Skip to content
Snippets Groups Projects
Select Git revision
  • ed98b56a6393c5e150fd5095b9eb7fd7d3cfb041
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

ordered-data.c

Blame
  • ordered-data.c 16.99 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/gfp.h>
    #include <linux/slab.h>
    #include <linux/blkdev.h>
    #include <linux/writeback.h>
    #include <linux/pagevec.h>
    #include "ctree.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "extent_io.h"
    
    
    static u64 entry_end(struct btrfs_ordered_extent *entry)
    {
    	if (entry->file_offset + entry->len < entry->file_offset)
    		return (u64)-1;
    	return entry->file_offset + entry->len;
    }
    
    static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
    				   struct rb_node *node)
    {
    	struct rb_node ** p = &root->rb_node;
    	struct rb_node * parent = NULL;
    	struct btrfs_ordered_extent *entry;
    
    	while(*p) {
    		parent = *p;
    		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
    
    		if (file_offset < entry->file_offset)
    			p = &(*p)->rb_left;
    		else if (file_offset >= entry_end(entry))
    			p = &(*p)->rb_right;
    		else
    			return parent;
    	}
    
    	rb_link_node(node, parent, p);
    	rb_insert_color(node, root);
    	return NULL;
    }
    
    static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
    				     struct rb_node **prev_ret)
    {
    	struct rb_node * n = root->rb_node;
    	struct rb_node *prev = NULL;
    	struct rb_node *test;
    	struct btrfs_ordered_extent *entry;
    	struct btrfs_ordered_extent *prev_entry = NULL;
    
    	while(n) {
    		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
    		prev = n;
    		prev_entry = entry;
    
    		if (file_offset < entry->file_offset)
    			n = n->rb_left;
    		else if (file_offset >= entry_end(entry))
    			n = n->rb_right;
    		else
    			return n;
    	}
    	if (!prev_ret)
    		return NULL;
    
    	while(prev && file_offset >= entry_end(prev_entry)) {
    		test = rb_next(prev);
    		if (!test)
    			break;
    		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
    				      rb_node);
    		if (file_offset < entry_end(prev_entry))
    			break;
    
    		prev = test;
    	}
    	if (prev)
    		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
    				      rb_node);
    	while(prev && file_offset < entry_end(prev_entry)) {
    		test = rb_prev(prev);
    		if (!test)
    			break;
    		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
    				      rb_node);
    		prev = test;
    	}
    	*prev_ret = prev;
    	return NULL;
    }
    
    static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
    {
    	if (file_offset < entry->file_offset ||
    	    entry->file_offset + entry->len <= file_offset)
    		return 0;
    	return 1;
    }
    
    static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
    					  u64 file_offset)
    {
    	struct rb_root *root = &tree->tree;
    	struct rb_node *prev;
    	struct rb_node *ret;
    	struct btrfs_ordered_extent *entry;
    
    	if (tree->last) {
    		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
    				 rb_node);
    		if (offset_in_entry(entry, file_offset))
    			return tree->last;
    	}
    	ret = __tree_search(root, file_offset, &prev);
    	if (!ret)
    		ret = prev;
    	if (ret)
    		tree->last = ret;
    	return ret;
    }
    
    /* allocate and add a new ordered_extent into the per-inode tree.
     * file_offset is the logical offset in the file
     *
     * start is the disk block number of an extent already reserved in the
     * extent allocation tree
     *
     * len is the length of the extent
     *
     * This also sets the EXTENT_ORDERED bit on the range in the inode.
     *
     * The tree is given a single reference on the ordered extent that was
     * inserted.
     */
    int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
    			     u64 start, u64 len)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	entry = kzalloc(sizeof(*entry), GFP_NOFS);
    	if (!entry)
    		return -ENOMEM;
    
    	mutex_lock(&tree->mutex);
    	entry->file_offset = file_offset;
    	entry->start = start;
    	entry->len = len;
    	/* one ref for the tree */
    	atomic_set(&entry->refs, 1);
    	init_waitqueue_head(&entry->wait);
    	INIT_LIST_HEAD(&entry->list);
    
