Skip to content
Snippets Groups Projects
Select Git revision
  • ef504fa591aae6f6ebdf26edbe6ec0bfd32ea7d3
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

core.c

Blame
  • core.c 205.69 KiB
    /*
     *  kernel/sched/core.c
     *
     *  Kernel scheduler and related syscalls
     *
     *  Copyright (C) 1991-2002  Linus Torvalds
     *
     *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
     *		make semaphores SMP safe
     *  1998-11-19	Implemented schedule_timeout() and related stuff
     *		by Andrea Arcangeli
     *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
     *		hybrid priority-list and round-robin design with
     *		an array-switch method of distributing timeslices
     *		and per-CPU runqueues.  Cleanups and useful suggestions
     *		by Davide Libenzi, preemptible kernel bits by Robert Love.
     *  2003-09-03	Interactivity tuning by Con Kolivas.
     *  2004-04-02	Scheduler domains code by Nick Piggin
     *  2007-04-15  Work begun on replacing all interactivity tuning with a
     *              fair scheduling design by Con Kolivas.
     *  2007-05-05  Load balancing (smp-nice) and other improvements
     *              by Peter Williams
     *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
     *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
     *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
     *              Thomas Gleixner, Mike Kravetz
     */
    
    #include <linux/kasan.h>
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/nmi.h>
    #include <linux/init.h>
    #include <linux/uaccess.h>
    #include <linux/highmem.h>
    #include <asm/mmu_context.h>
    #include <linux/interrupt.h>
    #include <linux/capability.h>
    #include <linux/completion.h>
    #include <linux/kernel_stat.h>
    #include <linux/debug_locks.h>
    #include <linux/perf_event.h>
    #include <linux/security.h>
    #include <linux/notifier.h>
    #include <linux/profile.h>
    #include <linux/freezer.h>
    #include <linux/vmalloc.h>
    #include <linux/blkdev.h>
    #include <linux/delay.h>
    #include <linux/pid_namespace.h>
    #include <linux/smp.h>
    #include <linux/threads.h>
    #include <linux/timer.h>
    #include <linux/rcupdate.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/percpu.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/sysctl.h>
    #include <linux/syscalls.h>
    #include <linux/times.h>
    #include <linux/tsacct_kern.h>
    #include <linux/kprobes.h>
    #include <linux/delayacct.h>
    #include <linux/unistd.h>
    #include <linux/pagemap.h>
    #include <linux/hrtimer.h>
    #include <linux/tick.h>
    #include <linux/ctype.h>
    #include <linux/ftrace.h>
    #include <linux/slab.h>
    #include <linux/init_task.h>
    #include <linux/context_tracking.h>
    #include <linux/compiler.h>
    
    #include <asm/switch_to.h>
    #include <asm/tlb.h>
    #include <asm/irq_regs.h>
    #include <asm/mutex.h>
    #ifdef CONFIG_PARAVIRT
    #include <asm/paravirt.h>
    #endif
    
    #include "sched.h"
    #include "../workqueue_internal.h"
    #include "../smpboot.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/sched.h>
    
    DEFINE_MUTEX(sched_domains_mutex);
    DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
    
    static void update_rq_clock_task(struct rq *rq, s64 delta);
    
    void update_rq_clock(struct rq *rq)
    {
    	s64 delta;
    
    	lockdep_assert_held(&rq->lock);
    
    	if (rq->clock_skip_update & RQCF_ACT_SKIP)
    		return;
    
    	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
    	if (delta < 0)
    		return;
    	rq->clock += delta;
    	update_rq_clock_task(rq, delta);
    }
    
    /*
     * Debugging: various feature bits
     */
    
    #define SCHED_FEAT(name, enabled)	\
    	(1UL << __SCHED_FEAT_##name) * enabled |
    
    const_debug unsigned int sysctl_sched_features =
    #include "features.h"
    	0;
    
    #undef SCHED_FEAT
    
    /*
     * Number of tasks to iterate in a single balance run.
     * Limited because this is done with IRQs disabled.
     */
    const_debug unsigned int sysctl_sched_nr_migrate = 32;
    
    /*
     * period over which we average the RT time consumption, measured
     * in ms.
     *
     * default: 1s
     */
    const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
    
    /*
     * period over which we measure -rt task cpu usage in us.
     * default: 1s
     */
    unsigned int sysctl_sched_rt_period = 1000000;
    
    __read_mostly int scheduler_running;
    
    /*
     * part of the period that we allow rt tasks to run in us.
     * default: 0.95s
     */
    int sysctl_sched_rt_runtime = 950000;
    
    /* cpus with isolated domains */
    cpumask_var_t cpu_isolated_map;
    
    /*
     * this_rq_lock - lock this runqueue and disable interrupts.
     */
    static struct rq *this_rq_lock(void)
    	__acquires(rq->lock)
    {
    	struct rq *rq;
    
    	local_irq_disable();
    	rq = this_rq();
    	raw_spin_lock(&rq->lock);
    
    	return rq;
    }
    
    #ifdef CONFIG_SCHED_HRTICK
    /*
     * Use HR-timers to deliver accurate preemption points.
     */
    
    static void hrtick_clear(struct rq *rq)
    {
    	if (hrtimer_active(&rq->hrtick_timer))
    		hrtimer_cancel(&rq->hrtick_timer);
    }
    
    /*
     * High-resolution timer tick.
     * Runs from hardirq context with interrupts disabled.
     */
    static enum hrtimer_restart hrtick(struct hrtimer *timer)
    {
    	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
    
    	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
    
    	raw_spin_lock(&rq->lock);
    	update_rq_clock(rq);
    	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
    	raw_spin_unlock(&rq->lock);
    
    	return HRTIMER_NORESTART;
    }
    
    #ifdef CONFIG_SMP
    
    static void __hrtick_restart(struct rq *rq)
    {
    	struct hrtimer *timer = &rq->hrtick_timer;
    
    	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
    }
    
    /*
     * called from hardirq (IPI) context
     */
    static void __hrtick_start(void *arg)
    {
    	struct rq *rq = arg;
    
    	raw_spin_lock(&rq->lock);
    	__hrtick_restart(rq);
    	rq->hrtick_csd_pending = 0;
    	raw_spin_unlock(&rq->lock);
    }
    
    /*
     * Called to set the hrtick timer state.
     *
     * called with rq->lock held and irqs disabled
     */
    void hrtick_start(struct rq *rq, u64 delay)
    {
    	struct hrtimer *timer = &rq->hrtick_timer;
    	ktime_t time;
    	s64 delta;
    
    	/*
    	 * Don't schedule slices shorter than 10000ns, that just
    	 * doesn't make sense and can cause timer DoS.
    	 */
    	delta = max_t(s64, delay, 10000LL);
    	time = ktime_add_ns(timer->base->get_time(), delta);
    
    	hrtimer_set_expires(timer, time);
    
    	if (rq == this_rq()) {
    		__hrtick_restart(rq);
    	} else if (!rq->hrtick_csd_pending) {
    		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
    		rq->hrtick_csd_pending = 1;
    	}
    }
    
    static int
    hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
    {
    	int cpu = (int)(long)hcpu;
    
    	switch (action) {
    	case CPU_UP_CANCELED:
    	case CPU_UP_CANCELED_FROZEN:
    	case CPU_DOWN_PREPARE:
    	case CPU_DOWN_PREPARE_FROZEN:
    	case CPU_DEAD:
    	case CPU_DEAD_FROZEN:
    		hrtick_clear(cpu_rq(cpu));
    		return NOTIFY_OK;
    	}
    
    	return NOTIFY_DONE;
    }
    
    static __init void init_hrtick(void)
    {
    	hotcpu_notifier(hotplug_hrtick, 0);
    }
    #else
    /*
     * Called to set the hrtick timer state.
     *
     * called with rq->lock held and irqs disabled
     */
    void hrtick_start(struct rq *rq, u64 delay)
    {
    	/*
    	 * Don't schedule slices shorter than 10000ns, that just
    	 * doesn't make sense. Rely on vruntime for fairness.
    	 */
    	delay = max_t(u64, delay, 10000LL);
    	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
    		      HRTIMER_MODE_REL_PINNED);
    }
    
    static inline void init_hrtick(void)
    {
    }
    #endif /* CONFIG_SMP */
    
    static void init_rq_hrtick(struct rq *rq)
    {
    #ifdef CONFIG_SMP
    	rq->hrtick_csd_pending = 0;
    
    	rq->hrtick_csd.flags = 0;
    	rq->hrtick_csd.func = __hrtick_start;
    	rq->hrtick_csd.info = rq;
    #endif
    
    	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    	rq->hrtick_timer.function = hrtick;
    }
    #else	/* CONFIG_SCHED_HRTICK */
    static inline void hrtick_clear(struct rq *rq)
    {
    }
    
    static inline void init_rq_hrtick(struct rq *rq)
    {
    }
    
    static inline void init_hrtick(void)
    {
    }
    #endif	/* CONFIG_SCHED_HRTICK */
    
    #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
    /*
     * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
     * this avoids any races wrt polling state changes and thereby avoids
     * spurious IPIs.
     */
    static bool set_nr_and_not_polling(struct task_struct *p)
    {
    	struct thread_info *ti = task_thread_info(p);
    	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
    }
    
    /*
     * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
     *
     * If this returns true, then the idle task promises to call
     * sched_ttwu_pending() and reschedule soon.
     */
    static bool set_nr_if_polling(struct task_struct *p)
    {
    	struct thread_info *ti = task_thread_info(p);
    	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
    
    	for (;;) {
    		if (!(val & _TIF_POLLING_NRFLAG))
    			return false;
    		if (val & _TIF_NEED_RESCHED)
    			return true;
    		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
    		if (old == val)
    			break;
    		val = old;
    	}
    	return true;
    }
    
    #else
    static bool set_nr_and_not_polling(struct task_struct *p)
    {
    	set_tsk_need_resched(p);
    	return true;
    }
    
    #ifdef CONFIG_SMP
    static bool set_nr_if_polling(struct task_struct *p)
    {
    	return false;
    }
    #endif
    #endif
    
    void wake_q_add(struct wake_q_head *head, struct task_struct *task)
    {
    	struct wake_q_node *node = &task->wake_q;
    
    	/*
    	 * Atomically grab the task, if ->wake_q is !nil already it means
    	 * its already queued (either by us or someone else) and will get the
    	 * wakeup due to that.
    	 *
    	 * This cmpxchg() implies a full barrier, which pairs with the write
    	 * barrier implied by the wakeup in wake_up_list().
    	 */
    	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
    		return;
    
    	get_task_struct(task);
    
    	/*
    	 * The head is context local, there can be no concurrency.
    	 */
    	*head->lastp = node;
    	head->lastp = &node->next;
    }
    
    void wake_up_q(struct wake_q_head *head)
    {
    	struct wake_q_node *node = head->first;
    
    	while (node != WAKE_Q_TAIL) {
    		struct task_struct *task;
    
    		task = container_of(node, struct task_struct, wake_q);
    		BUG_ON(!task);
    		/* task can safely be re-inserted now */
    		node = node->next;
    		task->wake_q.next = NULL;
    
    		/*
    		 * wake_up_process() implies a wmb() to pair with the queueing
    		 * in wake_q_add() so as not to miss wakeups.
    		 */
    		wake_up_process(task);
    		put_task_struct(task);
    	}
    }
    
    /*
     * resched_curr - mark rq's current task 'to be rescheduled now'.
     *
     * On UP this means the setting of the need_resched flag, on SMP it
     * might also involve a cross-CPU call to trigger the scheduler on
     * the target CPU.
     */
    void resched_curr(struct rq *rq)
    {
    	struct task_struct *curr = rq->curr;
    	int cpu;
    
    	lockdep_assert_held(&rq->lock);
    
    	if (test_tsk_need_resched(curr))
    		return;
    
    	cpu = cpu_of(rq);
    
    	if (cpu == smp_processor_id()) {
    		set_tsk_need_resched(curr);
    		set_preempt_need_resched();
    		return;
    	}
    
    	if (set_nr_and_not_polling(curr))
    		smp_send_reschedule(cpu);
    	else
    		trace_sched_wake_idle_without_ipi(cpu);
    }
    
    void resched_cpu(int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    	unsigned long flags;
    
    	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
    		return;
    	resched_curr(rq);
    	raw_spin_unlock_irqrestore(&rq->lock, flags);
    }
    
    #ifdef CONFIG_SMP
    #ifdef CONFIG_NO_HZ_COMMON
    /*
     * In the semi idle case, use the nearest busy cpu for migrating timers
     * from an idle cpu.  This is good for power-savings.
     *
     * We don't do similar optimization for completely idle system, as
     * selecting an idle cpu will add more delays to the timers than intended
     * (as that cpu's timer base may not be uptodate wrt jiffies etc).
     */
    int get_nohz_timer_target(void)
    {
    	int i, cpu = smp_processor_id();
    	struct sched_domain *sd;
    
    	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
    		return cpu;
    
    	rcu_read_lock();
    	for_each_domain(cpu, sd) {
    		for_each_cpu(i, sched_domain_span(sd)) {
    			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
    				cpu = i;
    				goto unlock;
    			}
    		}
    	}
    
    	if (!is_housekeeping_cpu(cpu))
    		cpu = housekeeping_any_cpu();
    unlock:
    	rcu_read_unlock();
    	return cpu;
    }
    /*
     * When add_timer_on() enqueues a timer into the timer wheel of an
     * idle CPU then this timer might expire before the next timer event
     * which is scheduled to wake up that CPU. In case of a completely
     * idle system the next event might even be infinite time into the
     * future. wake_up_idle_cpu() ensures that the CPU is woken up and
     * leaves the inner idle loop so the newly added timer is taken into
     * account when the CPU goes back to idle and evaluates the timer
     * wheel for the next timer event.
     */
    static void wake_up_idle_cpu(int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    
    	if (cpu == smp_processor_id())
    		return;
    
    	if (set_nr_and_not_polling(rq->idle))
    		smp_send_reschedule(cpu);
    	else
    		trace_sched_wake_idle_without_ipi(cpu);
    }
    
    static bool wake_up_full_nohz_cpu(int cpu)
    {
    	/*
    	 * We just need the target to call irq_exit() and re-evaluate
    	 * the next tick. The nohz full kick at least implies that.
    	 * If needed we can still optimize that later with an
    	 * empty IRQ.
    	 */
    	if (tick_nohz_full_cpu(cpu)) {
    		if (cpu != smp_processor_id() ||
    		    tick_nohz_tick_stopped())
    			tick_nohz_full_kick_cpu(cpu);
    		return true;
    	}
    
    	return false;
    }
    
    void wake_up_nohz_cpu(int cpu)
    {
    	if (!wake_up_full_nohz_cpu(cpu))
    		wake_up_idle_cpu(cpu);
    }
    
    static inline bool got_nohz_idle_kick(void)
    {
    	int cpu = smp_processor_id();
    
    	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
    		return false;
    
    	if (idle_cpu(cpu) && !need_resched())
    		return true;
    
    	/*
    	 * We can't run Idle Load Balance on this CPU for this time so we
    	 * cancel it and clear NOHZ_BALANCE_KICK
    	 */
    	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
    	return false;
    }
    
    #else /* CONFIG_NO_HZ_COMMON */
    
    static inline bool got_nohz_idle_kick(void)
    {
    	return false;
    }
    
    #endif /* CONFIG_NO_HZ_COMMON */
    
    #ifdef CONFIG_NO_HZ_FULL
    bool sched_can_stop_tick(struct rq *rq)
    {
    	int fifo_nr_running;
    
    	/* Deadline tasks, even if single, need the tick */
    	if (rq->dl.dl_nr_running)
    		return false;
    
    	/*
    	 * FIFO realtime policy runs the highest priority task (after DEADLINE).
    	 * Other runnable tasks are of a lower priority. The scheduler tick
    	 * isn't needed.
    	 */
    	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
    	if (fifo_nr_running)
    		return true;
    
    	/*
    	 * Round-robin realtime tasks time slice with other tasks at the same
    	 * realtime priority.
    	 */
    	if (rq->rt.rr_nr_running) {
    		if (rq->rt.rr_nr_running == 1)
    			return true;
    		else
    			return false;
    	}
    
    	/* Normal multitasking need periodic preemption checks */
    	if (rq->cfs.nr_running > 1)
    		return false;
    
    	return true;
    }
    #endif /* CONFIG_NO_HZ_FULL */
    
    void sched_avg_update(struct rq *rq)
    {
    	s64 period = sched_avg_period();
    
    	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
    		/*
    		 * Inline assembly required to prevent the compiler
    		 * optimising this loop into a divmod call.
    		 * See __iter_div_u64_rem() for another example of this.
    		 */
    		asm("" : "+rm" (rq->age_stamp));
    		rq->age_stamp += period;
    		rq->rt_avg /= 2;
    	}
    }
    
    #endif /* CONFIG_SMP */
    
    #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
    			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
    /*
     * Iterate task_group tree rooted at *from, calling @down when first entering a
     * node and @up when leaving it for the final time.
     *
     * Caller must hold rcu_lock or sufficient equivalent.
     */
    int walk_tg_tree_from(struct task_group *from,
    			     tg_visitor down, tg_visitor up, void *data)
    {
    	struct task_group *parent, *child;
    	int ret;
    
    	parent = from;
    
    down:
    	ret = (*down)(parent, data);
    	if (ret)
    		goto out;
    	list_for_each_entry_rcu(child, &parent->children, siblings) {
    		parent = child;
    		goto down;
    
    up:
    		continue;
    	}
    	ret = (*up)(parent, data);
    	if (ret || parent == from)
    		goto out;
    
    	child = parent;
    	parent = parent->parent;
    	if (parent)
    		goto up;
    out:
    	return ret;
    }
    
    int tg_nop(struct task_group *tg, void *data)
    {
    	return 0;
    }
    #endif
    
    static void set_load_weight(struct task_struct *p)
    {
    	int prio = p->static_prio - MAX_RT_PRIO;
    	struct load_weight *load = &p->se.load;
    
    	/*
    	 * SCHED_IDLE tasks get minimal weight:
    	 */
    	if (idle_policy(p->policy)) {
    		load->weight = scale_load(WEIGHT_IDLEPRIO);
    		load->inv_weight = WMULT_IDLEPRIO;
    		return;
    	}
    
    	load->weight = scale_load(sched_prio_to_weight[prio]);
    	load->inv_weight = sched_prio_to_wmult[prio];
    }
    
    static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
    {
    	update_rq_clock(rq);
    	if (!(flags & ENQUEUE_RESTORE))
    		sched_info_queued(rq, p);
    	p->sched_class->enqueue_task(rq, p, flags);
    }
    
    static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
    {
    	update_rq_clock(rq);
    	if (!(flags & DEQUEUE_SAVE))
    		sched_info_dequeued(rq, p);
    	p->sched_class->dequeue_task(rq, p, flags);
    }
    
    void activate_task(struct rq *rq, struct task_struct *p, int flags)
    {
    	if (task_contributes_to_load(p))
    		rq->nr_uninterruptible--;
    
    	enqueue_task(rq, p, flags);
    }
    
    void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
    {
    	if (task_contributes_to_load(p))
    		rq->nr_uninterruptible++;
    
    	dequeue_task(rq, p, flags);
    }
    
    static void update_rq_clock_task(struct rq *rq, s64 delta)
    {
    /*
     * In theory, the compile should just see 0 here, and optimize out the call
     * to sched_rt_avg_update. But I don't trust it...
     */
    #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
    	s64 steal = 0, irq_delta = 0;
    #endif
    #ifdef CONFIG_IRQ_TIME_ACCOUNTING
    	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
    
    	/*
    	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
    	 * this case when a previous update_rq_clock() happened inside a
    	 * {soft,}irq region.
    	 *
    	 * When this happens, we stop ->clock_task and only update the
    	 * prev_irq_time stamp to account for the part that fit, so that a next
    	 * update will consume the rest. This ensures ->clock_task is
    	 * monotonic.
    	 *
    	 * It does however cause some slight miss-attribution of {soft,}irq
    	 * time, a more accurate solution would be to update the irq_time using
    	 * the current rq->clock timestamp, except that would require using
    	 * atomic ops.
    	 */
    	if (irq_delta > delta)
    		irq_delta = delta;
    
    	rq->prev_irq_time += irq_delta;
    	delta -= irq_delta;
    #endif
    #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
    	if (static_key_false((&paravirt_steal_rq_enabled))) {
    		steal = paravirt_steal_clock(cpu_of(rq));
    		steal -= rq->prev_steal_time_rq;
    
    		if (unlikely(steal > delta))
    			steal = delta;
    
    		rq->prev_steal_time_rq += steal;
    		delta -= steal;
    	}
    #endif
    
    	rq->clock_task += delta;
    
    #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
    	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
    		sched_rt_avg_update(rq, irq_delta + steal);
    #endif
    }
    
    void sched_set_stop_task(int cpu, struct task_struct *stop)
    {
    	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
    	struct task_struct *old_stop = cpu_rq(cpu)->stop;
    
    	if (stop) {
    		/*
    		 * Make it appear like a SCHED_FIFO task, its something
    		 * userspace knows about and won't get confused about.
    		 *
    		 * Also, it will make PI more or less work without too
    		 * much confusion -- but then, stop work should not
    		 * rely on PI working anyway.
    		 */
    		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
    
    		stop->sched_class = &stop_sched_class;
    	}
    
    	cpu_rq(cpu)->stop = stop;
    
    	if (old_stop) {
    		/*
    		 * Reset it back to a normal scheduling class so that
    		 * it can die in pieces.
    		 */
    		old_stop->sched_class = &rt_sched_class;
    	}
    }
    
    /*
     * __normal_prio - return the priority that is based on the static prio
     */
    static inline int __normal_prio(struct task_struct *p)
    {
    	return p->static_prio;
    }
    
    /*
     * Calculate the expected normal priority: i.e. priority
     * without taking RT-inheritance into account. Might be
     * boosted by interactivity modifiers. Changes upon fork,
     * setprio syscalls, and whenever the interactivity
     * estimator recalculates.
     */
    static inline int normal_prio(struct task_struct *p)
    {
    	int prio;
    
    	if (task_has_dl_policy(p))
    		prio = MAX_DL_PRIO-1;
    	else if (task_has_rt_policy(p))
    		prio = MAX_RT_PRIO-1 - p->rt_priority;
    	else
    		prio = __normal_prio(p);
    	return prio;
    }
    
    /*
     * Calculate the current priority, i.e. the priority
     * taken into account by the scheduler. This value might
     * be boosted by RT tasks, or might be boosted by
     * interactivity modifiers. Will be RT if the task got
     * RT-boosted. If not then it returns p->normal_prio.
     */
    static int effective_prio(struct task_struct *p)
    {
    	p->normal_prio = normal_prio(p);
    	/*
    	 * If we are RT tasks or we were boosted to RT priority,
    	 * keep the priority unchanged. Otherwise, update priority
    	 * to the normal priority:
    	 */
    	if (!rt_prio(p->prio))
    		return p->normal_prio;
    	return p->prio;
    }
    
    /**
     * task_curr - is this task currently executing on a CPU?
     * @p: the task in question.
     *
     * Return: 1 if the task is currently executing. 0 otherwise.
     */
    inline int task_curr(const struct task_struct *p)
    {
    	return cpu_curr(task_cpu(p)) == p;
    }
    
    /*
     * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
     * use the balance_callback list if you want balancing.
     *
     * this means any call to check_class_changed() must be followed by a call to
     * balance_callback().
     */
    static inline void check_class_changed(struct rq *rq, struct task_struct *p,
    				       const struct sched_class *prev_class,
    				       int oldprio)
    {
    	if (prev_class != p->sched_class) {
    		if (prev_class->switched_from)
    			prev_class->switched_from(rq, p);
    
    		p->sched_class->switched_to(rq, p);
    	} else if (oldprio != p->prio || dl_task(p))
    		p->sched_class->prio_changed(rq, p, oldprio);
    }
    
    void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
    {
    	const struct sched_class *class;
    
    	if (p->sched_class == rq->curr->sched_class) {
    		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
    	} else {
    		for_each_class(class) {
    			if (class == rq->curr->sched_class)
    				break;
    			if (class == p->sched_class) {
    				resched_curr(rq);
    				break;
    			}
    		}
    	}
    
    	/*
    	 * A queue event has occurred, and we're going to schedule.  In
    	 * this case, we can save a useless back to back clock update.
    	 */
    	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
    		rq_clock_skip_update(rq, true);
    }
    
    #ifdef CONFIG_SMP
    /*
     * This is how migration works:
     *
     * 1) we invoke migration_cpu_stop() on the target CPU using
     *    stop_one_cpu().
     * 2) stopper starts to run (implicitly forcing the migrated thread
     *    off the CPU)
     * 3) it checks whether the migrated task is still in the wrong runqueue.
     * 4) if it's in the wrong runqueue then the migration thread removes
     *    it and puts it into the right queue.
     * 5) stopper completes and stop_one_cpu() returns and the migration
     *    is done.
     */
    
    /*
     * move_queued_task - move a queued task to new rq.
     *
     * Returns (locked) new rq. Old rq's lock is released.
     */
    static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
    {
    	lockdep_assert_held(&rq->lock);
    
    	p->on_rq = TASK_ON_RQ_MIGRATING;
    	dequeue_task(rq, p, 0);
    	set_task_cpu(p, new_cpu);
    	raw_spin_unlock(&rq->lock);
    
    	rq = cpu_rq(new_cpu);
    
    	raw_spin_lock(&rq->lock);
    	BUG_ON(task_cpu(p) != new_cpu);
    	enqueue_task(rq, p, 0);
    	p->on_rq = TASK_ON_RQ_QUEUED;
    	check_preempt_curr(rq, p, 0);
    
    	return rq;
    }
    
    struct migration_arg {
    	struct task_struct *task;
    	int dest_cpu;
    };
    
    /*
     * Move (not current) task off this cpu, onto dest cpu. We're doing
     * this because either it can't run here any more (set_cpus_allowed()
     * away from this CPU, or CPU going down), or because we're
     * attempting to rebalance this task on exec (sched_exec).
     *
     * So we race with normal scheduler movements, but that's OK, as long
     * as the task is no longer on this CPU.
     */
    static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
    {
    	if (unlikely(!cpu_active(dest_cpu)))
    		return rq;
    
    	/* Affinity changed (again). */
    	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
    		return rq;
    
    	rq = move_queued_task(rq, p, dest_cpu);
    
    	return rq;
    }
    
    /*
     * migration_cpu_stop - this will be executed by a highprio stopper thread
     * and performs thread migration by bumping thread off CPU then
     * 'pushing' onto another runqueue.
     */
    static int migration_cpu_stop(void *data)
    {
    	struct migration_arg *arg = data;
    	struct task_struct *p = arg->task;
    	struct rq *rq = this_rq();
    
