(disk_super) !=
    	    btrfs_super_nodesize(disk_super)) {
    		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
    		       "blocksizes don't match.  node %d leaf %d\n",
    		       btrfs_super_nodesize(disk_super),
    		       btrfs_super_leafsize(disk_super));
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
    		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
    		       "blocksize (%d) was too large\n",
    		       btrfs_super_leafsize(disk_super));
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	features = btrfs_super_incompat_flags(disk_super);
    	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
    	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
    		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
    
    	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
    		printk(KERN_ERR "BTRFS: has skinny extents\n");
    
    	/*
    	 * flag our filesystem as having big metadata blocks if
    	 * they are bigger than the page size
    	 */
    	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
    		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
    			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
    		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
    	}
    
    	nodesize = btrfs_super_nodesize(disk_super);
    	leafsize = btrfs_super_leafsize(disk_super);
    	sectorsize = btrfs_super_sectorsize(disk_super);
    	stripesize = btrfs_super_stripesize(disk_super);
    	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
    	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
    
    	/*
    	 * mixed block groups end up with duplicate but slightly offset
    	 * extent buffers for the same range.  It leads to corruptions
    	 */
    	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
    	    (sectorsize != leafsize)) {
    		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
    				"are not allowed for mixed block groups on %s\n",
    				sb->s_id);
    		goto fail_alloc;
    	}
    
    	/*
    	 * Needn't use the lock because there is no other task which will
    	 * update the flag.
    	 */
    	btrfs_set_super_incompat_flags(disk_super, features);
    
    	features = btrfs_super_compat_ro_flags(disk_super) &
    		~BTRFS_FEATURE_COMPAT_RO_SUPP;
    	if (!(sb->s_flags & MS_RDONLY) && features) {
    		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
    		       "unsupported option features (%Lx).\n",
    		       features);
    		err = -EINVAL;
    		goto fail_alloc;
    	}
    
    	max_active = fs_info->thread_pool_size;
    
    	fs_info->workers =
    		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
    				      max_active, 16);
    
    	fs_info->delalloc_workers =
    		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
    
    	fs_info->flush_workers =
    		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
    
    	fs_info->caching_workers =
    		btrfs_alloc_workqueue("cache", flags, max_active, 0);
    
    	/*
    	 * a higher idle thresh on the submit workers makes it much more
    	 * likely that bios will be send down in a sane order to the
    	 * devices
    	 */
    	fs_info->submit_workers =
    		btrfs_alloc_workqueue("submit", flags,
    				      min_t(u64, fs_devices->num_devices,
    					    max_active), 64);
    
    	fs_info->fixup_workers =
    		btrfs_alloc_workqueue("fixup", flags, 1, 0);
    
    	/*
    	 * endios are largely parallel and should have a very
    	 * low idle thresh
    	 */
    	fs_info->endio_workers =
    		btrfs_alloc_workqueue("endio", flags, max_active, 4);
    	fs_info->endio_meta_workers =
    		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
    	fs_info->endio_meta_write_workers =
    		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
    	fs_info->endio_raid56_workers =
    		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
    	fs_info->rmw_workers =
    		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
    	fs_info->endio_write_workers =
    		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
    	fs_info->endio_freespace_worker =
    		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
    	fs_info->delayed_workers =
    		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
    	fs_info->readahead_workers =
    		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
    	fs_info->qgroup_rescan_workers =
    		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
    
    	if (!(fs_info->workers && fs_info->delalloc_workers &&
    	      fs_info->submit_workers && fs_info->flush_workers &&
    	      fs_info->endio_workers && fs_info->endio_meta_workers &&
    	      fs_info->endio_meta_write_workers &&
    	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
    	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
    	      fs_info->caching_workers && fs_info->readahead_workers &&
    	      fs_info->fixup_workers && fs_info->delayed_workers &&
    	      fs_info->qgroup_rescan_workers)) {
    		err = -ENOMEM;
    		goto fail_sb_buffer;
    	}
    
    	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
    	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
    				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
    
    	tree_root->nodesize = nodesize;
    	tree_root->leafsize = leafsize;
    	tree_root->sectorsize = sectorsize;
    	tree_root->stripesize = stripesize;
    
    	sb->s_blocksize = sectorsize;
    	sb->s_blocksize_bits = blksize_bits(sectorsize);
    
    	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
    		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
    		goto fail_sb_buffer;
    	}
    
    	if (sectorsize != PAGE_SIZE) {
    		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
    		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
    		goto fail_sb_buffer;
    	}
    
    	mutex_lock(&fs_info->chunk_mutex);
    	ret = btrfs_read_sys_array(tree_root);
    	mutex_unlock(&fs_info->chunk_mutex);
    	if (ret) {
    		printk(KERN_WARNING "BTRFS: failed to read the system "
    		       "array on %s\n", sb->s_id);
    		goto fail_sb_buffer;
    	}
    
    	blocksize = btrfs_level_size(tree_root,
    				     btrfs_super_chunk_root_level(disk_super));
    	generation = btrfs_super_chunk_root_generation(disk_super);
    
    	__setup_root(nodesize, leafsize, sectorsize, stripesize,
    		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
    
    	chunk_root->node = read_tree_block(chunk_root,
    					   btrfs_super_chunk_root(disk_super),
    					   blocksize, generation);
    	if (!chunk_root->node ||
    	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
    		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
    		       sb->s_id);
    		goto fail_tree_roots;
    	}
    	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
    	chunk_root->commit_root = btrfs_root_node(chunk_root);
    
    	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
    	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
    
    	ret = btrfs_read_chunk_tree(chunk_root);
    	if (ret) {
    		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
    		       sb->s_id);
    		goto fail_tree_roots;
    	}
    
    	/*
    	 * keep the device that is marked to be the target device for the
    	 * dev_replace procedure
    	 */
    	btrfs_close_extra_devices(fs_info, fs_devices, 0);
    
    	if (!fs_devices->latest_bdev) {
    		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
    		       sb->s_id);
    		goto fail_tree_roots;
    	}
    
    retry_root_backup:
    	blocksize = btrfs_level_size(tree_root,
    				     btrfs_super_root_level(disk_super));
    	generation = btrfs_super_generation(disk_super);
    
    	tree_root->node = read_tree_block(tree_root,
    					  btrfs_super_root(disk_super),
    					  blocksize, generation);
    	if (!tree_root->node ||
    	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
    		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
    		       sb->s_id);
    
    		goto recovery_tree_root;
    	}
    
    	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
    	tree_root->commit_root = btrfs_root_node(tree_root);
    	btrfs_set_root_refs(&tree_root->root_item, 1);
    
