Skip to content
Snippets Groups Projects
Select Git revision
  • ede1bf0dcff2b07001c760992b1ca18fd0f419bc
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

namespace.c

Blame
  • namespace.c 79.55 KiB
    /*
     *  linux/fs/namespace.c
     *
     * (C) Copyright Al Viro 2000, 2001
     *	Released under GPL v2.
     *
     * Based on code from fs/super.c, copyright Linus Torvalds and others.
     * Heavily rewritten.
     */
    
    #include <linux/syscalls.h>
    #include <linux/export.h>
    #include <linux/capability.h>
    #include <linux/mnt_namespace.h>
    #include <linux/user_namespace.h>
    #include <linux/namei.h>
    #include <linux/security.h>
    #include <linux/idr.h>
    #include <linux/init.h>		/* init_rootfs */
    #include <linux/fs_struct.h>	/* get_fs_root et.al. */
    #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
    #include <linux/uaccess.h>
    #include <linux/proc_ns.h>
    #include <linux/magic.h>
    #include <linux/bootmem.h>
    #include <linux/task_work.h>
    #include "pnode.h"
    #include "internal.h"
    
    static unsigned int m_hash_mask __read_mostly;
    static unsigned int m_hash_shift __read_mostly;
    static unsigned int mp_hash_mask __read_mostly;
    static unsigned int mp_hash_shift __read_mostly;
    
    static __initdata unsigned long mhash_entries;
    static int __init set_mhash_entries(char *str)
    {
    	if (!str)
    		return 0;
    	mhash_entries = simple_strtoul(str, &str, 0);
    	return 1;
    }
    __setup("mhash_entries=", set_mhash_entries);
    
    static __initdata unsigned long mphash_entries;
    static int __init set_mphash_entries(char *str)
    {
    	if (!str)
    		return 0;
    	mphash_entries = simple_strtoul(str, &str, 0);
    	return 1;
    }
    __setup("mphash_entries=", set_mphash_entries);
    
    static u64 event;
    static DEFINE_IDA(mnt_id_ida);
    static DEFINE_IDA(mnt_group_ida);
    static DEFINE_SPINLOCK(mnt_id_lock);
    static int mnt_id_start = 0;
    static int mnt_group_start = 1;
    
    static struct hlist_head *mount_hashtable __read_mostly;
    static struct hlist_head *mountpoint_hashtable __read_mostly;
    static struct kmem_cache *mnt_cache __read_mostly;
    static DECLARE_RWSEM(namespace_sem);
    
    /* /sys/fs */
    struct kobject *fs_kobj;
    EXPORT_SYMBOL_GPL(fs_kobj);
    
    /*
     * vfsmount lock may be taken for read to prevent changes to the
     * vfsmount hash, ie. during mountpoint lookups or walking back
     * up the tree.
     *
     * It should be taken for write in all cases where the vfsmount
     * tree or hash is modified or when a vfsmount structure is modified.
     */
    __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
    
    static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
    {
    	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
    	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
    	tmp = tmp + (tmp >> m_hash_shift);
    	return &mount_hashtable[tmp & m_hash_mask];
    }
    
    static inline struct hlist_head *mp_hash(struct dentry *dentry)
    {
    	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
    	tmp = tmp + (tmp >> mp_hash_shift);
    	return &mountpoint_hashtable[tmp & mp_hash_mask];
    }
    
    /*
     * allocation is serialized by namespace_sem, but we need the spinlock to
     * serialize with freeing.
     */
    static int mnt_alloc_id(struct mount *mnt)
    {
    	int res;
    
    retry:
    	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
    	spin_lock(&mnt_id_lock);
    	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
    	if (!res)
    		mnt_id_start = mnt->mnt_id + 1;
    	spin_unlock(&mnt_id_lock);
    	if (res == -EAGAIN)
    		goto retry;
    
    	return res;
    }
    
    static void mnt_free_id(struct mount *mnt)
    {
    	int id = mnt->mnt_id;
    	spin_lock(&mnt_id_lock);
    	ida_remove(&mnt_id_ida, id);
    	if (mnt_id_start > id)
    		mnt_id_start = id;
    	spin_unlock(&mnt_id_lock);
    }
    
    /*
     * Allocate a new peer group ID
     *
     * mnt_group_ida is protected by namespace_sem
     */
    static int mnt_alloc_group_id(struct mount *mnt)
    {
    	int res;
    
    	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
    		return -ENOMEM;
    
    	res = ida_get_new_above(&mnt_group_ida,
    				mnt_group_start,
    				&mnt->mnt_group_id);
    	if (!res)
    		mnt_group_start = mnt->mnt_group_id + 1;
    
    	return res;
    }
    
    /*
     * Release a peer group ID
     */
    void mnt_release_group_id(struct mount *mnt)
    {
    	int id = mnt->mnt_group_id;
    	ida_remove(&mnt_group_ida, id);
    	if (mnt_group_start > id)
    		mnt_group_start = id;
    	mnt->mnt_group_id = 0;
    }
    
    /*
     * vfsmount lock must be held for read
     */
    static inline void mnt_add_count(struct mount *mnt, int n)
    {
    #ifdef CONFIG_SMP
    	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
    #else
    	preempt_disable();
    	mnt->mnt_count += n;
    	preempt_enable();
    #endif
    }
    
    /*
     * vfsmount lock must be held for write
     */
    unsigned int mnt_get_count(struct mount *mnt)
    {
    #ifdef CONFIG_SMP
    	unsigned int count = 0;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
    	}
    
    	return count;
    #else
    	return mnt->mnt_count;
    #endif
    }
    
    static void drop_mountpoint(struct fs_pin *p)
    {
    	struct mount *m = container_of(p, struct mount, mnt_umount);
    	dput(m->mnt_ex_mountpoint);
    	pin_remove(p);
    	mntput(&m->mnt);
    }
    
    static struct mount *alloc_vfsmnt(const char *name)
    {
    	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
    	if (mnt) {
    		int err;
    
    		err = mnt_alloc_id(mnt);
    		if (err)
    			goto out_free_cache;
    
    		if (name) {
    			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
    			if (!mnt->mnt_devname)
    				goto out_free_id;
    		}
    
    #ifdef CONFIG_SMP
    		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
    		if (!mnt->mnt_pcp)
    			goto out_free_devname;
    
    		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
    #else
    		mnt->mnt_count = 1;
    		mnt->mnt_writers = 0;
    #endif
    
    		INIT_HLIST_NODE(&mnt->mnt_hash);
    		INIT_LIST_HEAD(&mnt->mnt_child);
    		INIT_LIST_HEAD(&mnt->mnt_mounts);
    		INIT_LIST_HEAD(&mnt->mnt_list);
    		INIT_LIST_HEAD(&mnt->mnt_expire);
    		INIT_LIST_HEAD(&mnt->mnt_share);
    		INIT_LIST_HEAD(&mnt->mnt_slave_list);
    		INIT_LIST_HEAD(&mnt->mnt_slave);
    		INIT_HLIST_NODE(&mnt->mnt_mp_list);
    #ifdef CONFIG_FSNOTIFY
    		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
    #endif
    		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
    	}
    	return mnt;
    
    #ifdef CONFIG_SMP
    out_free_devname:
    	kfree_const(mnt->mnt_devname);
    #endif
    out_free_id:
    	mnt_free_id(mnt);
    out_free_cache:
    	kmem_cache_free(mnt_cache, mnt);
    	return NULL;
    }
    
    /*
     * Most r/o checks on a fs are for operations that take
     * discrete amounts of time, like a write() or unlink().
     * We must keep track of when those operations start
     * (for permission checks) and when they end, so that
     * we can determine when writes are able to occur to
     * a filesystem.
     */
    /*
     * __mnt_is_readonly: check whether a mount is read-only
     * @mnt: the mount to check for its write status
     *
     * This shouldn't be used directly ouside of the VFS.
     * It does not guarantee that the filesystem will stay
     * r/w, just that it is right *now*.  This can not and
     * should not be used in place of IS_RDONLY(inode).
     * mnt_want/drop_write() will _keep_ the filesystem
     * r/w.
     */
    int __mnt_is_readonly(struct vfsmount *mnt)
    {
    	if (mnt->mnt_flags & MNT_READONLY)
    		return 1;
    	if (mnt->mnt_sb->s_flags & MS_RDONLY)
    		return 1;
    	return 0;
    }
    EXPORT_SYMBOL_GPL(__mnt_is_readonly);
    
    static inline void mnt_inc_writers(struct mount *mnt)
    {
    #ifdef CONFIG_SMP
    	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
    #else
    	mnt->mnt_writers++;
    #endif
    }
    
    static inline void mnt_dec_writers(struct mount *mnt)
    {
    #ifdef CONFIG_SMP
    	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
    #else
    	mnt->mnt_writers--;
    #endif
    }
    
    static unsigned int mnt_get_writers(struct mount *mnt)
    {
    #ifdef CONFIG_SMP
    	unsigned int count = 0;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
    	}
    
    	return count;
    #else
    	return mnt->mnt_writers;
    #endif
    }
    
    static int mnt_is_readonly(struct vfsmount *mnt)
    {
    	if (mnt->mnt_sb->s_readonly_remount)
    		return 1;
    	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
    	smp_rmb();
    	return __mnt_is_readonly(mnt);
    }
    
    /*
     * Most r/o & frozen checks on a fs are for operations that take discrete
     * amounts of time, like a write() or unlink().  We must keep track of when
     * those operations start (for permission checks) and when they end, so that we
     * can determine when writes are able to occur to a filesystem.
     */
    /**
     * __mnt_want_write - get write access to a mount without freeze protection
     * @m: the mount on which to take a write
     *
     * This tells the low-level filesystem that a write is about to be performed to
     * it, and makes sure that writes are allowed (mnt it read-write) before
     * returning success. This operation does not protect against filesystem being
     * frozen. When the write operation is finished, __mnt_drop_write() must be
     * called. This is effectively a refcount.
     */
    int __mnt_want_write(struct vfsmount *m)
    {
    	struct mount *mnt = real_mount(m);
    	int ret = 0;
    
    	preempt_disable();
    	mnt_inc_writers(mnt);
    	/*
    	 * The store to mnt_inc_writers must be visible before we pass
    	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
    	 * incremented count after it has set MNT_WRITE_HOLD.
    	 */
    	smp_mb();
    	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
    		cpu_relax();
    	/*
    	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
    	 * be set to match its requirements. So we must not load that until
    	 * MNT_WRITE_HOLD is cleared.
    	 */
    	smp_rmb();
    	if (mnt_is_readonly(m)) {
    		mnt_dec_writers(mnt);
    		ret = -EROFS;
    	}
    	preempt_enable();
    
    	return ret;
    }
    
    /**
     * mnt_want_write - get write access to a mount
     * @m: the mount on which to take a write
     *
     * This tells the low-level filesystem that a write is about to be performed to
     * it, and makes sure that writes are allowed (mount is read-write, filesystem
     * is not frozen) before returning success.  When the write operation is
     * finished, mnt_drop_write() must be called.  This is effectively a refcount.
     */
    int mnt_want_write(struct vfsmount *m)
    {
    	int ret;
    
    	sb_start_write(m->mnt_sb);
    	ret = __mnt_want_write(m);
    	if (ret)
    		sb_end_write(m->mnt_sb);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(mnt_want_write);
    