    	/*
    	 * The original target cpu might have gone down and we might
    	 * be on another cpu but it doesn't matter.
    	 */
    	local_irq_disable();
    	/*
    	 * We need to explicitly wake pending tasks before running
    	 * __migrate_task() such that we will not miss enforcing cpus_allowed
    	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
    	 */
    	sched_ttwu_pending();
    
    	raw_spin_lock(&p->pi_lock);
    	raw_spin_lock(&rq->lock);
    	/*
    	 * If task_rq(p) != rq, it cannot be migrated here, because we're
    	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
    	 * we're holding p->pi_lock.
    	 */
    	if (task_rq(p) == rq && task_on_rq_queued(p))
    		rq = __migrate_task(rq, p, arg->dest_cpu);
    	raw_spin_unlock(&rq->lock);
    	raw_spin_unlock(&p->pi_lock);
    
    	local_irq_enable();
    	return 0;
    }
    
    /*
     * sched_class::set_cpus_allowed must do the below, but is not required to
     * actually call this function.
     */
    void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
    {
    	cpumask_copy(&p->cpus_allowed, new_mask);
    	p->nr_cpus_allowed = cpumask_weight(new_mask);
    }
    
    void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
    {
    	struct rq *rq = task_rq(p);
    	bool queued, running;
    
    	lockdep_assert_held(&p->pi_lock);
    
    	queued = task_on_rq_queued(p);
    	running = task_current(rq, p);
    
    	if (queued) {
    		/*
    		 * Because __kthread_bind() calls this on blocked tasks without
    		 * holding rq->lock.
    		 */
    		lockdep_assert_held(&rq->lock);
    		dequeue_task(rq, p, DEQUEUE_SAVE);
    	}
    	if (running)
    		put_prev_task(rq, p);
    
    	p->sched_class->set_cpus_allowed(p, new_mask);
    
    	if (running)
    		p->sched_class->set_curr_task(rq);
    	if (queued)
    		enqueue_task(rq, p, ENQUEUE_RESTORE);
    }
    
    /*
     * Change a given task's CPU affinity. Migrate the thread to a
     * proper CPU and schedule it away if the CPU it's executing on
     * is removed from the allowed bitmask.
     *
     * NOTE: the caller must have a valid reference to the task, the
     * task must not exit() & deallocate itself prematurely. The
     * call is not atomic; no spinlocks may be held.
     */
    static int __set_cpus_allowed_ptr(struct task_struct *p,
    				  const struct cpumask *new_mask, bool check)
    {
    	unsigned long flags;
    	struct rq *rq;
    	unsigned int dest_cpu;
    	int ret = 0;
    
    	rq = task_rq_lock(p, &flags);
    
    	/*
    	 * Must re-check here, to close a race against __kthread_bind(),
    	 * sched_setaffinity() is not guaranteed to observe the flag.
    	 */
    	if (check && (p->flags & PF_NO_SETAFFINITY)) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	if (cpumask_equal(&p->cpus_allowed, new_mask))
    		goto out;
    
    	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	do_set_cpus_allowed(p, new_mask);
    
    	/* Can the task run on the task's current CPU? If so, we're done */
    	if (cpumask_test_cpu(task_cpu(p), new_mask))
    		goto out;
    
    	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
    	if (task_running(rq, p) || p->state == TASK_WAKING) {
    		struct migration_arg arg = { p, dest_cpu };
    		/* Need help from migration thread: drop lock and wait. */
    		task_rq_unlock(rq, p, &flags);
    		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
    		tlb_migrate_finish(p->mm);
    		return 0;
    	} else if (task_on_rq_queued(p)) {
    		/*
    		 * OK, since we're going to drop the lock immediately
    		 * afterwards anyway.
    		 */
    		lockdep_unpin_lock(&rq->lock);
    		rq = move_queued_task(rq, p, dest_cpu);
    		lockdep_pin_lock(&rq->lock);
    	}
    out:
    	task_rq_unlock(rq, p, &flags);
    
    	return ret;
    }
    
    int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
    {
    	return __set_cpus_allowed_ptr(p, new_mask, false);
    }
    EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
    
    void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
    {
    #ifdef CONFIG_SCHED_DEBUG
    	/*
    	 * We should never call set_task_cpu() on a blocked task,
    	 * ttwu() will sort out the placement.
    	 */
    	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
    			!p->on_rq);
    
    	/*
    	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
    	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
    	 * time relying on p->on_rq.
    	 */
    	WARN_ON_ONCE(p->state == TASK_RUNNING &&
    		     p->sched_class == &fair_sched_class &&
    		     (p->on_rq && !task_on_rq_migrating(p)));
    
    #ifdef CONFIG_LOCKDEP
    	/*
    	 * The caller should hold either p->pi_lock or rq->lock, when changing
    	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
    	 *
    	 * sched_move_task() holds both and thus holding either pins the cgroup,
    	 * see task_group().
    	 *
    	 * Furthermore, all task_rq users should acquire both locks, see
    	 * task_rq_lock().
    	 */
    	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
    				      lockdep_is_held(&task_rq(p)->lock)));
    #endif
    #endif
    
    	trace_sched_migrate_task(p, new_cpu);
    
    	if (task_cpu(p) != new_cpu) {
    		if (p->sched_class->migrate_task_rq)
    			p->sched_class->migrate_task_rq(p);
    		p->se.nr_migrations++;
    		perf_event_task_migrate(p);
    	}
    
    	__set_task_cpu(p, new_cpu);
    }
    
    static void __migrate_swap_task(struct task_struct *p, int cpu)
    {
    	if (task_on_rq_queued(p)) {
    		struct rq *src_rq, *dst_rq;
    
    		src_rq = task_rq(p);
    		dst_rq = cpu_rq(cpu);
    
    		p->on_rq = TASK_ON_RQ_MIGRATING;
    		deactivate_task(src_rq, p, 0);
    		set_task_cpu(p, cpu);
    		activate_task(dst_rq, p, 0);
    		p->on_rq = TASK_ON_RQ_QUEUED;
    		check_preempt_curr(dst_rq, p, 0);
    	} else {
    		/*
    		 * Task isn't running anymore; make it appear like we migrated
    		 * it before it went to sleep. This means on wakeup we make the
    		 * previous cpu our targer instead of where it really is.
    		 */
    		p->wake_cpu = cpu;
    	}
    }
    
    struct migration_swap_arg {
    	struct task_struct *src_task, *dst_task;
    	int src_cpu, dst_cpu;
    };
    
    static int migrate_swap_stop(void *data)
    {
    	struct migration_swap_arg *arg = data;
    	struct rq *src_rq, *dst_rq;
    	int ret = -EAGAIN;
    
    	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
    		return -EAGAIN;
    
    	src_rq = cpu_rq(arg->src_cpu);
    	dst_rq = cpu_rq(arg->dst_cpu);
    
    	double_raw_lock(&arg->src_task->pi_lock,
    			&arg->dst_task->pi_lock);
    	double_rq_lock(src_rq, dst_rq);
    
    	if (task_cpu(arg->dst_task) != arg->dst_cpu)
    		goto unlock;
    
    	if (task_cpu(arg->src_task) != arg->src_cpu)
    		goto unlock;
    
    	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
    		goto unlock;
    
    	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
    		goto unlock;
    
    	__migrate_swap_task(arg->src_task, arg->dst_cpu);
    	__migrate_swap_task(arg->dst_task, arg->src_cpu);
    
    	ret = 0;
    
    unlock:
    	double_rq_unlock(src_rq, dst_rq);
    	raw_spin_unlock(&arg->dst_task->pi_lock);
    	raw_spin_unlock(&arg->src_task->pi_lock);
    
    	return ret;
    }
    
    /*
     * Cross migrate two tasks
     */
    int migrate_swap(struct task_struct *cur, struct task_struct *p)
    {
    	struct migration_swap_arg arg;
    	int ret = -EINVAL;
    
    	arg = (struct migration_swap_arg){
    		.src_task = cur,
    		.src_cpu = task_cpu(cur),
    		.dst_task = p,
    		.dst_cpu = task_cpu(p),
    	};
    
    	if (arg.src_cpu == arg.dst_cpu)
    		goto out;
    
    	/*
    	 * These three tests are all lockless; this is OK since all of them
    	 * will be re-checked with proper locks held further down the line.
    	 */
    	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
    		goto out;
    
    	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
    		goto out;
    
    	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
    		goto out;
    
    	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
    	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
    
    out:
    	return ret;
    }
    
    /*
     * wait_task_inactive - wait for a thread to unschedule.
     *
     * If @match_state is nonzero, it's the @p->state value just checked and
     * not expected to change.  If it changes, i.e. @p might have woken up,
     * then return zero.  When we succeed in waiting for @p to be off its CPU,
     * we return a positive number (its total switch count).  If a second call
     * a short while later returns the same number, the caller can be sure that
     * @p has remained unscheduled the whole time.
     *
     * The caller must ensure that the task *will* unschedule sometime soon,
     * else this function might spin for a *long* time. This function can't
     * be called with interrupts off, or it may introduce deadlock with
     * smp_call_function() if an IPI is sent by the same process we are
     * waiting to become inactive.
     */
    unsigned long wait_task_inactive(struct task_struct *p, long match_state)
    {
    	unsigned long flags;
    	int running, queued;
    	unsigned long ncsw;
    	struct rq *rq;
    
    	for (;;) {
    		/*
    		 * We do the initial early heuristics without holding
    		 * any task-queue locks at all. We'll only try to get
    		 * the runqueue lock when things look like they will
    		 * work out!
    		 */
    		rq = task_rq(p);
    
    		/*
    		 * If the task is actively running on another CPU
    		 * still, just relax and busy-wait without holding
    		 * any locks.
    		 *
    		 * NOTE! Since we don't hold any locks, it's not
    		 * even sure that "rq" stays as the right runqueue!
    		 * But we don't care, since "task_running()" will
    		 * return false if the runqueue has changed and p
    		 * is actually now running somewhere else!
    		 */
    		while (task_running(rq, p)) {
    			if (match_state && unlikely(p->state != match_state))
    				return 0;
    			cpu_relax();
    		}
    
    		/*
    		 * Ok, time to look more closely! We need the rq
    		 * lock now, to be *sure*. If we're wrong, we'll
    		 * just go back and repeat.
    		 */
    		rq = task_rq_lock(p, &flags);
    		trace_sched_wait_task(p);
    		running = task_running(rq, p);
    		queued = task_on_rq_queued(p);
    		ncsw = 0;
    		if (!match_state || p->state == match_state)
    			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
    		task_rq_unlock(rq, p, &flags);
    
    		/*
    		 * If it changed from the expected state, bail out now.
    		 */
    		if (unlikely(!ncsw))
    			break;
    
    		/*
    		 * Was it really running after all now that we
    		 * checked with the proper locks actually held?
    		 *
    		 * Oops. Go back and try again..
    		 */
    		if (unlikely(running)) {
    			cpu_relax();
    			continue;
    		}
    
    		/*
    		 * It's not enough that it's not actively running,
    		 * it must be off the runqueue _entirely_, and not
    		 * preempted!
    		 *
    		 * So if it was still runnable (but just not actively
    		 * running right now), it's preempted, and we should
    		 * yield - it could be a while.
    		 */
    		if (unlikely(queued)) {
    			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
    
    			set_current_state(TASK_UNINTERRUPTIBLE);
    			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
    			continue;
    		}
    
    		/*
    		 * Ahh, all good. It wasn't running, and it wasn't
    		 * runnable, which means that it will never become
    		 * running in the future either. We're all done!
    		 */
    		break;
    	}
    
    	return ncsw;
    }
    
    /***
     * kick_process - kick a running thread to enter/exit the kernel
     * @p: the to-be-kicked thread
     *
     * Cause a process which is running on another CPU to enter
     * kernel-mode, without any delay. (to get signals handled.)
     *
     * NOTE: this function doesn't have to take the runqueue lock,
     * because all it wants to ensure is that the remote task enters
     * the kernel. If the IPI races and the task has been migrated
     * to another CPU then no harm is done and the purpose has been
     * achieved as well.
     */
    void kick_process(struct task_struct *p)
    {
    	int cpu;
    
    	preempt_disable();
    	cpu = task_cpu(p);
    	if ((cpu != smp_processor_id()) && task_curr(p))
    		smp_send_reschedule(cpu);
    	preempt_enable();
    }
    EXPORT_SYMBOL_GPL(kick_process);
    
    /*
     * ->cpus_allowed is protected by both rq->lock and p->pi_lock
     */
    static int select_fallback_rq(int cpu, struct task_struct *p)
    {
    	int nid = cpu_to_node(cpu);
    	const struct cpumask *nodemask = NULL;
    	enum { cpuset, possible, fail } state = cpuset;
    	int dest_cpu;
    
    	/*
    	 * If the node that the cpu is on has been offlined, cpu_to_node()
    	 * will return -1. There is no cpu on the node, and we should
    	 * select the cpu on the other node.
    	 */
    	if (nid != -1) {
    		nodemask = cpumask_of_node(nid);
    
    		/* Look for allowed, online CPU in same node. */
    		for_each_cpu(dest_cpu, nodemask) {
    			if (!cpu_online(dest_cpu))
    				continue;
    			if (!cpu_active(dest_cpu))
    				continue;
    			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
    				return dest_cpu;
    		}
    	}
    
    	for (;;) {
    		/* Any allowed, online CPU? */
    		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
    			if (!cpu_online(dest_cpu))
    				continue;
    			if (!cpu_active(dest_cpu))
    				continue;
    			goto out;
    		}
    
    		/* No more Mr. Nice Guy. */
    		switch (state) {
    		case cpuset:
    			if (IS_ENABLED(CONFIG_CPUSETS)) {
    				cpuset_cpus_allowed_fallback(p);
    				state = possible;
    				break;
    			}
    			/* fall-through */
    		case possible:
    			do_set_cpus_allowed(p, cpu_possible_mask);
    			state = fail;
    			break;
    
    		case fail:
    			BUG();
    			break;
    		}
    	}
    
    out:
    	if (state != cpuset) {
    		/*
    		 * Don't tell them about moving exiting tasks or
    		 * kernel threads (both mm NULL), since they never
    		 * leave kernel.
    		 */
    		if (p->mm && printk_ratelimit()) {
    			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
    					task_pid_nr(p), p->comm, cpu);
    		}
    	}
    
    	return dest_cpu;
    }
    
    /*
     * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
     */
    static inline
    int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
    {
    	lockdep_assert_held(&p->pi_lock);
    
    	if (p->nr_cpus_allowed > 1)
    		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
    
    	/*
    	 * In order not to call set_task_cpu() on a blocking task we need
    	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
    	 * cpu.
    	 *
    	 * Since this is common to all placement strategies, this lives here.
    	 *
    	 * [ this allows ->select_task() to simply return task_cpu(p) and
    	 *   not worry about this generic constraint ]
    	 */
    	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
    		     !cpu_online(cpu)))
    		cpu = select_fallback_rq(task_cpu(p), p);
    
    	return cpu;
    }
    
    static void update_avg(u64 *avg, u64 sample)
    {
    	s64 diff = sample - *avg;
    	*avg += diff >> 3;
    }
    
    #else
    
    static inline int __set_cpus_allowed_ptr(struct task_struct *p,
    					 const struct cpumask *new_mask, bool check)
    {
    	return set_cpus_allowed_ptr(p, new_mask);
    }
    
    #endif /* CONFIG_SMP */
    
    static void
    ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
    {
    #ifdef CONFIG_SCHEDSTATS
    	struct rq *rq = this_rq();
    
    #ifdef CONFIG_SMP
    	int this_cpu = smp_processor_id();
    
    	if (cpu == this_cpu) {
    		schedstat_inc(rq, ttwu_local);
    		schedstat_inc(p, se.statistics.nr_wakeups_local);
    	} else {
    		struct sched_domain *sd;
    
    		schedstat_inc(p, se.statistics.nr_wakeups_remote);
    		rcu_read_lock();
    		for_each_domain(this_cpu, sd) {
    			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
    				schedstat_inc(sd, ttwu_wake_remote);
    				break;
    			}
    		}
    		rcu_read_unlock();
    	}
    
    	if (wake_flags & WF_MIGRATED)
    		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
    
    #endif /* CONFIG_SMP */
    
    	schedstat_inc(rq, ttwu_count);
    	schedstat_inc(p, se.statistics.nr_wakeups);
    
    	if (wake_flags & WF_SYNC)
    		schedstat_inc(p, se.statistics.nr_wakeups_sync);
    
    #endif /* CONFIG_SCHEDSTATS */
    }
    
    static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
    {
    	activate_task(rq, p, en_flags);
    	p->on_rq = TASK_ON_RQ_QUEUED;
    
    	/* if a worker is waking up, notify workqueue */
    	if (p->flags & PF_WQ_WORKER)
    		wq_worker_waking_up(p, cpu_of(rq));
    }
    
    /*
     * Mark the task runnable and perform wakeup-preemption.
     */
    static void
    ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
    {
    	check_preempt_curr(rq, p, wake_flags);
    	p->state = TASK_RUNNING;
    	trace_sched_wakeup(p);
    
    #ifdef CONFIG_SMP
    	if (p->sched_class->task_woken) {
    		/*
    		 * Our task @p is fully woken up and running; so its safe to
    		 * drop the rq->lock, hereafter rq is only used for statistics.
    		 */
    		lockdep_unpin_lock(&rq->lock);
    		p->sched_class->task_woken(rq, p);
    		lockdep_pin_lock(&rq->lock);
    	}
    
    	if (rq->idle_stamp) {
    		u64 delta = rq_clock(rq) - rq->idle_stamp;
    		u64 max = 2*rq->max_idle_balance_cost;
    
    		update_avg(&rq->avg_idle, delta);
    
    		if (rq->avg_idle > max)
    			rq->avg_idle = max;
    
    		rq->idle_stamp = 0;
    	}
    #endif
    }
    
    static void
    ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
    {
    	lockdep_assert_held(&rq->lock);
    
    #ifdef CONFIG_SMP
    	if (p->sched_contributes_to_load)
    		rq->nr_uninterruptible--;
    #endif
    
    	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
    	ttwu_do_wakeup(rq, p, wake_flags);
    }
    
    /*
     * Called in case the task @p isn't fully descheduled from its runqueue,
     * in this case we must do a remote wakeup. Its a 'light' wakeup though,
     * since all we need to do is flip p->state to TASK_RUNNING, since
     * the task is still ->on_rq.
     */
    static int ttwu_remote(struct task_struct *p, int wake_flags)
    {
    	struct rq *rq;
    	int ret = 0;
    
    	rq = __task_rq_lock(p);
    	if (task_on_rq_queued(p)) {
    		/* check_preempt_curr() may use rq clock */
    		update_rq_clock(rq);
    		ttwu_do_wakeup(rq, p, wake_flags);
    		ret = 1;
    	}
    	__task_rq_unlock(rq);
    
    	return ret;
    }
    
    #ifdef CONFIG_SMP
    void sched_ttwu_pending(void)
    {
    	struct rq *rq = this_rq();
    	struct llist_node *llist = llist_del_all(&rq->wake_list);
    	struct task_struct *p;
    	unsigned long flags;
    
    	if (!llist)
    		return;
    
    	raw_spin_lock_irqsave(&rq->lock, flags);
    	lockdep_pin_lock(&rq->lock);
    
    	while (llist) {
    		p = llist_entry(llist, struct task_struct, wake_entry);
    		llist = llist_next(llist);
    		ttwu_do_activate(rq, p, 0);
    	}
    
    	lockdep_unpin_lock(&rq->lock);
    	raw_spin_unlock_irqrestore(&rq->lock, flags);
    }
    
    void scheduler_ipi(void)
    {
    	/*
    	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
    	 * TIF_NEED_RESCHED remotely (for the first time) will also send
    	 * this IPI.
    	 */
    	preempt_fold_need_resched();
    
    	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
    		return;
    
    	/*
    	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
    	 * traditionally all their work was done from the interrupt return
    	 * path. Now that we actually do some work, we need to make sure
    	 * we do call them.
    	 *
    	 * Some archs already do call them, luckily irq_enter/exit nest
    	 * properly.
    	 *
    	 * Arguably we should visit all archs and update all handlers,
    	 * however a fair share of IPIs are still resched only so this would
    	 * somewhat pessimize the simple resched case.
    	 */
    	irq_enter();
    	sched_ttwu_pending();
    
    	/*
    	 * Check if someone kicked us for doing the nohz idle load balance.
    	 */
    	if (unlikely(got_nohz_idle_kick())) {
    		this_rq()->idle_balance = 1;
    		raise_softirq_irqoff(SCHED_SOFTIRQ);
    	}
    	irq_exit();
    }
    
    static void ttwu_queue_remote(struct task_struct *p, int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    
    	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
    		if (!set_nr_if_polling(rq->idle))
    			smp_send_reschedule(cpu);
    		else
    			trace_sched_wake_idle_without_ipi(cpu);
    	}
    }
    
    void wake_up_if_idle(int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    	unsigned long flags;
    
    	rcu_read_lock();
    
    	if (!is_idle_task(rcu_dereference(rq->curr)))
    		goto out;
    
    	if (set_nr_if_polling(rq->idle)) {
    		trace_sched_wake_idle_without_ipi(cpu);
    	} else {
    		raw_spin_lock_irqsave(&rq->lock, flags);
    		if (is_idle_task(rq->curr))
    			smp_send_reschedule(cpu);
    		/* Else cpu is not in idle, do nothing here */
    		raw_spin_unlock_irqrestore(&rq->lock, flags);
    	}
    
    out:
    	rcu_read_unlock();
    }
    
    bool cpus_share_cache(int this_cpu, int that_cpu)
    {
    	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
    }
    #endif /* CONFIG_SMP */
    
    static void ttwu_queue(struct task_struct *p, int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    
    #if defined(CONFIG_SMP)
    	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
    		sched_clock_cpu(cpu); /* sync clocks x-cpu */
    		ttwu_queue_remote(p, cpu);
    		return;
    	}
    #endif
    
    	raw_spin_lock(&rq->lock);
    	lockdep_pin_lock(&rq->lock);
    	ttwu_do_activate(rq, p, 0);
    	lockdep_unpin_lock(&rq->lock);
    	raw_spin_unlock(&rq->lock);
    }
    
    /*
     * Notes on Program-Order guarantees on SMP systems.
     *
     *  MIGRATION
     *
     * The basic program-order guarantee on SMP systems is that when a task [t]
     * migrates, all its activity on its old cpu [c0] happens-before any subsequent
     * execution on its new cpu [c1].
     *
     * For migration (of runnable tasks) this is provided by the following means:
     *
     *  A) UNLOCK of the rq(c0)->lock scheduling out task t
     *  B) migration for t is required to synchronize *both* rq(c0)->lock and
     *     rq(c1)->lock (if not at the same time, then in that order).
     *  C) LOCK of the rq(c1)->lock scheduling in task
     *
     * Transitivity guarantees that B happens after A and C after B.
     * Note: we only require RCpc transitivity.
     * Note: the cpu doing B need not be c0 or c1
     *
     * Example:
     *
     *   CPU0            CPU1            CPU2
     *
     *   LOCK rq(0)->lock
     *   sched-out X
     *   sched-in Y
     *   UNLOCK rq(0)->lock
     *
     *                                   LOCK rq(0)->lock // orders against CPU0
     *                                   dequeue X
     *                                   UNLOCK rq(0)->lock
     *
     *                                   LOCK rq(1)->lock
     *                                   enqueue X
     *                                   UNLOCK rq(1)->lock
     *
     *                   LOCK rq(1)->lock // orders against CPU2
     *                   sched-out Z
     *                   sched-in X
     *                   UNLOCK rq(1)->lock
     *
     *
     *  BLOCKING -- aka. SLEEP + WAKEUP
     *
     * For blocking we (obviously) need to provide the same guarantee as for
     * migration. However the means are completely different as there is no lock
     * chain to provide order. Instead we do:
     *
     *   1) smp_store_release(X->on_cpu, 0)
     *   2) smp_cond_acquire(!X->on_cpu)
     *
     * Example:
     *
     *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
     *
     *   LOCK rq(0)->lock LOCK X->pi_lock
     *   dequeue X
     *   sched-out X
     *   smp_store_release(X->on_cpu, 0);
     *
     *                    smp_cond_acquire(!X->on_cpu);
     *                    X->state = WAKING
     *                    set_task_cpu(X,2)
     *
     *                    LOCK rq(2)->lock
     *                    enqueue X
     *                    X->state = RUNNING
     *                    UNLOCK rq(2)->lock
     *
     *                                          LOCK rq(2)->lock // orders against CPU1
     *                                          sched-out Z
     *                                          sched-in X
     *                                          UNLOCK rq(2)->lock
     *
     *                    UNLOCK X->pi_lock
     *   UNLOCK rq(0)->lock
     *
     *
     * However; for wakeups there is a second guarantee we must provide, namely we
     * must observe the state that lead to our wakeup. That is, not only must our
     * task observe its own prior state, it must also observe the stores prior to
     * its wakeup.
     *
     * This means that any means of doing remote wakeups must order the CPU doing
     * the wakeup against the CPU the task is going to end up running on. This,
     * however, is already required for the regular Program-Order guarantee above,
     * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
     *
     */
    
    /**
     * try_to_wake_up - wake up a thread
     * @p: the thread to be awakened
     * @state: the mask of task states that can be woken
     * @wake_flags: wake modifier flags (WF_*)
     *
     * Put it on the run-queue if it's not already there. The "current"
     * thread is always on the run-queue (except when the actual
     * re-schedule is in progress), and as such you're allowed to do
     * the simpler "current->state = TASK_RUNNING" to mark yourself
     * runnable without the overhead of this.
     *
     * Return: %true if @p was woken up, %false if it was already running.
     * or @state didn't match @p's state.
     */
    static int
    try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
    {
    	unsigned long flags;
    	int cpu, success = 0;
    
    	/*
    	 * If we are going to wake up a thread waiting for CONDITION we
    	 * need to ensure that CONDITION=1 done by the caller can not be
    	 * reordered with p->state check below. This pairs with mb() in
    	 * set_current_state() the waiting thread does.
    	 */
    	smp_mb__before_spinlock();
    	raw_spin_lock_irqsave(&p->pi_lock, flags);
    	if (!(p->state & state))
    		goto out;
    
    	trace_sched_waking(p);
    
    	success = 1; /* we're going to change ->state */
    	cpu = task_cpu(p);
    
    	if (p->on_rq && ttwu_remote(p, wake_flags))
    		goto stat;
    
    #ifdef CONFIG_SMP
    	/*
    	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
    	 * possible to, falsely, observe p->on_cpu == 0.
    	 *
    	 * One must be running (->on_cpu == 1) in order to remove oneself
    	 * from the runqueue.
    	 *
    	 *  [S] ->on_cpu = 1;	[L] ->on_rq
    	 *      UNLOCK rq->lock
    	 *			RMB
    	 *      LOCK   rq->lock
    	 *  [S] ->on_rq = 0;    [L] ->on_cpu
    	 *
    	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
    	 * from the consecutive calls to schedule(); the first switching to our
    	 * task, the second putting it to sleep.
    	 */
    	smp_rmb();
    
    	/*
    	 * If the owning (remote) cpu is still in the middle of schedule() with
    	 * this task as prev, wait until its done referencing the task.
    	 *
    	 * Pairs with the smp_store_release() in finish_lock_switch().
    	 *
    	 * This ensures that tasks getting woken will be fully ordered against
    	 * their previous state and preserve Program Order.
    	 */
    	smp_cond_acquire(!p->on_cpu);
    
    	p->sched_contributes_to_load = !!task_contributes_to_load(p);
    	p->state = TASK_WAKING;
    
    	if (p->sched_class->task_waking)
    		p->sched_class->task_waking(p);
    