    	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
    	location.type = BTRFS_ROOT_ITEM_KEY;
    	location.offset = 0;
    
    	extent_root = btrfs_read_tree_root(tree_root, &location);
    	if (IS_ERR(extent_root)) {
    		ret = PTR_ERR(extent_root);
    		goto recovery_tree_root;
    	}
    	set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
    	fs_info->extent_root = extent_root;
    
    	location.objectid = BTRFS_DEV_TREE_OBJECTID;
    	dev_root = btrfs_read_tree_root(tree_root, &location);
    	if (IS_ERR(dev_root)) {
    		ret = PTR_ERR(dev_root);
    		goto recovery_tree_root;
    	}
    	set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
    	fs_info->dev_root = dev_root;
    	btrfs_init_devices_late(fs_info);
    
    	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
    	csum_root = btrfs_read_tree_root(tree_root, &location);
    	if (IS_ERR(csum_root)) {
    		ret = PTR_ERR(csum_root);
    		goto recovery_tree_root;
    	}
    	set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
    	fs_info->csum_root = csum_root;
    
    	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
    	quota_root = btrfs_read_tree_root(tree_root, &location);
    	if (!IS_ERR(quota_root)) {
    		set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
    		fs_info->quota_enabled = 1;
    		fs_info->pending_quota_state = 1;
    		fs_info->quota_root = quota_root;
    	}
    
    	location.objectid = BTRFS_UUID_TREE_OBJECTID;
    	uuid_root = btrfs_read_tree_root(tree_root, &location);
    	if (IS_ERR(uuid_root)) {
    		ret = PTR_ERR(uuid_root);
    		if (ret != -ENOENT)
    			goto recovery_tree_root;
    		create_uuid_tree = true;
    		check_uuid_tree = false;
    	} else {
    		set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
    		fs_info->uuid_root = uuid_root;
    		create_uuid_tree = false;
    		check_uuid_tree =
    		    generation != btrfs_super_uuid_tree_generation(disk_super);
    	}
    
    	fs_info->generation = generation;
    	fs_info->last_trans_committed = generation;
    
    	ret = btrfs_recover_balance(fs_info);
    	if (ret) {
    		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
    		goto fail_block_groups;
    	}
    
    	ret = btrfs_init_dev_stats(fs_info);
    	if (ret) {
    		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
    		       ret);
    		goto fail_block_groups;
    	}
    
    	ret = btrfs_init_dev_replace(fs_info);
    	if (ret) {
    		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
    		goto fail_block_groups;
    	}
    
    	btrfs_close_extra_devices(fs_info, fs_devices, 1);
    
    	ret = btrfs_sysfs_add_one(fs_info);
    	if (ret) {
    		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
    		goto fail_block_groups;
    	}
    
    	ret = btrfs_init_space_info(fs_info);
    	if (ret) {
    		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
    		goto fail_sysfs;
    	}
    
    	ret = btrfs_read_block_groups(extent_root);
    	if (ret) {
    		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
    		goto fail_sysfs;
    	}
    	fs_info->num_tolerated_disk_barrier_failures =
    		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
    	if (fs_info->fs_devices->missing_devices >
    	     fs_info->num_tolerated_disk_barrier_failures &&
    	    !(sb->s_flags & MS_RDONLY)) {
    		printk(KERN_WARNING "BTRFS: "
    			"too many missing devices, writeable mount is not allowed\n");
    		goto fail_sysfs;
    	}
    
    	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
    					       "btrfs-cleaner");
    	if (IS_ERR(fs_info->cleaner_kthread))
    		goto fail_sysfs;
    
    	fs_info->transaction_kthread = kthread_run(transaction_kthread,
    						   tree_root,
    						   "btrfs-transaction");
    	if (IS_ERR(fs_info->transaction_kthread))
    		goto fail_cleaner;
    
    	if (!btrfs_test_opt(tree_root, SSD) &&
    	    !btrfs_test_opt(tree_root, NOSSD) &&
    	    !fs_info->fs_devices->rotating) {
    		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
    		       "mode\n");
    		btrfs_set_opt(fs_info->mount_opt, SSD);
    	}
    
    	/* Set the real inode map cache flag */
    	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
    		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
    
    #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
    	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
    		ret = btrfsic_mount(tree_root, fs_devices,
    				    btrfs_test_opt(tree_root,
    					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
    				    1 : 0,
    				    fs_info->check_integrity_print_mask);
    		if (ret)
    			printk(KERN_WARNING "BTRFS: failed to initialize"
    			       " integrity check module %s\n", sb->s_id);
    	}
    #endif
    	ret = btrfs_read_qgroup_config(fs_info);
    	if (ret)
    		goto fail_trans_kthread;
    
    	/* do not make disk changes in broken FS */
    	if (btrfs_super_log_root(disk_super) != 0) {
    		u64 bytenr = btrfs_super_log_root(disk_super);
    
    		if (fs_devices->rw_devices == 0) {
    			printk(KERN_WARNING "BTRFS: log replay required "
    			       "on RO media\n");
    			err = -EIO;
    			goto fail_qgroup;
    		}
    		blocksize =
    		     btrfs_level_size(tree_root,
    				      btrfs_super_log_root_level(disk_super));
    
    		log_tree_root = btrfs_alloc_root(fs_info);
    		if (!log_tree_root) {
    			err = -ENOMEM;
    			goto fail_qgroup;
    		}
    