    /**
     * mnt_clone_write - get write access to a mount
     * @mnt: the mount on which to take a write
     *
     * This is effectively like mnt_want_write, except
     * it must only be used to take an extra write reference
     * on a mountpoint that we already know has a write reference
     * on it. This allows some optimisation.
     *
     * After finished, mnt_drop_write must be called as usual to
     * drop the reference.
     */
    int mnt_clone_write(struct vfsmount *mnt)
    {
    	/* superblock may be r/o */
    	if (__mnt_is_readonly(mnt))
    		return -EROFS;
    	preempt_disable();
    	mnt_inc_writers(real_mount(mnt));
    	preempt_enable();
    	return 0;
    }
    EXPORT_SYMBOL_GPL(mnt_clone_write);
    
    /**
     * __mnt_want_write_file - get write access to a file's mount
     * @file: the file who's mount on which to take a write
     *
     * This is like __mnt_want_write, but it takes a file and can
     * do some optimisations if the file is open for write already
     */
    int __mnt_want_write_file(struct file *file)
    {
    	if (!(file->f_mode & FMODE_WRITER))
    		return __mnt_want_write(file->f_path.mnt);
    	else
    		return mnt_clone_write(file->f_path.mnt);
    }
    
    /**
     * mnt_want_write_file - get write access to a file's mount
     * @file: the file who's mount on which to take a write
     *
     * This is like mnt_want_write, but it takes a file and can
     * do some optimisations if the file is open for write already
     */
    int mnt_want_write_file(struct file *file)
    {
    	int ret;
    
    	sb_start_write(file->f_path.mnt->mnt_sb);
    	ret = __mnt_want_write_file(file);
    	if (ret)
    		sb_end_write(file->f_path.mnt->mnt_sb);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(mnt_want_write_file);
    
    /**
     * __mnt_drop_write - give up write access to a mount
     * @mnt: the mount on which to give up write access
     *
     * Tells the low-level filesystem that we are done
     * performing writes to it.  Must be matched with
     * __mnt_want_write() call above.
     */
    void __mnt_drop_write(struct vfsmount *mnt)
    {
    	preempt_disable();
    	mnt_dec_writers(real_mount(mnt));
    	preempt_enable();
    }
    
    /**
     * mnt_drop_write - give up write access to a mount
     * @mnt: the mount on which to give up write access
     *
     * Tells the low-level filesystem that we are done performing writes to it and
     * also allows filesystem to be frozen again.  Must be matched with
     * mnt_want_write() call above.
     */
    void mnt_drop_write(struct vfsmount *mnt)
    {
    	__mnt_drop_write(mnt);
    	sb_end_write(mnt->mnt_sb);
    }
    EXPORT_SYMBOL_GPL(mnt_drop_write);
    
    void __mnt_drop_write_file(struct file *file)
    {
    	__mnt_drop_write(file->f_path.mnt);
    }
    
    void mnt_drop_write_file(struct file *file)
    {
    	mnt_drop_write(file->f_path.mnt);
    }
    EXPORT_SYMBOL(mnt_drop_write_file);
    
    static int mnt_make_readonly(struct mount *mnt)
    {
    	int ret = 0;
    
    	lock_mount_hash();
    	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
    	/*
    	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
    	 * should be visible before we do.
    	 */
    	smp_mb();
    
    	/*
    	 * With writers on hold, if this value is zero, then there are
    	 * definitely no active writers (although held writers may subsequently
    	 * increment the count, they'll have to wait, and decrement it after
    	 * seeing MNT_READONLY).
    	 *
    	 * It is OK to have counter incremented on one CPU and decremented on
    	 * another: the sum will add up correctly. The danger would be when we
    	 * sum up each counter, if we read a counter before it is incremented,
    	 * but then read another CPU's count which it has been subsequently
    	 * decremented from -- we would see more decrements than we should.
    	 * MNT_WRITE_HOLD protects against this scenario, because
    	 * mnt_want_write first increments count, then smp_mb, then spins on
    	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
    	 * we're counting up here.
    	 */
    	if (mnt_get_writers(mnt) > 0)
    		ret = -EBUSY;
    	else
    		mnt->mnt.mnt_flags |= MNT_READONLY;
    	/*
    	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
    	 * that become unheld will see MNT_READONLY.
    	 */
    	smp_wmb();
    	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
    	unlock_mount_hash();
    	return ret;
    }
    
    static void __mnt_unmake_readonly(struct mount *mnt)
    {
    	lock_mount_hash();
    	mnt->mnt.mnt_flags &= ~MNT_READONLY;
    	unlock_mount_hash();
    }
    
    int sb_prepare_remount_readonly(struct super_block *sb)
    {
    	struct mount *mnt;
    	int err = 0;
    
    	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
    	if (atomic_long_read(&sb->s_remove_count))
    		return -EBUSY;
    
    	lock_mount_hash();
    	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
    		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
    			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
    			smp_mb();
    			if (mnt_get_writers(mnt) > 0) {
    				err = -EBUSY;
    				break;
    			}
    		}
    	}
    	if (!err && atomic_long_read(&sb->s_remove_count))
    		err = -EBUSY;
    
    	if (!err) {
    		sb->s_readonly_remount = 1;
    		smp_wmb();
    	}
    	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
    		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
    			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
    	}
    	unlock_mount_hash();
    
    	return err;
    }
    
    static void free_vfsmnt(struct mount *mnt)
    {
    	kfree_const(mnt->mnt_devname);
    #ifdef CONFIG_SMP
    	free_percpu(mnt->mnt_pcp);
    #endif
    	kmem_cache_free(mnt_cache, mnt);
    }
    
    static void delayed_free_vfsmnt(struct rcu_head *head)
    {
    	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
    }
    
    /* call under rcu_read_lock */
    int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
    {
    	struct mount *mnt;
    	if (read_seqretry(&mount_lock, seq))
    		return 1;
    	if (bastard == NULL)
    		return 0;
    	mnt = real_mount(bastard);
    	mnt_add_count(mnt, 1);
    	if (likely(!read_seqretry(&mount_lock, seq)))
    		return 0;
    	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
    		mnt_add_count(mnt, -1);
    		return 1;
    	}
    	return -1;
    }
    
    /* call under rcu_read_lock */
    bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
    {
    	int res = __legitimize_mnt(bastard, seq);
    	if (likely(!res))
    		return true;
    	if (unlikely(res < 0)) {
    		rcu_read_unlock();
    		mntput(bastard);
    		rcu_read_lock();
    	}
    	return false;
    }
    
    /*
     * find the first mount at @dentry on vfsmount @mnt.
     * call under rcu_read_lock()
     */
    struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
    {
    	struct hlist_head *head = m_hash(mnt, dentry);
    	struct mount *p;
    
    	hlist_for_each_entry_rcu(p, head, mnt_hash)
    		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
    			return p;
    	return NULL;
    }
    
    /*
     * find the last mount at @dentry on vfsmount @mnt.
     * mount_lock must be held.
     */
    struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
    {
    	struct mount *p, *res = NULL;
    	p = __lookup_mnt(mnt, dentry);
    	if (!p)
    		goto out;
    	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
    		res = p;
    	hlist_for_each_entry_continue(p, mnt_hash) {
    		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
    			break;
    		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
    			res = p;
    	}
    out:
    	return res;
    }
    
    /*
     * lookup_mnt - Return the first child mount mounted at path
     *
     * "First" means first mounted chronologically.  If you create the
     * following mounts:
     *
     * mount /dev/sda1 /mnt
     * mount /dev/sda2 /mnt
     * mount /dev/sda3 /mnt
     *
     * Then lookup_mnt() on the base /mnt dentry in the root mount will
     * return successively the root dentry and vfsmount of /dev/sda1, then
     * /dev/sda2, then /dev/sda3, then NULL.
     *
     * lookup_mnt takes a reference to the found vfsmount.
     */
    struct vfsmount *lookup_mnt(struct path *path)
    {
    	struct mount *child_mnt;
    	struct vfsmount *m;
    	unsigned seq;
    
    	rcu_read_lock();
    	do {
    		seq = read_seqbegin(&mount_lock);
    		child_mnt = __lookup_mnt(path->mnt, path->dentry);
    		m = child_mnt ? &child_mnt->mnt : NULL;
    	} while (!legitimize_mnt(m, seq));
    	rcu_read_unlock();
    	return m;
    }
    
    /*
     * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
     *                         current mount namespace.
     *
     * The common case is dentries are not mountpoints at all and that
     * test is handled inline.  For the slow case when we are actually
     * dealing with a mountpoint of some kind, walk through all of the
     * mounts in the current mount namespace and test to see if the dentry
     * is a mountpoint.
     *
     * The mount_hashtable is not usable in the context because we
     * need to identify all mounts that may be in the current mount
     * namespace not just a mount that happens to have some specified
     * parent mount.
     */
    bool __is_local_mountpoint(struct dentry *dentry)
    {
    	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
    	struct mount *mnt;
    	bool is_covered = false;
    
    	if (!d_mountpoint(dentry))
    		goto out;
    
    	down_read(&namespace_sem);
    	list_for_each_entry(mnt, &ns->list, mnt_list) {
    		is_covered = (mnt->mnt_mountpoint == dentry);
    		if (is_covered)
    			break;
    	}
    	up_read(&namespace_sem);
    out:
    	return is_covered;
    }
    
    static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
    {
    	struct hlist_head *chain = mp_hash(dentry);
    	struct mountpoint *mp;
    
    	hlist_for_each_entry(mp, chain, m_hash) {
    		if (mp->m_dentry == dentry) {
    			/* might be worth a WARN_ON() */
    			if (d_unlinked(dentry))
    				return ERR_PTR(-ENOENT);
    			mp->m_count++;
    			return mp;
    		}
    	}
    	return NULL;
    }
    
    static struct mountpoint *new_mountpoint(struct dentry *dentry)
    {
    	struct hlist_head *chain = mp_hash(dentry);
    	struct mountpoint *mp;
    	int ret;
    
    	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
    	if (!mp)
    		return ERR_PTR(-ENOMEM);
    
    	ret = d_set_mounted(dentry);
    	if (ret) {
    		kfree(mp);
    		return ERR_PTR(ret);
    	}
    
    	mp->m_dentry = dentry;
    	mp->m_count = 1;
    	hlist_add_head(&mp->m_hash, chain);
    	INIT_HLIST_HEAD(&mp->m_list);
    	return mp;
    }
    
    static void put_mountpoint(struct mountpoint *mp)
    {
    	if (!--mp->m_count) {
    		struct dentry *dentry = mp->m_dentry;
    		BUG_ON(!hlist_empty(&mp->m_list));
    		spin_lock(&dentry->d_lock);
    		dentry->d_flags &= ~DCACHE_MOUNTED;
    		spin_unlock(&dentry->d_lock);
    		hlist_del(&mp->m_hash);
    		kfree(mp);
    	}
    }
    
    static inline int check_mnt(struct mount *mnt)
    {
    	return mnt->mnt_ns == current->nsproxy->mnt_ns;
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void touch_mnt_namespace(struct mnt_namespace *ns)
    {
    	if (ns) {
    		ns->event = ++event;
    		wake_up_interruptible(&ns->poll);
    	}
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void __touch_mnt_namespace(struct mnt_namespace *ns)
    {
    	if (ns && ns->event != event) {
    		ns->event = event;
    		wake_up_interruptible(&ns->poll);
    	}
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void unhash_mnt(struct mount *mnt)
    {
    	mnt->mnt_parent = mnt;
    	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
    	list_del_init(&mnt->mnt_child);
    	hlist_del_init_rcu(&mnt->mnt_hash);
    	hlist_del_init(&mnt->mnt_mp_list);
    	put_mountpoint(mnt->mnt_mp);
    	mnt->mnt_mp = NULL;
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void detach_mnt(struct mount *mnt, struct path *old_path)
    {
    	old_path->dentry = mnt->mnt_mountpoint;
    	old_path->mnt = &mnt->mnt_parent->mnt;
    	unhash_mnt(mnt);
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void umount_mnt(struct mount *mnt)
    {
    	/* old mountpoint will be dropped when we can do that */
    	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
    	unhash_mnt(mnt);
    }
    