    	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
    	if (task_cpu(p) != cpu) {
    		wake_flags |= WF_MIGRATED;
    		set_task_cpu(p, cpu);
    	}
    #endif /* CONFIG_SMP */
    
    	ttwu_queue(p, cpu);
    stat:
    	if (schedstat_enabled())
    		ttwu_stat(p, cpu, wake_flags);
    out:
    	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    
    	return success;
    }
    
    /**
     * try_to_wake_up_local - try to wake up a local task with rq lock held
     * @p: the thread to be awakened
     *
     * Put @p on the run-queue if it's not already there. The caller must
     * ensure that this_rq() is locked, @p is bound to this_rq() and not
     * the current task.
     */
    static void try_to_wake_up_local(struct task_struct *p)
    {
    	struct rq *rq = task_rq(p);
    
    	if (WARN_ON_ONCE(rq != this_rq()) ||
    	    WARN_ON_ONCE(p == current))
    		return;
    
    	lockdep_assert_held(&rq->lock);
    
    	if (!raw_spin_trylock(&p->pi_lock)) {
    		/*
    		 * This is OK, because current is on_cpu, which avoids it being
    		 * picked for load-balance and preemption/IRQs are still
    		 * disabled avoiding further scheduler activity on it and we've
    		 * not yet picked a replacement task.
    		 */
    		lockdep_unpin_lock(&rq->lock);
    		raw_spin_unlock(&rq->lock);
    		raw_spin_lock(&p->pi_lock);
    		raw_spin_lock(&rq->lock);
    		lockdep_pin_lock(&rq->lock);
    	}
    
    	if (!(p->state & TASK_NORMAL))
    		goto out;
    
    	trace_sched_waking(p);
    
    	if (!task_on_rq_queued(p))
    		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
    
    	ttwu_do_wakeup(rq, p, 0);
    	if (schedstat_enabled())
    		ttwu_stat(p, smp_processor_id(), 0);
    out:
    	raw_spin_unlock(&p->pi_lock);
    }
    
    /**
     * wake_up_process - Wake up a specific process
     * @p: The process to be woken up.
     *
     * Attempt to wake up the nominated process and move it to the set of runnable
     * processes.
     *
     * Return: 1 if the process was woken up, 0 if it was already running.
     *
     * It may be assumed that this function implies a write memory barrier before
     * changing the task state if and only if any tasks are woken up.
     */
    int wake_up_process(struct task_struct *p)
    {
    	return try_to_wake_up(p, TASK_NORMAL, 0);
    }
    EXPORT_SYMBOL(wake_up_process);
    
    int wake_up_state(struct task_struct *p, unsigned int state)
    {
    	return try_to_wake_up(p, state, 0);
    }
    
    /*
     * This function clears the sched_dl_entity static params.
     */
    void __dl_clear_params(struct task_struct *p)
    {
    	struct sched_dl_entity *dl_se = &p->dl;
    
    	dl_se->dl_runtime = 0;
    	dl_se->dl_deadline = 0;
    	dl_se->dl_period = 0;
    	dl_se->flags = 0;
    	dl_se->dl_bw = 0;
    
    	dl_se->dl_throttled = 0;
    	dl_se->dl_yielded = 0;
    }
    
    /*
     * Perform scheduler related setup for a newly forked process p.
     * p is forked by current.
     *
     * __sched_fork() is basic setup used by init_idle() too:
     */
    static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
    {
    	p->on_rq			= 0;
    
    	p->se.on_rq			= 0;
    	p->se.exec_start		= 0;
    	p->se.sum_exec_runtime		= 0;
    	p->se.prev_sum_exec_runtime	= 0;
    	p->se.nr_migrations		= 0;
    	p->se.vruntime			= 0;
    	INIT_LIST_HEAD(&p->se.group_node);
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    	p->se.cfs_rq			= NULL;
    #endif
    
    #ifdef CONFIG_SCHEDSTATS
    	/* Even if schedstat is disabled, there should not be garbage */
    	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
    #endif
    
    	RB_CLEAR_NODE(&p->dl.rb_node);
    	init_dl_task_timer(&p->dl);
    	__dl_clear_params(p);
    
    	INIT_LIST_HEAD(&p->rt.run_list);
    	p->rt.timeout		= 0;
    	p->rt.time_slice	= sched_rr_timeslice;
    	p->rt.on_rq		= 0;
    	p->rt.on_list		= 0;
    
    #ifdef CONFIG_PREEMPT_NOTIFIERS
    	INIT_HLIST_HEAD(&p->preempt_notifiers);
    #endif
    
    #ifdef CONFIG_NUMA_BALANCING
    	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
    		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    		p->mm->numa_scan_seq = 0;
    	}
    
    	if (clone_flags & CLONE_VM)
    		p->numa_preferred_nid = current->numa_preferred_nid;
    	else
    		p->numa_preferred_nid = -1;
    
    	p->node_stamp = 0ULL;
    	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
    	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
    	p->numa_work.next = &p->numa_work;
    	p->numa_faults = NULL;
    	p->last_task_numa_placement = 0;
    	p->last_sum_exec_runtime = 0;
    
    	p->numa_group = NULL;
    #endif /* CONFIG_NUMA_BALANCING */
    }
    
    DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
    
    #ifdef CONFIG_NUMA_BALANCING
    
    void set_numabalancing_state(bool enabled)
    {
    	if (enabled)
    		static_branch_enable(&sched_numa_balancing);
    	else
    		static_branch_disable(&sched_numa_balancing);
    }
    
    #ifdef CONFIG_PROC_SYSCTL
    int sysctl_numa_balancing(struct ctl_table *table, int write,
    			 void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	struct ctl_table t;
    	int err;
    	int state = static_branch_likely(&sched_numa_balancing);
    
    	if (write && !capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	t = *table;
    	t.data = &state;
    	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    	if (err < 0)
    		return err;
    	if (write)
    		set_numabalancing_state(state);
    	return err;
    }
    #endif
    #endif
    
    DEFINE_STATIC_KEY_FALSE(sched_schedstats);
    
    #ifdef CONFIG_SCHEDSTATS
    static void set_schedstats(bool enabled)
    {
    	if (enabled)
    		static_branch_enable(&sched_schedstats);
    	else
    		static_branch_disable(&sched_schedstats);
    }
    
    void force_schedstat_enabled(void)
    {
    	if (!schedstat_enabled()) {
    		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
    		static_branch_enable(&sched_schedstats);
    	}
    }
    
    static int __init setup_schedstats(char *str)
    {
    	int ret = 0;
    	if (!str)
    		goto out;
    
    	if (!strcmp(str, "enable")) {
    		set_schedstats(true);
    		ret = 1;
    	} else if (!strcmp(str, "disable")) {
    		set_schedstats(false);
    		ret = 1;
    	}
    out:
    	if (!ret)
    		pr_warn("Unable to parse schedstats=\n");
    
    	return ret;
    }
    __setup("schedstats=", setup_schedstats);
    
    #ifdef CONFIG_PROC_SYSCTL
    int sysctl_schedstats(struct ctl_table *table, int write,
    			 void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	struct ctl_table t;
    	int err;
    	int state = static_branch_likely(&sched_schedstats);
    
    	if (write && !capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	t = *table;
    	t.data = &state;
    	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    	if (err < 0)
    		return err;
    	if (write)
    		set_schedstats(state);
    	return err;
    }
    #endif
    #endif
    
    /*
     * fork()/clone()-time setup:
     */
    int sched_fork(unsigned long clone_flags, struct task_struct *p)
    {
    	unsigned long flags;
    	int cpu = get_cpu();
    
    	__sched_fork(clone_flags, p);
    	/*
    	 * We mark the process as running here. This guarantees that
    	 * nobody will actually run it, and a signal or other external
    	 * event cannot wake it up and insert it on the runqueue either.
    	 */
    	p->state = TASK_RUNNING;
    
    	/*
    	 * Make sure we do not leak PI boosting priority to the child.
    	 */
    	p->prio = current->normal_prio;
    
    	/*
    	 * Revert to default priority/policy on fork if requested.
    	 */
    	if (unlikely(p->sched_reset_on_fork)) {
    		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    			p->policy = SCHED_NORMAL;
    			p->static_prio = NICE_TO_PRIO(0);
    			p->rt_priority = 0;
    		} else if (PRIO_TO_NICE(p->static_prio) < 0)
    			p->static_prio = NICE_TO_PRIO(0);
    
    		p->prio = p->normal_prio = __normal_prio(p);
    		set_load_weight(p);
    
    		/*
    		 * We don't need the reset flag anymore after the fork. It has
    		 * fulfilled its duty:
    		 */
    		p->sched_reset_on_fork = 0;
    	}
    
    	if (dl_prio(p->prio)) {
    		put_cpu();
    		return -EAGAIN;
    	} else if (rt_prio(p->prio)) {
    		p->sched_class = &rt_sched_class;
    	} else {
    		p->sched_class = &fair_sched_class;
    	}
    
    	if (p->sched_class->task_fork)
    		p->sched_class->task_fork(p);
    
    	/*
    	 * The child is not yet in the pid-hash so no cgroup attach races,
    	 * and the cgroup is pinned to this child due to cgroup_fork()
    	 * is ran before sched_fork().
    	 *
    	 * Silence PROVE_RCU.
    	 */
    	raw_spin_lock_irqsave(&p->pi_lock, flags);
    	set_task_cpu(p, cpu);
    	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    
    #ifdef CONFIG_SCHED_INFO
    	if (likely(sched_info_on()))
    		memset(&p->sched_info, 0, sizeof(p->sched_info));
    #endif
    #if defined(CONFIG_SMP)
    	p->on_cpu = 0;
    #endif
    	init_task_preempt_count(p);
    #ifdef CONFIG_SMP
    	plist_node_init(&p->pushable_tasks, MAX_PRIO);
    	RB_CLEAR_NODE(&p->pushable_dl_tasks);
    #endif
    
    	put_cpu();
    	return 0;
    }
    
    unsigned long to_ratio(u64 period, u64 runtime)
    {
    	if (runtime == RUNTIME_INF)
    		return 1ULL << 20;
    
    	/*
    	 * Doing this here saves a lot of checks in all
    	 * the calling paths, and returning zero seems
    	 * safe for them anyway.
    	 */
    	if (period == 0)
    		return 0;
    
    	return div64_u64(runtime << 20, period);
    }
    
    #ifdef CONFIG_SMP
    inline struct dl_bw *dl_bw_of(int i)
    {
    	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
    			 "sched RCU must be held");
    	return &cpu_rq(i)->rd->dl_bw;
    }
    
    static inline int dl_bw_cpus(int i)
    {
    	struct root_domain *rd = cpu_rq(i)->rd;
    	int cpus = 0;
    
    	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
    			 "sched RCU must be held");
    	for_each_cpu_and(i, rd->span, cpu_active_mask)
    		cpus++;
    
    	return cpus;
    }
    #else
    inline struct dl_bw *dl_bw_of(int i)
    {
    	return &cpu_rq(i)->dl.dl_bw;
    }
    
    static inline int dl_bw_cpus(int i)
    {
    	return 1;
    }
    #endif
    
    /*
     * We must be sure that accepting a new task (or allowing changing the
     * parameters of an existing one) is consistent with the bandwidth
     * constraints. If yes, this function also accordingly updates the currently
     * allocated bandwidth to reflect the new situation.
     *
     * This function is called while holding p's rq->lock.
     *
     * XXX we should delay bw change until the task's 0-lag point, see
     * __setparam_dl().
     */
    static int dl_overflow(struct task_struct *p, int policy,
    		       const struct sched_attr *attr)
    {
    
    	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
    	u64 period = attr->sched_period ?: attr->sched_deadline;
    	u64 runtime = attr->sched_runtime;
    	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
    	int cpus, err = -1;
    
    	if (new_bw == p->dl.dl_bw)
    		return 0;
    
    	/*
    	 * Either if a task, enters, leave, or stays -deadline but changes
    	 * its parameters, we may need to update accordingly the total
    	 * allocated bandwidth of the container.
    	 */
    	raw_spin_lock(&dl_b->lock);
    	cpus = dl_bw_cpus(task_cpu(p));
    	if (dl_policy(policy) && !task_has_dl_policy(p) &&
    	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
    		__dl_add(dl_b, new_bw);
    		err = 0;
    	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
    		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
    		__dl_clear(dl_b, p->dl.dl_bw);
    		__dl_add(dl_b, new_bw);
    		err = 0;
    	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
    		__dl_clear(dl_b, p->dl.dl_bw);
    		err = 0;
    	}
    	raw_spin_unlock(&dl_b->lock);
    
    	return err;
    }
    
    extern void init_dl_bw(struct dl_bw *dl_b);
    
    /*
     * wake_up_new_task - wake up a newly created task for the first time.
     *
     * This function will do some initial scheduler statistics housekeeping
     * that must be done for every newly created context, then puts the task
     * on the runqueue and wakes it.
     */
    void wake_up_new_task(struct task_struct *p)
    {
    	unsigned long flags;
    	struct rq *rq;
    
    	raw_spin_lock_irqsave(&p->pi_lock, flags);
    	/* Initialize new task's runnable average */
    	init_entity_runnable_average(&p->se);
    #ifdef CONFIG_SMP
    	/*
    	 * Fork balancing, do it here and not earlier because:
    	 *  - cpus_allowed can change in the fork path
    	 *  - any previously selected cpu might disappear through hotplug
    	 */
    	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
    #endif
    
    	rq = __task_rq_lock(p);
    	activate_task(rq, p, 0);
    	p->on_rq = TASK_ON_RQ_QUEUED;
    	trace_sched_wakeup_new(p);
    	check_preempt_curr(rq, p, WF_FORK);
    #ifdef CONFIG_SMP
    	if (p->sched_class->task_woken) {
    		/*
    		 * Nothing relies on rq->lock after this, so its fine to
    		 * drop it.
    		 */
    		lockdep_unpin_lock(&rq->lock);
    		p->sched_class->task_woken(rq, p);
    		lockdep_pin_lock(&rq->lock);
    	}
    #endif
    	task_rq_unlock(rq, p, &flags);
    }
    
    #ifdef CONFIG_PREEMPT_NOTIFIERS
    
    static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
    
    void preempt_notifier_inc(void)
    {
    	static_key_slow_inc(&preempt_notifier_key);
    }
    EXPORT_SYMBOL_GPL(preempt_notifier_inc);
    
    void preempt_notifier_dec(void)
    {
    	static_key_slow_dec(&preempt_notifier_key);
    }
    EXPORT_SYMBOL_GPL(preempt_notifier_dec);
    
    /**
     * preempt_notifier_register - tell me when current is being preempted & rescheduled
     * @notifier: notifier struct to register
     */
    void preempt_notifier_register(struct preempt_notifier *notifier)
    {
    	if (!static_key_false(&preempt_notifier_key))
    		WARN(1, "registering preempt_notifier while notifiers disabled\n");
    
    	hlist_add_head(&notifier->link, &current->preempt_notifiers);
    }
    EXPORT_SYMBOL_GPL(preempt_notifier_register);
    
    /**
     * preempt_notifier_unregister - no longer interested in preemption notifications
     * @notifier: notifier struct to unregister
     *
     * This is *not* safe to call from within a preemption notifier.
     */
    void preempt_notifier_unregister(struct preempt_notifier *notifier)
    {
    	hlist_del(&notifier->link);
    }
    EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
    
    static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
    {
    	struct preempt_notifier *notifier;
    
    	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    		notifier->ops->sched_in(notifier, raw_smp_processor_id());
    }
    
    static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    {
    	if (static_key_false(&preempt_notifier_key))
    		__fire_sched_in_preempt_notifiers(curr);
    }
    
    static void
    __fire_sched_out_preempt_notifiers(struct task_struct *curr,
    				   struct task_struct *next)
    {
    	struct preempt_notifier *notifier;
    
    	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    		notifier->ops->sched_out(notifier, next);
    }
    
    static __always_inline void
    fire_sched_out_preempt_notifiers(struct task_struct *curr,
    				 struct task_struct *next)
    {
    	if (static_key_false(&preempt_notifier_key))
    		__fire_sched_out_preempt_notifiers(curr, next);
    }
    
    #else /* !CONFIG_PREEMPT_NOTIFIERS */
    
    static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    {
    }
    
    static inline void
    fire_sched_out_preempt_notifiers(struct task_struct *curr,
    				 struct task_struct *next)
    {
    }
    
    #endif /* CONFIG_PREEMPT_NOTIFIERS */
    
    /**
     * prepare_task_switch - prepare to switch tasks
     * @rq: the runqueue preparing to switch
     * @prev: the current task that is being switched out
     * @next: the task we are going to switch to.
     *
     * This is called with the rq lock held and interrupts off. It must
     * be paired with a subsequent finish_task_switch after the context
     * switch.
     *
     * prepare_task_switch sets up locking and calls architecture specific
     * hooks.
     */
    static inline void
    prepare_task_switch(struct rq *rq, struct task_struct *prev,
    		    struct task_struct *next)
    {
    	sched_info_switch(rq, prev, next);
    	perf_event_task_sched_out(prev, next);
    	fire_sched_out_preempt_notifiers(prev, next);
    	prepare_lock_switch(rq, next);
    	prepare_arch_switch(next);
    }
    
    /**
     * finish_task_switch - clean up after a task-switch
     * @prev: the thread we just switched away from.
     *
     * finish_task_switch must be called after the context switch, paired
     * with a prepare_task_switch call before the context switch.
     * finish_task_switch will reconcile locking set up by prepare_task_switch,
     * and do any other architecture-specific cleanup actions.
     *
     * Note that we may have delayed dropping an mm in context_switch(). If
     * so, we finish that here outside of the runqueue lock. (Doing it
     * with the lock held can cause deadlocks; see schedule() for
     * details.)
     *
     * The context switch have flipped the stack from under us and restored the
     * local variables which were saved when this task called schedule() in the
     * past. prev == current is still correct but we need to recalculate this_rq
     * because prev may have moved to another CPU.
     */
    static struct rq *finish_task_switch(struct task_struct *prev)
    	__releases(rq->lock)
    {
    	struct rq *rq = this_rq();
    	struct mm_struct *mm = rq->prev_mm;
    	long prev_state;
    
    	/*
    	 * The previous task will have left us with a preempt_count of 2
    	 * because it left us after:
    	 *
    	 *	schedule()
    	 *	  preempt_disable();			// 1
    	 *	  __schedule()
    	 *	    raw_spin_lock_irq(&rq->lock)	// 2
    	 *
    	 * Also, see FORK_PREEMPT_COUNT.
    	 */
    	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
    		      "corrupted preempt_count: %s/%d/0x%x\n",
    		      current->comm, current->pid, preempt_count()))
    		preempt_count_set(FORK_PREEMPT_COUNT);
    
    	rq->prev_mm = NULL;
    
    	/*
    	 * A task struct has one reference for the use as "current".
    	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
    	 * schedule one last time. The schedule call will never return, and
    	 * the scheduled task must drop that reference.
    	 *
    	 * We must observe prev->state before clearing prev->on_cpu (in
    	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
    	 * running on another CPU and we could rave with its RUNNING -> DEAD
    	 * transition, resulting in a double drop.
    	 */
    	prev_state = prev->state;
    	vtime_task_switch(prev);
    	perf_event_task_sched_in(prev, current);
    	finish_lock_switch(rq, prev);
    	finish_arch_post_lock_switch();
    
    	fire_sched_in_preempt_notifiers(current);
    	if (mm)
    		mmdrop(mm);
    	if (unlikely(prev_state == TASK_DEAD)) {
    		if (prev->sched_class->task_dead)
    			prev->sched_class->task_dead(prev);
    
    		/*
    		 * Remove function-return probe instances associated with this
    		 * task and put them back on the free list.
    		 */
    		kprobe_flush_task(prev);
    		put_task_struct(prev);
    	}
    
    	tick_nohz_task_switch();
    	return rq;
    }
    
    #ifdef CONFIG_SMP
    
    /* rq->lock is NOT held, but preemption is disabled */
    static void __balance_callback(struct rq *rq)
    {
    	struct callback_head *head, *next;
    	void (*func)(struct rq *rq);
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&rq->lock, flags);
    	head = rq->balance_callback;
    	rq->balance_callback = NULL;
    	while (head) {
    		func = (void (*)(struct rq *))head->func;
    		next = head->next;
    		head->next = NULL;
    		head = next;
    
    		func(rq);
    	}
    	raw_spin_unlock_irqrestore(&rq->lock, flags);
    }
    
    static inline void balance_callback(struct rq *rq)
    {
    	if (unlikely(rq->balance_callback))
    		__balance_callback(rq);
    }
    
    #else
    
    static inline void balance_callback(struct rq *rq)
    {
    }
    
    #endif
    
    /**
     * schedule_tail - first thing a freshly forked thread must call.
     * @prev: the thread we just switched away from.
     */
    asmlinkage __visible void schedule_tail(struct task_struct *prev)
    	__releases(rq->lock)
    {
    	struct rq *rq;
    
    	/*
    	 * New tasks start with FORK_PREEMPT_COUNT, see there and
    	 * finish_task_switch() for details.
    	 *
    	 * finish_task_switch() will drop rq->lock() and lower preempt_count
    	 * and the preempt_enable() will end up enabling preemption (on
    	 * PREEMPT_COUNT kernels).
    	 */
    
    	rq = finish_task_switch(prev);
    	balance_callback(rq);
    	preempt_enable();
    
    	if (current->set_child_tid)
    		put_user(task_pid_vnr(current), current->set_child_tid);
    }
    
    /*
     * context_switch - switch to the new MM and the new thread's register state.
     */
    static inline struct rq *
    context_switch(struct rq *rq, struct task_struct *prev,
    	       struct task_struct *next)
    {
    	struct mm_struct *mm, *oldmm;
    
    	prepare_task_switch(rq, prev, next);
    
    	mm = next->mm;
    	oldmm = prev->active_mm;
    	/*
    	 * For paravirt, this is coupled with an exit in switch_to to
    	 * combine the page table reload and the switch backend into
    	 * one hypercall.
    	 */
    	arch_start_context_switch(prev);
    
    	if (!mm) {
    		next->active_mm = oldmm;
    		atomic_inc(&oldmm->mm_count);
    		enter_lazy_tlb(oldmm, next);
    	} else
    		switch_mm(oldmm, mm, next);
    
    	if (!prev->mm) {
    		prev->active_mm = NULL;
    		rq->prev_mm = oldmm;
    	}
    	/*
    	 * Since the runqueue lock will be released by the next
    	 * task (which is an invalid locking op but in the case
    	 * of the scheduler it's an obvious special-case), so we
    	 * do an early lockdep release here:
    	 */
    	lockdep_unpin_lock(&rq->lock);
    	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
    
    	/* Here we just switch the register state and the stack. */
    	switch_to(prev, next, prev);
    	barrier();
    
    	return finish_task_switch(prev);
    }
    
    /*
     * nr_running and nr_context_switches:
     *
     * externally visible scheduler statistics: current number of runnable
     * threads, total number of context switches performed since bootup.
     */
    unsigned long nr_running(void)
    {
    	unsigned long i, sum = 0;
    
    	for_each_online_cpu(i)
    		sum += cpu_rq(i)->nr_running;
    
    	return sum;
    }
    
    /*
     * Check if only the current task is running on the cpu.
     *
     * Caution: this function does not check that the caller has disabled
     * preemption, thus the result might have a time-of-check-to-time-of-use
     * race.  The caller is responsible to use it correctly, for example:
     *
     * - from a non-preemptable section (of course)
     *
     * - from a thread that is bound to a single CPU
     *
     * - in a loop with very short iterations (e.g. a polling loop)
     */
    bool single_task_running(void)
    {
    	return raw_rq()->nr_running == 1;
    }
    EXPORT_SYMBOL(single_task_running);
    
    unsigned long long nr_context_switches(void)
    {
    	int i;
    	unsigned long long sum = 0;
    
    	for_each_possible_cpu(i)
    		sum += cpu_rq(i)->nr_switches;
    
    	return sum;
    }
    
    unsigned long nr_iowait(void)
    {
    	unsigned long i, sum = 0;
    
    	for_each_possible_cpu(i)
    		sum += atomic_read(&cpu_rq(i)->nr_iowait);
    
    	return sum;
    }
    
    unsigned long nr_iowait_cpu(int cpu)
    {
    	struct rq *this = cpu_rq(cpu);
    	return atomic_read(&this->nr_iowait);
    }
    
    void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
    {
    	struct rq *rq = this_rq();
    	*nr_waiters = atomic_read(&rq->nr_iowait);
    	*load = rq->load.weight;
    }
    
    #ifdef CONFIG_SMP
    
    /*
     * sched_exec - execve() is a valuable balancing opportunity, because at
     * this point the task has the smallest effective memory and cache footprint.
     */
    void sched_exec(void)
    {
    	struct task_struct *p = current;
    	unsigned long flags;
    	int dest_cpu;
    
    	raw_spin_lock_irqsave(&p->pi_lock, flags);
    	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
    	if (dest_cpu == smp_processor_id())
    		goto unlock;
    
    	if (likely(cpu_active(dest_cpu))) {
    		struct migration_arg arg = { p, dest_cpu };
    
    		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
    		return;
    	}
    unlock:
    	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    }
    
    #endif
    
    DEFINE_PER_CPU(struct kernel_stat, kstat);
    DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
    
    EXPORT_PER_CPU_SYMBOL(kstat);
    EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
    
    /*
     * Return accounted runtime for the task.
     * In case the task is currently running, return the runtime plus current's
     * pending runtime that have not been accounted yet.
     */
    unsigned long long task_sched_runtime(struct task_struct *p)
    {
    	unsigned long flags;
    	struct rq *rq;
    	u64 ns;
    
    #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
    	/*
    	 * 64-bit doesn't need locks to atomically read a 64bit value.
    	 * So we have a optimization chance when the task's delta_exec is 0.
    	 * Reading ->on_cpu is racy, but this is ok.
    	 *
    	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
    	 * If we race with it entering cpu, unaccounted time is 0. This is
    	 * indistinguishable from the read occurring a few cycles earlier.
    	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
    	 * been accounted, so we're correct here as well.
    	 */
    	if (!p->on_cpu || !task_on_rq_queued(p))
    		return p->se.sum_exec_runtime;
    #endif
    
    	rq = task_rq_lock(p, &flags);
    	/*
    	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
    	 * project cycles that may never be accounted to this
    	 * thread, breaking clock_gettime().
    	 */
    	if (task_current(rq, p) && task_on_rq_queued(p)) {
    		update_rq_clock(rq);
    		p->sched_class->update_curr(rq);
    	}
    	ns = p->se.sum_exec_runtime;
    	task_rq_unlock(rq, p, &flags);
    
    	return ns;
    }
    
    /*
     * This function gets called by the timer code, with HZ frequency.
     * We call it with interrupts disabled.
     */
    void scheduler_tick(void)
    {
    	int cpu = smp_processor_id();
    	struct rq *rq = cpu_rq(cpu);
    	struct task_struct *curr = rq->curr;
    
    	sched_clock_tick();
    
    	raw_spin_lock(&rq->lock);
    	update_rq_clock(rq);
    	curr->sched_class->task_tick(rq, curr, 0);
    	update_cpu_load_active(rq);
    	calc_global_load_tick(rq);
    	raw_spin_unlock(&rq->lock);
    
    	perf_event_task_tick();
    
    #ifdef CONFIG_SMP
    	rq->idle_balance = idle_cpu(cpu);
    	trigger_load_balance(rq);
    #endif
    	rq_last_tick_reset(rq);
    }
    