    		__setup_root(nodesize, leafsize, sectorsize, stripesize,
    			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
    
    		log_tree_root->node = read_tree_block(tree_root, bytenr,
    						      blocksize,
    						      generation + 1);
    		if (!log_tree_root->node ||
    		    !extent_buffer_uptodate(log_tree_root->node)) {
    			printk(KERN_ERR "BTRFS: failed to read log tree\n");
    			free_extent_buffer(log_tree_root->node);
    			kfree(log_tree_root);
    			goto fail_qgroup;
    		}
    		/* returns with log_tree_root freed on success */
    		ret = btrfs_recover_log_trees(log_tree_root);
    		if (ret) {
    			btrfs_error(tree_root->fs_info, ret,
    				    "Failed to recover log tree");
    			free_extent_buffer(log_tree_root->node);
    			kfree(log_tree_root);
    			goto fail_qgroup;
    		}
    
    		if (sb->s_flags & MS_RDONLY) {
    			ret = btrfs_commit_super(tree_root);
    			if (ret)
    				goto fail_qgroup;
    		}
    	}
    
    	ret = btrfs_find_orphan_roots(tree_root);
    	if (ret)
    		goto fail_qgroup;
    
    	if (!(sb->s_flags & MS_RDONLY)) {
    		ret = btrfs_cleanup_fs_roots(fs_info);
    		if (ret)
    			goto fail_qgroup;
    
    		ret = btrfs_recover_relocation(tree_root);
    		if (ret < 0) {
    			printk(KERN_WARNING
    			       "BTRFS: failed to recover relocation\n");
    			err = -EINVAL;
    			goto fail_qgroup;
    		}
    	}
    
    	location.objectid = BTRFS_FS_TREE_OBJECTID;
    	location.type = BTRFS_ROOT_ITEM_KEY;
    	location.offset = 0;
    
    	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
    	if (IS_ERR(fs_info->fs_root)) {
    		err = PTR_ERR(fs_info->fs_root);
    		goto fail_qgroup;
    	}
    
    	if (sb->s_flags & MS_RDONLY)
    		return 0;
    
    	down_read(&fs_info->cleanup_work_sem);
    	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
    	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
    		up_read(&fs_info->cleanup_work_sem);
    		close_ctree(tree_root);
    		return ret;
    	}
    	up_read(&fs_info->cleanup_work_sem);
    
    	ret = btrfs_resume_balance_async(fs_info);
    	if (ret) {
    		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
    		close_ctree(tree_root);
    		return ret;
    	}
    
    	ret = btrfs_resume_dev_replace_async(fs_info);
    	if (ret) {
    		pr_warn("BTRFS: failed to resume dev_replace\n");
    		close_ctree(tree_root);
    		return ret;
    	}
    
    	btrfs_qgroup_rescan_resume(fs_info);
    
    	if (create_uuid_tree) {
    		pr_info("BTRFS: creating UUID tree\n");
    		ret = btrfs_create_uuid_tree(fs_info);
    		if (ret) {
    			pr_warn("BTRFS: failed to create the UUID tree %d\n",
    				ret);
    			close_ctree(tree_root);
    			return ret;
    		}
    	} else if (check_uuid_tree ||
    		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
    		pr_info("BTRFS: checking UUID tree\n");
    		ret = btrfs_check_uuid_tree(fs_info);
    		if (ret) {
    			pr_warn("BTRFS: failed to check the UUID tree %d\n",
    				ret);
    			close_ctree(tree_root);
    			return ret;
    		}
    	} else {
    		fs_info->update_uuid_tree_gen = 1;
    	}
    
    	return 0;
    
    fail_qgroup:
    	btrfs_free_qgroup_config(fs_info);
    fail_trans_kthread:
    	kthread_stop(fs_info->transaction_kthread);
    	btrfs_cleanup_transaction(fs_info->tree_root);
    	del_fs_roots(fs_info);
    fail_cleaner:
    	kthread_stop(fs_info->cleaner_kthread);
    
    	/*
    	 * make sure we're done with the btree inode before we stop our
    	 * kthreads
    	 */
    	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
    
    fail_sysfs:
    	btrfs_sysfs_remove_one(fs_info);
    
    fail_block_groups:
    	btrfs_put_block_group_cache(fs_info);
    	btrfs_free_block_groups(fs_info);
    
    fail_tree_roots:
    	free_root_pointers(fs_info, 1);
    	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
    
    fail_sb_buffer:
    	btrfs_stop_all_workers(fs_info);
    fail_alloc:
    fail_iput:
    	btrfs_mapping_tree_free(&fs_info->mapping_tree);
    
    	iput(fs_info->btree_inode);
    fail_bio_counter:
    	percpu_counter_destroy(&fs_info->bio_counter);
    fail_delalloc_bytes:
    	percpu_counter_destroy(&fs_info->delalloc_bytes);
    fail_dirty_metadata_bytes:
    	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
    fail_bdi:
    	bdi_destroy(&fs_info->bdi);
    fail_srcu:
    	cleanup_srcu_struct(&fs_info->subvol_srcu);
    fail:
    	btrfs_free_stripe_hash_table(fs_info);
    	btrfs_close_devices(fs_info->fs_devices);
    	return err;
    
    recovery_tree_root:
    	if (!btrfs_test_opt(tree_root, RECOVERY))
    		goto fail_tree_roots;
    
    	free_root_pointers(fs_info, 0);
    
    	/* don't use the log in recovery mode, it won't be valid */
    	btrfs_set_super_log_root(disk_super, 0);
    
    	/* we can't trust the free space cache either */
    	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
    
    	ret = next_root_backup(fs_info, fs_info->super_copy,
    			       &num_backups_tried, &backup_index);
    	if (ret == -1)
    		goto fail_block_groups;
    	goto retry_root_backup;
    }
    
    static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
    {
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		struct btrfs_device *device = (struct btrfs_device *)
    			bh->b_private;
    
    		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
    					  "I/O error on %s\n",
    					  rcu_str_deref(device->name));
    		/* note, we dont' set_buffer_write_io_error because we have
    		 * our own ways of dealing with the IO errors
    		 */
    		clear_buffer_uptodate(bh);
    		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
    	}
    	unlock_buffer(bh);
    	put_bh(bh);
    }
    
    struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
    {
    	struct buffer_head *bh;
    	struct buffer_head *latest = NULL;
    	struct btrfs_super_block *super;
    	int i;
    	u64 transid = 0;
    	u64 bytenr;
    
    	/* we would like to check all the supers, but that would make
    	 * a btrfs mount succeed after a mkfs from a different FS.
    	 * So, we need to add a special mount option to scan for
    	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
    	 */
    	for (i = 0; i < 1; i++) {
    		bytenr = btrfs_sb_offset(i);
    		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
    					i_size_read(bdev->bd_inode))
    			break;
    		bh = __bread(bdev, bytenr / 4096,
    					BTRFS_SUPER_INFO_SIZE);
    		if (!bh)
    			continue;
    
    		super = (struct btrfs_super_block *)bh->b_data;
    		if (btrfs_super_bytenr(super) != bytenr ||
    		    btrfs_super_magic(super) != BTRFS_MAGIC) {
    			brelse(bh);
    			continue;
    		}
    
    		if (!latest || btrfs_super_generation(super) > transid) {
    			brelse(latest);
    			latest = bh;
    			transid = btrfs_super_generation(super);
    		} else {
    			brelse(bh);
    		}
    	}
    	return latest;
    }
    