    /*
     * vfsmount lock must be held for write
     */
    void mnt_set_mountpoint(struct mount *mnt,
    			struct mountpoint *mp,
    			struct mount *child_mnt)
    {
    	mp->m_count++;
    	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
    	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
    	child_mnt->mnt_parent = mnt;
    	child_mnt->mnt_mp = mp;
    	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void attach_mnt(struct mount *mnt,
    			struct mount *parent,
    			struct mountpoint *mp)
    {
    	mnt_set_mountpoint(parent, mp, mnt);
    	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
    	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
    }
    
    static void attach_shadowed(struct mount *mnt,
    			struct mount *parent,
    			struct mount *shadows)
    {
    	if (shadows) {
    		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
    		list_add(&mnt->mnt_child, &shadows->mnt_child);
    	} else {
    		hlist_add_head_rcu(&mnt->mnt_hash,
    				m_hash(&parent->mnt, mnt->mnt_mountpoint));
    		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
    	}
    }
    
    /*
     * vfsmount lock must be held for write
     */
    static void commit_tree(struct mount *mnt, struct mount *shadows)
    {
    	struct mount *parent = mnt->mnt_parent;
    	struct mount *m;
    	LIST_HEAD(head);
    	struct mnt_namespace *n = parent->mnt_ns;
    
    	BUG_ON(parent == mnt);
    
    	list_add_tail(&head, &mnt->mnt_list);
    	list_for_each_entry(m, &head, mnt_list)
    		m->mnt_ns = n;
    
    	list_splice(&head, n->list.prev);
    
    	attach_shadowed(mnt, parent, shadows);
    	touch_mnt_namespace(n);
    }
    
    static struct mount *next_mnt(struct mount *p, struct mount *root)
    {
    	struct list_head *next = p->mnt_mounts.next;
    	if (next == &p->mnt_mounts) {
    		while (1) {
    			if (p == root)
    				return NULL;
    			next = p->mnt_child.next;
    			if (next != &p->mnt_parent->mnt_mounts)
    				break;
    			p = p->mnt_parent;
    		}
    	}
    	return list_entry(next, struct mount, mnt_child);
    }
    
    static struct mount *skip_mnt_tree(struct mount *p)
    {
    	struct list_head *prev = p->mnt_mounts.prev;
    	while (prev != &p->mnt_mounts) {
    		p = list_entry(prev, struct mount, mnt_child);
    		prev = p->mnt_mounts.prev;
    	}
    	return p;
    }
    
    struct vfsmount *
    vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
    {
    	struct mount *mnt;
    	struct dentry *root;
    
    	if (!type)
    		return ERR_PTR(-ENODEV);
    
    	mnt = alloc_vfsmnt(name);
    	if (!mnt)
    		return ERR_PTR(-ENOMEM);
    
    	if (flags & MS_KERNMOUNT)
    		mnt->mnt.mnt_flags = MNT_INTERNAL;
    
    	root = mount_fs(type, flags, name, data);
    	if (IS_ERR(root)) {
    		mnt_free_id(mnt);
    		free_vfsmnt(mnt);
    		return ERR_CAST(root);
    	}
    
    	mnt->mnt.mnt_root = root;
    	mnt->mnt.mnt_sb = root->d_sb;
    	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
    	mnt->mnt_parent = mnt;
    	lock_mount_hash();
    	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
    	unlock_mount_hash();
    	return &mnt->mnt;
    }
    EXPORT_SYMBOL_GPL(vfs_kern_mount);
    
    static struct mount *clone_mnt(struct mount *old, struct dentry *root,
    					int flag)
    {
    	struct super_block *sb = old->mnt.mnt_sb;
    	struct mount *mnt;
    	int err;
    
    	mnt = alloc_vfsmnt(old->mnt_devname);
    	if (!mnt)
    		return ERR_PTR(-ENOMEM);
    
    	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
    		mnt->mnt_group_id = 0; /* not a peer of original */
    	else
    		mnt->mnt_group_id = old->mnt_group_id;
    
    	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
    		err = mnt_alloc_group_id(mnt);
    		if (err)
    			goto out_free;
    	}
    
    	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
    	/* Don't allow unprivileged users to change mount flags */
    	if (flag & CL_UNPRIVILEGED) {
    		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
    
    		if (mnt->mnt.mnt_flags & MNT_READONLY)
    			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
    
    		if (mnt->mnt.mnt_flags & MNT_NODEV)
    			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
    
    		if (mnt->mnt.mnt_flags & MNT_NOSUID)
    			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
    
    		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
    			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
    	}
    
    	/* Don't allow unprivileged users to reveal what is under a mount */
    	if ((flag & CL_UNPRIVILEGED) &&
    	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
    		mnt->mnt.mnt_flags |= MNT_LOCKED;
    
    	atomic_inc(&sb->s_active);
    	mnt->mnt.mnt_sb = sb;
    	mnt->mnt.mnt_root = dget(root);
    	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
    	mnt->mnt_parent = mnt;
    	lock_mount_hash();
    	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
    	unlock_mount_hash();
    
    	if ((flag & CL_SLAVE) ||
    	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
    		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
    		mnt->mnt_master = old;
    		CLEAR_MNT_SHARED(mnt);
    	} else if (!(flag & CL_PRIVATE)) {
    		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
    			list_add(&mnt->mnt_share, &old->mnt_share);
    		if (IS_MNT_SLAVE(old))
    			list_add(&mnt->mnt_slave, &old->mnt_slave);
    		mnt->mnt_master = old->mnt_master;
    	}
    	if (flag & CL_MAKE_SHARED)
    		set_mnt_shared(mnt);
    
    	/* stick the duplicate mount on the same expiry list
    	 * as the original if that was on one */
    	if (flag & CL_EXPIRE) {
    		if (!list_empty(&old->mnt_expire))
    			list_add(&mnt->mnt_expire, &old->mnt_expire);
    	}
    
    	return mnt;
    
     out_free:
    	mnt_free_id(mnt);
    	free_vfsmnt(mnt);
    	return ERR_PTR(err);
    }
    
    static void cleanup_mnt(struct mount *mnt)
    {
    	/*
    	 * This probably indicates that somebody messed
    	 * up a mnt_want/drop_write() pair.  If this
    	 * happens, the filesystem was probably unable
    	 * to make r/w->r/o transitions.
    	 */
    	/*
    	 * The locking used to deal with mnt_count decrement provides barriers,
    	 * so mnt_get_writers() below is safe.
    	 */
    	WARN_ON(mnt_get_writers(mnt));
    	if (unlikely(mnt->mnt_pins.first))
    		mnt_pin_kill(mnt);
    	fsnotify_vfsmount_delete(&mnt->mnt);
    	dput(mnt->mnt.mnt_root);
    	deactivate_super(mnt->mnt.mnt_sb);
    	mnt_free_id(mnt);
    	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
    }
    
    static void __cleanup_mnt(struct rcu_head *head)
    {
    	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
    }
    
    static LLIST_HEAD(delayed_mntput_list);
    static void delayed_mntput(struct work_struct *unused)
    {
    	struct llist_node *node = llist_del_all(&delayed_mntput_list);
    	struct llist_node *next;
    
    	for (; node; node = next) {
    		next = llist_next(node);
    		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
    	}
    }
    static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
    
    static void mntput_no_expire(struct mount *mnt)
    {
    	rcu_read_lock();
    	mnt_add_count(mnt, -1);
    	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
    		rcu_read_unlock();
    		return;
    	}
    	lock_mount_hash();
    	if (mnt_get_count(mnt)) {
    		rcu_read_unlock();
    		unlock_mount_hash();
    		return;
    	}
    	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
    		rcu_read_unlock();
    		unlock_mount_hash();
    		return;
    	}
    	mnt->mnt.mnt_flags |= MNT_DOOMED;
    	rcu_read_unlock();
    
    	list_del(&mnt->mnt_instance);
    
    	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
    		struct mount *p, *tmp;
    		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
    			umount_mnt(p);
    		}
    	}
    	unlock_mount_hash();
    
    	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
    		struct task_struct *task = current;
    		if (likely(!(task->flags & PF_KTHREAD))) {
    			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
    			if (!task_work_add(task, &mnt->mnt_rcu, true))
    				return;
    		}
    		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
    			schedule_delayed_work(&delayed_mntput_work, 1);
    		return;
    	}
    	cleanup_mnt(mnt);
    }
    
    void mntput(struct vfsmount *mnt)
    {
    	if (mnt) {
    		struct mount *m = real_mount(mnt);
    		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
    		if (unlikely(m->mnt_expiry_mark))
    			m->mnt_expiry_mark = 0;
    		mntput_no_expire(m);
    	}
    }
    EXPORT_SYMBOL(mntput);
    
    struct vfsmount *mntget(struct vfsmount *mnt)
    {
    	if (mnt)
    		mnt_add_count(real_mount(mnt), 1);
    	return mnt;
    }
    EXPORT_SYMBOL(mntget);
    
    struct vfsmount *mnt_clone_internal(struct path *path)
    {
    	struct mount *p;
    	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
    	if (IS_ERR(p))
    		return ERR_CAST(p);
    	p->mnt.mnt_flags |= MNT_INTERNAL;
    	return &p->mnt;
    }
    
    static inline void mangle(struct seq_file *m, const char *s)
    {
    	seq_escape(m, s, " \t\n\\");
    }
    
    /*
     * Simple .show_options callback for filesystems which don't want to
     * implement more complex mount option showing.
     *
     * See also save_mount_options().
     */
    int generic_show_options(struct seq_file *m, struct dentry *root)
    {
    	const char *options;
    
    	rcu_read_lock();
    	options = rcu_dereference(root->d_sb->s_options);
    
    	if (options != NULL && options[0]) {
    		seq_putc(m, ',');
    		mangle(m, options);
    	}
    	rcu_read_unlock();
    
    	return 0;
    }
    EXPORT_SYMBOL(generic_show_options);
    
    /*
     * If filesystem uses generic_show_options(), this function should be
     * called from the fill_super() callback.
     *
     * The .remount_fs callback usually needs to be handled in a special
     * way, to make sure, that previous options are not overwritten if the
     * remount fails.
     *
     * Also note, that if the filesystem's .remount_fs function doesn't
     * reset all options to their default value, but changes only newly
     * given options, then the displayed options will not reflect reality
     * any more.
     */
    void save_mount_options(struct super_block *sb, char *options)
    {
    	BUG_ON(sb->s_options);
    	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
    }
    EXPORT_SYMBOL(save_mount_options);
    
    void replace_mount_options(struct super_block *sb, char *options)
    {
    	char *old = sb->s_options;
    	rcu_assign_pointer(sb->s_options, options);
    	if (old) {
    		synchronize_rcu();
    		kfree(old);
    	}
    }
    EXPORT_SYMBOL(replace_mount_options);
    