    #ifdef CONFIG_NO_HZ_FULL
    /**
     * scheduler_tick_max_deferment
     *
     * Keep at least one tick per second when a single
     * active task is running because the scheduler doesn't
     * yet completely support full dynticks environment.
     *
     * This makes sure that uptime, CFS vruntime, load
     * balancing, etc... continue to move forward, even
     * with a very low granularity.
     *
     * Return: Maximum deferment in nanoseconds.
     */
    u64 scheduler_tick_max_deferment(void)
    {
    	struct rq *rq = this_rq();
    	unsigned long next, now = READ_ONCE(jiffies);
    
    	next = rq->last_sched_tick + HZ;
    
    	if (time_before_eq(next, now))
    		return 0;
    
    	return jiffies_to_nsecs(next - now);
    }
    #endif
    
    #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
    				defined(CONFIG_PREEMPT_TRACER))
    
    void preempt_count_add(int val)
    {
    #ifdef CONFIG_DEBUG_PREEMPT
    	/*
    	 * Underflow?
    	 */
    	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
    		return;
    #endif
    	__preempt_count_add(val);
    #ifdef CONFIG_DEBUG_PREEMPT
    	/*
    	 * Spinlock count overflowing soon?
    	 */
    	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
    				PREEMPT_MASK - 10);
    #endif
    	if (preempt_count() == val) {
    		unsigned long ip = get_lock_parent_ip();
    #ifdef CONFIG_DEBUG_PREEMPT
    		current->preempt_disable_ip = ip;
    #endif
    		trace_preempt_off(CALLER_ADDR0, ip);
    	}
    }
    EXPORT_SYMBOL(preempt_count_add);
    NOKPROBE_SYMBOL(preempt_count_add);
    
    void preempt_count_sub(int val)
    {
    #ifdef CONFIG_DEBUG_PREEMPT
    	/*
    	 * Underflow?
    	 */
    	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
    		return;
    	/*
    	 * Is the spinlock portion underflowing?
    	 */
    	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
    			!(preempt_count() & PREEMPT_MASK)))
    		return;
    #endif
    
    	if (preempt_count() == val)
    		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
    	__preempt_count_sub(val);
    }
    EXPORT_SYMBOL(preempt_count_sub);
    NOKPROBE_SYMBOL(preempt_count_sub);
    
    #endif
    
    /*
     * Print scheduling while atomic bug:
     */
    static noinline void __schedule_bug(struct task_struct *prev)
    {
    	if (oops_in_progress)
    		return;
    
    	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
    		prev->comm, prev->pid, preempt_count());
    
    	debug_show_held_locks(prev);
    	print_modules();
    	if (irqs_disabled())
    		print_irqtrace_events(prev);
    #ifdef CONFIG_DEBUG_PREEMPT
    	if (in_atomic_preempt_off()) {
    		pr_err("Preemption disabled at:");
    		print_ip_sym(current->preempt_disable_ip);
    		pr_cont("\n");
    	}
    #endif
    	dump_stack();
    	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
    }
    
    /*
     * Various schedule()-time debugging checks and statistics:
     */
    static inline void schedule_debug(struct task_struct *prev)
    {
    #ifdef CONFIG_SCHED_STACK_END_CHECK
    	BUG_ON(task_stack_end_corrupted(prev));
    #endif
    
    	if (unlikely(in_atomic_preempt_off())) {
    		__schedule_bug(prev);
    		preempt_count_set(PREEMPT_DISABLED);
    	}
    	rcu_sleep_check();
    
    	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
    
    	schedstat_inc(this_rq(), sched_count);
    }
    
    /*
     * Pick up the highest-prio task:
     */
    static inline struct task_struct *
    pick_next_task(struct rq *rq, struct task_struct *prev)
    {
    	const struct sched_class *class = &fair_sched_class;
    	struct task_struct *p;
    
    	/*
    	 * Optimization: we know that if all tasks are in
    	 * the fair class we can call that function directly:
    	 */
    	if (likely(prev->sched_class == class &&
    		   rq->nr_running == rq->cfs.h_nr_running)) {
    		p = fair_sched_class.pick_next_task(rq, prev);
    		if (unlikely(p == RETRY_TASK))
    			goto again;
    
    		/* assumes fair_sched_class->next == idle_sched_class */
    		if (unlikely(!p))
    			p = idle_sched_class.pick_next_task(rq, prev);
    
    		return p;
    	}
    
    again:
    	for_each_class(class) {
    		p = class->pick_next_task(rq, prev);
    		if (p) {
    			if (unlikely(p == RETRY_TASK))
    				goto again;
    			return p;
    		}
    	}
    
    	BUG(); /* the idle class will always have a runnable task */
    }
    
    /*
     * __schedule() is the main scheduler function.
     *
     * The main means of driving the scheduler and thus entering this function are:
     *
     *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
     *
     *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
     *      paths. For example, see arch/x86/entry_64.S.
     *
     *      To drive preemption between tasks, the scheduler sets the flag in timer
     *      interrupt handler scheduler_tick().
     *
     *   3. Wakeups don't really cause entry into schedule(). They add a
     *      task to the run-queue and that's it.
     *
     *      Now, if the new task added to the run-queue preempts the current
     *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
     *      called on the nearest possible occasion:
     *
     *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
     *
     *         - in syscall or exception context, at the next outmost
     *           preempt_enable(). (this might be as soon as the wake_up()'s
     *           spin_unlock()!)
     *
     *         - in IRQ context, return from interrupt-handler to
     *           preemptible context
     *
     *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
     *         then at the next:
     *
     *          - cond_resched() call
     *          - explicit schedule() call
     *          - return from syscall or exception to user-space
     *          - return from interrupt-handler to user-space
     *
     * WARNING: must be called with preemption disabled!
     */
    static void __sched notrace __schedule(bool preempt)
    {
    	struct task_struct *prev, *next;
    	unsigned long *switch_count;
    	struct rq *rq;
    	int cpu;
    
    	cpu = smp_processor_id();
    	rq = cpu_rq(cpu);
    	prev = rq->curr;
    
    	/*
    	 * do_exit() calls schedule() with preemption disabled as an exception;
    	 * however we must fix that up, otherwise the next task will see an
    	 * inconsistent (higher) preempt count.
    	 *
    	 * It also avoids the below schedule_debug() test from complaining
    	 * about this.
    	 */
    	if (unlikely(prev->state == TASK_DEAD))
    		preempt_enable_no_resched_notrace();
    
    	schedule_debug(prev);
    
    	if (sched_feat(HRTICK))
    		hrtick_clear(rq);
    
    	local_irq_disable();
    	rcu_note_context_switch();
    
    	/*
    	 * Make sure that signal_pending_state()->signal_pending() below
    	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
    	 * done by the caller to avoid the race with signal_wake_up().
    	 */
    	smp_mb__before_spinlock();
    	raw_spin_lock(&rq->lock);
    	lockdep_pin_lock(&rq->lock);
    
    	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
    
    	switch_count = &prev->nivcsw;
    	if (!preempt && prev->state) {
    		if (unlikely(signal_pending_state(prev->state, prev))) {
    			prev->state = TASK_RUNNING;
    		} else {
    			deactivate_task(rq, prev, DEQUEUE_SLEEP);
    			prev->on_rq = 0;
    
    			/*
    			 * If a worker went to sleep, notify and ask workqueue
    			 * whether it wants to wake up a task to maintain
    			 * concurrency.
    			 */
    			if (prev->flags & PF_WQ_WORKER) {
    				struct task_struct *to_wakeup;
    
    				to_wakeup = wq_worker_sleeping(prev);
    				if (to_wakeup)
    					try_to_wake_up_local(to_wakeup);
    			}
    		}
    		switch_count = &prev->nvcsw;
    	}
    
    	if (task_on_rq_queued(prev))
    		update_rq_clock(rq);
    
    	next = pick_next_task(rq, prev);
    	clear_tsk_need_resched(prev);
    	clear_preempt_need_resched();
    	rq->clock_skip_update = 0;
    
    	if (likely(prev != next)) {
    		rq->nr_switches++;
    		rq->curr = next;
    		++*switch_count;
    
    		trace_sched_switch(preempt, prev, next);
    		rq = context_switch(rq, prev, next); /* unlocks the rq */
    	} else {
    		lockdep_unpin_lock(&rq->lock);
    		raw_spin_unlock_irq(&rq->lock);
    	}
    
    	balance_callback(rq);
    }
    
    static inline void sched_submit_work(struct task_struct *tsk)
    {
    	if (!tsk->state || tsk_is_pi_blocked(tsk))
    		return;
    	/*
    	 * If we are going to sleep and we have plugged IO queued,
    	 * make sure to submit it to avoid deadlocks.
    	 */
    	if (blk_needs_flush_plug(tsk))
    		blk_schedule_flush_plug(tsk);
    }
    
    asmlinkage __visible void __sched schedule(void)
    {
    	struct task_struct *tsk = current;
    
    	sched_submit_work(tsk);
    	do {
    		preempt_disable();
    		__schedule(false);
    		sched_preempt_enable_no_resched();
    	} while (need_resched());
    }
    EXPORT_SYMBOL(schedule);
    
    #ifdef CONFIG_CONTEXT_TRACKING
    asmlinkage __visible void __sched schedule_user(void)
    {
    	/*
    	 * If we come here after a random call to set_need_resched(),
    	 * or we have been woken up remotely but the IPI has not yet arrived,
    	 * we haven't yet exited the RCU idle mode. Do it here manually until
    	 * we find a better solution.
    	 *
    	 * NB: There are buggy callers of this function.  Ideally we
    	 * should warn if prev_state != CONTEXT_USER, but that will trigger
    	 * too frequently to make sense yet.
    	 */
    	enum ctx_state prev_state = exception_enter();
    	schedule();
    	exception_exit(prev_state);
    }
    #endif
    
    /**
     * schedule_preempt_disabled - called with preemption disabled
     *
     * Returns with preemption disabled. Note: preempt_count must be 1
     */
    void __sched schedule_preempt_disabled(void)
    {
    	sched_preempt_enable_no_resched();
    	schedule();
    	preempt_disable();
    }
    
    static void __sched notrace preempt_schedule_common(void)
    {
    	do {
    		preempt_disable_notrace();
    		__schedule(true);
    		preempt_enable_no_resched_notrace();
    
    		/*
    		 * Check again in case we missed a preemption opportunity
    		 * between schedule and now.
    		 */
    	} while (need_resched());
    }
    
    #ifdef CONFIG_PREEMPT
    /*
     * this is the entry point to schedule() from in-kernel preemption
     * off of preempt_enable. Kernel preemptions off return from interrupt
     * occur there and call schedule directly.
     */
    asmlinkage __visible void __sched notrace preempt_schedule(void)
    {
    	/*
    	 * If there is a non-zero preempt_count or interrupts are disabled,
    	 * we do not want to preempt the current task. Just return..
    	 */
    	if (likely(!preemptible()))
    		return;
    
    	preempt_schedule_common();
    }
    NOKPROBE_SYMBOL(preempt_schedule);
    EXPORT_SYMBOL(preempt_schedule);
    
    /**
     * preempt_schedule_notrace - preempt_schedule called by tracing
     *
     * The tracing infrastructure uses preempt_enable_notrace to prevent
     * recursion and tracing preempt enabling caused by the tracing
     * infrastructure itself. But as tracing can happen in areas coming
     * from userspace or just about to enter userspace, a preempt enable
     * can occur before user_exit() is called. This will cause the scheduler
     * to be called when the system is still in usermode.
     *
     * To prevent this, the preempt_enable_notrace will use this function
     * instead of preempt_schedule() to exit user context if needed before
     * calling the scheduler.
     */
    asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
    {
    	enum ctx_state prev_ctx;
    
    	if (likely(!preemptible()))
    		return;
    
    	do {
    		preempt_disable_notrace();
    		/*
    		 * Needs preempt disabled in case user_exit() is traced
    		 * and the tracer calls preempt_enable_notrace() causing
    		 * an infinite recursion.
    		 */
    		prev_ctx = exception_enter();
    		__schedule(true);
    		exception_exit(prev_ctx);
    
    		preempt_enable_no_resched_notrace();
    	} while (need_resched());
    }
    EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
    
    #endif /* CONFIG_PREEMPT */
    
    /*
     * this is the entry point to schedule() from kernel preemption
     * off of irq context.
     * Note, that this is called and return with irqs disabled. This will
     * protect us against recursive calling from irq.
     */
    asmlinkage __visible void __sched preempt_schedule_irq(void)
    {
    	enum ctx_state prev_state;
    
    	/* Catch callers which need to be fixed */
    	BUG_ON(preempt_count() || !irqs_disabled());
    
    	prev_state = exception_enter();
    
    	do {
    		preempt_disable();
    		local_irq_enable();
    		__schedule(true);
    		local_irq_disable();
    		sched_preempt_enable_no_resched();
    	} while (need_resched());
    
    	exception_exit(prev_state);
    }
    
    int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
    			  void *key)
    {
    	return try_to_wake_up(curr->private, mode, wake_flags);
    }
    EXPORT_SYMBOL(default_wake_function);
    
    #ifdef CONFIG_RT_MUTEXES
    
    /*
     * rt_mutex_setprio - set the current priority of a task
     * @p: task
     * @prio: prio value (kernel-internal form)
     *
     * This function changes the 'effective' priority of a task. It does
     * not touch ->normal_prio like __setscheduler().
     *
     * Used by the rt_mutex code to implement priority inheritance
     * logic. Call site only calls if the priority of the task changed.
     */
    void rt_mutex_setprio(struct task_struct *p, int prio)
    {
    	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
    	struct rq *rq;
    	const struct sched_class *prev_class;
    
    	BUG_ON(prio > MAX_PRIO);
    
    	rq = __task_rq_lock(p);
    
    	/*
    	 * Idle task boosting is a nono in general. There is one
    	 * exception, when PREEMPT_RT and NOHZ is active:
    	 *
    	 * The idle task calls get_next_timer_interrupt() and holds
    	 * the timer wheel base->lock on the CPU and another CPU wants
    	 * to access the timer (probably to cancel it). We can safely
    	 * ignore the boosting request, as the idle CPU runs this code
    	 * with interrupts disabled and will complete the lock
    	 * protected section without being interrupted. So there is no
    	 * real need to boost.
    	 */
    	if (unlikely(p == rq->idle)) {
    		WARN_ON(p != rq->curr);
    		WARN_ON(p->pi_blocked_on);
    		goto out_unlock;
    	}
    
    	trace_sched_pi_setprio(p, prio);
    	oldprio = p->prio;
    
    	if (oldprio == prio)
    		queue_flag &= ~DEQUEUE_MOVE;
    
    	prev_class = p->sched_class;
    	queued = task_on_rq_queued(p);
    	running = task_current(rq, p);
    	if (queued)
    		dequeue_task(rq, p, queue_flag);
    	if (running)
    		put_prev_task(rq, p);
    
    	/*
    	 * Boosting condition are:
    	 * 1. -rt task is running and holds mutex A
    	 *      --> -dl task blocks on mutex A
    	 *
    	 * 2. -dl task is running and holds mutex A
    	 *      --> -dl task blocks on mutex A and could preempt the
    	 *          running task
    	 */
    	if (dl_prio(prio)) {
    		struct task_struct *pi_task = rt_mutex_get_top_task(p);
    		if (!dl_prio(p->normal_prio) ||
    		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
    			p->dl.dl_boosted = 1;
    			queue_flag |= ENQUEUE_REPLENISH;
    		} else
    			p->dl.dl_boosted = 0;
    		p->sched_class = &dl_sched_class;
    	} else if (rt_prio(prio)) {
    		if (dl_prio(oldprio))
    			p->dl.dl_boosted = 0;
    		if (oldprio < prio)
    			queue_flag |= ENQUEUE_HEAD;
    		p->sched_class = &rt_sched_class;
    	} else {
    		if (dl_prio(oldprio))
    			p->dl.dl_boosted = 0;
    		if (rt_prio(oldprio))
    			p->rt.timeout = 0;
    		p->sched_class = &fair_sched_class;
    	}
    
    	p->prio = prio;
    
    	if (running)
    		p->sched_class->set_curr_task(rq);
    	if (queued)
    		enqueue_task(rq, p, queue_flag);
    
    	check_class_changed(rq, p, prev_class, oldprio);
    out_unlock:
    	preempt_disable(); /* avoid rq from going away on us */
    	__task_rq_unlock(rq);
    
    	balance_callback(rq);
    	preempt_enable();
    }
    #endif
    
    void set_user_nice(struct task_struct *p, long nice)
    {
    	int old_prio, delta, queued;
    	unsigned long flags;
    	struct rq *rq;
    
    	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
    		return;
    	/*
    	 * We have to be careful, if called from sys_setpriority(),
    	 * the task might be in the middle of scheduling on another CPU.
    	 */
    	rq = task_rq_lock(p, &flags);
    	/*
    	 * The RT priorities are set via sched_setscheduler(), but we still
    	 * allow the 'normal' nice value to be set - but as expected
    	 * it wont have any effect on scheduling until the task is
    	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
    	 */
    	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    		p->static_prio = NICE_TO_PRIO(nice);
    		goto out_unlock;
    	}
    	queued = task_on_rq_queued(p);
    	if (queued)
    		dequeue_task(rq, p, DEQUEUE_SAVE);
    
    	p->static_prio = NICE_TO_PRIO(nice);
    	set_load_weight(p);
    	old_prio = p->prio;
    	p->prio = effective_prio(p);
    	delta = p->prio - old_prio;
    
    	if (queued) {
    		enqueue_task(rq, p, ENQUEUE_RESTORE);
    		/*
    		 * If the task increased its priority or is running and
    		 * lowered its priority, then reschedule its CPU:
    		 */
    		if (delta < 0 || (delta > 0 && task_running(rq, p)))
    			resched_curr(rq);
    	}
    out_unlock:
    	task_rq_unlock(rq, p, &flags);
    }
    EXPORT_SYMBOL(set_user_nice);
    
    /*
     * can_nice - check if a task can reduce its nice value
     * @p: task
     * @nice: nice value
     */
    int can_nice(const struct task_struct *p, const int nice)
    {
    	/* convert nice value [19,-20] to rlimit style value [1,40] */
    	int nice_rlim = nice_to_rlimit(nice);
    
    	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
    		capable(CAP_SYS_NICE));
    }
    
    #ifdef __ARCH_WANT_SYS_NICE
    
    /*
     * sys_nice - change the priority of the current process.
     * @increment: priority increment
     *
     * sys_setpriority is a more generic, but much slower function that
     * does similar things.
     */
    SYSCALL_DEFINE1(nice, int, increment)
    {
    	long nice, retval;
    
    	/*
    	 * Setpriority might change our priority at the same moment.
    	 * We don't have to worry. Conceptually one call occurs first
    	 * and we have a single winner.
    	 */
    	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
    	nice = task_nice(current) + increment;
    
    	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
    	if (increment < 0 && !can_nice(current, nice))
    		return -EPERM;
    
    	retval = security_task_setnice(current, nice);
    	if (retval)
    		return retval;
    
    	set_user_nice(current, nice);
    	return 0;
    }
    
    #endif
    
    /**
     * task_prio - return the priority value of a given task.
     * @p: the task in question.
     *
     * Return: The priority value as seen by users in /proc.
     * RT tasks are offset by -200. Normal tasks are centered
     * around 0, value goes from -16 to +15.
     */
    int task_prio(const struct task_struct *p)
    {
    	return p->prio - MAX_RT_PRIO;
    }
    
    /**
     * idle_cpu - is a given cpu idle currently?
     * @cpu: the processor in question.
     *
     * Return: 1 if the CPU is currently idle. 0 otherwise.
     */
    int idle_cpu(int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    
    	if (rq->curr != rq->idle)
    		return 0;
    
    	if (rq->nr_running)
    		return 0;
    
    #ifdef CONFIG_SMP
    	if (!llist_empty(&rq->wake_list))
    		return 0;
    #endif
    
    	return 1;
    }
    
    /**
     * idle_task - return the idle task for a given cpu.
     * @cpu: the processor in question.
     *
     * Return: The idle task for the cpu @cpu.
     */
    struct task_struct *idle_task(int cpu)
    {
    	return cpu_rq(cpu)->idle;
    }
    
    /**
     * find_process_by_pid - find a process with a matching PID value.
     * @pid: the pid in question.
     *
     * The task of @pid, if found. %NULL otherwise.
     */
    static struct task_struct *find_process_by_pid(pid_t pid)
    {
    	return pid ? find_task_by_vpid(pid) : current;
    }
    
    /*
     * This function initializes the sched_dl_entity of a newly becoming
     * SCHED_DEADLINE task.
     *
     * Only the static values are considered here, the actual runtime and the
     * absolute deadline will be properly calculated when the task is enqueued
     * for the first time with its new policy.
     */
    static void
    __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
    {
    	struct sched_dl_entity *dl_se = &p->dl;
    
    	dl_se->dl_runtime = attr->sched_runtime;
    	dl_se->dl_deadline = attr->sched_deadline;
    	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
    	dl_se->flags = attr->sched_flags;
    	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
    
    	/*
    	 * Changing the parameters of a task is 'tricky' and we're not doing
    	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
    	 *
    	 * What we SHOULD do is delay the bandwidth release until the 0-lag
    	 * point. This would include retaining the task_struct until that time
    	 * and change dl_overflow() to not immediately decrement the current
    	 * amount.
    	 *
    	 * Instead we retain the current runtime/deadline and let the new
    	 * parameters take effect after the current reservation period lapses.
    	 * This is safe (albeit pessimistic) because the 0-lag point is always
    	 * before the current scheduling deadline.
    	 *
    	 * We can still have temporary overloads because we do not delay the
    	 * change in bandwidth until that time; so admission control is
    	 * not on the safe side. It does however guarantee tasks will never
    	 * consume more than promised.
    	 */
    }
    
    /*
     * sched_setparam() passes in -1 for its policy, to let the functions
     * it calls know not to change it.
     */
    #define SETPARAM_POLICY	-1
    
    static void __setscheduler_params(struct task_struct *p,
    		const struct sched_attr *attr)
    {
    	int policy = attr->sched_policy;
    
    	if (policy == SETPARAM_POLICY)
    		policy = p->policy;
    
    	p->policy = policy;
    
    	if (dl_policy(policy))
    		__setparam_dl(p, attr);
    	else if (fair_policy(policy))
    		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
    
    	/*
    	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
    	 * !rt_policy. Always setting this ensures that things like
    	 * getparam()/getattr() don't report silly values for !rt tasks.
    	 */
    	p->rt_priority = attr->sched_priority;
    	p->normal_prio = normal_prio(p);
    	set_load_weight(p);
    }
    
    /* Actually do priority change: must hold pi & rq lock. */
    static void __setscheduler(struct rq *rq, struct task_struct *p,
    			   const struct sched_attr *attr, bool keep_boost)
    {
    	__setscheduler_params(p, attr);
    
    	/*
    	 * Keep a potential priority boosting if called from
    	 * sched_setscheduler().
    	 */
    	if (keep_boost)
    		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
    	else
    		p->prio = normal_prio(p);
    
    	if (dl_prio(p->prio))
    		p->sched_class = &dl_sched_class;
    	else if (rt_prio(p->prio))
    		p->sched_class = &rt_sched_class;
    	else
    		p->sched_class = &fair_sched_class;
    }
    
    static void
    __getparam_dl(struct task_struct *p, struct sched_attr *attr)
    {
    	struct sched_dl_entity *dl_se = &p->dl;
    
    	attr->sched_priority = p->rt_priority;
    	attr->sched_runtime = dl_se->dl_runtime;
    	attr->sched_deadline = dl_se->dl_deadline;
    	attr->sched_period = dl_se->dl_period;
    	attr->sched_flags = dl_se->flags;
    }
    
    /*
     * This function validates the new parameters of a -deadline task.
     * We ask for the deadline not being zero, and greater or equal
     * than the runtime, as well as the period of being zero or
     * greater than deadline. Furthermore, we have to be sure that
     * user parameters are above the internal resolution of 1us (we
     * check sched_runtime only since it is always the smaller one) and
     * below 2^63 ns (we have to check both sched_deadline and
     * sched_period, as the latter can be zero).
     */
    static bool
    __checkparam_dl(const struct sched_attr *attr)
    {
    	/* deadline != 0 */
    	if (attr->sched_deadline == 0)
    		return false;
    
    	/*
    	 * Since we truncate DL_SCALE bits, make sure we're at least
    	 * that big.
    	 */
    	if (attr->sched_runtime < (1ULL << DL_SCALE))
    		return false;
    
    	/*
    	 * Since we use the MSB for wrap-around and sign issues, make
    	 * sure it's not set (mind that period can be equal to zero).
    	 */
    	if (attr->sched_deadline & (1ULL << 63) ||
    	    attr->sched_period & (1ULL << 63))
    		return false;
    
    	/* runtime <= deadline <= period (if period != 0) */
    	if ((attr->sched_period != 0 &&
    	     attr->sched_period < attr->sched_deadline) ||
    	    attr->sched_deadline < attr->sched_runtime)
    		return false;
    
    	return true;
    }
    
    /*
     * check the target process has a UID that matches the current process's
     */
    static bool check_same_owner(struct task_struct *p)
    {
    	const struct cred *cred = current_cred(), *pcred;
    	bool match;
    
    	rcu_read_lock();
    	pcred = __task_cred(p);
    	match = (uid_eq(cred->euid, pcred->euid) ||
    		 uid_eq(cred->euid, pcred->uid));
    	rcu_read_unlock();
    	return match;
    }
    
    static bool dl_param_changed(struct task_struct *p,
    		const struct sched_attr *attr)
    {
    	struct sched_dl_entity *dl_se = &p->dl;
    
    	if (dl_se->dl_runtime != attr->sched_runtime ||
    		dl_se->dl_deadline != attr->sched_deadline ||
    		dl_se->dl_period != attr->sched_period ||
    		dl_se->flags != attr->sched_flags)
    		return true;
    
    	return false;
    }
    
    static int __sched_setscheduler(struct task_struct *p,
    				const struct sched_attr *attr,
    				bool user, bool pi)
    {
    	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
    		      MAX_RT_PRIO - 1 - attr->sched_priority;
    	int retval, oldprio, oldpolicy = -1, queued, running;
    	int new_effective_prio, policy = attr->sched_policy;
    	unsigned long flags;
    	const struct sched_class *prev_class;
    	struct rq *rq;
    	int reset_on_fork;
    	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
    
    	/* may grab non-irq protected spin_locks */
    	BUG_ON(in_interrupt());
    recheck:
    	/* double check policy once rq lock held */
    	if (policy < 0) {
    		reset_on_fork = p->sched_reset_on_fork;
    		policy = oldpolicy = p->policy;
    	} else {
    		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
    
    		if (!valid_policy(policy))
    			return -EINVAL;
    	}
    
    	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
    		return -EINVAL;
    
    	/*
    	 * Valid priorities for SCHED_FIFO and SCHED_RR are
    	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
    	 * SCHED_BATCH and SCHED_IDLE is 0.
    	 */
    	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
    	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
    		return -EINVAL;
    	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
    	    (rt_policy(policy) != (attr->sched_priority != 0)))
    		return -EINVAL;
    