    /*
     * this should be called twice, once with wait == 0 and
     * once with wait == 1.  When wait == 0 is done, all the buffer heads
     * we write are pinned.
     *
     * They are released when wait == 1 is done.
     * max_mirrors must be the same for both runs, and it indicates how
     * many supers on this one device should be written.
     *
     * max_mirrors == 0 means to write them all.
     */
    static int write_dev_supers(struct btrfs_device *device,
    			    struct btrfs_super_block *sb,
    			    int do_barriers, int wait, int max_mirrors)
    {
    	struct buffer_head *bh;
    	int i;
    	int ret;
    	int errors = 0;
    	u32 crc;
    	u64 bytenr;
    
    	if (max_mirrors == 0)
    		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
    
    	for (i = 0; i < max_mirrors; i++) {
    		bytenr = btrfs_sb_offset(i);
    		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
    			break;
    
    		if (wait) {
    			bh = __find_get_block(device->bdev, bytenr / 4096,
    					      BTRFS_SUPER_INFO_SIZE);
    			if (!bh) {
    				errors++;
    				continue;
    			}
    			wait_on_buffer(bh);
    			if (!buffer_uptodate(bh))
    				errors++;
    
    			/* drop our reference */
    			brelse(bh);
    
    			/* drop the reference from the wait == 0 run */
    			brelse(bh);
    			continue;
    		} else {
    			btrfs_set_super_bytenr(sb, bytenr);
    
    			crc = ~(u32)0;
    			crc = btrfs_csum_data((char *)sb +
    					      BTRFS_CSUM_SIZE, crc,
    					      BTRFS_SUPER_INFO_SIZE -
    					      BTRFS_CSUM_SIZE);
    			btrfs_csum_final(crc, sb->csum);
    
    			/*
    			 * one reference for us, and we leave it for the
    			 * caller
    			 */
    			bh = __getblk(device->bdev, bytenr / 4096,
    				      BTRFS_SUPER_INFO_SIZE);
    			if (!bh) {
    				printk(KERN_ERR "BTRFS: couldn't get super "
    				       "buffer head for bytenr %Lu\n", bytenr);
    				errors++;
    				continue;
    			}
    
    			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
    
    			/* one reference for submit_bh */
    			get_bh(bh);
    
    			set_buffer_uptodate(bh);
    			lock_buffer(bh);
    			bh->b_end_io = btrfs_end_buffer_write_sync;
    			bh->b_private = device;
    		}
    
    		/*
    		 * we fua the first super.  The others we allow
    		 * to go down lazy.
    		 */
    		if (i == 0)
    			ret = btrfsic_submit_bh(WRITE_FUA, bh);
    		else
    			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
    		if (ret)
    			errors++;
    	}
    	return errors < i ? 0 : -1;
    }
    
    /*
     * endio for the write_dev_flush, this will wake anyone waiting
     * for the barrier when it is done
     */
    static void btrfs_end_empty_barrier(struct bio *bio, int err)
    {
    	if (err) {
    		if (err == -EOPNOTSUPP)
    			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
    		clear_bit(BIO_UPTODATE, &bio->bi_flags);
    	}
    	if (bio->bi_private)
    		complete(bio->bi_private);
    	bio_put(bio);
    }
    
    /*
     * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
     * sent down.  With wait == 1, it waits for the previous flush.
     *
     * any device where the flush fails with eopnotsupp are flagged as not-barrier
     * capable
     */
    static int write_dev_flush(struct btrfs_device *device, int wait)
    {
    	struct bio *bio;
    	int ret = 0;
    
    	if (device->nobarriers)
    		return 0;
    
    	if (wait) {
    		bio = device->flush_bio;
    		if (!bio)
    			return 0;
    
    		wait_for_completion(&device->flush_wait);
    
    		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
    			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
    				      rcu_str_deref(device->name));
    			device->nobarriers = 1;
    		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
    			ret = -EIO;
    			btrfs_dev_stat_inc_and_print(device,
    				BTRFS_DEV_STAT_FLUSH_ERRS);
    		}
    
    		/* drop the reference from the wait == 0 run */
    		bio_put(bio);
    		device->flush_bio = NULL;
    
    		return ret;
    	}
    
    	/*
    	 * one reference for us, and we leave it for the
    	 * caller
    	 */
    	device->flush_bio = NULL;
    	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
    	if (!bio)
    		return -ENOMEM;
    
    	bio->bi_end_io = btrfs_end_empty_barrier;
    	bio->bi_bdev = device->bdev;
    	init_completion(&device->flush_wait);
    	bio->bi_private = &device->flush_wait;
    	device->flush_bio = bio;
    
    	bio_get(bio);
    	btrfsic_submit_bio(WRITE_FLUSH, bio);
    
    	return 0;
    }
    
    /*
     * send an empty flush down to each device in parallel,
     * then wait for them
     */
    static int barrier_all_devices(struct btrfs_fs_info *info)
    {
    	struct list_head *head;
    	struct btrfs_device *dev;
    	int errors_send = 0;
    	int errors_wait = 0;
    	int ret;
    
    	/* send down all the barriers */
    	head = &info->fs_devices->devices;
    	list_for_each_entry_rcu(dev, head, dev_list) {
    		if (dev->missing)
    			continue;
    		if (!dev->bdev) {
    			errors_send++;
    			continue;
    		}
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		ret = write_dev_flush(dev, 0);
    		if (ret)
    			errors_send++;
    	}
    