    #ifdef CONFIG_PROC_FS
    /* iterator; we want it to have access to namespace_sem, thus here... */
    static void *m_start(struct seq_file *m, loff_t *pos)
    {
    	struct proc_mounts *p = m->private;
    
    	down_read(&namespace_sem);
    	if (p->cached_event == p->ns->event) {
    		void *v = p->cached_mount;
    		if (*pos == p->cached_index)
    			return v;
    		if (*pos == p->cached_index + 1) {
    			v = seq_list_next(v, &p->ns->list, &p->cached_index);
    			return p->cached_mount = v;
    		}
    	}
    
    	p->cached_event = p->ns->event;
    	p->cached_mount = seq_list_start(&p->ns->list, *pos);
    	p->cached_index = *pos;
    	return p->cached_mount;
    }
    
    static void *m_next(struct seq_file *m, void *v, loff_t *pos)
    {
    	struct proc_mounts *p = m->private;
    
    	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
    	p->cached_index = *pos;
    	return p->cached_mount;
    }
    
    static void m_stop(struct seq_file *m, void *v)
    {
    	up_read(&namespace_sem);
    }
    
    static int m_show(struct seq_file *m, void *v)
    {
    	struct proc_mounts *p = m->private;
    	struct mount *r = list_entry(v, struct mount, mnt_list);
    	return p->show(m, &r->mnt);
    }
    
    const struct seq_operations mounts_op = {
    	.start	= m_start,
    	.next	= m_next,
    	.stop	= m_stop,
    	.show	= m_show,
    };
    #endif  /* CONFIG_PROC_FS */
    
    /**
     * may_umount_tree - check if a mount tree is busy
     * @mnt: root of mount tree
     *
     * This is called to check if a tree of mounts has any
     * open files, pwds, chroots or sub mounts that are
     * busy.
     */
    int may_umount_tree(struct vfsmount *m)
    {
    	struct mount *mnt = real_mount(m);
    	int actual_refs = 0;
    	int minimum_refs = 0;
    	struct mount *p;
    	BUG_ON(!m);
    
    	/* write lock needed for mnt_get_count */
    	lock_mount_hash();
    	for (p = mnt; p; p = next_mnt(p, mnt)) {
    		actual_refs += mnt_get_count(p);
    		minimum_refs += 2;
    	}
    	unlock_mount_hash();
    
    	if (actual_refs > minimum_refs)
    		return 0;
    
    	return 1;
    }
    
    EXPORT_SYMBOL(may_umount_tree);
    
    /**
     * may_umount - check if a mount point is busy
     * @mnt: root of mount
     *
     * This is called to check if a mount point has any
     * open files, pwds, chroots or sub mounts. If the
     * mount has sub mounts this will return busy
     * regardless of whether the sub mounts are busy.
     *
     * Doesn't take quota and stuff into account. IOW, in some cases it will
     * give false negatives. The main reason why it's here is that we need
     * a non-destructive way to look for easily umountable filesystems.
     */
    int may_umount(struct vfsmount *mnt)
    {
    	int ret = 1;
    	down_read(&namespace_sem);
    	lock_mount_hash();
    	if (propagate_mount_busy(real_mount(mnt), 2))
    		ret = 0;
    	unlock_mount_hash();
    	up_read(&namespace_sem);
    	return ret;
    }
    
    EXPORT_SYMBOL(may_umount);
    
    static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
    
    static void namespace_unlock(void)
    {
    	struct hlist_head head;
    
    	hlist_move_list(&unmounted, &head);
    
    	up_write(&namespace_sem);
    
    	if (likely(hlist_empty(&head)))
    		return;
    
    	synchronize_rcu();
    
    	group_pin_kill(&head);
    }
    
    static inline void namespace_lock(void)
    {
    	down_write(&namespace_sem);
    }
    
    enum umount_tree_flags {
    	UMOUNT_SYNC = 1,
    	UMOUNT_PROPAGATE = 2,
    	UMOUNT_CONNECTED = 4,
    };
    /*
     * mount_lock must be held
     * namespace_sem must be held for write
     */
    static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
    {
    	LIST_HEAD(tmp_list);
    	struct mount *p;
    
    	if (how & UMOUNT_PROPAGATE)
    		propagate_mount_unlock(mnt);
    
    	/* Gather the mounts to umount */
    	for (p = mnt; p; p = next_mnt(p, mnt)) {
    		p->mnt.mnt_flags |= MNT_UMOUNT;
    		list_move(&p->mnt_list, &tmp_list);
    	}
    
    	/* Hide the mounts from mnt_mounts */
    	list_for_each_entry(p, &tmp_list, mnt_list) {
    		list_del_init(&p->mnt_child);
    	}
    
    	/* Add propogated mounts to the tmp_list */
    	if (how & UMOUNT_PROPAGATE)
    		propagate_umount(&tmp_list);
    
    	while (!list_empty(&tmp_list)) {
    		bool disconnect;
    		p = list_first_entry(&tmp_list, struct mount, mnt_list);
    		list_del_init(&p->mnt_expire);
    		list_del_init(&p->mnt_list);
    		__touch_mnt_namespace(p->mnt_ns);
    		p->mnt_ns = NULL;
    		if (how & UMOUNT_SYNC)
    			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
    
    		disconnect = !(((how & UMOUNT_CONNECTED) &&
    				mnt_has_parent(p) &&
    				(p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) ||
    			       IS_MNT_LOCKED_AND_LAZY(p));
    
    		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
    				 disconnect ? &unmounted : NULL);
    		if (mnt_has_parent(p)) {
    			mnt_add_count(p->mnt_parent, -1);
    			if (!disconnect) {
    				/* Don't forget about p */
    				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
    			} else {
    				umount_mnt(p);
    			}
    		}
    		change_mnt_propagation(p, MS_PRIVATE);
    	}
    }
    
    static void shrink_submounts(struct mount *mnt);
    
    static int do_umount(struct mount *mnt, int flags)
    {
    	struct super_block *sb = mnt->mnt.mnt_sb;
    	int retval;
    
    	retval = security_sb_umount(&mnt->mnt, flags);
    	if (retval)
    		return retval;
    
    	/*
    	 * Allow userspace to request a mountpoint be expired rather than
    	 * unmounting unconditionally. Unmount only happens if:
    	 *  (1) the mark is already set (the mark is cleared by mntput())
    	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
    	 */
    	if (flags & MNT_EXPIRE) {
    		if (&mnt->mnt == current->fs->root.mnt ||
    		    flags & (MNT_FORCE | MNT_DETACH))
    			return -EINVAL;
    
    		/*
    		 * probably don't strictly need the lock here if we examined
    		 * all race cases, but it's a slowpath.
    		 */
    		lock_mount_hash();
    		if (mnt_get_count(mnt) != 2) {
    			unlock_mount_hash();
    			return -EBUSY;
    		}
    		unlock_mount_hash();
    
    		if (!xchg(&mnt->mnt_expiry_mark, 1))
    			return -EAGAIN;
    	}
    
    	/*
    	 * If we may have to abort operations to get out of this
    	 * mount, and they will themselves hold resources we must
    	 * allow the fs to do things. In the Unix tradition of
    	 * 'Gee thats tricky lets do it in userspace' the umount_begin
    	 * might fail to complete on the first run through as other tasks
    	 * must return, and the like. Thats for the mount program to worry
    	 * about for the moment.
    	 */
    
    	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
    		sb->s_op->umount_begin(sb);
    	}
    
    	/*
    	 * No sense to grab the lock for this test, but test itself looks
    	 * somewhat bogus. Suggestions for better replacement?
    	 * Ho-hum... In principle, we might treat that as umount + switch
    	 * to rootfs. GC would eventually take care of the old vfsmount.
    	 * Actually it makes sense, especially if rootfs would contain a
    	 * /reboot - static binary that would close all descriptors and
    	 * call reboot(9). Then init(8) could umount root and exec /reboot.
    	 */
    	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
    		/*
    		 * Special case for "unmounting" root ...
    		 * we just try to remount it readonly.
    		 */
    		if (!capable(CAP_SYS_ADMIN))
    			return -EPERM;
    		down_write(&sb->s_umount);
    		if (!(sb->s_flags & MS_RDONLY))
    			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
    		up_write(&sb->s_umount);
    		return retval;
    	}
    
    	namespace_lock();
    	lock_mount_hash();
    	event++;
    
    	if (flags & MNT_DETACH) {
    		if (!list_empty(&mnt->mnt_list))
    			umount_tree(mnt, UMOUNT_PROPAGATE);
    		retval = 0;
    	} else {
    		shrink_submounts(mnt);
    		retval = -EBUSY;
    		if (!propagate_mount_busy(mnt, 2)) {
    			if (!list_empty(&mnt->mnt_list))
    				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    			retval = 0;
    		}
    	}
    	unlock_mount_hash();
    	namespace_unlock();
    	return retval;
    }
    
    /*
     * __detach_mounts - lazily unmount all mounts on the specified dentry
     *
     * During unlink, rmdir, and d_drop it is possible to loose the path
     * to an existing mountpoint, and wind up leaking the mount.
     * detach_mounts allows lazily unmounting those mounts instead of
     * leaking them.
     *
     * The caller may hold dentry->d_inode->i_mutex.
     */
    void __detach_mounts(struct dentry *dentry)
    {
    	struct mountpoint *mp;
    	struct mount *mnt;
    
    	namespace_lock();
    	mp = lookup_mountpoint(dentry);
    	if (IS_ERR_OR_NULL(mp))
    		goto out_unlock;
    
    	lock_mount_hash();
    	while (!hlist_empty(&mp->m_list)) {
    		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
    		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
    			struct mount *p, *tmp;
    			list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
    				hlist_add_head(&p->mnt_umount.s_list, &unmounted);
    				umount_mnt(p);
    			}
    		}
    		else umount_tree(mnt, UMOUNT_CONNECTED);
    	}
    	unlock_mount_hash();
    	put_mountpoint(mp);
    out_unlock:
    	namespace_unlock();
    }
    
    /* 
     * Is the caller allowed to modify his namespace?
     */
    static inline bool may_mount(void)
    {
    	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
    }
    
    /*
     * Now umount can handle mount points as well as block devices.
     * This is important for filesystems which use unnamed block devices.
     *
     * We now support a flag for forced unmount like the other 'big iron'
     * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
     */
    
    SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
    {
    	struct path path;
    	struct mount *mnt;
    	int retval;
    	int lookup_flags = 0;
    
    	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
    		return -EINVAL;
    
    	if (!may_mount())
    		return -EPERM;
    
    	if (!(flags & UMOUNT_NOFOLLOW))
    		lookup_flags |= LOOKUP_FOLLOW;
    
    	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
    	if (retval)
    		goto out;
    	mnt = real_mount(path.mnt);
    	retval = -EINVAL;
    	if (path.dentry != path.mnt->mnt_root)
    		goto dput_and_out;
    	if (!check_mnt(mnt))
    		goto dput_and_out;
    	if (mnt->mnt.mnt_flags & MNT_LOCKED)
    		goto dput_and_out;
    	retval = -EPERM;
    	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
    		goto dput_and_out;
    
    	retval = do_umount(mnt, flags);
    dput_and_out:
    	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
    	dput(path.dentry);
    	mntput_no_expire(mnt);
    out:
    	return retval;
    }
    
    #ifdef __ARCH_WANT_SYS_OLDUMOUNT
    
    /*
     *	The 2.0 compatible umount. No flags.
     */
    SYSCALL_DEFINE1(oldumount, char __user *, name)
    {
    	return sys_umount(name, 0);
    }
    