    	/*
    	 * Allow unprivileged RT tasks to decrease priority:
    	 */
    	if (user && !capable(CAP_SYS_NICE)) {
    		if (fair_policy(policy)) {
    			if (attr->sched_nice < task_nice(p) &&
    			    !can_nice(p, attr->sched_nice))
    				return -EPERM;
    		}
    
    		if (rt_policy(policy)) {
    			unsigned long rlim_rtprio =
    					task_rlimit(p, RLIMIT_RTPRIO);
    
    			/* can't set/change the rt policy */
    			if (policy != p->policy && !rlim_rtprio)
    				return -EPERM;
    
    			/* can't increase priority */
    			if (attr->sched_priority > p->rt_priority &&
    			    attr->sched_priority > rlim_rtprio)
    				return -EPERM;
    		}
    
    		 /*
    		  * Can't set/change SCHED_DEADLINE policy at all for now
    		  * (safest behavior); in the future we would like to allow
    		  * unprivileged DL tasks to increase their relative deadline
    		  * or reduce their runtime (both ways reducing utilization)
    		  */
    		if (dl_policy(policy))
    			return -EPERM;
    
    		/*
    		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
    		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
    		 */
    		if (idle_policy(p->policy) && !idle_policy(policy)) {
    			if (!can_nice(p, task_nice(p)))
    				return -EPERM;
    		}
    
    		/* can't change other user's priorities */
    		if (!check_same_owner(p))
    			return -EPERM;
    
    		/* Normal users shall not reset the sched_reset_on_fork flag */
    		if (p->sched_reset_on_fork && !reset_on_fork)
    			return -EPERM;
    	}
    
    	if (user) {
    		retval = security_task_setscheduler(p);
    		if (retval)
    			return retval;
    	}
    
    	/*
    	 * make sure no PI-waiters arrive (or leave) while we are
    	 * changing the priority of the task:
    	 *
    	 * To be able to change p->policy safely, the appropriate
    	 * runqueue lock must be held.
    	 */
    	rq = task_rq_lock(p, &flags);
    
    	/*
    	 * Changing the policy of the stop threads its a very bad idea
    	 */
    	if (p == rq->stop) {
    		task_rq_unlock(rq, p, &flags);
    		return -EINVAL;
    	}
    
    	/*
    	 * If not changing anything there's no need to proceed further,
    	 * but store a possible modification of reset_on_fork.
    	 */
    	if (unlikely(policy == p->policy)) {
    		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
    			goto change;
    		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
    			goto change;
    		if (dl_policy(policy) && dl_param_changed(p, attr))
    			goto change;
    
    		p->sched_reset_on_fork = reset_on_fork;
    		task_rq_unlock(rq, p, &flags);
    		return 0;
    	}
    change:
    
    	if (user) {
    #ifdef CONFIG_RT_GROUP_SCHED
    		/*
    		 * Do not allow realtime tasks into groups that have no runtime
    		 * assigned.
    		 */
    		if (rt_bandwidth_enabled() && rt_policy(policy) &&
    				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
    				!task_group_is_autogroup(task_group(p))) {
    			task_rq_unlock(rq, p, &flags);
    			return -EPERM;
    		}
    #endif
    #ifdef CONFIG_SMP
    		if (dl_bandwidth_enabled() && dl_policy(policy)) {
    			cpumask_t *span = rq->rd->span;
    
    			/*
    			 * Don't allow tasks with an affinity mask smaller than
    			 * the entire root_domain to become SCHED_DEADLINE. We
    			 * will also fail if there's no bandwidth available.
    			 */
    			if (!cpumask_subset(span, &p->cpus_allowed) ||
    			    rq->rd->dl_bw.bw == 0) {
    				task_rq_unlock(rq, p, &flags);
    				return -EPERM;
    			}
    		}
    #endif
    	}
    
    	/* recheck policy now with rq lock held */
    	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
    		policy = oldpolicy = -1;
    		task_rq_unlock(rq, p, &flags);
    		goto recheck;
    	}
    
    	/*
    	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
    	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
    	 * is available.
    	 */
    	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
    		task_rq_unlock(rq, p, &flags);
    		return -EBUSY;
    	}
    
    	p->sched_reset_on_fork = reset_on_fork;
    	oldprio = p->prio;
    
    	if (pi) {
    		/*
    		 * Take priority boosted tasks into account. If the new
    		 * effective priority is unchanged, we just store the new
    		 * normal parameters and do not touch the scheduler class and
    		 * the runqueue. This will be done when the task deboost
    		 * itself.
    		 */
    		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
    		if (new_effective_prio == oldprio)
    			queue_flags &= ~DEQUEUE_MOVE;
    	}
    
    	queued = task_on_rq_queued(p);
    	running = task_current(rq, p);
    	if (queued)
    		dequeue_task(rq, p, queue_flags);
    	if (running)
    		put_prev_task(rq, p);
    
    	prev_class = p->sched_class;
    	__setscheduler(rq, p, attr, pi);
    
    	if (running)
    		p->sched_class->set_curr_task(rq);
    	if (queued) {
    		/*
    		 * We enqueue to tail when the priority of a task is
    		 * increased (user space view).
    		 */
    		if (oldprio < p->prio)
    			queue_flags |= ENQUEUE_HEAD;
    
    		enqueue_task(rq, p, queue_flags);
    	}
    
    	check_class_changed(rq, p, prev_class, oldprio);
    	preempt_disable(); /* avoid rq from going away on us */
    	task_rq_unlock(rq, p, &flags);
    
    	if (pi)
    		rt_mutex_adjust_pi(p);
    
    	/*
    	 * Run balance callbacks after we've adjusted the PI chain.
    	 */
    	balance_callback(rq);
    	preempt_enable();
    
    	return 0;
    }
    
    static int _sched_setscheduler(struct task_struct *p, int policy,
    			       const struct sched_param *param, bool check)
    {
    	struct sched_attr attr = {
    		.sched_policy   = policy,
    		.sched_priority = param->sched_priority,
    		.sched_nice	= PRIO_TO_NICE(p->static_prio),
    	};
    
    	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
    	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
    		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    		policy &= ~SCHED_RESET_ON_FORK;
    		attr.sched_policy = policy;
    	}
    
    	return __sched_setscheduler(p, &attr, check, true);
    }
    /**
     * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
     * @p: the task in question.
     * @policy: new policy.
     * @param: structure containing the new RT priority.
     *
     * Return: 0 on success. An error code otherwise.
     *
     * NOTE that the task may be already dead.
     */
    int sched_setscheduler(struct task_struct *p, int policy,
    		       const struct sched_param *param)
    {
    	return _sched_setscheduler(p, policy, param, true);
    }
    EXPORT_SYMBOL_GPL(sched_setscheduler);
    
    int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
    {
    	return __sched_setscheduler(p, attr, true, true);
    }
    EXPORT_SYMBOL_GPL(sched_setattr);
    
    /**
     * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
     * @p: the task in question.
     * @policy: new policy.
     * @param: structure containing the new RT priority.
     *
     * Just like sched_setscheduler, only don't bother checking if the
     * current context has permission.  For example, this is needed in
     * stop_machine(): we create temporary high priority worker threads,
     * but our caller might not have that capability.
     *
     * Return: 0 on success. An error code otherwise.
     */
    int sched_setscheduler_nocheck(struct task_struct *p, int policy,
    			       const struct sched_param *param)
    {
    	return _sched_setscheduler(p, policy, param, false);
    }
    EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
    
    static int
    do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
    {
    	struct sched_param lparam;
    	struct task_struct *p;
    	int retval;
    
    	if (!param || pid < 0)
    		return -EINVAL;
    	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
    		return -EFAULT;
    
    	rcu_read_lock();
    	retval = -ESRCH;
    	p = find_process_by_pid(pid);
    	if (p != NULL)
    		retval = sched_setscheduler(p, policy, &lparam);
    	rcu_read_unlock();
    
    	return retval;
    }
    
    /*
     * Mimics kernel/events/core.c perf_copy_attr().
     */
    static int sched_copy_attr(struct sched_attr __user *uattr,
    			   struct sched_attr *attr)
    {
    	u32 size;
    	int ret;
    
    	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
    		return -EFAULT;
    
    	/*
    	 * zero the full structure, so that a short copy will be nice.
    	 */
    	memset(attr, 0, sizeof(*attr));
    
    	ret = get_user(size, &uattr->size);
    	if (ret)
    		return ret;
    
    	if (size > PAGE_SIZE)	/* silly large */
    		goto err_size;
    
    	if (!size)		/* abi compat */
    		size = SCHED_ATTR_SIZE_VER0;
    
    	if (size < SCHED_ATTR_SIZE_VER0)
    		goto err_size;
    
    	/*
    	 * If we're handed a bigger struct than we know of,
    	 * ensure all the unknown bits are 0 - i.e. new
    	 * user-space does not rely on any kernel feature
    	 * extensions we dont know about yet.
    	 */
    	if (size > sizeof(*attr)) {
    		unsigned char __user *addr;
    		unsigned char __user *end;
    		unsigned char val;
    
    		addr = (void __user *)uattr + sizeof(*attr);
    		end  = (void __user *)uattr + size;
    
    		for (; addr < end; addr++) {
    			ret = get_user(val, addr);
    			if (ret)
    				return ret;
    			if (val)
    				goto err_size;
    		}
    		size = sizeof(*attr);
    	}
    
    	ret = copy_from_user(attr, uattr, size);
    	if (ret)
    		return -EFAULT;
    
    	/*
    	 * XXX: do we want to be lenient like existing syscalls; or do we want
    	 * to be strict and return an error on out-of-bounds values?
    	 */
    	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
    
    	return 0;
    
    err_size:
    	put_user(sizeof(*attr), &uattr->size);
    	return -E2BIG;
    }
    
    /**
     * sys_sched_setscheduler - set/change the scheduler policy and RT priority
     * @pid: the pid in question.
     * @policy: new policy.
     * @param: structure containing the new RT priority.
     *
     * Return: 0 on success. An error code otherwise.
     */
    SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
    		struct sched_param __user *, param)
    {
    	/* negative values for policy are not valid */
    	if (policy < 0)
    		return -EINVAL;
    
    	return do_sched_setscheduler(pid, policy, param);
    }
    
    /**
     * sys_sched_setparam - set/change the RT priority of a thread
     * @pid: the pid in question.
     * @param: structure containing the new RT priority.
     *
     * Return: 0 on success. An error code otherwise.
     */
    SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
    {
    	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
    }
    
    /**
     * sys_sched_setattr - same as above, but with extended sched_attr
     * @pid: the pid in question.
     * @uattr: structure containing the extended parameters.
     * @flags: for future extension.
     */
    SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
    			       unsigned int, flags)
    {
    	struct sched_attr attr;
    	struct task_struct *p;
    	int retval;
    
    	if (!uattr || pid < 0 || flags)
    		return -EINVAL;
    
    	retval = sched_copy_attr(uattr, &attr);
    	if (retval)
    		return retval;
    
    	if ((int)attr.sched_policy < 0)
    		return -EINVAL;
    
    	rcu_read_lock();
    	retval = -ESRCH;
    	p = find_process_by_pid(pid);
    	if (p != NULL)
    		retval = sched_setattr(p, &attr);
    	rcu_read_unlock();
    
    	return retval;
    }
    
    /**
     * sys_sched_getscheduler - get the policy (scheduling class) of a thread
     * @pid: the pid in question.
     *
     * Return: On success, the policy of the thread. Otherwise, a negative error
     * code.
     */
    SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
    {
    	struct task_struct *p;
    	int retval;
    
    	if (pid < 0)
    		return -EINVAL;
    
    	retval = -ESRCH;
    	rcu_read_lock();
    	p = find_process_by_pid(pid);
    	if (p) {
    		retval = security_task_getscheduler(p);
    		if (!retval)
    			retval = p->policy
    				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
    	}
    	rcu_read_unlock();
    	return retval;
    }
    
    /**
     * sys_sched_getparam - get the RT priority of a thread
     * @pid: the pid in question.
     * @param: structure containing the RT priority.
     *
     * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
     * code.
     */
    SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
    {
    	struct sched_param lp = { .sched_priority = 0 };
    	struct task_struct *p;
    	int retval;
    
    	if (!param || pid < 0)
    		return -EINVAL;
    
    	rcu_read_lock();
    	p = find_process_by_pid(pid);
    	retval = -ESRCH;
    	if (!p)
    		goto out_unlock;
    
    	retval = security_task_getscheduler(p);
    	if (retval)
    		goto out_unlock;
    
    	if (task_has_rt_policy(p))
    		lp.sched_priority = p->rt_priority;
    	rcu_read_unlock();
    
    	/*
    	 * This one might sleep, we cannot do it with a spinlock held ...
    	 */
    	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
    
    	return retval;
    
    out_unlock:
    	rcu_read_unlock();
    	return retval;
    }
    
    static int sched_read_attr(struct sched_attr __user *uattr,
    			   struct sched_attr *attr,
    			   unsigned int usize)
    {
    	int ret;
    
    	if (!access_ok(VERIFY_WRITE, uattr, usize))
    		return -EFAULT;
    
    	/*
    	 * If we're handed a smaller struct than we know of,
    	 * ensure all the unknown bits are 0 - i.e. old
    	 * user-space does not get uncomplete information.
    	 */
    	if (usize < sizeof(*attr)) {
    		unsigned char *addr;
    		unsigned char *end;
    
    		addr = (void *)attr + usize;
    		end  = (void *)attr + sizeof(*attr);
    
    		for (; addr < end; addr++) {
    			if (*addr)
    				return -EFBIG;
    		}
    
    		attr->size = usize;
    	}
    
    	ret = copy_to_user(uattr, attr, attr->size);
    	if (ret)
    		return -EFAULT;
    
    	return 0;
    }
    
    /**
     * sys_sched_getattr - similar to sched_getparam, but with sched_attr
     * @pid: the pid in question.
     * @uattr: structure containing the extended parameters.
     * @size: sizeof(attr) for fwd/bwd comp.
     * @flags: for future extension.
     */
    SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
    		unsigned int, size, unsigned int, flags)
    {
    	struct sched_attr attr = {
    		.size = sizeof(struct sched_attr),
    	};
    	struct task_struct *p;
    	int retval;
    
    	if (!uattr || pid < 0 || size > PAGE_SIZE ||
    	    size < SCHED_ATTR_SIZE_VER0 || flags)
    		return -EINVAL;
    
    	rcu_read_lock();
    	p = find_process_by_pid(pid);
    	retval = -ESRCH;
    	if (!p)
    		goto out_unlock;
    
    	retval = security_task_getscheduler(p);
    	if (retval)
    		goto out_unlock;
    
    	attr.sched_policy = p->policy;
    	if (p->sched_reset_on_fork)
    		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    	if (task_has_dl_policy(p))
    		__getparam_dl(p, &attr);
    	else if (task_has_rt_policy(p))
    		attr.sched_priority = p->rt_priority;
    	else
    		attr.sched_nice = task_nice(p);
    
    	rcu_read_unlock();
    
    	retval = sched_read_attr(uattr, &attr, size);
    	return retval;
    
    out_unlock:
    	rcu_read_unlock();
    	return retval;
    }
    
    long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
    {
    	cpumask_var_t cpus_allowed, new_mask;
    	struct task_struct *p;
    	int retval;
    
    	rcu_read_lock();
    
    	p = find_process_by_pid(pid);
    	if (!p) {
    		rcu_read_unlock();
    		return -ESRCH;
    	}
    
    	/* Prevent p going away */
    	get_task_struct(p);
    	rcu_read_unlock();
    
    	if (p->flags & PF_NO_SETAFFINITY) {
    		retval = -EINVAL;
    		goto out_put_task;
    	}
    	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
    		retval = -ENOMEM;
    		goto out_put_task;
    	}
    	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
    		retval = -ENOMEM;
    		goto out_free_cpus_allowed;
    	}
    	retval = -EPERM;
    	if (!check_same_owner(p)) {
    		rcu_read_lock();
    		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
    			rcu_read_unlock();
    			goto out_free_new_mask;
    		}
    		rcu_read_unlock();
    	}
    
    	retval = security_task_setscheduler(p);
    	if (retval)
    		goto out_free_new_mask;
    
    
    	cpuset_cpus_allowed(p, cpus_allowed);
    	cpumask_and(new_mask, in_mask, cpus_allowed);
    
    	/*
    	 * Since bandwidth control happens on root_domain basis,
    	 * if admission test is enabled, we only admit -deadline
    	 * tasks allowed to run on all the CPUs in the task's
    	 * root_domain.
    	 */
    #ifdef CONFIG_SMP
    	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
    		rcu_read_lock();
    		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
    			retval = -EBUSY;
    			rcu_read_unlock();
    			goto out_free_new_mask;
    		}
    		rcu_read_unlock();
    	}
    #endif
    again:
    	retval = __set_cpus_allowed_ptr(p, new_mask, true);
    
    	if (!retval) {
    		cpuset_cpus_allowed(p, cpus_allowed);
    		if (!cpumask_subset(new_mask, cpus_allowed)) {
    			/*
    			 * We must have raced with a concurrent cpuset
    			 * update. Just reset the cpus_allowed to the
    			 * cpuset's cpus_allowed
    			 */
    			cpumask_copy(new_mask, cpus_allowed);
    			goto again;
    		}
    	}
    out_free_new_mask:
    	free_cpumask_var(new_mask);
    out_free_cpus_allowed:
    	free_cpumask_var(cpus_allowed);
    out_put_task:
    	put_task_struct(p);
    	return retval;
    }
    
    static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
    			     struct cpumask *new_mask)
    {
    	if (len < cpumask_size())
    		cpumask_clear(new_mask);
    	else if (len > cpumask_size())
    		len = cpumask_size();
    
    	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
    }
    
    /**
     * sys_sched_setaffinity - set the cpu affinity of a process
     * @pid: pid of the process
     * @len: length in bytes of the bitmask pointed to by user_mask_ptr
     * @user_mask_ptr: user-space pointer to the new cpu mask
     *
     * Return: 0 on success. An error code otherwise.
     */
    SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
    		unsigned long __user *, user_mask_ptr)
    {
    	cpumask_var_t new_mask;
    	int retval;
    
    	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
    		return -ENOMEM;
    
    	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
    	if (retval == 0)
    		retval = sched_setaffinity(pid, new_mask);
    	free_cpumask_var(new_mask);
    	return retval;
    }
    
    long sched_getaffinity(pid_t pid, struct cpumask *mask)
    {
    	struct task_struct *p;
    	unsigned long flags;
    	int retval;
    
    	rcu_read_lock();
    
    	retval = -ESRCH;
    	p = find_process_by_pid(pid);
    	if (!p)
    		goto out_unlock;
    
    	retval = security_task_getscheduler(p);
    	if (retval)
    		goto out_unlock;
    
    	raw_spin_lock_irqsave(&p->pi_lock, flags);
    	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
    	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    
    out_unlock:
    	rcu_read_unlock();
    
    	return retval;
    }
    
    /**
     * sys_sched_getaffinity - get the cpu affinity of a process
     * @pid: pid of the process
     * @len: length in bytes of the bitmask pointed to by user_mask_ptr
     * @user_mask_ptr: user-space pointer to hold the current cpu mask
     *
     * Return: 0 on success. An error code otherwise.
     */
    SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
    		unsigned long __user *, user_mask_ptr)
    {
    	int ret;
    	cpumask_var_t mask;
    
    	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
    		return -EINVAL;
    	if (len & (sizeof(unsigned long)-1))
    		return -EINVAL;
    
    	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
    		return -ENOMEM;
    
    	ret = sched_getaffinity(pid, mask);
    	if (ret == 0) {
    		size_t retlen = min_t(size_t, len, cpumask_size());
    
    		if (copy_to_user(user_mask_ptr, mask, retlen))
    			ret = -EFAULT;
    		else
    			ret = retlen;
    	}
    	free_cpumask_var(mask);
    
    	return ret;
    }
    
    /**
     * sys_sched_yield - yield the current processor to other threads.
     *
     * This function yields the current CPU to other tasks. If there are no
     * other threads running on this CPU then this function will return.
     *
     * Return: 0.
     */
    SYSCALL_DEFINE0(sched_yield)
    {
    	struct rq *rq = this_rq_lock();
    
    	schedstat_inc(rq, yld_count);
    	current->sched_class->yield_task(rq);
    
    	/*
    	 * Since we are going to call schedule() anyway, there's
    	 * no need to preempt or enable interrupts:
    	 */
    	__release(rq->lock);
    	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
    	do_raw_spin_unlock(&rq->lock);
    	sched_preempt_enable_no_resched();
    
    	schedule();
    
    	return 0;
    }
    
    int __sched _cond_resched(void)
    {
    	if (should_resched(0)) {
    		preempt_schedule_common();
    		return 1;
    	}
    	return 0;
    }
    EXPORT_SYMBOL(_cond_resched);
    
    /*
     * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
     * call schedule, and on return reacquire the lock.
     *
     * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
     * operations here to prevent schedule() from being called twice (once via
     * spin_unlock(), once by hand).
     */
    int __cond_resched_lock(spinlock_t *lock)
    {
    	int resched = should_resched(PREEMPT_LOCK_OFFSET);
    	int ret = 0;
    
    	lockdep_assert_held(lock);
    
    	if (spin_needbreak(lock) || resched) {
    		spin_unlock(lock);
    		if (resched)
    			preempt_schedule_common();
    		else
    			cpu_relax();
    		ret = 1;
    		spin_lock(lock);
    	}
    	return ret;
    }
    EXPORT_SYMBOL(__cond_resched_lock);
    
    int __sched __cond_resched_softirq(void)
    {
    	BUG_ON(!in_softirq());
    
    	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
    		local_bh_enable();
    		preempt_schedule_common();
    		local_bh_disable();
    		return 1;
    	}
    	return 0;
    }
    EXPORT_SYMBOL(__cond_resched_softirq);
    
    /**
     * yield - yield the current processor to other threads.
     *
     * Do not ever use this function, there's a 99% chance you're doing it wrong.
     *
     * The scheduler is at all times free to pick the calling task as the most
     * eligible task to run, if removing the yield() call from your code breaks
     * it, its already broken.
     *
     * Typical broken usage is:
     *
     * while (!event)
     * 	yield();
     *
     * where one assumes that yield() will let 'the other' process run that will
     * make event true. If the current task is a SCHED_FIFO task that will never
     * happen. Never use yield() as a progress guarantee!!
     *
     * If you want to use yield() to wait for something, use wait_event().
     * If you want to use yield() to be 'nice' for others, use cond_resched().
     * If you still want to use yield(), do not!
     */
    void __sched yield(void)
    {
    	set_current_state(TASK_RUNNING);
    	sys_sched_yield();
    }
    EXPORT_SYMBOL(yield);
    
    /**
     * yield_to - yield the current processor to another thread in
     * your thread group, or accelerate that thread toward the
     * processor it's on.
     * @p: target task
     * @preempt: whether task preemption is allowed or not
     *
     * It's the caller's job to ensure that the target task struct
     * can't go away on us before we can do any checks.
     *
     * Return:
     *	true (>0) if we indeed boosted the target task.
     *	false (0) if we failed to boost the target.
     *	-ESRCH if there's no task to yield to.
     */
    int __sched yield_to(struct task_struct *p, bool preempt)
    {
    	struct task_struct *curr = current;
    	struct rq *rq, *p_rq;
    	unsigned long flags;
    	int yielded = 0;
    
    	local_irq_save(flags);
    	rq = this_rq();
    
    again:
    	p_rq = task_rq(p);
    	/*
    	 * If we're the only runnable task on the rq and target rq also
    	 * has only one task, there's absolutely no point in yielding.
    	 */
    	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
    		yielded = -ESRCH;
    		goto out_irq;
    	}
    
    	double_rq_lock(rq, p_rq);
    	if (task_rq(p) != p_rq) {
    		double_rq_unlock(rq, p_rq);
    		goto again;
    	}
    
    	if (!curr->sched_class->yield_to_task)
    		goto out_unlock;
    
    	if (curr->sched_class != p->sched_class)
    		goto out_unlock;
    
    	if (task_running(p_rq, p) || p->state)
    		goto out_unlock;
    
    	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
    	if (yielded) {
    		schedstat_inc(rq, yld_count);
    		/*
    		 * Make p's CPU reschedule; pick_next_entity takes care of
    		 * fairness.
    		 */
    		if (preempt && rq != p_rq)
    			resched_curr(p_rq);
    	}
    
    out_unlock:
    	double_rq_unlock(rq, p_rq);
    out_irq:
    	local_irq_restore(flags);
    
    	if (yielded > 0)
    		schedule();
    
    	return yielded;
    }
    EXPORT_SYMBOL_GPL(yield_to);
    
    /*
     * This task is about to go to sleep on IO. Increment rq->nr_iowait so
     * that process accounting knows that this is a task in IO wait state.
     */
    long __sched io_schedule_timeout(long timeout)
    {
    	int old_iowait = current->in_iowait;
    	struct rq *rq;
    	long ret;
    
    	current->in_iowait = 1;
    	blk_schedule_flush_plug(current);
    
    	delayacct_blkio_start();
    	rq = raw_rq();
    	atomic_inc(&rq->nr_iowait);
    	ret = schedule_timeout(timeout);
    	current->in_iowait = old_iowait;
    	atomic_dec(&rq->nr_iowait);
    	delayacct_blkio_end();
    
    	return ret;
    }
    EXPORT_SYMBOL(io_schedule_timeout);
    
    /**
     * sys_sched_get_priority_max - return maximum RT priority.
     * @policy: scheduling class.
     *
     * Return: On success, this syscall returns the maximum
     * rt_priority that can be used by a given scheduling class.
     * On failure, a negative error code is returned.
     */
    SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
    {
    	int ret = -EINVAL;
    
    	switch (policy) {
    	case SCHED_FIFO:
    	case SCHED_RR:
    		ret = MAX_USER_RT_PRIO-1;
    		break;
    	case SCHED_DEADLINE:
    	case SCHED_NORMAL:
    	case SCHED_BATCH:
    	case SCHED_IDLE:
    		ret = 0;
    		break;
    	}
    	return ret;
    }
    
    /**
     * sys_sched_get_priority_min - return minimum RT priority.
     * @policy: scheduling class.
     *
     * Return: On success, this syscall returns the minimum
     * rt_priority that can be used by a given scheduling class.
     * On failure, a negative error code is returned.
     */
    SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
    {
    	int ret = -EINVAL;
    
    	switch (policy) {
    	case SCHED_FIFO:
    	case SCHED_RR:
    		ret = 1;
    		break;
    	case SCHED_DEADLINE:
    	case SCHED_NORMAL:
    	case SCHED_BATCH:
    	case SCHED_IDLE:
    		ret = 0;
    	}
    	return ret;
    }
    