    	/* wait for all the barriers */
    	list_for_each_entry_rcu(dev, head, dev_list) {
    		if (dev->missing)
    			continue;
    		if (!dev->bdev) {
    			errors_wait++;
    			continue;
    		}
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		ret = write_dev_flush(dev, 1);
    		if (ret)
    			errors_wait++;
    	}
    	if (errors_send > info->num_tolerated_disk_barrier_failures ||
    	    errors_wait > info->num_tolerated_disk_barrier_failures)
    		return -EIO;
    	return 0;
    }
    
    int btrfs_calc_num_tolerated_disk_barrier_failures(
    	struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_ioctl_space_info space;
    	struct btrfs_space_info *sinfo;
    	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
    		       BTRFS_BLOCK_GROUP_SYSTEM,
    		       BTRFS_BLOCK_GROUP_METADATA,
    		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
    	int num_types = 4;
    	int i;
    	int c;
    	int num_tolerated_disk_barrier_failures =
    		(int)fs_info->fs_devices->num_devices;
    
    	for (i = 0; i < num_types; i++) {
    		struct btrfs_space_info *tmp;
    
    		sinfo = NULL;
    		rcu_read_lock();
    		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
    			if (tmp->flags == types[i]) {
    				sinfo = tmp;
    				break;
    			}
    		}
    		rcu_read_unlock();
    
    		if (!sinfo)
    			continue;
    
    		down_read(&sinfo->groups_sem);
    		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
    			if (!list_empty(&sinfo->block_groups[c])) {
    				u64 flags;
    
    				btrfs_get_block_group_info(
    					&sinfo->block_groups[c], &space);
    				if (space.total_bytes == 0 ||
    				    space.used_bytes == 0)
    					continue;
    				flags = space.flags;
    				/*
    				 * return
    				 * 0: if dup, single or RAID0 is configured for
    				 *    any of metadata, system or data, else
    				 * 1: if RAID5 is configured, or if RAID1 or
    				 *    RAID10 is configured and only two mirrors
    				 *    are used, else
    				 * 2: if RAID6 is configured, else
    				 * num_mirrors - 1: if RAID1 or RAID10 is
    				 *                  configured and more than
    				 *                  2 mirrors are used.
    				 */
    				if (num_tolerated_disk_barrier_failures > 0 &&
    				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
    					       BTRFS_BLOCK_GROUP_RAID0)) ||
    				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
    				      == 0)))
    					num_tolerated_disk_barrier_failures = 0;
    				else if (num_tolerated_disk_barrier_failures > 1) {
    					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
    					    BTRFS_BLOCK_GROUP_RAID5 |
    					    BTRFS_BLOCK_GROUP_RAID10)) {
    						num_tolerated_disk_barrier_failures = 1;
    					} else if (flags &
    						   BTRFS_BLOCK_GROUP_RAID6) {
    						num_tolerated_disk_barrier_failures = 2;
    					}
    				}
    			}
    		}
    		up_read(&sinfo->groups_sem);
    	}
    
    	return num_tolerated_disk_barrier_failures;
    }
    
    static int write_all_supers(struct btrfs_root *root, int max_mirrors)
    {
    	struct list_head *head;
    	struct btrfs_device *dev;
    	struct btrfs_super_block *sb;
    	struct btrfs_dev_item *dev_item;
    	int ret;
    	int do_barriers;
    	int max_errors;
    	int total_errors = 0;
    	u64 flags;
    
    	do_barriers = !btrfs_test_opt(root, NOBARRIER);
    	backup_super_roots(root->fs_info);
    
    	sb = root->fs_info->super_for_commit;
    	dev_item = &sb->dev_item;
    
    	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
    	head = &root->fs_info->fs_devices->devices;
    	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
    
    	if (do_barriers) {
    		ret = barrier_all_devices(root->fs_info);
    		if (ret) {
    			mutex_unlock(
    				&root->fs_info->fs_devices->device_list_mutex);
    			btrfs_error(root->fs_info, ret,
    				    "errors while submitting device barriers.");
    			return ret;
    		}
    	}
    
    	list_for_each_entry_rcu(dev, head, dev_list) {
    		if (!dev->bdev) {
    			total_errors++;
    			continue;
    		}
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		btrfs_set_stack_device_generation(dev_item, 0);
    		btrfs_set_stack_device_type(dev_item, dev->type);
    		btrfs_set_stack_device_id(dev_item, dev->devid);
    		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
    		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
    		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
    		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
    		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
    		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
    		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
    
    		flags = btrfs_super_flags(sb);
    		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
    
    		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
    		if (ret)
    			total_errors++;
    	}
    	if (total_errors > max_errors) {
    		btrfs_err(root->fs_info, "%d errors while writing supers",
    		       total_errors);
    		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
    
    		/* FUA is masked off if unsupported and can't be the reason */
    		btrfs_error(root->fs_info, -EIO,
    			    "%d errors while writing supers", total_errors);
    		return -EIO;
    	}
    
    	total_errors = 0;
    	list_for_each_entry_rcu(dev, head, dev_list) {
    		if (!dev->bdev)
    			continue;
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
    		if (ret)
    			total_errors++;
    	}
    	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
    	if (total_errors > max_errors) {
    		btrfs_error(root->fs_info, -EIO,
    			    "%d errors while writing supers", total_errors);
    		return -EIO;
    	}
    	return 0;
    }
    
    int write_ctree_super(struct btrfs_trans_handle *trans,
    		      struct btrfs_root *root, int max_mirrors)
    {
    	return write_all_supers(root, max_mirrors);
    }
    
    /* Drop a fs root from the radix tree and free it. */
    void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
    				  struct btrfs_root *root)
    {
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	radix_tree_delete(&fs_info->fs_roots_radix,
    			  (unsigned long)root->root_key.objectid);
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    
    	if (btrfs_root_refs(&root->root_item) == 0)
    		synchronize_srcu(&fs_info->subvol_srcu);
    
    	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
    		btrfs_free_log(NULL, root);
    