    #endif
    
    static bool is_mnt_ns_file(struct dentry *dentry)
    {
    	/* Is this a proxy for a mount namespace? */
    	return dentry->d_op == &ns_dentry_operations &&
    	       dentry->d_fsdata == &mntns_operations;
    }
    
    struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
    {
    	return container_of(ns, struct mnt_namespace, ns);
    }
    
    static bool mnt_ns_loop(struct dentry *dentry)
    {
    	/* Could bind mounting the mount namespace inode cause a
    	 * mount namespace loop?
    	 */
    	struct mnt_namespace *mnt_ns;
    	if (!is_mnt_ns_file(dentry))
    		return false;
    
    	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
    	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
    }
    
    struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
    					int flag)
    {
    	struct mount *res, *p, *q, *r, *parent;
    
    	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
    		return ERR_PTR(-EINVAL);
    
    	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
    		return ERR_PTR(-EINVAL);
    
    	res = q = clone_mnt(mnt, dentry, flag);
    	if (IS_ERR(q))
    		return q;
    
    	q->mnt_mountpoint = mnt->mnt_mountpoint;
    
    	p = mnt;
    	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
    		struct mount *s;
    		if (!is_subdir(r->mnt_mountpoint, dentry))
    			continue;
    
    		for (s = r; s; s = next_mnt(s, r)) {
    			struct mount *t = NULL;
    			if (!(flag & CL_COPY_UNBINDABLE) &&
    			    IS_MNT_UNBINDABLE(s)) {
    				s = skip_mnt_tree(s);
    				continue;
    			}
    			if (!(flag & CL_COPY_MNT_NS_FILE) &&
    			    is_mnt_ns_file(s->mnt.mnt_root)) {
    				s = skip_mnt_tree(s);
    				continue;
    			}
    			while (p != s->mnt_parent) {
    				p = p->mnt_parent;
    				q = q->mnt_parent;
    			}
    			p = s;
    			parent = q;
    			q = clone_mnt(p, p->mnt.mnt_root, flag);
    			if (IS_ERR(q))
    				goto out;
    			lock_mount_hash();
    			list_add_tail(&q->mnt_list, &res->mnt_list);
    			mnt_set_mountpoint(parent, p->mnt_mp, q);
    			if (!list_empty(&parent->mnt_mounts)) {
    				t = list_last_entry(&parent->mnt_mounts,
    					struct mount, mnt_child);
    				if (t->mnt_mp != p->mnt_mp)
    					t = NULL;
    			}
    			attach_shadowed(q, parent, t);
    			unlock_mount_hash();
    		}
    	}
    	return res;
    out:
    	if (res) {
    		lock_mount_hash();
    		umount_tree(res, UMOUNT_SYNC);
    		unlock_mount_hash();
    	}
    	return q;
    }
    
    /* Caller should check returned pointer for errors */
    
    struct vfsmount *collect_mounts(struct path *path)
    {
    	struct mount *tree;
    	namespace_lock();
    	if (!check_mnt(real_mount(path->mnt)))
    		tree = ERR_PTR(-EINVAL);
    	else
    		tree = copy_tree(real_mount(path->mnt), path->dentry,
    				 CL_COPY_ALL | CL_PRIVATE);
    	namespace_unlock();
    	if (IS_ERR(tree))
    		return ERR_CAST(tree);
    	return &tree->mnt;
    }
    
    void drop_collected_mounts(struct vfsmount *mnt)
    {
    	namespace_lock();
    	lock_mount_hash();
    	umount_tree(real_mount(mnt), UMOUNT_SYNC);
    	unlock_mount_hash();
    	namespace_unlock();
    }
    
    /**
     * clone_private_mount - create a private clone of a path
     *
     * This creates a new vfsmount, which will be the clone of @path.  The new will
     * not be attached anywhere in the namespace and will be private (i.e. changes
     * to the originating mount won't be propagated into this).
     *
     * Release with mntput().
     */
    struct vfsmount *clone_private_mount(struct path *path)
    {
    	struct mount *old_mnt = real_mount(path->mnt);
    	struct mount *new_mnt;
    
    	if (IS_MNT_UNBINDABLE(old_mnt))
    		return ERR_PTR(-EINVAL);
    
    	down_read(&namespace_sem);
    	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
    	up_read(&namespace_sem);
    	if (IS_ERR(new_mnt))
    		return ERR_CAST(new_mnt);
    
    	return &new_mnt->mnt;
    }
    EXPORT_SYMBOL_GPL(clone_private_mount);
    
    int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
    		   struct vfsmount *root)
    {
    	struct mount *mnt;
    	int res = f(root, arg);
    	if (res)
    		return res;
    	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
    		res = f(&mnt->mnt, arg);
    		if (res)
    			return res;
    	}
    	return 0;
    }
    
    static void cleanup_group_ids(struct mount *mnt, struct mount *end)
    {
    	struct mount *p;
    
    	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
    		if (p->mnt_group_id && !IS_MNT_SHARED(p))
    			mnt_release_group_id(p);
    	}
    }
    
    static int invent_group_ids(struct mount *mnt, bool recurse)
    {
    	struct mount *p;
    
    	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
    		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
    			int err = mnt_alloc_group_id(p);
    			if (err) {
    				cleanup_group_ids(mnt, p);
    				return err;
    			}
    		}
    	}
    
    	return 0;
    }
    
    /*
     *  @source_mnt : mount tree to be attached
     *  @nd         : place the mount tree @source_mnt is attached
     *  @parent_nd  : if non-null, detach the source_mnt from its parent and
     *  		   store the parent mount and mountpoint dentry.
     *  		   (done when source_mnt is moved)
     *
     *  NOTE: in the table below explains the semantics when a source mount
     *  of a given type is attached to a destination mount of a given type.
     * ---------------------------------------------------------------------------
     * |         BIND MOUNT OPERATION                                            |
     * |**************************************************************************
     * | source-->| shared        |       private  |       slave    | unbindable |
     * | dest     |               |                |                |            |
     * |   |      |               |                |                |            |
     * |   v      |               |                |                |            |
     * |**************************************************************************
     * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
     * |          |               |                |                |            |
     * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
     * ***************************************************************************
     * A bind operation clones the source mount and mounts the clone on the
     * destination mount.
     *
     * (++)  the cloned mount is propagated to all the mounts in the propagation
     * 	 tree of the destination mount and the cloned mount is added to
     * 	 the peer group of the source mount.
     * (+)   the cloned mount is created under the destination mount and is marked
     *       as shared. The cloned mount is added to the peer group of the source
     *       mount.
     * (+++) the mount is propagated to all the mounts in the propagation tree
     *       of the destination mount and the cloned mount is made slave
     *       of the same master as that of the source mount. The cloned mount
     *       is marked as 'shared and slave'.
     * (*)   the cloned mount is made a slave of the same master as that of the
     * 	 source mount.
     *
     * ---------------------------------------------------------------------------
     * |         		MOVE MOUNT OPERATION                                 |
     * |**************************************************************************
     * | source-->| shared        |       private  |       slave    | unbindable |
     * | dest     |               |                |                |            |
     * |   |      |               |                |                |            |
     * |   v      |               |                |                |            |
     * |**************************************************************************
     * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
     * |          |               |                |                |            |
     * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
     * ***************************************************************************
     *
     * (+)  the mount is moved to the destination. And is then propagated to
     * 	all the mounts in the propagation tree of the destination mount.
     * (+*)  the mount is moved to the destination.
     * (+++)  the mount is moved to the destination and is then propagated to
     * 	all the mounts belonging to the destination mount's propagation tree.
     * 	the mount is marked as 'shared and slave'.
     * (*)	the mount continues to be a slave at the new location.
     *
     * if the source mount is a tree, the operations explained above is
     * applied to each mount in the tree.
     * Must be called without spinlocks held, since this function can sleep
     * in allocations.
     */
    static int attach_recursive_mnt(struct mount *source_mnt,
    			struct mount *dest_mnt,
    			struct mountpoint *dest_mp,
    			struct path *parent_path)
    {
    	HLIST_HEAD(tree_list);
    	struct mount *child, *p;
    	struct hlist_node *n;
    	int err;
    
    	if (IS_MNT_SHARED(dest_mnt)) {
    		err = invent_group_ids(source_mnt, true);
    		if (err)
    			goto out;
    		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
    		lock_mount_hash();
    		if (err)
    			goto out_cleanup_ids;
    		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
    			set_mnt_shared(p);
    	} else {
    		lock_mount_hash();
    	}
    	if (parent_path) {
    		detach_mnt(source_mnt, parent_path);
    		attach_mnt(source_mnt, dest_mnt, dest_mp);
    		touch_mnt_namespace(source_mnt->mnt_ns);
    	} else {
    		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
    		commit_tree(source_mnt, NULL);
    	}
    
    	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
    		struct mount *q;
    		hlist_del_init(&child->mnt_hash);
    		q = __lookup_mnt_last(&child->mnt_parent->mnt,
    				      child->mnt_mountpoint);
    		commit_tree(child, q);
    	}
    	unlock_mount_hash();
    
    	return 0;
    
     out_cleanup_ids:
    	while (!hlist_empty(&tree_list)) {
    		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
    		umount_tree(child, UMOUNT_SYNC);
    	}
    	unlock_mount_hash();
    	cleanup_group_ids(source_mnt, NULL);
     out:
    	return err;
    }
    
    static struct mountpoint *lock_mount(struct path *path)
    {
    	struct vfsmount *mnt;
    	struct dentry *dentry = path->dentry;
    retry:
    	mutex_lock(&dentry->d_inode->i_mutex);
    	if (unlikely(cant_mount(dentry))) {
    		mutex_unlock(&dentry->d_inode->i_mutex);
    		return ERR_PTR(-ENOENT);
    	}
    	namespace_lock();
    	mnt = lookup_mnt(path);
    	if (likely(!mnt)) {
    		struct mountpoint *mp = lookup_mountpoint(dentry);
    		if (!mp)
    			mp = new_mountpoint(dentry);
    		if (IS_ERR(mp)) {
    			namespace_unlock();
    			mutex_unlock(&dentry->d_inode->i_mutex);
    			return mp;
    		}
    		return mp;
    	}
    	namespace_unlock();
    	mutex_unlock(&path->dentry->d_inode->i_mutex);
    	path_put(path);
    	path->mnt = mnt;
    	dentry = path->dentry = dget(mnt->mnt_root);
    	goto retry;
    }
    
    static void unlock_mount(struct mountpoint *where)
    {
    	struct dentry *dentry = where->m_dentry;
    	put_mountpoint(where);
    	namespace_unlock();
    	mutex_unlock(&dentry->d_inode->i_mutex);
    }
    
    static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
    {
    	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
    		return -EINVAL;
    
    	if (d_is_dir(mp->m_dentry) !=
    	      d_is_dir(mnt->mnt.mnt_root))
    		return -ENOTDIR;
    
    	return attach_recursive_mnt(mnt, p, mp, NULL);
    }
    
    /*
     * Sanity check the flags to change_mnt_propagation.
     */
    
    static int flags_to_propagation_type(int flags)
    {
    	int type = flags & ~(MS_REC | MS_SILENT);
    
    	/* Fail if any non-propagation flags are set */
    	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
    		return 0;
    	/* Only one propagation flag should be set */
    	if (!is_power_of_2(type))
    		return 0;
    	return type;
    }
    