    /**
     * sys_sched_rr_get_interval - return the default timeslice of a process.
     * @pid: pid of the process.
     * @interval: userspace pointer to the timeslice value.
     *
     * this syscall writes the default timeslice value of a given process
     * into the user-space timespec buffer. A value of '0' means infinity.
     *
     * Return: On success, 0 and the timeslice is in @interval. Otherwise,
     * an error code.
     */
    SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
    		struct timespec __user *, interval)
    {
    	struct task_struct *p;
    	unsigned int time_slice;
    	unsigned long flags;
    	struct rq *rq;
    	int retval;
    	struct timespec t;
    
    	if (pid < 0)
    		return -EINVAL;
    
    	retval = -ESRCH;
    	rcu_read_lock();
    	p = find_process_by_pid(pid);
    	if (!p)
    		goto out_unlock;
    
    	retval = security_task_getscheduler(p);
    	if (retval)
    		goto out_unlock;
    
    	rq = task_rq_lock(p, &flags);
    	time_slice = 0;
    	if (p->sched_class->get_rr_interval)
    		time_slice = p->sched_class->get_rr_interval(rq, p);
    	task_rq_unlock(rq, p, &flags);
    
    	rcu_read_unlock();
    	jiffies_to_timespec(time_slice, &t);
    	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
    	return retval;
    
    out_unlock:
    	rcu_read_unlock();
    	return retval;
    }
    
    static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
    
    void sched_show_task(struct task_struct *p)
    {
    	unsigned long free = 0;
    	int ppid;
    	unsigned long state = p->state;
    
    	if (state)
    		state = __ffs(state) + 1;
    	printk(KERN_INFO "%-15.15s %c", p->comm,
    		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
    #if BITS_PER_LONG == 32
    	if (state == TASK_RUNNING)
    		printk(KERN_CONT " running  ");
    	else
    		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
    #else
    	if (state == TASK_RUNNING)
    		printk(KERN_CONT "  running task    ");
    	else
    		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
    #endif
    #ifdef CONFIG_DEBUG_STACK_USAGE
    	free = stack_not_used(p);
    #endif
    	ppid = 0;
    	rcu_read_lock();
    	if (pid_alive(p))
    		ppid = task_pid_nr(rcu_dereference(p->real_parent));
    	rcu_read_unlock();
    	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
    		task_pid_nr(p), ppid,
    		(unsigned long)task_thread_info(p)->flags);
    
    	print_worker_info(KERN_INFO, p);
    	show_stack(p, NULL);
    }
    
    void show_state_filter(unsigned long state_filter)
    {
    	struct task_struct *g, *p;
    
    #if BITS_PER_LONG == 32
    	printk(KERN_INFO
    		"  task                PC stack   pid father\n");
    #else
    	printk(KERN_INFO
    		"  task                        PC stack   pid father\n");
    #endif
    	rcu_read_lock();
    	for_each_process_thread(g, p) {
    		/*
    		 * reset the NMI-timeout, listing all files on a slow
    		 * console might take a lot of time:
    		 */
    		touch_nmi_watchdog();
    		if (!state_filter || (p->state & state_filter))
    			sched_show_task(p);
    	}
    
    	touch_all_softlockup_watchdogs();
    
    #ifdef CONFIG_SCHED_DEBUG
    	sysrq_sched_debug_show();
    #endif
    	rcu_read_unlock();
    	/*
    	 * Only show locks if all tasks are dumped:
    	 */
    	if (!state_filter)
    		debug_show_all_locks();
    }
    
    void init_idle_bootup_task(struct task_struct *idle)
    {
    	idle->sched_class = &idle_sched_class;
    }
    
    /**
     * init_idle - set up an idle thread for a given CPU
     * @idle: task in question
     * @cpu: cpu the idle task belongs to
     *
     * NOTE: this function does not set the idle thread's NEED_RESCHED
     * flag, to make booting more robust.
     */
    void init_idle(struct task_struct *idle, int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&idle->pi_lock, flags);
    	raw_spin_lock(&rq->lock);
    
    	__sched_fork(0, idle);
    	idle->state = TASK_RUNNING;
    	idle->se.exec_start = sched_clock();
    
    	kasan_unpoison_task_stack(idle);
    
    #ifdef CONFIG_SMP
    	/*
    	 * Its possible that init_idle() gets called multiple times on a task,
    	 * in that case do_set_cpus_allowed() will not do the right thing.
    	 *
    	 * And since this is boot we can forgo the serialization.
    	 */
    	set_cpus_allowed_common(idle, cpumask_of(cpu));
    #endif
    	/*
    	 * We're having a chicken and egg problem, even though we are
    	 * holding rq->lock, the cpu isn't yet set to this cpu so the
    	 * lockdep check in task_group() will fail.
    	 *
    	 * Similar case to sched_fork(). / Alternatively we could
    	 * use task_rq_lock() here and obtain the other rq->lock.
    	 *
    	 * Silence PROVE_RCU
    	 */
    	rcu_read_lock();
    	__set_task_cpu(idle, cpu);
    	rcu_read_unlock();
    
    	rq->curr = rq->idle = idle;
    	idle->on_rq = TASK_ON_RQ_QUEUED;
    #ifdef CONFIG_SMP
    	idle->on_cpu = 1;
    #endif
    	raw_spin_unlock(&rq->lock);
    	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
    
    	/* Set the preempt count _outside_ the spinlocks! */
    	init_idle_preempt_count(idle, cpu);
    
    	/*
    	 * The idle tasks have their own, simple scheduling class:
    	 */
    	idle->sched_class = &idle_sched_class;
    	ftrace_graph_init_idle_task(idle, cpu);
    	vtime_init_idle(idle, cpu);
    #ifdef CONFIG_SMP
    	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
    #endif
    }
    
    int cpuset_cpumask_can_shrink(const struct cpumask *cur,
    			      const struct cpumask *trial)
    {
    	int ret = 1, trial_cpus;
    	struct dl_bw *cur_dl_b;
    	unsigned long flags;
    
    	if (!cpumask_weight(cur))
    		return ret;
    
    	rcu_read_lock_sched();
    	cur_dl_b = dl_bw_of(cpumask_any(cur));
    	trial_cpus = cpumask_weight(trial);
    
    	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
    	if (cur_dl_b->bw != -1 &&
    	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
    		ret = 0;
    	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
    	rcu_read_unlock_sched();
    
    	return ret;
    }
    
    int task_can_attach(struct task_struct *p,
    		    const struct cpumask *cs_cpus_allowed)
    {
    	int ret = 0;
    
    	/*
    	 * Kthreads which disallow setaffinity shouldn't be moved
    	 * to a new cpuset; we don't want to change their cpu
    	 * affinity and isolating such threads by their set of
    	 * allowed nodes is unnecessary.  Thus, cpusets are not
    	 * applicable for such threads.  This prevents checking for
    	 * success of set_cpus_allowed_ptr() on all attached tasks
    	 * before cpus_allowed may be changed.
    	 */
    	if (p->flags & PF_NO_SETAFFINITY) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    #ifdef CONFIG_SMP
    	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
    					      cs_cpus_allowed)) {
    		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
    							cs_cpus_allowed);
    		struct dl_bw *dl_b;
    		bool overflow;
    		int cpus;
    		unsigned long flags;
    
    		rcu_read_lock_sched();
    		dl_b = dl_bw_of(dest_cpu);
    		raw_spin_lock_irqsave(&dl_b->lock, flags);
    		cpus = dl_bw_cpus(dest_cpu);
    		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
    		if (overflow)
    			ret = -EBUSY;
    		else {
    			/*
    			 * We reserve space for this task in the destination
    			 * root_domain, as we can't fail after this point.
    			 * We will free resources in the source root_domain
    			 * later on (see set_cpus_allowed_dl()).
    			 */
    			__dl_add(dl_b, p->dl.dl_bw);
    		}
    		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
    		rcu_read_unlock_sched();
    
    	}
    #endif
    out:
    	return ret;
    }
    
    #ifdef CONFIG_SMP
    
    #ifdef CONFIG_NUMA_BALANCING
    /* Migrate current task p to target_cpu */
    int migrate_task_to(struct task_struct *p, int target_cpu)
    {
    	struct migration_arg arg = { p, target_cpu };
    	int curr_cpu = task_cpu(p);
    
    	if (curr_cpu == target_cpu)
    		return 0;
    
    	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
    		return -EINVAL;
    
    	/* TODO: This is not properly updating schedstats */
    
    	trace_sched_move_numa(p, curr_cpu, target_cpu);
    	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
    }
    
    /*
     * Requeue a task on a given node and accurately track the number of NUMA
     * tasks on the runqueues
     */
    void sched_setnuma(struct task_struct *p, int nid)
    {
    	struct rq *rq;
    	unsigned long flags;
    	bool queued, running;
    
    	rq = task_rq_lock(p, &flags);
    	queued = task_on_rq_queued(p);
    	running = task_current(rq, p);
    
    	if (queued)
    		dequeue_task(rq, p, DEQUEUE_SAVE);
    	if (running)
    		put_prev_task(rq, p);
    
    	p->numa_preferred_nid = nid;
    
    	if (running)
    		p->sched_class->set_curr_task(rq);
    	if (queued)
    		enqueue_task(rq, p, ENQUEUE_RESTORE);
    	task_rq_unlock(rq, p, &flags);
    }
    #endif /* CONFIG_NUMA_BALANCING */
    
    #ifdef CONFIG_HOTPLUG_CPU
    /*
     * Ensures that the idle task is using init_mm right before its cpu goes
     * offline.
     */
    void idle_task_exit(void)
    {
    	struct mm_struct *mm = current->active_mm;
    
    	BUG_ON(cpu_online(smp_processor_id()));
    
    	if (mm != &init_mm) {
    		switch_mm(mm, &init_mm, current);
    		finish_arch_post_lock_switch();
    	}
    	mmdrop(mm);
    }
    
    /*
     * Since this CPU is going 'away' for a while, fold any nr_active delta
     * we might have. Assumes we're called after migrate_tasks() so that the
     * nr_active count is stable.
     *
     * Also see the comment "Global load-average calculations".
     */
    static void calc_load_migrate(struct rq *rq)
    {
    	long delta = calc_load_fold_active(rq);
    	if (delta)
    		atomic_long_add(delta, &calc_load_tasks);
    }
    
    static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
    {
    }
    
    static const struct sched_class fake_sched_class = {
    	.put_prev_task = put_prev_task_fake,
    };
    
    static struct task_struct fake_task = {
    	/*
    	 * Avoid pull_{rt,dl}_task()
    	 */
    	.prio = MAX_PRIO + 1,
    	.sched_class = &fake_sched_class,
    };
    
    /*
     * Migrate all tasks from the rq, sleeping tasks will be migrated by
     * try_to_wake_up()->select_task_rq().
     *
     * Called with rq->lock held even though we'er in stop_machine() and
     * there's no concurrency possible, we hold the required locks anyway
     * because of lock validation efforts.
     */
    static void migrate_tasks(struct rq *dead_rq)
    {
    	struct rq *rq = dead_rq;
    	struct task_struct *next, *stop = rq->stop;
    	int dest_cpu;
    
    	/*
    	 * Fudge the rq selection such that the below task selection loop
    	 * doesn't get stuck on the currently eligible stop task.
    	 *
    	 * We're currently inside stop_machine() and the rq is either stuck
    	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
    	 * either way we should never end up calling schedule() until we're
    	 * done here.
    	 */
    	rq->stop = NULL;
    
    	/*
    	 * put_prev_task() and pick_next_task() sched
    	 * class method both need to have an up-to-date
    	 * value of rq->clock[_task]
    	 */
    	update_rq_clock(rq);
    
    	for (;;) {
    		/*
    		 * There's this thread running, bail when that's the only
    		 * remaining thread.
    		 */
    		if (rq->nr_running == 1)
    			break;
    
    		/*
    		 * pick_next_task assumes pinned rq->lock.
    		 */
    		lockdep_pin_lock(&rq->lock);
    		next = pick_next_task(rq, &fake_task);
    		BUG_ON(!next);
    		next->sched_class->put_prev_task(rq, next);
    
    		/*
    		 * Rules for changing task_struct::cpus_allowed are holding
    		 * both pi_lock and rq->lock, such that holding either
    		 * stabilizes the mask.
    		 *
    		 * Drop rq->lock is not quite as disastrous as it usually is
    		 * because !cpu_active at this point, which means load-balance
    		 * will not interfere. Also, stop-machine.
    		 */
    		lockdep_unpin_lock(&rq->lock);
    		raw_spin_unlock(&rq->lock);
    		raw_spin_lock(&next->pi_lock);
    		raw_spin_lock(&rq->lock);
    
    		/*
    		 * Since we're inside stop-machine, _nothing_ should have
    		 * changed the task, WARN if weird stuff happened, because in
    		 * that case the above rq->lock drop is a fail too.
    		 */
    		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
    			raw_spin_unlock(&next->pi_lock);
    			continue;
    		}
    
    		/* Find suitable destination for @next, with force if needed. */
    		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
    
    		rq = __migrate_task(rq, next, dest_cpu);
    		if (rq != dead_rq) {
    			raw_spin_unlock(&rq->lock);
    			rq = dead_rq;
    			raw_spin_lock(&rq->lock);
    		}
    		raw_spin_unlock(&next->pi_lock);
    	}
    
    	rq->stop = stop;
    }
    #endif /* CONFIG_HOTPLUG_CPU */
    
    static void set_rq_online(struct rq *rq)
    {
    	if (!rq->online) {
    		const struct sched_class *class;
    
    		cpumask_set_cpu(rq->cpu, rq->rd->online);
    		rq->online = 1;
    
    		for_each_class(class) {
    			if (class->rq_online)
    				class->rq_online(rq);
    		}
    	}
    }
    
    static void set_rq_offline(struct rq *rq)
    {
    	if (rq->online) {
    		const struct sched_class *class;
    
    		for_each_class(class) {
    			if (class->rq_offline)
    				class->rq_offline(rq);
    		}
    
    		cpumask_clear_cpu(rq->cpu, rq->rd->online);
    		rq->online = 0;
    	}
    }
    
    /*
     * migration_call - callback that gets triggered when a CPU is added.
     * Here we can start up the necessary migration thread for the new CPU.
     */
    static int
    migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
    {
    	int cpu = (long)hcpu;
    	unsigned long flags;
    	struct rq *rq = cpu_rq(cpu);
    
    	switch (action & ~CPU_TASKS_FROZEN) {
    
    	case CPU_UP_PREPARE:
    		rq->calc_load_update = calc_load_update;
    		break;
    
    	case CPU_ONLINE:
    		/* Update our root-domain */
    		raw_spin_lock_irqsave(&rq->lock, flags);
    		if (rq->rd) {
    			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    
    			set_rq_online(rq);
    		}
    		raw_spin_unlock_irqrestore(&rq->lock, flags);
    		break;
    
    #ifdef CONFIG_HOTPLUG_CPU
    	case CPU_DYING:
    		sched_ttwu_pending();
    		/* Update our root-domain */
    		raw_spin_lock_irqsave(&rq->lock, flags);
    		if (rq->rd) {
    			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    			set_rq_offline(rq);
    		}
    		migrate_tasks(rq);
    		BUG_ON(rq->nr_running != 1); /* the migration thread */
    		raw_spin_unlock_irqrestore(&rq->lock, flags);
    		break;
    
    	case CPU_DEAD:
    		calc_load_migrate(rq);
    		break;
    #endif
    	}
    
    	update_max_interval();
    
    	return NOTIFY_OK;
    }
    
    /*
     * Register at high priority so that task migration (migrate_all_tasks)
     * happens before everything else.  This has to be lower priority than
     * the notifier in the perf_event subsystem, though.
     */
    static struct notifier_block migration_notifier = {
    	.notifier_call = migration_call,
    	.priority = CPU_PRI_MIGRATION,
    };
    
    static void set_cpu_rq_start_time(void)
    {
    	int cpu = smp_processor_id();
    	struct rq *rq = cpu_rq(cpu);
    	rq->age_stamp = sched_clock_cpu(cpu);
    }
    
    static int sched_cpu_active(struct notifier_block *nfb,
    				      unsigned long action, void *hcpu)
    {
    	int cpu = (long)hcpu;
    
    	switch (action & ~CPU_TASKS_FROZEN) {
    	case CPU_STARTING:
    		set_cpu_rq_start_time();
    		return NOTIFY_OK;
    
    	case CPU_DOWN_FAILED:
    		set_cpu_active(cpu, true);
    		return NOTIFY_OK;
    
    	default:
    		return NOTIFY_DONE;
    	}
    }
    
    static int sched_cpu_inactive(struct notifier_block *nfb,
    					unsigned long action, void *hcpu)
    {
    	switch (action & ~CPU_TASKS_FROZEN) {
    	case CPU_DOWN_PREPARE:
    		set_cpu_active((long)hcpu, false);
    		return NOTIFY_OK;
    	default:
    		return NOTIFY_DONE;
    	}
    }
    
    static int __init migration_init(void)
    {
    	void *cpu = (void *)(long)smp_processor_id();
    	int err;
    
    	/* Initialize migration for the boot CPU */
    	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
    	BUG_ON(err == NOTIFY_BAD);
    	migration_call(&migration_notifier, CPU_ONLINE, cpu);
    	register_cpu_notifier(&migration_notifier);
    
    	/* Register cpu active notifiers */
    	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
    	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
    
    	return 0;
    }
    early_initcall(migration_init);
    
    static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
    
    #ifdef CONFIG_SCHED_DEBUG
    
    static __read_mostly int sched_debug_enabled;
    
    static int __init sched_debug_setup(char *str)
    {
    	sched_debug_enabled = 1;
    
    	return 0;
    }
    early_param("sched_debug", sched_debug_setup);
    
    static inline bool sched_debug(void)
    {
    	return sched_debug_enabled;
    }
    
    static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
    				  struct cpumask *groupmask)
    {
    	struct sched_group *group = sd->groups;
    
    	cpumask_clear(groupmask);
    
    	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
    
    	if (!(sd->flags & SD_LOAD_BALANCE)) {
    		printk("does not load-balance\n");
    		if (sd->parent)
    			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
    					" has parent");
    		return -1;
    	}
    
    	printk(KERN_CONT "span %*pbl level %s\n",
    	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
    
    	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
    		printk(KERN_ERR "ERROR: domain->span does not contain "
    				"CPU%d\n", cpu);
    	}
    	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
    		printk(KERN_ERR "ERROR: domain->groups does not contain"
    				" CPU%d\n", cpu);
    	}
    
    	printk(KERN_DEBUG "%*s groups:", level + 1, "");
    	do {
    		if (!group) {
    			printk("\n");
    			printk(KERN_ERR "ERROR: group is NULL\n");
    			break;
    		}
    
    		if (!cpumask_weight(sched_group_cpus(group))) {
    			printk(KERN_CONT "\n");
    			printk(KERN_ERR "ERROR: empty group\n");
    			break;
    		}
    
    		if (!(sd->flags & SD_OVERLAP) &&
    		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
    			printk(KERN_CONT "\n");
    			printk(KERN_ERR "ERROR: repeated CPUs\n");
    			break;
    		}
    
    		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
    
    		printk(KERN_CONT " %*pbl",
    		       cpumask_pr_args(sched_group_cpus(group)));
    		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
    			printk(KERN_CONT " (cpu_capacity = %d)",
    				group->sgc->capacity);
    		}
    
    		group = group->next;
    	} while (group != sd->groups);
    	printk(KERN_CONT "\n");
    
    	if (!cpumask_equal(sched_domain_span(sd), groupmask))
    		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
    
    	if (sd->parent &&
    	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
    		printk(KERN_ERR "ERROR: parent span is not a superset "
    			"of domain->span\n");
    	return 0;
    }
    
    static void sched_domain_debug(struct sched_domain *sd, int cpu)
    {
    	int level = 0;
    
    	if (!sched_debug_enabled)
    		return;
    
    	if (!sd) {
    		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
    		return;
    	}
    
    	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
    
    	for (;;) {
    		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
    			break;
    		level++;
    		sd = sd->parent;
    		if (!sd)
    			break;
    	}
    }
    #else /* !CONFIG_SCHED_DEBUG */
    # define sched_domain_debug(sd, cpu) do { } while (0)
    static inline bool sched_debug(void)
    {
    	return false;
    }
    #endif /* CONFIG_SCHED_DEBUG */
    
    static int sd_degenerate(struct sched_domain *sd)
    {
    	if (cpumask_weight(sched_domain_span(sd)) == 1)
    		return 1;
    
    	/* Following flags need at least 2 groups */
    	if (sd->flags & (SD_LOAD_BALANCE |
    			 SD_BALANCE_NEWIDLE |
    			 SD_BALANCE_FORK |
    			 SD_BALANCE_EXEC |
    			 SD_SHARE_CPUCAPACITY |
    			 SD_SHARE_PKG_RESOURCES |
    			 SD_SHARE_POWERDOMAIN)) {
    		if (sd->groups != sd->groups->next)
    			return 0;
    	}
    
    	/* Following flags don't use groups */
    	if (sd->flags & (SD_WAKE_AFFINE))
    		return 0;
    
    	return 1;
    }
    
    static int
    sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
    {
    	unsigned long cflags = sd->flags, pflags = parent->flags;
    
    	if (sd_degenerate(parent))
    		return 1;
    
    	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
    		return 0;
    
    	/* Flags needing groups don't count if only 1 group in parent */
    	if (parent->groups == parent->groups->next) {
    		pflags &= ~(SD_LOAD_BALANCE |
    				SD_BALANCE_NEWIDLE |
    				SD_BALANCE_FORK |
    				SD_BALANCE_EXEC |
    				SD_SHARE_CPUCAPACITY |
    				SD_SHARE_PKG_RESOURCES |
    				SD_PREFER_SIBLING |
    				SD_SHARE_POWERDOMAIN);
    		if (nr_node_ids == 1)
    			pflags &= ~SD_SERIALIZE;
    	}
    	if (~cflags & pflags)
    		return 0;
    
    	return 1;
    }
    
    static void free_rootdomain(struct rcu_head *rcu)
    {
    	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
    
    	cpupri_cleanup(&rd->cpupri);
    	cpudl_cleanup(&rd->cpudl);
    	free_cpumask_var(rd->dlo_mask);
    	free_cpumask_var(rd->rto_mask);
    	free_cpumask_var(rd->online);
    	free_cpumask_var(rd->span);
    	kfree(rd);
    }
    
    static void rq_attach_root(struct rq *rq, struct root_domain *rd)
    {
    	struct root_domain *old_rd = NULL;
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&rq->lock, flags);
    
    	if (rq->rd) {
    		old_rd = rq->rd;
    
    		if (cpumask_test_cpu(rq->cpu, old_rd->online))
    			set_rq_offline(rq);
    
    		cpumask_clear_cpu(rq->cpu, old_rd->span);
    
    		/*
    		 * If we dont want to free the old_rd yet then
    		 * set old_rd to NULL to skip the freeing later
    		 * in this function:
    		 */
    		if (!atomic_dec_and_test(&old_rd->refcount))
    			old_rd = NULL;
    	}
    
    	atomic_inc(&rd->refcount);
    	rq->rd = rd;
    
    	cpumask_set_cpu(rq->cpu, rd->span);
    	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
    		set_rq_online(rq);
    
    	raw_spin_unlock_irqrestore(&rq->lock, flags);
    
    	if (old_rd)
    		call_rcu_sched(&old_rd->rcu, free_rootdomain);
    }
    
    static int init_rootdomain(struct root_domain *rd)
    {
    	memset(rd, 0, sizeof(*rd));
    
    	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
    		goto out;
    	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
    		goto free_span;
    	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
    		goto free_online;
    	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
    		goto free_dlo_mask;
    
    	init_dl_bw(&rd->dl_bw);
    	if (cpudl_init(&rd->cpudl) != 0)
    		goto free_dlo_mask;
    
    	if (cpupri_init(&rd->cpupri) != 0)
    		goto free_rto_mask;
    	return 0;
    
    free_rto_mask:
    	free_cpumask_var(rd->rto_mask);
    free_dlo_mask:
    	free_cpumask_var(rd->dlo_mask);
    free_online:
    	free_cpumask_var(rd->online);
    free_span:
    	free_cpumask_var(rd->span);
    out:
    	return -ENOMEM;
    }
    
    /*
     * By default the system creates a single root-domain with all cpus as
     * members (mimicking the global state we have today).
     */
    struct root_domain def_root_domain;
    
    static void init_defrootdomain(void)
    {
    	init_rootdomain(&def_root_domain);
    
    	atomic_set(&def_root_domain.refcount, 1);
    }
    
    static struct root_domain *alloc_rootdomain(void)
    {
    	struct root_domain *rd;
    
    	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
    	if (!rd)
    		return NULL;
    
    	if (init_rootdomain(rd) != 0) {
    		kfree(rd);
    		return NULL;
    	}
    
    	return rd;
    }
    
    static void free_sched_groups(struct sched_group *sg, int free_sgc)
    {
    	struct sched_group *tmp, *first;
    
    	if (!sg)
    		return;
    
    	first = sg;
    	do {
    		tmp = sg->next;
    
    		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
    			kfree(sg->sgc);
    
    		kfree(sg);
    		sg = tmp;
    	} while (sg != first);
    }
    
    static void free_sched_domain(struct rcu_head *rcu)
    {
    	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
    
    	/*
    	 * If its an overlapping domain it has private groups, iterate and
    	 * nuke them all.
    	 */
    	if (sd->flags & SD_OVERLAP) {
    		free_sched_groups(sd->groups, 1);
    	} else if (atomic_dec_and_test(&sd->groups->ref)) {
    		kfree(sd->groups->sgc);
    		kfree(sd->groups);
    	}
    	kfree(sd);
    }
    
    static void destroy_sched_domain(struct sched_domain *sd, int cpu)
    {
    	call_rcu(&sd->rcu, free_sched_domain);
    }
    
    static void destroy_sched_domains(struct sched_domain *sd, int cpu)
    {
    	for (; sd; sd = sd->parent)
    		destroy_sched_domain(sd, cpu);
    }
    
    /*
     * Keep a special pointer to the highest sched_domain that has
     * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
     * allows us to avoid some pointer chasing select_idle_sibling().
     *
     * Also keep a unique ID per domain (we use the first cpu number in
     * the cpumask of the domain), this allows us to quickly tell if
     * two cpus are in the same cache domain, see cpus_share_cache().
     */
    DEFINE_PER_CPU(struct sched_domain *, sd_llc);
    DEFINE_PER_CPU(int, sd_llc_size);
    DEFINE_PER_CPU(int, sd_llc_id);
    DEFINE_PER_CPU(struct sched_domain *, sd_numa);
    DEFINE_PER_CPU(struct sched_domain *, sd_busy);
    DEFINE_PER_CPU(struct sched_domain *, sd_asym);
    
    static void update_top_cache_domain(int cpu)
    {
    	struct sched_domain *sd;
    	struct sched_domain *busy_sd = NULL;
    	int id = cpu;
    	int size = 1;
    
    	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
    	if (sd) {
    		id = cpumask_first(sched_domain_span(sd));
    		size = cpumask_weight(sched_domain_span(sd));
    		busy_sd = sd->parent; /* sd_busy */
    	}
    	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
    
    	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
    	per_cpu(sd_llc_size, cpu) = size;
    	per_cpu(sd_llc_id, cpu) = id;
    
    	sd = lowest_flag_domain(cpu, SD_NUMA);
    	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
    
    	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
    	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
    }
    
    /*
     * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
     * hold the hotplug lock.
     */
    static void
    cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
    {
    	struct rq *rq = cpu_rq(cpu);
    	struct sched_domain *tmp;
    