    	__btrfs_remove_free_space_cache(root->free_ino_pinned);
    	__btrfs_remove_free_space_cache(root->free_ino_ctl);
    	free_fs_root(root);
    }
    
    static void free_fs_root(struct btrfs_root *root)
    {
    	iput(root->cache_inode);
    	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
    	btrfs_free_block_rsv(root, root->orphan_block_rsv);
    	root->orphan_block_rsv = NULL;
    	if (root->anon_dev)
    		free_anon_bdev(root->anon_dev);
    	if (root->subv_writers)
    		btrfs_free_subvolume_writers(root->subv_writers);
    	free_extent_buffer(root->node);
    	free_extent_buffer(root->commit_root);
    	kfree(root->free_ino_ctl);
    	kfree(root->free_ino_pinned);
    	kfree(root->name);
    	btrfs_put_fs_root(root);
    }
    
    void btrfs_free_fs_root(struct btrfs_root *root)
    {
    	free_fs_root(root);
    }
    
    int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
    {
    	u64 root_objectid = 0;
    	struct btrfs_root *gang[8];
    	int i = 0;
    	int err = 0;
    	unsigned int ret = 0;
    	int index;
    
    	while (1) {
    		index = srcu_read_lock(&fs_info->subvol_srcu);
    		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
    					     (void **)gang, root_objectid,
    					     ARRAY_SIZE(gang));
    		if (!ret) {
    			srcu_read_unlock(&fs_info->subvol_srcu, index);
    			break;
    		}
    		root_objectid = gang[ret - 1]->root_key.objectid + 1;
    
    		for (i = 0; i < ret; i++) {
    			/* Avoid to grab roots in dead_roots */
    			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
    				gang[i] = NULL;
    				continue;
    			}
    			/* grab all the search result for later use */
    			gang[i] = btrfs_grab_fs_root(gang[i]);
    		}
    		srcu_read_unlock(&fs_info->subvol_srcu, index);
    
    		for (i = 0; i < ret; i++) {
    			if (!gang[i])
    				continue;
    			root_objectid = gang[i]->root_key.objectid;
    			err = btrfs_orphan_cleanup(gang[i]);
    			if (err)
    				break;
    			btrfs_put_fs_root(gang[i]);
    		}
    		root_objectid++;
    	}
    
    	/* release the uncleaned roots due to error */
    	for (; i < ret; i++) {
    		if (gang[i])
    			btrfs_put_fs_root(gang[i]);
    	}
    	return err;
    }
    
    int btrfs_commit_super(struct btrfs_root *root)
    {
    	struct btrfs_trans_handle *trans;
    
    	mutex_lock(&root->fs_info->cleaner_mutex);
    	btrfs_run_delayed_iputs(root);
    	mutex_unlock(&root->fs_info->cleaner_mutex);
    	wake_up_process(root->fs_info->cleaner_kthread);
    
    	/* wait until ongoing cleanup work done */
    	down_write(&root->fs_info->cleanup_work_sem);
    	up_write(&root->fs_info->cleanup_work_sem);
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    	return btrfs_commit_transaction(trans, root);
    }
    
    int close_ctree(struct btrfs_root *root)
    {
    	struct btrfs_fs_info *fs_info = root->fs_info;
    	int ret;
    
    	fs_info->closing = 1;
    	smp_mb();
    
    	/* wait for the uuid_scan task to finish */
    	down(&fs_info->uuid_tree_rescan_sem);
    	/* avoid complains from lockdep et al., set sem back to initial state */
    	up(&fs_info->uuid_tree_rescan_sem);
    
    	/* pause restriper - we want to resume on mount */
    	btrfs_pause_balance(fs_info);
    
    	btrfs_dev_replace_suspend_for_unmount(fs_info);
    
    	btrfs_scrub_cancel(fs_info);
    
    	/* wait for any defraggers to finish */
    	wait_event(fs_info->transaction_wait,
    		   (atomic_read(&fs_info->defrag_running) == 0));
    
    	/* clear out the rbtree of defraggable inodes */
    	btrfs_cleanup_defrag_inodes(fs_info);
    
    	cancel_work_sync(&fs_info->async_reclaim_work);
    
    	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
    		ret = btrfs_commit_super(root);
    		if (ret)
    			btrfs_err(root->fs_info, "commit super ret %d", ret);
    	}
    
    	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
    		btrfs_error_commit_super(root);
    
    	kthread_stop(fs_info->transaction_kthread);
    	kthread_stop(fs_info->cleaner_kthread);
    
    	fs_info->closing = 2;
    	smp_mb();
    
    	btrfs_free_qgroup_config(root->fs_info);
    
    	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
    		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
    		       percpu_counter_sum(&fs_info->delalloc_bytes));
    	}
    
    	btrfs_sysfs_remove_one(fs_info);
    
    	del_fs_roots(fs_info);
    
    	btrfs_put_block_group_cache(fs_info);
    
    	btrfs_free_block_groups(fs_info);
    
    	/*
    	 * we must make sure there is not any read request to
    	 * submit after we stopping all workers.
    	 */
    	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
    	btrfs_stop_all_workers(fs_info);
    
    	free_root_pointers(fs_info, 1);
    
    	iput(fs_info->btree_inode);
    
    #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
    	if (btrfs_test_opt(root, CHECK_INTEGRITY))
    		btrfsic_unmount(root, fs_info->fs_devices);
    #endif
    
    	btrfs_close_devices(fs_info->fs_devices);
    	btrfs_mapping_tree_free(&fs_info->mapping_tree);
    
    	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
    	percpu_counter_destroy(&fs_info->delalloc_bytes);
    	percpu_counter_destroy(&fs_info->bio_counter);
    	bdi_destroy(&fs_info->bdi);
    	cleanup_srcu_struct(&fs_info->subvol_srcu);
    
    	btrfs_free_stripe_hash_table(fs_info);
    
    	btrfs_free_block_rsv(root, root->orphan_block_rsv);
    	root->orphan_block_rsv = NULL;
    
    	return 0;
    }
    
    int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
    			  int atomic)
    {
    	int ret;
    	struct inode *btree_inode = buf->pages[0]->mapping->host;
    
    	ret = extent_buffer_uptodate(buf);
    	if (!ret)
    		return ret;
    
    	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
    				    parent_transid, atomic);
    	if (ret == -EAGAIN)
    		return ret;
    	return !ret;
    }
    
    int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
    {
    	return set_extent_buffer_uptodate(buf);
    }
    
    void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
    {
    	struct btrfs_root *root;
    	u64 transid = btrfs_header_generation(buf);
    	int was_dirty;
    
    #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
    	/*
    	 * This is a fast path so only do this check if we have sanity tests
    	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
    	 * outside of the sanity tests.
    	 */
    	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
    		return;
    #endif
    	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
    	btrfs_assert_tree_locked(buf);
    	if (transid != root->fs_info->generation)
    		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
    		       "found %llu running %llu\n",
    			buf->start, transid, root->fs_info->generation);
    	was_dirty = set_extent_buffer_dirty(buf);
    	if (!was_dirty)
    		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
    				     buf->len,
    				     root->fs_info->dirty_metadata_batch);
    }
    
    static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
    					int flush_delayed)
    {
    	/*
    	 * looks as though older kernels can get into trouble with
    	 * this code, they end up stuck in balance_dirty_pages forever
    	 */
    	int ret;
    
    	if (current->flags & PF_MEMALLOC)
    		return;
    
    	if (flush_delayed)
    		btrfs_balance_delayed_items(root);
    