    /*
     * recursively change the type of the mountpoint.
     */
    static int do_change_type(struct path *path, int flag)
    {
    	struct mount *m;
    	struct mount *mnt = real_mount(path->mnt);
    	int recurse = flag & MS_REC;
    	int type;
    	int err = 0;
    
    	if (path->dentry != path->mnt->mnt_root)
    		return -EINVAL;
    
    	type = flags_to_propagation_type(flag);
    	if (!type)
    		return -EINVAL;
    
    	namespace_lock();
    	if (type == MS_SHARED) {
    		err = invent_group_ids(mnt, recurse);
    		if (err)
    			goto out_unlock;
    	}
    
    	lock_mount_hash();
    	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
    		change_mnt_propagation(m, type);
    	unlock_mount_hash();
    
     out_unlock:
    	namespace_unlock();
    	return err;
    }
    
    static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
    {
    	struct mount *child;
    	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
    		if (!is_subdir(child->mnt_mountpoint, dentry))
    			continue;
    
    		if (child->mnt.mnt_flags & MNT_LOCKED)
    			return true;
    	}
    	return false;
    }
    
    /*
     * do loopback mount.
     */
    static int do_loopback(struct path *path, const char *old_name,
    				int recurse)
    {
    	struct path old_path;
    	struct mount *mnt = NULL, *old, *parent;
    	struct mountpoint *mp;
    	int err;
    	if (!old_name || !*old_name)
    		return -EINVAL;
    	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
    	if (err)
    		return err;
    
    	err = -EINVAL;
    	if (mnt_ns_loop(old_path.dentry))
    		goto out; 
    
    	mp = lock_mount(path);
    	err = PTR_ERR(mp);
    	if (IS_ERR(mp))
    		goto out;
    
    	old = real_mount(old_path.mnt);
    	parent = real_mount(path->mnt);
    
    	err = -EINVAL;
    	if (IS_MNT_UNBINDABLE(old))
    		goto out2;
    
    	if (!check_mnt(parent))
    		goto out2;
    
    	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
    		goto out2;
    
    	if (!recurse && has_locked_children(old, old_path.dentry))
    		goto out2;
    
    	if (recurse)
    		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
    	else
    		mnt = clone_mnt(old, old_path.dentry, 0);
    
    	if (IS_ERR(mnt)) {
    		err = PTR_ERR(mnt);
    		goto out2;
    	}
    
    	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
    
    	err = graft_tree(mnt, parent, mp);
    	if (err) {
    		lock_mount_hash();
    		umount_tree(mnt, UMOUNT_SYNC);
    		unlock_mount_hash();
    	}
    out2:
    	unlock_mount(mp);
    out:
    	path_put(&old_path);
    	return err;
    }
    
    static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
    {
    	int error = 0;
    	int readonly_request = 0;
    
    	if (ms_flags & MS_RDONLY)
    		readonly_request = 1;
    	if (readonly_request == __mnt_is_readonly(mnt))
    		return 0;
    
    	if (readonly_request)
    		error = mnt_make_readonly(real_mount(mnt));
    	else
    		__mnt_unmake_readonly(real_mount(mnt));
    	return error;
    }
    
    /*
     * change filesystem flags. dir should be a physical root of filesystem.
     * If you've mounted a non-root directory somewhere and want to do remount
     * on it - tough luck.
     */
    static int do_remount(struct path *path, int flags, int mnt_flags,
    		      void *data)
    {
    	int err;
    	struct super_block *sb = path->mnt->mnt_sb;
    	struct mount *mnt = real_mount(path->mnt);
    
    	if (!check_mnt(mnt))
    		return -EINVAL;
    
    	if (path->dentry != path->mnt->mnt_root)
    		return -EINVAL;
    
    	/* Don't allow changing of locked mnt flags.
    	 *
    	 * No locks need to be held here while testing the various
    	 * MNT_LOCK flags because those flags can never be cleared
    	 * once they are set.
    	 */
    	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
    	    !(mnt_flags & MNT_READONLY)) {
    		return -EPERM;
    	}
    	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
    	    !(mnt_flags & MNT_NODEV)) {
    		/* Was the nodev implicitly added in mount? */
    		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
    		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
    			mnt_flags |= MNT_NODEV;
    		} else {
    			return -EPERM;
    		}
    	}
    	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
    	    !(mnt_flags & MNT_NOSUID)) {
    		return -EPERM;
    	}
    	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
    	    !(mnt_flags & MNT_NOEXEC)) {
    		return -EPERM;
    	}
    	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
    	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
    		return -EPERM;
    	}
    
    	err = security_sb_remount(sb, data);
    	if (err)
    		return err;
    
    	down_write(&sb->s_umount);
    	if (flags & MS_BIND)
    		err = change_mount_flags(path->mnt, flags);
    	else if (!capable(CAP_SYS_ADMIN))
    		err = -EPERM;
    	else
    		err = do_remount_sb(sb, flags, data, 0);
    	if (!err) {
    		lock_mount_hash();
    		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
    		mnt->mnt.mnt_flags = mnt_flags;
    		touch_mnt_namespace(mnt->mnt_ns);
    		unlock_mount_hash();
    	}
    	up_write(&sb->s_umount);
    	return err;
    }
    
    static inline int tree_contains_unbindable(struct mount *mnt)
    {
    	struct mount *p;
    	for (p = mnt; p; p = next_mnt(p, mnt)) {
    		if (IS_MNT_UNBINDABLE(p))
    			return 1;
    	}
    	return 0;
    }
    
    static int do_move_mount(struct path *path, const char *old_name)
    {
    	struct path old_path, parent_path;
    	struct mount *p;
    	struct mount *old;
    	struct mountpoint *mp;
    	int err;
    	if (!old_name || !*old_name)
    		return -EINVAL;
    	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
    	if (err)
    		return err;
    
    	mp = lock_mount(path);
    	err = PTR_ERR(mp);
    	if (IS_ERR(mp))
    		goto out;
    
    	old = real_mount(old_path.mnt);
    	p = real_mount(path->mnt);
    
    	err = -EINVAL;
    	if (!check_mnt(p) || !check_mnt(old))
    		goto out1;
    
    	if (old->mnt.mnt_flags & MNT_LOCKED)
    		goto out1;
    
    	err = -EINVAL;
    	if (old_path.dentry != old_path.mnt->mnt_root)
    		goto out1;
    
    	if (!mnt_has_parent(old))
    		goto out1;
    
    	if (d_is_dir(path->dentry) !=
    	      d_is_dir(old_path.dentry))
    		goto out1;
    	/*
    	 * Don't move a mount residing in a shared parent.
    	 */
    	if (IS_MNT_SHARED(old->mnt_parent))
    		goto out1;
    	/*
    	 * Don't move a mount tree containing unbindable mounts to a destination
    	 * mount which is shared.
    	 */
    	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
    		goto out1;
    	err = -ELOOP;
    	for (; mnt_has_parent(p); p = p->mnt_parent)
    		if (p == old)
    			goto out1;
    
    	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
    	if (err)
    		goto out1;
    
    	/* if the mount is moved, it should no longer be expire
    	 * automatically */
    	list_del_init(&old->mnt_expire);
    out1:
    	unlock_mount(mp);
    out:
    	if (!err)
    		path_put(&parent_path);
    	path_put(&old_path);
    	return err;
    }
    
    static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
    {
    	int err;
    	const char *subtype = strchr(fstype, '.');
    	if (subtype) {
    		subtype++;
    		err = -EINVAL;
    		if (!subtype[0])
    			goto err;
    	} else
    		subtype = "";
    
    	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
    	err = -ENOMEM;
    	if (!mnt->mnt_sb->s_subtype)
    		goto err;
    	return mnt;
    
     err:
    	mntput(mnt);
    	return ERR_PTR(err);
    }
    
    /*
     * add a mount into a namespace's mount tree
     */
    static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
    {
    	struct mountpoint *mp;
    	struct mount *parent;
    	int err;
    
    	mnt_flags &= ~MNT_INTERNAL_FLAGS;
    
    	mp = lock_mount(path);
    	if (IS_ERR(mp))
    		return PTR_ERR(mp);
    
    	parent = real_mount(path->mnt);
    	err = -EINVAL;
    	if (unlikely(!check_mnt(parent))) {
    		/* that's acceptable only for automounts done in private ns */
    		if (!(mnt_flags & MNT_SHRINKABLE))
    			goto unlock;
    		/* ... and for those we'd better have mountpoint still alive */
    		if (!parent->mnt_ns)
    			goto unlock;
    	}
    
    	/* Refuse the same filesystem on the same mount point */
    	err = -EBUSY;
    	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
    	    path->mnt->mnt_root == path->dentry)
    		goto unlock;
    
    	err = -EINVAL;
    	if (d_is_symlink(newmnt->mnt.mnt_root))
    		goto unlock;
    
    	newmnt->mnt.mnt_flags = mnt_flags;
    	err = graft_tree(newmnt, parent, mp);
    
    unlock:
    	unlock_mount(mp);
    	return err;
    }
    
    /*
     * create a new mount for userspace and request it to be added into the
     * namespace's tree
     */
    static int do_new_mount(struct path *path, const char *fstype, int flags,
    			int mnt_flags, const char *name, void *data)
    {
    	struct file_system_type *type;
    	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
    	struct vfsmount *mnt;
    	int err;
    
    	if (!fstype)
    		return -EINVAL;
    
    	type = get_fs_type(fstype);
    	if (!type)
    		return -ENODEV;
    
    	if (user_ns != &init_user_ns) {
    		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
    			put_filesystem(type);
    			return -EPERM;
    		}
    		/* Only in special cases allow devices from mounts
    		 * created outside the initial user namespace.
    		 */
    		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
    			flags |= MS_NODEV;
    			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
    		}
    	}
    
    	mnt = vfs_kern_mount(type, flags, name, data);
    	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
    	    !mnt->mnt_sb->s_subtype)
    		mnt = fs_set_subtype(mnt, fstype);
    
    	put_filesystem(type);
    	if (IS_ERR(mnt))
    		return PTR_ERR(mnt);
    
    	err = do_add_mount(real_mount(mnt), path, mnt_flags);
    	if (err)
    		mntput(mnt);
    	return err;
    }
    
    int finish_automount(struct vfsmount *m, struct path *path)
    {
    	struct mount *mnt = real_mount(m);
    	int err;
    	/* The new mount record should have at least 2 refs to prevent it being
    	 * expired before we get a chance to add it
    	 */
    	BUG_ON(mnt_get_count(mnt) < 2);
    
    	if (m->mnt_sb == path->mnt->mnt_sb &&
    	    m->mnt_root == path->dentry) {
    		err = -ELOOP;
    		goto fail;
    	}
    
    	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
    	if (!err)
    		return 0;
    fail:
    	/* remove m from any expiration list it may be on */
    	if (!list_empty(&mnt->mnt_expire)) {
    		namespace_lock();
    		list_del_init(&mnt->mnt_expire);
    		namespace_unlock();
    	}
    	mntput(m);
    	mntput(m);
    	return err;
    }
    
    /**
     * mnt_set_expiry - Put a mount on an expiration list
     * @mnt: The mount to list.
     * @expiry_list: The list to add the mount to.
     */
    void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
    {
    	namespace_lock();
    
    	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
    
    	namespace_unlock();
    }
    EXPORT_SYMBOL(mnt_set_expiry);
    
    /*
     * process a list of expirable mountpoints with the intent of discarding any
     * mountpoints that aren't in use and haven't been touched since last we came
     * here
     */
    void mark_mounts_for_expiry(struct list_head *mounts)
    {
    	struct mount *mnt, *next;
    	LIST_HEAD(graveyard);
    
    	if (list_empty(mounts))
    		return;
    
    	namespace_lock();
    	lock_mount_hash();
    