    	/* Remove the sched domains which do not contribute to scheduling. */
    	for (tmp = sd; tmp; ) {
    		struct sched_domain *parent = tmp->parent;
    		if (!parent)
    			break;
    
    		if (sd_parent_degenerate(tmp, parent)) {
    			tmp->parent = parent->parent;
    			if (parent->parent)
    				parent->parent->child = tmp;
    			/*
    			 * Transfer SD_PREFER_SIBLING down in case of a
    			 * degenerate parent; the spans match for this
    			 * so the property transfers.
    			 */
    			if (parent->flags & SD_PREFER_SIBLING)
    				tmp->flags |= SD_PREFER_SIBLING;
    			destroy_sched_domain(parent, cpu);
    		} else
    			tmp = tmp->parent;
    	}
    
    	if (sd && sd_degenerate(sd)) {
    		tmp = sd;
    		sd = sd->parent;
    		destroy_sched_domain(tmp, cpu);
    		if (sd)
    			sd->child = NULL;
    	}
    
    	sched_domain_debug(sd, cpu);
    
    	rq_attach_root(rq, rd);
    	tmp = rq->sd;
    	rcu_assign_pointer(rq->sd, sd);
    	destroy_sched_domains(tmp, cpu);
    
    	update_top_cache_domain(cpu);
    }
    
    /* Setup the mask of cpus configured for isolated domains */
    static int __init isolated_cpu_setup(char *str)
    {
    	int ret;
    
    	alloc_bootmem_cpumask_var(&cpu_isolated_map);
    	ret = cpulist_parse(str, cpu_isolated_map);
    	if (ret) {
    		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
    		return 0;
    	}
    	return 1;
    }
    __setup("isolcpus=", isolated_cpu_setup);
    
    struct s_data {
    	struct sched_domain ** __percpu sd;
    	struct root_domain	*rd;
    };
    
    enum s_alloc {
    	sa_rootdomain,
    	sa_sd,
    	sa_sd_storage,
    	sa_none,
    };
    
    /*
     * Build an iteration mask that can exclude certain CPUs from the upwards
     * domain traversal.
     *
     * Asymmetric node setups can result in situations where the domain tree is of
     * unequal depth, make sure to skip domains that already cover the entire
     * range.
     *
     * In that case build_sched_domains() will have terminated the iteration early
     * and our sibling sd spans will be empty. Domains should always include the
     * cpu they're built on, so check that.
     *
     */
    static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
    {
    	const struct cpumask *span = sched_domain_span(sd);
    	struct sd_data *sdd = sd->private;
    	struct sched_domain *sibling;
    	int i;
    
    	for_each_cpu(i, span) {
    		sibling = *per_cpu_ptr(sdd->sd, i);
    		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
    			continue;
    
    		cpumask_set_cpu(i, sched_group_mask(sg));
    	}
    }
    
    /*
     * Return the canonical balance cpu for this group, this is the first cpu
     * of this group that's also in the iteration mask.
     */
    int group_balance_cpu(struct sched_group *sg)
    {
    	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
    }
    
    static int
    build_overlap_sched_groups(struct sched_domain *sd, int cpu)
    {
    	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
    	const struct cpumask *span = sched_domain_span(sd);
    	struct cpumask *covered = sched_domains_tmpmask;
    	struct sd_data *sdd = sd->private;
    	struct sched_domain *sibling;
    	int i;
    
    	cpumask_clear(covered);
    
    	for_each_cpu(i, span) {
    		struct cpumask *sg_span;
    
    		if (cpumask_test_cpu(i, covered))
    			continue;
    
    		sibling = *per_cpu_ptr(sdd->sd, i);
    
    		/* See the comment near build_group_mask(). */
    		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
    			continue;
    
    		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
    				GFP_KERNEL, cpu_to_node(cpu));
    
    		if (!sg)
    			goto fail;
    
    		sg_span = sched_group_cpus(sg);
    		if (sibling->child)
    			cpumask_copy(sg_span, sched_domain_span(sibling->child));
    		else
    			cpumask_set_cpu(i, sg_span);
    
    		cpumask_or(covered, covered, sg_span);
    
    		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
    		if (atomic_inc_return(&sg->sgc->ref) == 1)
    			build_group_mask(sd, sg);
    
    		/*
    		 * Initialize sgc->capacity such that even if we mess up the
    		 * domains and no possible iteration will get us here, we won't
    		 * die on a /0 trap.
    		 */
    		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
    
    		/*
    		 * Make sure the first group of this domain contains the
    		 * canonical balance cpu. Otherwise the sched_domain iteration
    		 * breaks. See update_sg_lb_stats().
    		 */
    		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
    		    group_balance_cpu(sg) == cpu)
    			groups = sg;
    
    		if (!first)
    			first = sg;
    		if (last)
    			last->next = sg;
    		last = sg;
    		last->next = first;
    	}
    	sd->groups = groups;
    
    	return 0;
    
    fail:
    	free_sched_groups(first, 0);
    
    	return -ENOMEM;
    }
    
    static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
    {
    	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
    	struct sched_domain *child = sd->child;
    
    	if (child)
    		cpu = cpumask_first(sched_domain_span(child));
    
    	if (sg) {
    		*sg = *per_cpu_ptr(sdd->sg, cpu);
    		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
    		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
    	}
    
    	return cpu;
    }
    
    /*
     * build_sched_groups will build a circular linked list of the groups
     * covered by the given span, and will set each group's ->cpumask correctly,
     * and ->cpu_capacity to 0.
     *
     * Assumes the sched_domain tree is fully constructed
     */
    static int
    build_sched_groups(struct sched_domain *sd, int cpu)
    {
    	struct sched_group *first = NULL, *last = NULL;
    	struct sd_data *sdd = sd->private;
    	const struct cpumask *span = sched_domain_span(sd);
    	struct cpumask *covered;
    	int i;
    
    	get_group(cpu, sdd, &sd->groups);
    	atomic_inc(&sd->groups->ref);
    
    	if (cpu != cpumask_first(span))
    		return 0;
    
    	lockdep_assert_held(&sched_domains_mutex);
    	covered = sched_domains_tmpmask;
    
    	cpumask_clear(covered);
    
    	for_each_cpu(i, span) {
    		struct sched_group *sg;
    		int group, j;
    
    		if (cpumask_test_cpu(i, covered))
    			continue;
    
    		group = get_group(i, sdd, &sg);
    		cpumask_setall(sched_group_mask(sg));
    
    		for_each_cpu(j, span) {
    			if (get_group(j, sdd, NULL) != group)
    				continue;
    
    			cpumask_set_cpu(j, covered);
    			cpumask_set_cpu(j, sched_group_cpus(sg));
    		}
    
    		if (!first)
    			first = sg;
    		if (last)
    			last->next = sg;
    		last = sg;
    	}
    	last->next = first;
    
    	return 0;
    }
    
    /*
     * Initialize sched groups cpu_capacity.
     *
     * cpu_capacity indicates the capacity of sched group, which is used while
     * distributing the load between different sched groups in a sched domain.
     * Typically cpu_capacity for all the groups in a sched domain will be same
     * unless there are asymmetries in the topology. If there are asymmetries,
     * group having more cpu_capacity will pickup more load compared to the
     * group having less cpu_capacity.
     */
    static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
    {
    	struct sched_group *sg = sd->groups;
    
    	WARN_ON(!sg);
    
    	do {
    		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
    		sg = sg->next;
    	} while (sg != sd->groups);
    
    	if (cpu != group_balance_cpu(sg))
    		return;
    
    	update_group_capacity(sd, cpu);
    	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
    }
    
    /*
     * Initializers for schedule domains
     * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
     */
    
    static int default_relax_domain_level = -1;
    int sched_domain_level_max;
    
    static int __init setup_relax_domain_level(char *str)
    {
    	if (kstrtoint(str, 0, &default_relax_domain_level))
    		pr_warn("Unable to set relax_domain_level\n");
    
    	return 1;
    }
    __setup("relax_domain_level=", setup_relax_domain_level);
    
    static void set_domain_attribute(struct sched_domain *sd,
    				 struct sched_domain_attr *attr)
    {
    	int request;
    
    	if (!attr || attr->relax_domain_level < 0) {
    		if (default_relax_domain_level < 0)
    			return;
    		else
    			request = default_relax_domain_level;
    	} else
    		request = attr->relax_domain_level;
    	if (request < sd->level) {
    		/* turn off idle balance on this domain */
    		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
    	} else {
    		/* turn on idle balance on this domain */
    		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
    	}
    }
    
    static void __sdt_free(const struct cpumask *cpu_map);
    static int __sdt_alloc(const struct cpumask *cpu_map);
    
    static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
    				 const struct cpumask *cpu_map)
    {
    	switch (what) {
    	case sa_rootdomain:
    		if (!atomic_read(&d->rd->refcount))
    			free_rootdomain(&d->rd->rcu); /* fall through */
    	case sa_sd:
    		free_percpu(d->sd); /* fall through */
    	case sa_sd_storage:
    		__sdt_free(cpu_map); /* fall through */
    	case sa_none:
    		break;
    	}
    }
    
    static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
    						   const struct cpumask *cpu_map)
    {
    	memset(d, 0, sizeof(*d));
    
    	if (__sdt_alloc(cpu_map))
    		return sa_sd_storage;
    	d->sd = alloc_percpu(struct sched_domain *);
    	if (!d->sd)
    		return sa_sd_storage;
    	d->rd = alloc_rootdomain();
    	if (!d->rd)
    		return sa_sd;
    	return sa_rootdomain;
    }
    
    /*
     * NULL the sd_data elements we've used to build the sched_domain and
     * sched_group structure so that the subsequent __free_domain_allocs()
     * will not free the data we're using.
     */
    static void claim_allocations(int cpu, struct sched_domain *sd)
    {
    	struct sd_data *sdd = sd->private;
    
    	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
    	*per_cpu_ptr(sdd->sd, cpu) = NULL;
    
    	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
    		*per_cpu_ptr(sdd->sg, cpu) = NULL;
    
    	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
    		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
    }
    
    #ifdef CONFIG_NUMA
    static int sched_domains_numa_levels;
    enum numa_topology_type sched_numa_topology_type;
    static int *sched_domains_numa_distance;
    int sched_max_numa_distance;
    static struct cpumask ***sched_domains_numa_masks;
    static int sched_domains_curr_level;
    #endif
    
    /*
     * SD_flags allowed in topology descriptions.
     *
     * SD_SHARE_CPUCAPACITY      - describes SMT topologies
     * SD_SHARE_PKG_RESOURCES - describes shared caches
     * SD_NUMA                - describes NUMA topologies
     * SD_SHARE_POWERDOMAIN   - describes shared power domain
     *
     * Odd one out:
     * SD_ASYM_PACKING        - describes SMT quirks
     */
    #define TOPOLOGY_SD_FLAGS		\
    	(SD_SHARE_CPUCAPACITY |		\
    	 SD_SHARE_PKG_RESOURCES |	\
    	 SD_NUMA |			\
    	 SD_ASYM_PACKING |		\
    	 SD_SHARE_POWERDOMAIN)
    
    static struct sched_domain *
    sd_init(struct sched_domain_topology_level *tl, int cpu)
    {
    	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
    	int sd_weight, sd_flags = 0;
    
    #ifdef CONFIG_NUMA
    	/*
    	 * Ugly hack to pass state to sd_numa_mask()...
    	 */
    	sched_domains_curr_level = tl->numa_level;
    #endif
    
    	sd_weight = cpumask_weight(tl->mask(cpu));
    
    	if (tl->sd_flags)
    		sd_flags = (*tl->sd_flags)();
    	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
    			"wrong sd_flags in topology description\n"))
    		sd_flags &= ~TOPOLOGY_SD_FLAGS;
    
    	*sd = (struct sched_domain){
    		.min_interval		= sd_weight,
    		.max_interval		= 2*sd_weight,
    		.busy_factor		= 32,
    		.imbalance_pct		= 125,
    
    		.cache_nice_tries	= 0,
    		.busy_idx		= 0,
    		.idle_idx		= 0,
    		.newidle_idx		= 0,
    		.wake_idx		= 0,
    		.forkexec_idx		= 0,
    
    		.flags			= 1*SD_LOAD_BALANCE
    					| 1*SD_BALANCE_NEWIDLE
    					| 1*SD_BALANCE_EXEC
    					| 1*SD_BALANCE_FORK
    					| 0*SD_BALANCE_WAKE
    					| 1*SD_WAKE_AFFINE
    					| 0*SD_SHARE_CPUCAPACITY
    					| 0*SD_SHARE_PKG_RESOURCES
    					| 0*SD_SERIALIZE
    					| 0*SD_PREFER_SIBLING
    					| 0*SD_NUMA
    					| sd_flags
    					,
    
    		.last_balance		= jiffies,
    		.balance_interval	= sd_weight,
    		.smt_gain		= 0,
    		.max_newidle_lb_cost	= 0,
    		.next_decay_max_lb_cost	= jiffies,
    #ifdef CONFIG_SCHED_DEBUG
    		.name			= tl->name,
    #endif
    	};
    
    	/*
    	 * Convert topological properties into behaviour.
    	 */
    
    	if (sd->flags & SD_SHARE_CPUCAPACITY) {
    		sd->flags |= SD_PREFER_SIBLING;
    		sd->imbalance_pct = 110;
    		sd->smt_gain = 1178; /* ~15% */
    
    	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
    		sd->imbalance_pct = 117;
    		sd->cache_nice_tries = 1;
    		sd->busy_idx = 2;
    
    #ifdef CONFIG_NUMA
    	} else if (sd->flags & SD_NUMA) {
    		sd->cache_nice_tries = 2;
    		sd->busy_idx = 3;
    		sd->idle_idx = 2;
    
    		sd->flags |= SD_SERIALIZE;
    		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
    			sd->flags &= ~(SD_BALANCE_EXEC |
    				       SD_BALANCE_FORK |
    				       SD_WAKE_AFFINE);
    		}
    
    #endif
    	} else {
    		sd->flags |= SD_PREFER_SIBLING;
    		sd->cache_nice_tries = 1;
    		sd->busy_idx = 2;
    		sd->idle_idx = 1;
    	}
    
    	sd->private = &tl->data;
    
    	return sd;
    }
    
    /*
     * Topology list, bottom-up.
     */
    static struct sched_domain_topology_level default_topology[] = {
    #ifdef CONFIG_SCHED_SMT
    	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
    #endif
    #ifdef CONFIG_SCHED_MC
    	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
    #endif
    	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
    	{ NULL, },
    };
    
    static struct sched_domain_topology_level *sched_domain_topology =
    	default_topology;
    
    #define for_each_sd_topology(tl)			\
    	for (tl = sched_domain_topology; tl->mask; tl++)
    
    void set_sched_topology(struct sched_domain_topology_level *tl)
    {
    	sched_domain_topology = tl;
    }
    
    #ifdef CONFIG_NUMA
    
    static const struct cpumask *sd_numa_mask(int cpu)
    {
    	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
    }
    
    static void sched_numa_warn(const char *str)
    {
    	static int done = false;
    	int i,j;
    
    	if (done)
    		return;
    
    	done = true;
    
    	printk(KERN_WARNING "ERROR: %s\n\n", str);
    
    	for (i = 0; i < nr_node_ids; i++) {
    		printk(KERN_WARNING "  ");
    		for (j = 0; j < nr_node_ids; j++)
    			printk(KERN_CONT "%02d ", node_distance(i,j));
    		printk(KERN_CONT "\n");
    	}
    	printk(KERN_WARNING "\n");
    }
    
    bool find_numa_distance(int distance)
    {
    	int i;
    
    	if (distance == node_distance(0, 0))
    		return true;
    
    	for (i = 0; i < sched_domains_numa_levels; i++) {
    		if (sched_domains_numa_distance[i] == distance)
    			return true;
    	}
    
    	return false;
    }
    
    /*
     * A system can have three types of NUMA topology:
     * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
     * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
     * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
     *
     * The difference between a glueless mesh topology and a backplane
     * topology lies in whether communication between not directly
     * connected nodes goes through intermediary nodes (where programs
     * could run), or through backplane controllers. This affects
     * placement of programs.
     *
     * The type of topology can be discerned with the following tests:
     * - If the maximum distance between any nodes is 1 hop, the system
     *   is directly connected.
     * - If for two nodes A and B, located N > 1 hops away from each other,
     *   there is an intermediary node C, which is < N hops away from both
     *   nodes A and B, the system is a glueless mesh.
     */
    static void init_numa_topology_type(void)
    {
    	int a, b, c, n;
    
    	n = sched_max_numa_distance;
    
    	if (sched_domains_numa_levels <= 1) {
    		sched_numa_topology_type = NUMA_DIRECT;
    		return;
    	}
    
    	for_each_online_node(a) {
    		for_each_online_node(b) {
    			/* Find two nodes furthest removed from each other. */
    			if (node_distance(a, b) < n)
    				continue;
    
    			/* Is there an intermediary node between a and b? */
    			for_each_online_node(c) {
    				if (node_distance(a, c) < n &&
    				    node_distance(b, c) < n) {
    					sched_numa_topology_type =
    							NUMA_GLUELESS_MESH;
    					return;
    				}
    			}
    
    			sched_numa_topology_type = NUMA_BACKPLANE;
    			return;
    		}
    	}
    }
    
    static void sched_init_numa(void)
    {
    	int next_distance, curr_distance = node_distance(0, 0);
    	struct sched_domain_topology_level *tl;
    	int level = 0;
    	int i, j, k;
    
    	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
    	if (!sched_domains_numa_distance)
    		return;
    
    	/*
    	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
    	 * unique distances in the node_distance() table.
    	 *
    	 * Assumes node_distance(0,j) includes all distances in
    	 * node_distance(i,j) in order to avoid cubic time.
    	 */
    	next_distance = curr_distance;
    	for (i = 0; i < nr_node_ids; i++) {
    		for (j = 0; j < nr_node_ids; j++) {
    			for (k = 0; k < nr_node_ids; k++) {
    				int distance = node_distance(i, k);
    
    				if (distance > curr_distance &&
    				    (distance < next_distance ||
    				     next_distance == curr_distance))
    					next_distance = distance;
    
    				/*
    				 * While not a strong assumption it would be nice to know
    				 * about cases where if node A is connected to B, B is not
    				 * equally connected to A.
    				 */
    				if (sched_debug() && node_distance(k, i) != distance)
    					sched_numa_warn("Node-distance not symmetric");
    
    				if (sched_debug() && i && !find_numa_distance(distance))
    					sched_numa_warn("Node-0 not representative");
    			}
    			if (next_distance != curr_distance) {
    				sched_domains_numa_distance[level++] = next_distance;
    				sched_domains_numa_levels = level;
    				curr_distance = next_distance;
    			} else break;
    		}
    
    		/*
    		 * In case of sched_debug() we verify the above assumption.
    		 */
    		if (!sched_debug())
    			break;
    	}
    
    	if (!level)
    		return;
    
    	/*
    	 * 'level' contains the number of unique distances, excluding the
    	 * identity distance node_distance(i,i).
    	 *
    	 * The sched_domains_numa_distance[] array includes the actual distance
    	 * numbers.
    	 */
    
    	/*
    	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
    	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
    	 * the array will contain less then 'level' members. This could be
    	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
    	 * in other functions.
    	 *
    	 * We reset it to 'level' at the end of this function.
    	 */
    	sched_domains_numa_levels = 0;
    
    	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
    	if (!sched_domains_numa_masks)
    		return;
    
    	/*
    	 * Now for each level, construct a mask per node which contains all
    	 * cpus of nodes that are that many hops away from us.
    	 */
    	for (i = 0; i < level; i++) {
    		sched_domains_numa_masks[i] =
    			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
    		if (!sched_domains_numa_masks[i])
    			return;
    
    		for (j = 0; j < nr_node_ids; j++) {
    			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
    			if (!mask)
    				return;
    
    			sched_domains_numa_masks[i][j] = mask;
    
    			for_each_node(k) {
    				if (node_distance(j, k) > sched_domains_numa_distance[i])
    					continue;
    
    				cpumask_or(mask, mask, cpumask_of_node(k));
    			}
    		}
    	}
    
    	/* Compute default topology size */
    	for (i = 0; sched_domain_topology[i].mask; i++);
    
    	tl = kzalloc((i + level + 1) *
    			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
    	if (!tl)
    		return;
    
    	/*
    	 * Copy the default topology bits..
    	 */
    	for (i = 0; sched_domain_topology[i].mask; i++)
    		tl[i] = sched_domain_topology[i];
    
    	/*
    	 * .. and append 'j' levels of NUMA goodness.
    	 */
    	for (j = 0; j < level; i++, j++) {
    		tl[i] = (struct sched_domain_topology_level){
    			.mask = sd_numa_mask,
    			.sd_flags = cpu_numa_flags,
    			.flags = SDTL_OVERLAP,
    			.numa_level = j,
    			SD_INIT_NAME(NUMA)
    		};
    	}
    
    	sched_domain_topology = tl;
    
    	sched_domains_numa_levels = level;
    	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
    
    	init_numa_topology_type();
    }
    
    static void sched_domains_numa_masks_set(int cpu)
    {
    	int i, j;
    	int node = cpu_to_node(cpu);
    
    	for (i = 0; i < sched_domains_numa_levels; i++) {
    		for (j = 0; j < nr_node_ids; j++) {
    			if (node_distance(j, node) <= sched_domains_numa_distance[i])
    				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
    		}
    	}
    }
    
    static void sched_domains_numa_masks_clear(int cpu)
    {
    	int i, j;
    	for (i = 0; i < sched_domains_numa_levels; i++) {
    		for (j = 0; j < nr_node_ids; j++)
    			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
    	}
    }
    
    /*
     * Update sched_domains_numa_masks[level][node] array when new cpus
     * are onlined.
     */
    static int sched_domains_numa_masks_update(struct notifier_block *nfb,
    					   unsigned long action,
    					   void *hcpu)
    {
    	int cpu = (long)hcpu;
    
    	switch (action & ~CPU_TASKS_FROZEN) {
    	case CPU_ONLINE:
    		sched_domains_numa_masks_set(cpu);
    		break;
    
    	case CPU_DEAD:
    		sched_domains_numa_masks_clear(cpu);
    		break;
    
    	default:
    		return NOTIFY_DONE;
    	}
    
    	return NOTIFY_OK;
    }
    #else
    static inline void sched_init_numa(void)
    {
    }
    
    static int sched_domains_numa_masks_update(struct notifier_block *nfb,
    					   unsigned long action,
    					   void *hcpu)
    {
    	return 0;
    }
    #endif /* CONFIG_NUMA */
    
    static int __sdt_alloc(const struct cpumask *cpu_map)
    {
    	struct sched_domain_topology_level *tl;
    	int j;
    
    	for_each_sd_topology(tl) {
    		struct sd_data *sdd = &tl->data;
    
    		sdd->sd = alloc_percpu(struct sched_domain *);
    		if (!sdd->sd)
    			return -ENOMEM;
    
    		sdd->sg = alloc_percpu(struct sched_group *);
    		if (!sdd->sg)
    			return -ENOMEM;
    
    		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
    		if (!sdd->sgc)
    			return -ENOMEM;
    
    		for_each_cpu(j, cpu_map) {
    			struct sched_domain *sd;
    			struct sched_group *sg;
    			struct sched_group_capacity *sgc;
    
    			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
    					GFP_KERNEL, cpu_to_node(j));
    			if (!sd)
    				return -ENOMEM;
    
    			*per_cpu_ptr(sdd->sd, j) = sd;
    
    			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
    					GFP_KERNEL, cpu_to_node(j));
    			if (!sg)
    				return -ENOMEM;
    
    			sg->next = sg;
    
    			*per_cpu_ptr(sdd->sg, j) = sg;
    
    			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
    					GFP_KERNEL, cpu_to_node(j));
    			if (!sgc)
    				return -ENOMEM;
    
    			*per_cpu_ptr(sdd->sgc, j) = sgc;
    		}
    	}
    
    	return 0;
    }
    
    static void __sdt_free(const struct cpumask *cpu_map)
    {
    	struct sched_domain_topology_level *tl;
    	int j;
    
    	for_each_sd_topology(tl) {
    		struct sd_data *sdd = &tl->data;
    
    		for_each_cpu(j, cpu_map) {
    			struct sched_domain *sd;
    
    			if (sdd->sd) {
    				sd = *per_cpu_ptr(sdd->sd, j);
    				if (sd && (sd->flags & SD_OVERLAP))
    					free_sched_groups(sd->groups, 0);
    				kfree(*per_cpu_ptr(sdd->sd, j));
    			}
    
    			if (sdd->sg)
    				kfree(*per_cpu_ptr(sdd->sg, j));
    			if (sdd->sgc)
    				kfree(*per_cpu_ptr(sdd->sgc, j));
    		}
    		free_percpu(sdd->sd);
    		sdd->sd = NULL;
    		free_percpu(sdd->sg);
    		sdd->sg = NULL;
    		free_percpu(sdd->sgc);
    		sdd->sgc = NULL;
    	}
    }
    
    struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
    		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
    		struct sched_domain *child, int cpu)
    {
    	struct sched_domain *sd = sd_init(tl, cpu);
    	if (!sd)
    		return child;
    
    	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
    	if (child) {
    		sd->level = child->level + 1;
    		sched_domain_level_max = max(sched_domain_level_max, sd->level);
    		child->parent = sd;
    		sd->child = child;
    
    		if (!cpumask_subset(sched_domain_span(child),
    				    sched_domain_span(sd))) {
    			pr_err("BUG: arch topology borken\n");
    #ifdef CONFIG_SCHED_DEBUG
    			pr_err("     the %s domain not a subset of the %s domain\n",
    					child->name, sd->name);
    #endif
    			/* Fixup, ensure @sd has at least @child cpus. */
    			cpumask_or(sched_domain_span(sd),
    				   sched_domain_span(sd),
    				   sched_domain_span(child));
    		}
    
    	}
    	set_domain_attribute(sd, attr);
    
    	return sd;
    }
    
    /*
     * Build sched domains for a given set of cpus and attach the sched domains
     * to the individual cpus
     */
    static int build_sched_domains(const struct cpumask *cpu_map,
    			       struct sched_domain_attr *attr)
    {
    	enum s_alloc alloc_state;
    	struct sched_domain *sd;
    	struct s_data d;
    	int i, ret = -ENOMEM;
    
    	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
    	if (alloc_state != sa_rootdomain)
    		goto error;
    
    	/* Set up domains for cpus specified by the cpu_map. */
    	for_each_cpu(i, cpu_map) {
    		struct sched_domain_topology_level *tl;
    
    		sd = NULL;
    		for_each_sd_topology(tl) {
    			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
    			if (tl == sched_domain_topology)
    				*per_cpu_ptr(d.sd, i) = sd;
    			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
    				sd->flags |= SD_OVERLAP;
    			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
    				break;
    		}
    	}
    
    	/* Build the groups for the domains */
    	for_each_cpu(i, cpu_map) {
    		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
    			sd->span_weight = cpumask_weight(sched_domain_span(sd));
    			if (sd->flags & SD_OVERLAP) {
    				if (build_overlap_sched_groups(sd, i))
    					goto error;
    			} else {
    				if (build_sched_groups(sd, i))
    					goto error;
    			}
    		}
    	}
    
    	/* Calculate CPU capacity for physical packages and nodes */
    	for (i = nr_cpumask_bits-1; i >= 0; i--) {
    		if (!cpumask_test_cpu(i, cpu_map))
    			continue;
    
    		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
    			claim_allocations(i, sd);
    			init_sched_groups_capacity(i, sd);
    		}
    	}
    