    	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
    				     BTRFS_DIRTY_METADATA_THRESH);
    	if (ret > 0) {
    		balance_dirty_pages_ratelimited(
    				   root->fs_info->btree_inode->i_mapping);
    	}
    	return;
    }
    
    void btrfs_btree_balance_dirty(struct btrfs_root *root)
    {
    	__btrfs_btree_balance_dirty(root, 1);
    }
    
    void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
    {
    	__btrfs_btree_balance_dirty(root, 0);
    }
    
    int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
    {
    	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
    	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
    }
    
    static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
    			      int read_only)
    {
    	/*
    	 * Placeholder for checks
    	 */
    	return 0;
    }
    
    static void btrfs_error_commit_super(struct btrfs_root *root)
    {
    	mutex_lock(&root->fs_info->cleaner_mutex);
    	btrfs_run_delayed_iputs(root);
    	mutex_unlock(&root->fs_info->cleaner_mutex);
    
    	down_write(&root->fs_info->cleanup_work_sem);
    	up_write(&root->fs_info->cleanup_work_sem);
    
    	/* cleanup FS via transaction */
    	btrfs_cleanup_transaction(root);
    }
    
    static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
    					     struct btrfs_root *root)
    {
    	struct btrfs_inode *btrfs_inode;
    	struct list_head splice;
    
    	INIT_LIST_HEAD(&splice);
    
    	mutex_lock(&root->fs_info->ordered_operations_mutex);
    	spin_lock(&root->fs_info->ordered_root_lock);
    
    	list_splice_init(&t->ordered_operations, &splice);
    	while (!list_empty(&splice)) {
    		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
    					 ordered_operations);
    
    		list_del_init(&btrfs_inode->ordered_operations);
    		spin_unlock(&root->fs_info->ordered_root_lock);
    
    		btrfs_invalidate_inodes(btrfs_inode->root);
    
    		spin_lock(&root->fs_info->ordered_root_lock);
    	}
    
    	spin_unlock(&root->fs_info->ordered_root_lock);
    	mutex_unlock(&root->fs_info->ordered_operations_mutex);
    }
    
    static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
    {
    	struct btrfs_ordered_extent *ordered;
    
    	spin_lock(&root->ordered_extent_lock);
    	/*
    	 * This will just short circuit the ordered completion stuff which will
    	 * make sure the ordered extent gets properly cleaned up.
    	 */
    	list_for_each_entry(ordered, &root->ordered_extents,
    			    root_extent_list)
    		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
    	spin_unlock(&root->ordered_extent_lock);
    }
    
    static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *root;
    	struct list_head splice;
    
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&fs_info->ordered_root_lock);
    	list_splice_init(&fs_info->ordered_roots, &splice);
    	while (!list_empty(&splice)) {
    		root = list_first_entry(&splice, struct btrfs_root,
    					ordered_root);
    		list_move_tail(&root->ordered_root,
    			       &fs_info->ordered_roots);
    
    		spin_unlock(&fs_info->ordered_root_lock);
    		btrfs_destroy_ordered_extents(root);
    
    		cond_resched();
    		spin_lock(&fs_info->ordered_root_lock);
    	}
    	spin_unlock(&fs_info->ordered_root_lock);
    }
    
    static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
    				      struct btrfs_root *root)
    {
    	struct rb_node *node;
    	struct btrfs_delayed_ref_root *delayed_refs;
    	struct btrfs_delayed_ref_node *ref;
    	int ret = 0;
    
    	delayed_refs = &trans->delayed_refs;
    
    	spin_lock(&delayed_refs->lock);
    	if (atomic_read(&delayed_refs->num_entries) == 0) {
    		spin_unlock(&delayed_refs->lock);
    		btrfs_info(root->fs_info, "delayed_refs has NO entry");
    		return ret;
    	}
    
    	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
    		struct btrfs_delayed_ref_head *head;
    		bool pin_bytes = false;
    
    		head = rb_entry(node, struct btrfs_delayed_ref_head,
    				href_node);
    		if (!mutex_trylock(&head->mutex)) {
    			atomic_inc(&head->node.refs);
    			spin_unlock(&delayed_refs->lock);
    
    			mutex_lock(&head->mutex);
    			mutex_unlock(&head->mutex);
    			btrfs_put_delayed_ref(&head->node);
    			spin_lock(&delayed_refs->lock);
    			continue;
    		}
    		spin_lock(&head->lock);
    		while ((node = rb_first(&head->ref_root)) != NULL) {
    			ref = rb_entry(node, struct btrfs_delayed_ref_node,
    				       rb_node);
    			ref->in_tree = 0;
    			rb_erase(&ref->rb_node, &head->ref_root);
    			atomic_dec(&delayed_refs->num_entries);
    			btrfs_put_delayed_ref(ref);
    		}
    		if (head->must_insert_reserved)
    			pin_bytes = true;
    		btrfs_free_delayed_extent_op(head->extent_op);
    		delayed_refs->num_heads--;
    		if (head->processing == 0)
    			delayed_refs->num_heads_ready--;
    		atomic_dec(&delayed_refs->num_entries);
    		head->node.in_tree = 0;
    		rb_erase(&head->href_node, &delayed_refs->href_root);
    		spin_unlock(&head->lock);
    		spin_unlock(&delayed_refs->lock);
    		mutex_unlock(&head->mutex);
    
    		if (pin_bytes)
    			btrfs_pin_extent(root, head->node.bytenr,
    					 head->node.num_bytes, 1);
    		btrfs_put_delayed_ref(&head->node);
    		cond_resched();
    		spin_lock(&delayed_refs->lock);
    	}
    
    	spin_unlock(&delayed_refs->lock);
    
    	return ret;
    }
    
    static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
    {
    	struct btrfs_inode *btrfs_inode;
    	struct list_head splice;
    
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&root->delalloc_lock);
    	list_splice_init(&root->delalloc_inodes, &splice);
    
    	while (!list_empty(&splice)) {
    		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
    					       delalloc_inodes);
    
    		list_del_init(&btrfs_inode->delalloc_inodes);
    		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
    			  &btrfs_inode->runtime_flags);
    		spin_unlock(&root->delalloc_lock);
    
    		btrfs_invalidate_inodes(btrfs_inode->root);
    
    		spin_lock(&root->delalloc_lock);
    	}
    
    	spin_unlock(&root->delalloc_lock);
    }
    
    static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *root;
    	struct list_head splice;
    