    	/* extract from the expiration list every vfsmount that matches the
    	 * following criteria:
    	 * - only referenced by its parent vfsmount
    	 * - still marked for expiry (marked on the last call here; marks are
    	 *   cleared by mntput())
    	 */
    	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
    		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
    			propagate_mount_busy(mnt, 1))
    			continue;
    		list_move(&mnt->mnt_expire, &graveyard);
    	}
    	while (!list_empty(&graveyard)) {
    		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
    		touch_mnt_namespace(mnt->mnt_ns);
    		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    	}
    	unlock_mount_hash();
    	namespace_unlock();
    }
    
    EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
    
    /*
     * Ripoff of 'select_parent()'
     *
     * search the list of submounts for a given mountpoint, and move any
     * shrinkable submounts to the 'graveyard' list.
     */
    static int select_submounts(struct mount *parent, struct list_head *graveyard)
    {
    	struct mount *this_parent = parent;
    	struct list_head *next;
    	int found = 0;
    
    repeat:
    	next = this_parent->mnt_mounts.next;
    resume:
    	while (next != &this_parent->mnt_mounts) {
    		struct list_head *tmp = next;
    		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
    
    		next = tmp->next;
    		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
    			continue;
    		/*
    		 * Descend a level if the d_mounts list is non-empty.
    		 */
    		if (!list_empty(&mnt->mnt_mounts)) {
    			this_parent = mnt;
    			goto repeat;
    		}
    
    		if (!propagate_mount_busy(mnt, 1)) {
    			list_move_tail(&mnt->mnt_expire, graveyard);
    			found++;
    		}
    	}
    	/*
    	 * All done at this level ... ascend and resume the search
    	 */
    	if (this_parent != parent) {
    		next = this_parent->mnt_child.next;
    		this_parent = this_parent->mnt_parent;
    		goto resume;
    	}
    	return found;
    }
    
    /*
     * process a list of expirable mountpoints with the intent of discarding any
     * submounts of a specific parent mountpoint
     *
     * mount_lock must be held for write
     */
    static void shrink_submounts(struct mount *mnt)
    {
    	LIST_HEAD(graveyard);
    	struct mount *m;
    
    	/* extract submounts of 'mountpoint' from the expiration list */
    	while (select_submounts(mnt, &graveyard)) {
    		while (!list_empty(&graveyard)) {
    			m = list_first_entry(&graveyard, struct mount,
    						mnt_expire);
    			touch_mnt_namespace(m->mnt_ns);
    			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    		}
    	}
    }
    
    /*
     * Some copy_from_user() implementations do not return the exact number of
     * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
     * Note that this function differs from copy_from_user() in that it will oops
     * on bad values of `to', rather than returning a short copy.
     */
    static long exact_copy_from_user(void *to, const void __user * from,
    				 unsigned long n)
    {
    	char *t = to;
    	const char __user *f = from;
    	char c;
    
    	if (!access_ok(VERIFY_READ, from, n))
    		return n;
    
    	while (n) {
    		if (__get_user(c, f)) {
    			memset(t, 0, n);
    			break;
    		}
    		*t++ = c;
    		f++;
    		n--;
    	}
    	return n;
    }
    
    int copy_mount_options(const void __user * data, unsigned long *where)
    {
    	int i;
    	unsigned long page;
    	unsigned long size;
    
    	*where = 0;
    	if (!data)
    		return 0;
    
    	if (!(page = __get_free_page(GFP_KERNEL)))
    		return -ENOMEM;
    
    	/* We only care that *some* data at the address the user
    	 * gave us is valid.  Just in case, we'll zero
    	 * the remainder of the page.
    	 */
    	/* copy_from_user cannot cross TASK_SIZE ! */
    	size = TASK_SIZE - (unsigned long)data;
    	if (size > PAGE_SIZE)
    		size = PAGE_SIZE;
    
    	i = size - exact_copy_from_user((void *)page, data, size);
    	if (!i) {
    		free_page(page);
    		return -EFAULT;
    	}
    	if (i != PAGE_SIZE)
    		memset((char *)page + i, 0, PAGE_SIZE - i);
    	*where = page;
    	return 0;
    }
    
    char *copy_mount_string(const void __user *data)
    {
    	return data ? strndup_user(data, PAGE_SIZE) : NULL;
    }
    
    /*
     * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
     * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
     *
     * data is a (void *) that can point to any structure up to
     * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
     * information (or be NULL).
     *
     * Pre-0.97 versions of mount() didn't have a flags word.
     * When the flags word was introduced its top half was required
     * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
     * Therefore, if this magic number is present, it carries no information
     * and must be discarded.
     */
    long do_mount(const char *dev_name, const char __user *dir_name,
    		const char *type_page, unsigned long flags, void *data_page)
    {
    	struct path path;
    	int retval = 0;
    	int mnt_flags = 0;
    
    	/* Discard magic */
    	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
    		flags &= ~MS_MGC_MSK;
    
    	/* Basic sanity checks */
    	if (data_page)
    		((char *)data_page)[PAGE_SIZE - 1] = 0;
    
    	/* ... and get the mountpoint */
    	retval = user_path(dir_name, &path);
    	if (retval)
    		return retval;
    
    	retval = security_sb_mount(dev_name, &path,
    				   type_page, flags, data_page);
    	if (!retval && !may_mount())
    		retval = -EPERM;
    	if (retval)
    		goto dput_out;
    
    	/* Default to relatime unless overriden */
    	if (!(flags & MS_NOATIME))
    		mnt_flags |= MNT_RELATIME;
    
    	/* Separate the per-mountpoint flags */
    	if (flags & MS_NOSUID)
    		mnt_flags |= MNT_NOSUID;
    	if (flags & MS_NODEV)
    		mnt_flags |= MNT_NODEV;
    	if (flags & MS_NOEXEC)
    		mnt_flags |= MNT_NOEXEC;
    	if (flags & MS_NOATIME)
    		mnt_flags |= MNT_NOATIME;
    	if (flags & MS_NODIRATIME)
    		mnt_flags |= MNT_NODIRATIME;
    	if (flags & MS_STRICTATIME)
    		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
    	if (flags & MS_RDONLY)
    		mnt_flags |= MNT_READONLY;
    
    	/* The default atime for remount is preservation */
    	if ((flags & MS_REMOUNT) &&
    	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
    		       MS_STRICTATIME)) == 0)) {
    		mnt_flags &= ~MNT_ATIME_MASK;
    		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
    	}
    
    	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
    		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
    		   MS_STRICTATIME);
    
    	if (flags & MS_REMOUNT)
    		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
    				    data_page);
    	else if (flags & MS_BIND)
    		retval = do_loopback(&path, dev_name, flags & MS_REC);
    	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
    		retval = do_change_type(&path, flags);
    	else if (flags & MS_MOVE)
    		retval = do_move_mount(&path, dev_name);
    	else
    		retval = do_new_mount(&path, type_page, flags, mnt_flags,
    				      dev_name, data_page);
    dput_out:
    	path_put(&path);
    	return retval;
    }
    
    static void free_mnt_ns(struct mnt_namespace *ns)
    {
    	ns_free_inum(&ns->ns);
    	put_user_ns(ns->user_ns);
    	kfree(ns);
    }
    
    /*
     * Assign a sequence number so we can detect when we attempt to bind
     * mount a reference to an older mount namespace into the current
     * mount namespace, preventing reference counting loops.  A 64bit
     * number incrementing at 10Ghz will take 12,427 years to wrap which
     * is effectively never, so we can ignore the possibility.
     */
    static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
    
    static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
    {
    	struct mnt_namespace *new_ns;
    	int ret;
    
    	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
    	if (!new_ns)
    		return ERR_PTR(-ENOMEM);
    	ret = ns_alloc_inum(&new_ns->ns);
    	if (ret) {
    		kfree(new_ns);
    		return ERR_PTR(ret);
    	}
    	new_ns->ns.ops = &mntns_operations;
    	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
    	atomic_set(&new_ns->count, 1);
    	new_ns->root = NULL;
    	INIT_LIST_HEAD(&new_ns->list);
    	init_waitqueue_head(&new_ns->poll);
    	new_ns->event = 0;
    	new_ns->user_ns = get_user_ns(user_ns);
    	return new_ns;
    }
    
    struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
    		struct user_namespace *user_ns, struct fs_struct *new_fs)
    {
    	struct mnt_namespace *new_ns;
    	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
    	struct mount *p, *q;
    	struct mount *old;
    	struct mount *new;
    	int copy_flags;
    
    	BUG_ON(!ns);
    
    	if (likely(!(flags & CLONE_NEWNS))) {
    		get_mnt_ns(ns);
    		return ns;
    	}
    
    	old = ns->root;
    
    	new_ns = alloc_mnt_ns(user_ns);
    	if (IS_ERR(new_ns))
    		return new_ns;
    
    	namespace_lock();
    	/* First pass: copy the tree topology */
    	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
    	if (user_ns != ns->user_ns)
    		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
    	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
    	if (IS_ERR(new)) {
    		namespace_unlock();
    		free_mnt_ns(new_ns);
    		return ERR_CAST(new);
    	}
    	new_ns->root = new;
    	list_add_tail(&new_ns->list, &new->mnt_list);
    
    	/*
    	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
    	 * as belonging to new namespace.  We have already acquired a private
    	 * fs_struct, so tsk->fs->lock is not needed.
    	 */
    	p = old;
    	q = new;
    	while (p) {
    		q->mnt_ns = new_ns;
    		if (new_fs) {
    			if (&p->mnt == new_fs->root.mnt) {
    				new_fs->root.mnt = mntget(&q->mnt);
    				rootmnt = &p->mnt;
    			}
    			if (&p->mnt == new_fs->pwd.mnt) {
    				new_fs->pwd.mnt = mntget(&q->mnt);
    				pwdmnt = &p->mnt;
    			}
    		}
    		p = next_mnt(p, old);
    		q = next_mnt(q, new);
    		if (!q)
    			break;
    		while (p->mnt.mnt_root != q->mnt.mnt_root)
    			p = next_mnt(p, old);
    	}
    	namespace_unlock();
    
    	if (rootmnt)
    		mntput(rootmnt);
    	if (pwdmnt)
    		mntput(pwdmnt);
    
    	return new_ns;
    }
    
    /**
     * create_mnt_ns - creates a private namespace and adds a root filesystem
     * @mnt: pointer to the new root filesystem mountpoint
     */
    static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
    {
    	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
    	if (!IS_ERR(new_ns)) {
    		struct mount *mnt = real_mount(m);
    		mnt->mnt_ns = new_ns;
    		new_ns->root = mnt;
    		list_add(&mnt->mnt_list, &new_ns->list);
    	} else {
    		mntput(m);
    	}
    	return new_ns;
    }
    
    struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
    {
    	struct mnt_namespace *ns;
    	struct super_block *s;
    	struct path path;
    	int err;
    
    	ns = create_mnt_ns(mnt);
    	if (IS_ERR(ns))
    		return ERR_CAST(ns);
    
    	err = vfs_path_lookup(mnt->mnt_root, mnt,
    			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
    
    	put_mnt_ns(ns);
    
    	if (err)
    		return ERR_PTR(err);
    
    	/* trade a vfsmount reference for active sb one */
    	s = path.mnt->mnt_sb;
    	atomic_inc(&s->s_active);
    	mntput(path.mnt);
    	/* lock the sucker */
    	down_write(&s->s_umount);
    	/* ... and return the root of (sub)tree on it */
    	return path.dentry;
    }
    EXPORT_SYMBOL(mount_subtree);
    
    SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
    		char __user *, type, unsigned long, flags, void __user *, data)
    {
    	int ret;
    	char *kernel_type;
    	char *kernel_dev;
    	unsigned long data_page;
    
    	kernel_type = copy_mount_string(type);
    	ret = PTR_ERR(kernel_type);
    	if (IS_ERR(kernel_type))
    		goto out_type;
    
    	kernel_dev = copy_mount_string(dev_name);
    	ret = PTR_ERR(kernel_dev);
    	if (IS_ERR(kernel_dev))
    		goto out_dev;
    
    	ret = copy_mount_options(data, &data_page);
    	if (ret < 0)
    		goto out_data;
    
    	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
    		(void *) data_page);
    
    	free_page(data_page);
    out_data:
    	kfree(kernel_dev);
    out_dev:
    	kfree(kernel_type);
    out_type:
    	return ret;
    }
    
    /*
     * Return true if path is reachable from root
     *
     * namespace_sem or mount_lock is held
     */
    bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
    			 const struct path *root)
    {
    	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
    		dentry = mnt->mnt_mountpoint;
    		mnt = mnt->mnt_parent;
    	}
    	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
    }
    
    int path_is_under(struct path *path1, struct path *path2)
    {
    	int res;
    	read_seqlock_excl(&mount_lock);
    	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
    	read_sequnlock_excl(&mount_lock);
    	return res;
    }
    EXPORT_SYMBOL(path_is_under);
    
    /*
     * pivot_root Semantics:
     * Moves the root file system of the current process to the directory put_old,
     * makes new_root as the new root file system of the current process, and sets
     * root/cwd of all processes which had them on the current root to new_root.
     *
     * Restrictions:
     * The new_root and put_old must be directories, and  must not be on the
     * same file  system as the current process root. The put_old  must  be
     * underneath new_root,  i.e. adding a non-zero number of /.. to the string
     * pointed to by put_old must yield the same directory as new_root. No other
     * file system may be mounted on put_old. After all, new_root is a mountpoint.
     *
     * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
     * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
     * in this situation.
     *
     * Notes:
     *  - we don't move root/cwd if they are not at the root (reason: if something
     *    cared enough to change them, it's probably wrong to force them elsewhere)
     *  - it's okay to pick a root that isn't the root of a file system, e.g.
     *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
     *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
     *    first.
     */
    SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
    		const char __user *, put_old)
    {
    	struct path new, old, parent_path, root_parent, root;
    	struct mount *new_mnt, *root_mnt, *old_mnt;
    	struct mountpoint *old_mp, *root_mp;
    	int error;
    
    	if (!may_mount())
    		return -EPERM;
    
    	error = user_path_dir(new_root, &new);
    	if (error)
    		goto out0;
    
    	error = user_path_dir(put_old, &old);
    	if (error)
    		goto out1;
    
    	error = security_sb_pivotroot(&old, &new);
    	if (error)
    		goto out2;
    
    	get_fs_root(current->fs, &root);
    	old_mp = lock_mount(&old);
    	error = PTR_ERR(old_mp);
    	if (IS_ERR(old_mp))
    		goto out3;
    
    	error = -EINVAL;
    	new_mnt = real_mount(new.mnt);
    	root_mnt = real_mount(root.mnt);
    	old_mnt = real_mount(old.mnt);
    	if (IS_MNT_SHARED(old_mnt) ||
    		IS_MNT_SHARED(new_mnt->mnt_parent) ||
    		IS_MNT_SHARED(root_mnt->mnt_parent))
    		goto out4;
    	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
    		goto out4;
    	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
    		goto out4;
    	error = -ENOENT;
    	if (d_unlinked(new.dentry))
    		goto out4;
    	error = -EBUSY;
    	if (new_mnt == root_mnt || old_mnt == root_mnt)
    		goto out4; /* loop, on the same file system  */
    	error = -EINVAL;
    	if (root.mnt->mnt_root != root.dentry)
    		goto out4; /* not a mountpoint */
    	if (!mnt_has_parent(root_mnt))
    		goto out4; /* not attached */
    	root_mp = root_mnt->mnt_mp;
    	if (new.mnt->mnt_root != new.dentry)
    		goto out4; /* not a mountpoint */
    	if (!mnt_has_parent(new_mnt))
    		goto out4; /* not attached */
    	/* make sure we can reach put_old from new_root */
    	if (!is_path_reachable(old_mnt, old.dentry, &new))
    		goto out4;
    	/* make certain new is below the root */
    	if (!is_path_reachable(new_mnt, new.dentry, &root))
    		goto out4;
    	root_mp->m_count++; /* pin it so it won't go away */
    	lock_mount_hash();
    	detach_mnt(new_mnt, &parent_path);
    	detach_mnt(root_mnt, &root_parent);
    	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
    		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
    		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
    	}
    	/* mount old root on put_old */
    	attach_mnt(root_mnt, old_mnt, old_mp);
    	/* mount new_root on / */
    	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
    	touch_mnt_namespace(current->nsproxy->mnt_ns);
    	/* A moved mount should not expire automatically */
    	list_del_init(&new_mnt->mnt_expire);
    	unlock_mount_hash();
    	chroot_fs_refs(&root, &new);
    	put_mountpoint(root_mp);
    	error = 0;
    out4:
    	unlock_mount(old_mp);
    	if (!error) {
    		path_put(&root_parent);
    		path_put(&parent_path);
    	}
    out3:
    	path_put(&root);
    out2:
    	path_put(&old);
    out1:
    	path_put(&new);
    out0:
    	return error;
    }
    
    static void __init init_mount_tree(void)
    {
    	struct vfsmount *mnt;
    	struct mnt_namespace *ns;
    	struct path root;
    	struct file_system_type *type;
    
    	type = get_fs_type("rootfs");
    	if (!type)
    		panic("Can't find rootfs type");
    	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
    	put_filesystem(type);
    	if (IS_ERR(mnt))
    		panic("Can't create rootfs");
    
    	ns = create_mnt_ns(mnt);
    	if (IS_ERR(ns))
    		panic("Can't allocate initial namespace");
    
    	init_task.nsproxy->mnt_ns = ns;
    	get_mnt_ns(ns);
    
    	root.mnt = mnt;
    	root.dentry = mnt->mnt_root;
    	mnt->mnt_flags |= MNT_LOCKED;
    
    	set_fs_pwd(current->fs, &root);
    	set_fs_root(current->fs, &root);
    }
    
    void __init mnt_init(void)
    {
    	unsigned u;
    	int err;
    
    	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
    			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
    
    	mount_hashtable = alloc_large_system_hash("Mount-cache",
    				sizeof(struct hlist_head),
    				mhash_entries, 19,
    				0,
    				&m_hash_shift, &m_hash_mask, 0, 0);
    	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
    				sizeof(struct hlist_head),
    				mphash_entries, 19,
    				0,
    				&mp_hash_shift, &mp_hash_mask, 0, 0);
    
    	if (!mount_hashtable || !mountpoint_hashtable)
    		panic("Failed to allocate mount hash table\n");
    
    	for (u = 0; u <= m_hash_mask; u++)
    		INIT_HLIST_HEAD(&mount_hashtable[u]);
    	for (u = 0; u <= mp_hash_mask; u++)
    		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
    
    	kernfs_init();
    
    	err = sysfs_init();
    	if (err)
    		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
    			__func__, err);
    	fs_kobj = kobject_create_and_add("fs", NULL);
    	if (!fs_kobj)
    		printk(KERN_WARNING "%s: kobj create error\n", __func__);
    	init_rootfs();
    	init_mount_tree();
    }
    
    void put_mnt_ns(struct mnt_namespace *ns)
    {
    	if (!atomic_dec_and_test(&ns->count))
    		return;
    	drop_collected_mounts(&ns->root->mnt);
    	free_mnt_ns(ns);
    }
    
    struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
    {
    	struct vfsmount *mnt;
    	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
    	if (!IS_ERR(mnt)) {
    		/*
    		 * it is a longterm mount, don't release mnt until
    		 * we unmount before file sys is unregistered
    		*/
    		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
    	}
    	return mnt;
    }
    EXPORT_SYMBOL_GPL(kern_mount_data);
    
    void kern_unmount(struct vfsmount *mnt)
    {
    	/* release long term mount so mount point can be released */
    	if (!IS_ERR_OR_NULL(mnt)) {
    		real_mount(mnt)->mnt_ns = NULL;
    		synchronize_rcu();	/* yecchhh... */
    		mntput(mnt);
    	}
    }
    EXPORT_SYMBOL(kern_unmount);
    
    bool our_mnt(struct vfsmount *mnt)
    {
    	return check_mnt(real_mount(mnt));
    }
    
    bool current_chrooted(void)
    {
    	/* Does the current process have a non-standard root */
    	struct path ns_root;
    	struct path fs_root;
    	bool chrooted;
    
    	/* Find the namespace root */
    	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
    	ns_root.dentry = ns_root.mnt->mnt_root;
    	path_get(&ns_root);
    	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
    		;
    
    	get_fs_root(current->fs, &fs_root);
    
    	chrooted = !path_equal(&fs_root, &ns_root);
    
    	path_put(&fs_root);
    	path_put(&ns_root);
    
    	return chrooted;
    }
    
    bool fs_fully_visible(struct file_system_type *type)
    {
    	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
    	struct mount *mnt;
    	bool visible = false;
    
    	if (unlikely(!ns))
    		return false;
    
    	down_read(&namespace_sem);
    	list_for_each_entry(mnt, &ns->list, mnt_list) {
    		struct mount *child;
    		if (mnt->mnt.mnt_sb->s_type != type)
    			continue;
    
    		/* This mount is not fully visible if it's root directory
    		 * is not the root directory of the filesystem.
    		 */
    		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
    			continue;
    
    		/* This mount is not fully visible if there are any child mounts
    		 * that cover anything except for empty directories.
    		 */
    		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
    			struct inode *inode = child->mnt_mountpoint->d_inode;
    			if (!S_ISDIR(inode->i_mode))
    				goto next;
    			if (inode->i_nlink > 2)
    				goto next;
    		}
    		visible = true;
    		goto found;
    	next:	;
    	}
    found:
    	up_read(&namespace_sem);
    	return visible;
    }
    
    static struct ns_common *mntns_get(struct task_struct *task)
    {
    	struct ns_common *ns = NULL;
    	struct nsproxy *nsproxy;
    
    	task_lock(task);
    	nsproxy = task->nsproxy;
    	if (nsproxy) {
    		ns = &nsproxy->mnt_ns->ns;
    		get_mnt_ns(to_mnt_ns(ns));
    	}
    	task_unlock(task);
    
    	return ns;
    }
    
    static void mntns_put(struct ns_common *ns)
    {
    	put_mnt_ns(to_mnt_ns(ns));
    }
    
    static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
    {
    	struct fs_struct *fs = current->fs;
    	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
    	struct path root;
    
    	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
    	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
    	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (fs->users != 1)
    		return -EINVAL;
    
    	get_mnt_ns(mnt_ns);
    	put_mnt_ns(nsproxy->mnt_ns);
    	nsproxy->mnt_ns = mnt_ns;
    
    	/* Find the root */
    	root.mnt    = &mnt_ns->root->mnt;
    	root.dentry = mnt_ns->root->mnt.mnt_root;
    	path_get(&root);
    	while(d_mountpoint(root.dentry) && follow_down_one(&root))
    		;
    
    	/* Update the pwd and root */
    	set_fs_pwd(fs, &root);
    	set_fs_root(fs, &root);
    
    	path_put(&root);
    	return 0;
    }
    
    const struct proc_ns_operations mntns_operations = {
    	.name		= "mnt",
    	.type		= CLONE_NEWNS,
    	.get		= mntns_get,
    	.put		= mntns_put,
    	.install	= mntns_install,
    };