    	node = tree_insert(&tree->tree, file_offset,
    			   &entry->rb_node);
    	if (node) {
    		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    		atomic_inc(&entry->refs);
    	}
    	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
    			   entry_end(entry) - 1, GFP_NOFS);
    
    	mutex_unlock(&tree->mutex);
    	BUG_ON(node);
    	return 0;
    }
    
    /*
     * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
     * when an ordered extent is finished.  If the list covers more than one
     * ordered extent, it is split across multiples.
     */
    int btrfs_add_ordered_sum(struct inode *inode,
    			  struct btrfs_ordered_extent *entry,
    			  struct btrfs_ordered_sum *sum)
    {
    	struct btrfs_ordered_inode_tree *tree;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	list_add_tail(&sum->list, &entry->list);
    	mutex_unlock(&tree->mutex);
    	return 0;
    }
    
    /*
     * this is used to account for finished IO across a given range
     * of the file.  The IO should not span ordered extents.  If
     * a given ordered_extent is completely done, 1 is returned, otherwise
     * 0.
     *
     * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
     * to make sure this function only returns 1 once for a given ordered extent.
     */
    int btrfs_dec_test_ordered_pending(struct inode *inode,
    				   u64 file_offset, u64 io_size)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	int ret;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
    			     GFP_NOFS);
    	node = tree_search(tree, file_offset);
    	if (!node) {
    		ret = 1;
    		goto out;
    	}
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	if (!offset_in_entry(entry, file_offset)) {
    		ret = 1;
    		goto out;
    	}
    
    	ret = test_range_bit(io_tree, entry->file_offset,
    			     entry->file_offset + entry->len - 1,
    			     EXTENT_ORDERED, 0);
    	if (ret == 0)
    		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
    out:
    	mutex_unlock(&tree->mutex);
    	return ret == 0;
    }
    
    /*
     * used to drop a reference on an ordered extent.  This will free
     * the extent if the last reference is dropped
     */
    int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
    {
    	struct list_head *cur;
    	struct btrfs_ordered_sum *sum;
    
    	if (atomic_dec_and_test(&entry->refs)) {
    		while(!list_empty(&entry->list)) {
    			cur = entry->list.next;
    			sum = list_entry(cur, struct btrfs_ordered_sum, list);
    			list_del(&sum->list);
    			kfree(sum);
    		}
    		kfree(entry);
    	}
    	return 0;
    }
    
    /*
     * remove an ordered extent from the tree.  No references are dropped
     * but, anyone waiting on this extent is woken up.
     */
    int btrfs_remove_ordered_extent(struct inode *inode,
    				struct btrfs_ordered_extent *entry)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = &entry->rb_node;
    	rb_erase(node, &tree->tree);
    	tree->last = NULL;
    	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
    	mutex_unlock(&tree->mutex);
    	wake_up(&entry->wait);
    	return 0;
    }
    
    /*
     * Used to start IO or wait for a given ordered extent to finish.
     *
     * If wait is one, this effectively waits on page writeback for all the pages
     * in the extent, and it waits on the io completion code to insert
     * metadata into the btree corresponding to the extent
     */
    void btrfs_start_ordered_extent(struct inode *inode,
    				       struct btrfs_ordered_extent *entry,
    				       int wait)
    {
    	u64 start = entry->file_offset;
    	u64 end = start + entry->len - 1;
    
    	/*
    	 * pages in the range can be dirty, clean or writeback.  We
    	 * start IO on any dirty ones so the wait doesn't stall waiting
    	 * for pdflush to find them
    	 */
    	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
    	if (wait)
    		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
    						 &entry->flags));
    }
    
    /*
     * Used to wait on ordered extents across a large range of bytes.
     */
    void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
    {
    	u64 end;
    	u64 orig_end;
    	u64 wait_end;
    	struct btrfs_ordered_extent *ordered;
    
    	if (start + len < start) {
    		orig_end = INT_LIMIT(loff_t);
    	} else {
    		orig_end = start + len - 1;
    		if (orig_end > INT_LIMIT(loff_t))
    			orig_end = INT_LIMIT(loff_t);
    	}
    	wait_end = orig_end;
    again:
    	/* start IO across the range first to instantiate any delalloc
    	 * extents
    	 */
    	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
    