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&fs_info->delalloc_root_lock);
    	list_splice_init(&fs_info->delalloc_roots, &splice);
    	while (!list_empty(&splice)) {
    		root = list_first_entry(&splice, struct btrfs_root,
    					 delalloc_root);
    		list_del_init(&root->delalloc_root);
    		root = btrfs_grab_fs_root(root);
    		BUG_ON(!root);
    		spin_unlock(&fs_info->delalloc_root_lock);
    
    		btrfs_destroy_delalloc_inodes(root);
    		btrfs_put_fs_root(root);
    
    		spin_lock(&fs_info->delalloc_root_lock);
    	}
    	spin_unlock(&fs_info->delalloc_root_lock);
    }
    
    static int btrfs_destroy_marked_extents(struct btrfs_root *root,
    					struct extent_io_tree *dirty_pages,
    					int mark)
    {
    	int ret;
    	struct extent_buffer *eb;
    	u64 start = 0;
    	u64 end;
    
    	while (1) {
    		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
    					    mark, NULL);
    		if (ret)
    			break;
    
    		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
    		while (start <= end) {
    			eb = btrfs_find_tree_block(root, start,
    						   root->leafsize);
    			start += root->leafsize;
    			if (!eb)
    				continue;
    			wait_on_extent_buffer_writeback(eb);
    
    			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
    					       &eb->bflags))
    				clear_extent_buffer_dirty(eb);
    			free_extent_buffer_stale(eb);
    		}
    	}
    
    	return ret;
    }
    
    static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
    				       struct extent_io_tree *pinned_extents)
    {
    	struct extent_io_tree *unpin;
    	u64 start;
    	u64 end;
    	int ret;
    	bool loop = true;
    
    	unpin = pinned_extents;
    again:
    	while (1) {
    		ret = find_first_extent_bit(unpin, 0, &start, &end,
    					    EXTENT_DIRTY, NULL);
    		if (ret)
    			break;
    
    		/* opt_discard */
    		if (btrfs_test_opt(root, DISCARD))
    			ret = btrfs_error_discard_extent(root, start,
    							 end + 1 - start,
    							 NULL);
    
    		clear_extent_dirty(unpin, start, end, GFP_NOFS);
    		btrfs_error_unpin_extent_range(root, start, end);
    		cond_resched();
    	}
    
    	if (loop) {
    		if (unpin == &root->fs_info->freed_extents[0])
    			unpin = &root->fs_info->freed_extents[1];
    		else
    			unpin = &root->fs_info->freed_extents[0];
    		loop = false;
    		goto again;
    	}
    
    	return 0;
    }
    
    void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
    				   struct btrfs_root *root)
    {
    	btrfs_destroy_ordered_operations(cur_trans, root);
    
    	btrfs_destroy_delayed_refs(cur_trans, root);
    
    	cur_trans->state = TRANS_STATE_COMMIT_START;
    	wake_up(&root->fs_info->transaction_blocked_wait);
    
    	cur_trans->state = TRANS_STATE_UNBLOCKED;
    	wake_up(&root->fs_info->transaction_wait);
    
    	btrfs_destroy_delayed_inodes(root);
    	btrfs_assert_delayed_root_empty(root);
    
    	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
    				     EXTENT_DIRTY);
    	btrfs_destroy_pinned_extent(root,
    				    root->fs_info->pinned_extents);
    
    	cur_trans->state =TRANS_STATE_COMPLETED;
    	wake_up(&cur_trans->commit_wait);
    
    	/*
    	memset(cur_trans, 0, sizeof(*cur_trans));
    	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
    	*/
    }
    
    static int btrfs_cleanup_transaction(struct btrfs_root *root)
    {
    	struct btrfs_transaction *t;
    
    	mutex_lock(&root->fs_info->transaction_kthread_mutex);
    
    	spin_lock(&root->fs_info->trans_lock);
    	while (!list_empty(&root->fs_info->trans_list)) {
    		t = list_first_entry(&root->fs_info->trans_list,
    				     struct btrfs_transaction, list);
    		if (t->state >= TRANS_STATE_COMMIT_START) {
    			atomic_inc(&t->use_count);
    			spin_unlock(&root->fs_info->trans_lock);
    			btrfs_wait_for_commit(root, t->transid);
    			btrfs_put_transaction(t);
    			spin_lock(&root->fs_info->trans_lock);
    			continue;
    		}
    		if (t == root->fs_info->running_transaction) {
    			t->state = TRANS_STATE_COMMIT_DOING;
    			spin_unlock(&root->fs_info->trans_lock);
    			/*
    			 * We wait for 0 num_writers since we don't hold a trans
    			 * handle open currently for this transaction.
    			 */
    			wait_event(t->writer_wait,
    				   atomic_read(&t->num_writers) == 0);
    		} else {
    			spin_unlock(&root->fs_info->trans_lock);
    		}
    		btrfs_cleanup_one_transaction(t, root);
    
    		spin_lock(&root->fs_info->trans_lock);
    		if (t == root->fs_info->running_transaction)
    			root->fs_info->running_transaction = NULL;
    		list_del_init(&t->list);
    		spin_unlock(&root->fs_info->trans_lock);
    
    		btrfs_put_transaction(t);
    		trace_btrfs_transaction_commit(root);
    		spin_lock(&root->fs_info->trans_lock);
    	}
    	spin_unlock(&root->fs_info->trans_lock);
    	btrfs_destroy_all_ordered_extents(root->fs_info);
    	btrfs_destroy_delayed_inodes(root);
    	btrfs_assert_delayed_root_empty(root);
    	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
    	btrfs_destroy_all_delalloc_inodes(root->fs_info);
    	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
    
    	return 0;
    }
    
    static struct extent_io_ops btree_extent_io_ops = {
    	.readpage_end_io_hook = btree_readpage_end_io_hook,
    	.readpage_io_failed_hook = btree_io_failed_hook,
    	.submit_bio_hook = btree_submit_bio_hook,
    	/* note we're sharing with inode.c for the merge bio hook */
    	.merge_bio_hook = btrfs_merge_bio_hook,
    };