    	btrfs_wait_on_page_writeback_range(inode->i_mapping,
    					   start >> PAGE_CACHE_SHIFT,
    					   orig_end >> PAGE_CACHE_SHIFT);
    
    	end = orig_end;
    	while(1) {
    		ordered = btrfs_lookup_first_ordered_extent(inode, end);
    		if (!ordered) {
    			break;
    		}
    		if (ordered->file_offset > orig_end) {
    			btrfs_put_ordered_extent(ordered);
    			break;
    		}
    		if (ordered->file_offset + ordered->len < start) {
    			btrfs_put_ordered_extent(ordered);
    			break;
    		}
    		btrfs_start_ordered_extent(inode, ordered, 1);
    		end = ordered->file_offset;
    		btrfs_put_ordered_extent(ordered);
    		if (end == 0 || end == start)
    			break;
    		end--;
    	}
    	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
    			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
    		printk("inode %lu still ordered or delalloc after wait "
    		       "%llu %llu\n", inode->i_ino,
    		       (unsigned long long)start,
    		       (unsigned long long)orig_end);
    		goto again;
    	}
    }
    
    /*
     * find an ordered extent corresponding to file_offset.  return NULL if
     * nothing is found, otherwise take a reference on the extent and return it
     */
    struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
    							 u64 file_offset)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry = NULL;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = tree_search(tree, file_offset);
    	if (!node)
    		goto out;
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	if (!offset_in_entry(entry, file_offset))
    		entry = NULL;
    	if (entry)
    		atomic_inc(&entry->refs);
    out:
    	mutex_unlock(&tree->mutex);
    	return entry;
    }
    
    /*
     * lookup and return any extent before 'file_offset'.  NULL is returned
     * if none is found
     */
    struct btrfs_ordered_extent *
    btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry = NULL;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = tree_search(tree, file_offset);
    	if (!node)
    		goto out;
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	atomic_inc(&entry->refs);
    out:
    	mutex_unlock(&tree->mutex);
    	return entry;
    }
    
    /*
     * After an extent is done, call this to conditionally update the on disk
     * i_size.  i_size is updated to cover any fully written part of the file.
     */
    int btrfs_ordered_update_i_size(struct inode *inode,
    				struct btrfs_ordered_extent *ordered)
    {
    	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	u64 disk_i_size;
    	u64 new_i_size;
    	u64 i_size_test;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *test;
    
    	mutex_lock(&tree->mutex);
    	disk_i_size = BTRFS_I(inode)->disk_i_size;
    
    	/*
    	 * if the disk i_size is already at the inode->i_size, or
    	 * this ordered extent is inside the disk i_size, we're done
    	 */
    	if (disk_i_size >= inode->i_size ||
    	    ordered->file_offset + ordered->len <= disk_i_size) {
    		goto out;
    	}
    
    	/*
    	 * we can't update the disk_isize if there are delalloc bytes
    	 * between disk_i_size and  this ordered extent
    	 */
    	if (test_range_bit(io_tree, disk_i_size,
    			   ordered->file_offset + ordered->len - 1,
    			   EXTENT_DELALLOC, 0)) {
    		goto out;
    	}
    	/*
    	 * walk backward from this ordered extent to disk_i_size.
    	 * if we find an ordered extent then we can't update disk i_size
    	 * yet
    	 */
    	node = &ordered->rb_node;
    	while(1) {
    		node = rb_prev(node);
    		if (!node)
    			break;
    		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    		if (test->file_offset + test->len <= disk_i_size)
    			break;
    		if (test->file_offset >= inode->i_size)
    			break;
    		if (test->file_offset >= disk_i_size)
    			goto out;
    	}
    	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
    
    	/*
    	 * at this point, we know we can safely update i_size to at least
    	 * the offset from this ordered extent.  But, we need to
    	 * walk forward and see if ios from higher up in the file have
    	 * finished.
    	 */
    	node = rb_next(&ordered->rb_node);
    	i_size_test = 0;
    	if (node) {
    		/*
    		 * do we have an area where IO might have finished
    		 * between our ordered extent and the next one.
    		 */
    		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    		if (test->file_offset > entry_end(ordered)) {
    			i_size_test = test->file_offset - 1;
    		}
    	} else {
    		i_size_test = i_size_read(inode);
    	}
    
    	/*
    	 * i_size_test is the end of a region after this ordered
    	 * extent where there are no ordered extents.  As long as there
    	 * are no delalloc bytes in this area, it is safe to update
    	 * disk_i_size to the end of the region.
    	 */
    	if (i_size_test > entry_end(ordered) &&
    	    !test_range_bit(io_tree, entry_end(ordered), i_size_test,
    			   EXTENT_DELALLOC, 0)) {
    		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
    	}
    	BTRFS_I(inode)->disk_i_size = new_i_size;
    out:
    	mutex_unlock(&tree->mutex);
    	return 0;
    }
    
    /*
     * search the ordered extents for one corresponding to 'offset' and
     * try to find a checksum.  This is used because we allow pages to
     * be reclaimed before their checksum is actually put into the btree
     */
    int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
    {
    	struct btrfs_ordered_sum *ordered_sum;
    	struct btrfs_sector_sum *sector_sums;
    	struct btrfs_ordered_extent *ordered;
    	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
    	struct list_head *cur;
    	unsigned long num_sectors;
    	unsigned long i;
    	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
    	int ret = 1;
    
    	ordered = btrfs_lookup_ordered_extent(inode, offset);
    	if (!ordered)
    		return 1;
    
    	mutex_lock(&tree->mutex);
    	list_for_each_prev(cur, &ordered->list) {
    		ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
    		if (offset >= ordered_sum->file_offset) {
    			num_sectors = ordered_sum->len / sectorsize;
    			sector_sums = ordered_sum->sums;
    			for (i = 0; i < num_sectors; i++) {
    				if (sector_sums[i].offset == offset) {
    					*sum = sector_sums[i].sum;
    					ret = 0;
    					goto out;
    				}
    			}
    		}
    	}
    out:
    	mutex_unlock(&tree->mutex);
    	return ret;
    }
    
    
    /**
     * taken from mm/filemap.c because it isn't exported
     *
     * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
     * @mapping:	address space structure to write
     * @start:	offset in bytes where the range starts
     * @end:	offset in bytes where the range ends (inclusive)
     * @sync_mode:	enable synchronous operation
     *
     * Start writeback against all of a mapping's dirty pages that lie
     * within the byte offsets <start, end> inclusive.
     *
     * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
     * opposed to a regular memory cleansing writeback.  The difference between
     * these two operations is that if a dirty page/buffer is encountered, it must
     * be waited upon, and not just skipped over.
     */
    int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
    			   loff_t end, int sync_mode)
    {
    	struct writeback_control wbc = {
    		.sync_mode = sync_mode,
    		.nr_to_write = mapping->nrpages * 2,
    		.range_start = start,
    		.range_end = end,
    		.for_writepages = 1,
    	};
    	return btrfs_writepages(mapping, &wbc);
    }
    
    /**
     * taken from mm/filemap.c because it isn't exported
     *
     * wait_on_page_writeback_range - wait for writeback to complete
     * @mapping:	target address_space
     * @start:	beginning page index
     * @end:	ending page index
     *
     * Wait for writeback to complete against pages indexed by start->end
     * inclusive
     */
    int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
    				       pgoff_t start, pgoff_t end)
    {
    	struct pagevec pvec;
    	int nr_pages;
    	int ret = 0;
    	pgoff_t index;
    
    	if (end < start)
    		return 0;
    
    	pagevec_init(&pvec, 0);
    	index = start;
    	while ((index <= end) &&
    			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
    			PAGECACHE_TAG_WRITEBACK,
    			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
    		unsigned i;
    
    		for (i = 0; i < nr_pages; i++) {
    			struct page *page = pvec.pages[i];
    
    			/* until radix tree lookup accepts end_index */
    			if (page->index > end)
    				continue;
    
    			wait_on_page_writeback(page);
    			if (PageError(page))
    				ret = -EIO;
    		}
    		pagevec_release(&pvec);
    		cond_resched();
    	}
    
    	/* Check for outstanding write errors */
    	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
    		ret = -ENOSPC;
    	if (test_and_clear_bit(AS_EIO, &mapping->flags))
    		ret = -EIO;
    
    	return ret;
    }