    	/* Attach the domains */
    	rcu_read_lock();
    	for_each_cpu(i, cpu_map) {
    		sd = *per_cpu_ptr(d.sd, i);
    		cpu_attach_domain(sd, d.rd, i);
    	}
    	rcu_read_unlock();
    
    	ret = 0;
    error:
    	__free_domain_allocs(&d, alloc_state, cpu_map);
    	return ret;
    }
    
    static cpumask_var_t *doms_cur;	/* current sched domains */
    static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
    static struct sched_domain_attr *dattr_cur;
    				/* attribues of custom domains in 'doms_cur' */
    
    /*
     * Special case: If a kmalloc of a doms_cur partition (array of
     * cpumask) fails, then fallback to a single sched domain,
     * as determined by the single cpumask fallback_doms.
     */
    static cpumask_var_t fallback_doms;
    
    /*
     * arch_update_cpu_topology lets virtualized architectures update the
     * cpu core maps. It is supposed to return 1 if the topology changed
     * or 0 if it stayed the same.
     */
    int __weak arch_update_cpu_topology(void)
    {
    	return 0;
    }
    
    cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
    {
    	int i;
    	cpumask_var_t *doms;
    
    	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
    	if (!doms)
    		return NULL;
    	for (i = 0; i < ndoms; i++) {
    		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
    			free_sched_domains(doms, i);
    			return NULL;
    		}
    	}
    	return doms;
    }
    
    void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
    {
    	unsigned int i;
    	for (i = 0; i < ndoms; i++)
    		free_cpumask_var(doms[i]);
    	kfree(doms);
    }
    
    /*
     * Set up scheduler domains and groups. Callers must hold the hotplug lock.
     * For now this just excludes isolated cpus, but could be used to
     * exclude other special cases in the future.
     */
    static int init_sched_domains(const struct cpumask *cpu_map)
    {
    	int err;
    
    	arch_update_cpu_topology();
    	ndoms_cur = 1;
    	doms_cur = alloc_sched_domains(ndoms_cur);
    	if (!doms_cur)
    		doms_cur = &fallback_doms;
    	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
    	err = build_sched_domains(doms_cur[0], NULL);
    	register_sched_domain_sysctl();
    
    	return err;
    }
    
    /*
     * Detach sched domains from a group of cpus specified in cpu_map
     * These cpus will now be attached to the NULL domain
     */
    static void detach_destroy_domains(const struct cpumask *cpu_map)
    {
    	int i;
    
    	rcu_read_lock();
    	for_each_cpu(i, cpu_map)
    		cpu_attach_domain(NULL, &def_root_domain, i);
    	rcu_read_unlock();
    }
    
    /* handle null as "default" */
    static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
    			struct sched_domain_attr *new, int idx_new)
    {
    	struct sched_domain_attr tmp;
    
    	/* fast path */
    	if (!new && !cur)
    		return 1;
    
    	tmp = SD_ATTR_INIT;
    	return !memcmp(cur ? (cur + idx_cur) : &tmp,
    			new ? (new + idx_new) : &tmp,
    			sizeof(struct sched_domain_attr));
    }
    
    /*
     * Partition sched domains as specified by the 'ndoms_new'
     * cpumasks in the array doms_new[] of cpumasks. This compares
     * doms_new[] to the current sched domain partitioning, doms_cur[].
     * It destroys each deleted domain and builds each new domain.
     *
     * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
     * The masks don't intersect (don't overlap.) We should setup one
     * sched domain for each mask. CPUs not in any of the cpumasks will
     * not be load balanced. If the same cpumask appears both in the
     * current 'doms_cur' domains and in the new 'doms_new', we can leave
     * it as it is.
     *
     * The passed in 'doms_new' should be allocated using
     * alloc_sched_domains.  This routine takes ownership of it and will
     * free_sched_domains it when done with it. If the caller failed the
     * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
     * and partition_sched_domains() will fallback to the single partition
     * 'fallback_doms', it also forces the domains to be rebuilt.
     *
     * If doms_new == NULL it will be replaced with cpu_online_mask.
     * ndoms_new == 0 is a special case for destroying existing domains,
     * and it will not create the default domain.
     *
     * Call with hotplug lock held
     */
    void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
    			     struct sched_domain_attr *dattr_new)
    {
    	int i, j, n;
    	int new_topology;
    
    	mutex_lock(&sched_domains_mutex);
    
    	/* always unregister in case we don't destroy any domains */
    	unregister_sched_domain_sysctl();
    
    	/* Let architecture update cpu core mappings. */
    	new_topology = arch_update_cpu_topology();
    
    	n = doms_new ? ndoms_new : 0;
    
    	/* Destroy deleted domains */
    	for (i = 0; i < ndoms_cur; i++) {
    		for (j = 0; j < n && !new_topology; j++) {
    			if (cpumask_equal(doms_cur[i], doms_new[j])
    			    && dattrs_equal(dattr_cur, i, dattr_new, j))
    				goto match1;
    		}
    		/* no match - a current sched domain not in new doms_new[] */
    		detach_destroy_domains(doms_cur[i]);
    match1:
    		;
    	}
    
    	n = ndoms_cur;
    	if (doms_new == NULL) {
    		n = 0;
    		doms_new = &fallback_doms;
    		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
    		WARN_ON_ONCE(dattr_new);
    	}
    
    	/* Build new domains */
    	for (i = 0; i < ndoms_new; i++) {
    		for (j = 0; j < n && !new_topology; j++) {
    			if (cpumask_equal(doms_new[i], doms_cur[j])
    			    && dattrs_equal(dattr_new, i, dattr_cur, j))
    				goto match2;
    		}
    		/* no match - add a new doms_new */
    		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
    match2:
    		;
    	}
    
    	/* Remember the new sched domains */
    	if (doms_cur != &fallback_doms)
    		free_sched_domains(doms_cur, ndoms_cur);
    	kfree(dattr_cur);	/* kfree(NULL) is safe */
    	doms_cur = doms_new;
    	dattr_cur = dattr_new;
    	ndoms_cur = ndoms_new;
    
    	register_sched_domain_sysctl();
    
    	mutex_unlock(&sched_domains_mutex);
    }
    
    static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
    
    /*
     * Update cpusets according to cpu_active mask.  If cpusets are
     * disabled, cpuset_update_active_cpus() becomes a simple wrapper
     * around partition_sched_domains().
     *
     * If we come here as part of a suspend/resume, don't touch cpusets because we
     * want to restore it back to its original state upon resume anyway.
     */
    static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
    			     void *hcpu)
    {
    	switch (action) {
    	case CPU_ONLINE_FROZEN:
    	case CPU_DOWN_FAILED_FROZEN:
    
    		/*
    		 * num_cpus_frozen tracks how many CPUs are involved in suspend
    		 * resume sequence. As long as this is not the last online
    		 * operation in the resume sequence, just build a single sched
    		 * domain, ignoring cpusets.
    		 */
    		num_cpus_frozen--;
    		if (likely(num_cpus_frozen)) {
    			partition_sched_domains(1, NULL, NULL);
    			break;
    		}
    
    		/*
    		 * This is the last CPU online operation. So fall through and
    		 * restore the original sched domains by considering the
    		 * cpuset configurations.
    		 */
    
    	case CPU_ONLINE:
    		cpuset_update_active_cpus(true);
    		break;
    	default:
    		return NOTIFY_DONE;
    	}
    	return NOTIFY_OK;
    }
    
    static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
    			       void *hcpu)
    {
    	unsigned long flags;
    	long cpu = (long)hcpu;
    	struct dl_bw *dl_b;
    	bool overflow;
    	int cpus;
    
    	switch (action) {
    	case CPU_DOWN_PREPARE:
    		rcu_read_lock_sched();
    		dl_b = dl_bw_of(cpu);
    
    		raw_spin_lock_irqsave(&dl_b->lock, flags);
    		cpus = dl_bw_cpus(cpu);
    		overflow = __dl_overflow(dl_b, cpus, 0, 0);
    		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
    
    		rcu_read_unlock_sched();
    
    		if (overflow)
    			return notifier_from_errno(-EBUSY);
    		cpuset_update_active_cpus(false);
    		break;
    	case CPU_DOWN_PREPARE_FROZEN:
    		num_cpus_frozen++;
    		partition_sched_domains(1, NULL, NULL);
    		break;
    	default:
    		return NOTIFY_DONE;
    	}
    	return NOTIFY_OK;
    }
    
    void __init sched_init_smp(void)
    {
    	cpumask_var_t non_isolated_cpus;
    
    	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
    	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
    
    	sched_init_numa();
    
    	/*
    	 * There's no userspace yet to cause hotplug operations; hence all the
    	 * cpu masks are stable and all blatant races in the below code cannot
    	 * happen.
    	 */
    	mutex_lock(&sched_domains_mutex);
    	init_sched_domains(cpu_active_mask);
    	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
    	if (cpumask_empty(non_isolated_cpus))
    		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
    	mutex_unlock(&sched_domains_mutex);
    
    	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
    	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
    	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
    
    	init_hrtick();
    
    	/* Move init over to a non-isolated CPU */
    	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
    		BUG();
    	sched_init_granularity();
    	free_cpumask_var(non_isolated_cpus);
    
    	init_sched_rt_class();
    	init_sched_dl_class();
    }
    #else
    void __init sched_init_smp(void)
    {
    	sched_init_granularity();
    }
    #endif /* CONFIG_SMP */
    
    int in_sched_functions(unsigned long addr)
    {
    	return in_lock_functions(addr) ||
    		(addr >= (unsigned long)__sched_text_start
    		&& addr < (unsigned long)__sched_text_end);
    }
    
    #ifdef CONFIG_CGROUP_SCHED
    /*
     * Default task group.
     * Every task in system belongs to this group at bootup.
     */
    struct task_group root_task_group;
    LIST_HEAD(task_groups);
    
    /* Cacheline aligned slab cache for task_group */
    static struct kmem_cache *task_group_cache __read_mostly;
    #endif
    
    DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
    
    void __init sched_init(void)
    {
    	int i, j;
    	unsigned long alloc_size = 0, ptr;
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
    #endif
    #ifdef CONFIG_RT_GROUP_SCHED
    	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
    #endif
    	if (alloc_size) {
    		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    		root_task_group.se = (struct sched_entity **)ptr;
    		ptr += nr_cpu_ids * sizeof(void **);
    
    		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
    		ptr += nr_cpu_ids * sizeof(void **);
    
    #endif /* CONFIG_FAIR_GROUP_SCHED */
    #ifdef CONFIG_RT_GROUP_SCHED
    		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
    		ptr += nr_cpu_ids * sizeof(void **);
    
    		root_task_group.rt_rq = (struct rt_rq **)ptr;
    		ptr += nr_cpu_ids * sizeof(void **);
    
    #endif /* CONFIG_RT_GROUP_SCHED */
    	}
    #ifdef CONFIG_CPUMASK_OFFSTACK
    	for_each_possible_cpu(i) {
    		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
    			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
    	}
    #endif /* CONFIG_CPUMASK_OFFSTACK */
    
    	init_rt_bandwidth(&def_rt_bandwidth,
    			global_rt_period(), global_rt_runtime());
    	init_dl_bandwidth(&def_dl_bandwidth,
    			global_rt_period(), global_rt_runtime());
    
    #ifdef CONFIG_SMP
    	init_defrootdomain();
    #endif
    
    #ifdef CONFIG_RT_GROUP_SCHED
    	init_rt_bandwidth(&root_task_group.rt_bandwidth,
    			global_rt_period(), global_rt_runtime());
    #endif /* CONFIG_RT_GROUP_SCHED */
    
    #ifdef CONFIG_CGROUP_SCHED
    	task_group_cache = KMEM_CACHE(task_group, 0);
    
    	list_add(&root_task_group.list, &task_groups);
    	INIT_LIST_HEAD(&root_task_group.children);
    	INIT_LIST_HEAD(&root_task_group.siblings);
    	autogroup_init(&init_task);
    #endif /* CONFIG_CGROUP_SCHED */
    
    	for_each_possible_cpu(i) {
    		struct rq *rq;
    
    		rq = cpu_rq(i);
    		raw_spin_lock_init(&rq->lock);
    		rq->nr_running = 0;
    		rq->calc_load_active = 0;
    		rq->calc_load_update = jiffies + LOAD_FREQ;
    		init_cfs_rq(&rq->cfs);
    		init_rt_rq(&rq->rt);
    		init_dl_rq(&rq->dl);
    #ifdef CONFIG_FAIR_GROUP_SCHED
    		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
    		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
    		/*
    		 * How much cpu bandwidth does root_task_group get?
    		 *
    		 * In case of task-groups formed thr' the cgroup filesystem, it
    		 * gets 100% of the cpu resources in the system. This overall
    		 * system cpu resource is divided among the tasks of
    		 * root_task_group and its child task-groups in a fair manner,
    		 * based on each entity's (task or task-group's) weight
    		 * (se->load.weight).
    		 *
    		 * In other words, if root_task_group has 10 tasks of weight
    		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
    		 * then A0's share of the cpu resource is:
    		 *
    		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
    		 *
    		 * We achieve this by letting root_task_group's tasks sit
    		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
    		 */
    		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
    		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
    #endif /* CONFIG_FAIR_GROUP_SCHED */
    
    		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
    #ifdef CONFIG_RT_GROUP_SCHED
    		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
    #endif
    
    		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
    			rq->cpu_load[j] = 0;
    
    		rq->last_load_update_tick = jiffies;
    
    #ifdef CONFIG_SMP
    		rq->sd = NULL;
    		rq->rd = NULL;
    		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
    		rq->balance_callback = NULL;
    		rq->active_balance = 0;
    		rq->next_balance = jiffies;
    		rq->push_cpu = 0;
    		rq->cpu = i;
    		rq->online = 0;
    		rq->idle_stamp = 0;
    		rq->avg_idle = 2*sysctl_sched_migration_cost;
    		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
    
    		INIT_LIST_HEAD(&rq->cfs_tasks);
    
    		rq_attach_root(rq, &def_root_domain);
    #ifdef CONFIG_NO_HZ_COMMON
    		rq->nohz_flags = 0;
    #endif
    #ifdef CONFIG_NO_HZ_FULL
    		rq->last_sched_tick = 0;
    #endif
    #endif
    		init_rq_hrtick(rq);
    		atomic_set(&rq->nr_iowait, 0);
    	}
    
    	set_load_weight(&init_task);
    
    #ifdef CONFIG_PREEMPT_NOTIFIERS
    	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
    #endif
    
    	/*
    	 * The boot idle thread does lazy MMU switching as well:
    	 */
    	atomic_inc(&init_mm.mm_count);
    	enter_lazy_tlb(&init_mm, current);
    
    	/*
    	 * During early bootup we pretend to be a normal task:
    	 */
    	current->sched_class = &fair_sched_class;
    
    	/*
    	 * Make us the idle thread. Technically, schedule() should not be
    	 * called from this thread, however somewhere below it might be,
    	 * but because we are the idle thread, we just pick up running again
    	 * when this runqueue becomes "idle".
    	 */
    	init_idle(current, smp_processor_id());
    
    	calc_load_update = jiffies + LOAD_FREQ;
    
    #ifdef CONFIG_SMP
    	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
    	/* May be allocated at isolcpus cmdline parse time */
    	if (cpu_isolated_map == NULL)
    		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
    	idle_thread_set_boot_cpu();
    	set_cpu_rq_start_time();
    #endif
    	init_sched_fair_class();
    
    	scheduler_running = 1;
    }
    
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    static inline int preempt_count_equals(int preempt_offset)
    {
    	int nested = preempt_count() + rcu_preempt_depth();
    
    	return (nested == preempt_offset);
    }
    
    void __might_sleep(const char *file, int line, int preempt_offset)
    {
    	/*
    	 * Blocking primitives will set (and therefore destroy) current->state,
    	 * since we will exit with TASK_RUNNING make sure we enter with it,
    	 * otherwise we will destroy state.
    	 */
    	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
    			"do not call blocking ops when !TASK_RUNNING; "
    			"state=%lx set at [<%p>] %pS\n",
    			current->state,
    			(void *)current->task_state_change,
    			(void *)current->task_state_change);
    
    	___might_sleep(file, line, preempt_offset);
    }
    EXPORT_SYMBOL(__might_sleep);
    
    void ___might_sleep(const char *file, int line, int preempt_offset)
    {
    	static unsigned long prev_jiffy;	/* ratelimiting */
    
    	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
    	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
    	     !is_idle_task(current)) ||
    	    system_state != SYSTEM_RUNNING || oops_in_progress)
    		return;
    	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
    		return;
    	prev_jiffy = jiffies;
    
    	printk(KERN_ERR
    		"BUG: sleeping function called from invalid context at %s:%d\n",
    			file, line);
    	printk(KERN_ERR
    		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
    			in_atomic(), irqs_disabled(),
    			current->pid, current->comm);
    
    	if (task_stack_end_corrupted(current))
    		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
    
    	debug_show_held_locks(current);
    	if (irqs_disabled())
    		print_irqtrace_events(current);
    #ifdef CONFIG_DEBUG_PREEMPT
    	if (!preempt_count_equals(preempt_offset)) {
    		pr_err("Preemption disabled at:");
    		print_ip_sym(current->preempt_disable_ip);
    		pr_cont("\n");
    	}
    #endif
    	dump_stack();
    }
    EXPORT_SYMBOL(___might_sleep);
    #endif
    
    #ifdef CONFIG_MAGIC_SYSRQ
    void normalize_rt_tasks(void)
    {
    	struct task_struct *g, *p;
    	struct sched_attr attr = {
    		.sched_policy = SCHED_NORMAL,
    	};
    
    	read_lock(&tasklist_lock);
    	for_each_process_thread(g, p) {
    		/*
    		 * Only normalize user tasks:
    		 */
    		if (p->flags & PF_KTHREAD)
    			continue;
    
    		p->se.exec_start		= 0;
    #ifdef CONFIG_SCHEDSTATS
    		p->se.statistics.wait_start	= 0;
    		p->se.statistics.sleep_start	= 0;
    		p->se.statistics.block_start	= 0;
    #endif
    
    		if (!dl_task(p) && !rt_task(p)) {
    			/*
    			 * Renice negative nice level userspace
    			 * tasks back to 0:
    			 */
    			if (task_nice(p) < 0)
    				set_user_nice(p, 0);
    			continue;
    		}
    
    		__sched_setscheduler(p, &attr, false, false);
    	}
    	read_unlock(&tasklist_lock);
    }
    
    #endif /* CONFIG_MAGIC_SYSRQ */
    
    #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
    /*
     * These functions are only useful for the IA64 MCA handling, or kdb.
     *
     * They can only be called when the whole system has been
     * stopped - every CPU needs to be quiescent, and no scheduling
     * activity can take place. Using them for anything else would
     * be a serious bug, and as a result, they aren't even visible
     * under any other configuration.
     */
    
    /**
     * curr_task - return the current task for a given cpu.
     * @cpu: the processor in question.
     *
     * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
     *
     * Return: The current task for @cpu.
     */
    struct task_struct *curr_task(int cpu)
    {
    	return cpu_curr(cpu);
    }
    
    #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
    
    #ifdef CONFIG_IA64
    /**
     * set_curr_task - set the current task for a given cpu.
     * @cpu: the processor in question.
     * @p: the task pointer to set.
     *
     * Description: This function must only be used when non-maskable interrupts
     * are serviced on a separate stack. It allows the architecture to switch the
     * notion of the current task on a cpu in a non-blocking manner. This function
     * must be called with all CPU's synchronized, and interrupts disabled, the
     * and caller must save the original value of the current task (see
     * curr_task() above) and restore that value before reenabling interrupts and
     * re-starting the system.
     *
     * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
     */
    void set_curr_task(int cpu, struct task_struct *p)
    {
    	cpu_curr(cpu) = p;
    }
    
    #endif
    
    #ifdef CONFIG_CGROUP_SCHED
    /* task_group_lock serializes the addition/removal of task groups */
    static DEFINE_SPINLOCK(task_group_lock);
    
    static void free_sched_group(struct task_group *tg)
    {
    	free_fair_sched_group(tg);
    	free_rt_sched_group(tg);
    	autogroup_free(tg);
    	kmem_cache_free(task_group_cache, tg);
    }
    
    /* allocate runqueue etc for a new task group */
    struct task_group *sched_create_group(struct task_group *parent)
    {
    	struct task_group *tg;
    
    	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
    	if (!tg)
    		return ERR_PTR(-ENOMEM);
    
    	if (!alloc_fair_sched_group(tg, parent))
    		goto err;
    
    	if (!alloc_rt_sched_group(tg, parent))
    		goto err;
    
    	return tg;
    
    err:
    	free_sched_group(tg);
    	return ERR_PTR(-ENOMEM);
    }
    
    void sched_online_group(struct task_group *tg, struct task_group *parent)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&task_group_lock, flags);
    	list_add_rcu(&tg->list, &task_groups);
    
    	WARN_ON(!parent); /* root should already exist */
    
    	tg->parent = parent;
    	INIT_LIST_HEAD(&tg->children);
    	list_add_rcu(&tg->siblings, &parent->children);
    	spin_unlock_irqrestore(&task_group_lock, flags);
    }
    
    /* rcu callback to free various structures associated with a task group */
    static void free_sched_group_rcu(struct rcu_head *rhp)
    {
    	/* now it should be safe to free those cfs_rqs */
    	free_sched_group(container_of(rhp, struct task_group, rcu));
    }
    
    /* Destroy runqueue etc associated with a task group */
    void sched_destroy_group(struct task_group *tg)
    {
    	/* wait for possible concurrent references to cfs_rqs complete */
    	call_rcu(&tg->rcu, free_sched_group_rcu);
    }
    
    void sched_offline_group(struct task_group *tg)
    {
    	unsigned long flags;
    
    	/* end participation in shares distribution */
    	unregister_fair_sched_group(tg);
    
    	spin_lock_irqsave(&task_group_lock, flags);
    	list_del_rcu(&tg->list);
    	list_del_rcu(&tg->siblings);
    	spin_unlock_irqrestore(&task_group_lock, flags);
    }
    
    /* change task's runqueue when it moves between groups.
     *	The caller of this function should have put the task in its new group
     *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
     *	reflect its new group.
     */
    void sched_move_task(struct task_struct *tsk)
    {
    	struct task_group *tg;
    	int queued, running;
    	unsigned long flags;
    	struct rq *rq;
    
    	rq = task_rq_lock(tsk, &flags);
    
    	running = task_current(rq, tsk);
    	queued = task_on_rq_queued(tsk);
    
    	if (queued)
    		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
    	if (unlikely(running))
    		put_prev_task(rq, tsk);
    
    	/*
    	 * All callers are synchronized by task_rq_lock(); we do not use RCU
    	 * which is pointless here. Thus, we pass "true" to task_css_check()
    	 * to prevent lockdep warnings.
    	 */
    	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
    			  struct task_group, css);
    	tg = autogroup_task_group(tsk, tg);
    	tsk->sched_task_group = tg;
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    	if (tsk->sched_class->task_move_group)
    		tsk->sched_class->task_move_group(tsk);
    	else
    #endif
    		set_task_rq(tsk, task_cpu(tsk));
    
    	if (unlikely(running))
    		tsk->sched_class->set_curr_task(rq);
    	if (queued)
    		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
    
    	task_rq_unlock(rq, tsk, &flags);
    }
    #endif /* CONFIG_CGROUP_SCHED */
    
    #ifdef CONFIG_RT_GROUP_SCHED
    /*
     * Ensure that the real time constraints are schedulable.
     */
    static DEFINE_MUTEX(rt_constraints_mutex);
    
    /* Must be called with tasklist_lock held */
    static inline int tg_has_rt_tasks(struct task_group *tg)
    {
    	struct task_struct *g, *p;
    
    	/*
    	 * Autogroups do not have RT tasks; see autogroup_create().
    	 */
    	if (task_group_is_autogroup(tg))
    		return 0;
    
    	for_each_process_thread(g, p) {
    		if (rt_task(p) && task_group(p) == tg)
    			return 1;
    	}
    
    	return 0;
    }
    
    struct rt_schedulable_data {
    	struct task_group *tg;
    	u64 rt_period;
    	u64 rt_runtime;
    };
    
    static int tg_rt_schedulable(struct task_group *tg, void *data)
    {
    	struct rt_schedulable_data *d = data;
    	struct task_group *child;
    	unsigned long total, sum = 0;
    	u64 period, runtime;
    
    	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
    	runtime = tg->rt_bandwidth.rt_runtime;
    
    	if (tg == d->tg) {
    		period = d->rt_period;
    		runtime = d->rt_runtime;
    	}
    
    	/*
    	 * Cannot have more runtime than the period.
    	 */
    	if (runtime > period && runtime != RUNTIME_INF)
    		return -EINVAL;
    
    	/*
    	 * Ensure we don't starve existing RT tasks.
    	 */
    	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
    		return -EBUSY;
    
    	total = to_ratio(period, runtime);
    
    	/*
    	 * Nobody can have more than the global setting allows.
    	 */
    	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
    		return -EINVAL;
    
    	/*
    	 * The sum of our children's runtime should not exceed our own.
    	 */
    	list_for_each_entry_rcu(child, &tg->children, siblings) {
    		period = ktime_to_ns(child->rt_bandwidth.rt_period);
    		runtime = child->rt_bandwidth.rt_runtime;
    
    		if (child == d->tg) {
    			period = d->rt_period;
    			runtime = d->rt_runtime;
    		}
    
    		sum += to_ratio(period, runtime);
    	}
    
    	if (sum > total)
    		return -EINVAL;
    
    	return 0;
    }
    
    static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
    {
    	int ret;
    
    	struct rt_schedulable_data data = {
    		.tg = tg,
    		.rt_period = period,
    		.rt_runtime = runtime,
    	};
    
    	rcu_read_lock();
    	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
    	rcu_read_unlock();
    
    	return ret;
    }
    
    static int tg_set_rt_bandwidth(struct task_group *tg,
    		u64 rt_period, u64 rt_runtime)
    {
    	int i, err = 0;
    
    	/*
    	 * Disallowing the root group RT runtime is BAD, it would disallow the
    	 * kernel creating (and or operating) RT threads.
    	 */
    	if (tg == &root_task_group && rt_runtime == 0)
    		return -EINVAL;
    
    	/* No period doesn't make any sense. */
    	if (rt_period == 0)
    		return -EINVAL;
    
    	mutex_lock(&rt_constraints_mutex);
    	read_lock(&tasklist_lock);
    	err = __rt_schedulable(tg, rt_period, rt_runtime);
    	if (err)
    		goto unlock;
    
    	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
    	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
    	tg->rt_bandwidth.rt_runtime = rt_runtime;
    
    	for_each_possible_cpu(i) {
    		struct rt_rq *rt_rq = tg->rt_rq[i];
    
    		raw_spin_lock(&rt_rq->rt_runtime_lock);
    		rt_rq->rt_runtime = rt_runtime;
    		raw_spin_unlock(&rt_rq->rt_runtime_lock);
    	}
    	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
    unlock:
    	read_unlock(&tasklist_lock);
    	mutex_unlock(&rt_constraints_mutex);
    
    	return err;
    }
    
    static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
    {
    	u64 rt_runtime, rt_period;
    
    	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
    	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
    	if (rt_runtime_us < 0)
    		rt_runtime = RUNTIME_INF;
    
    	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
    }
    
    static long sched_group_rt_runtime(struct task_group *tg)
    {
    	u64 rt_runtime_us;
    
    	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
    		return -1;
    
    	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
    	do_div(rt_runtime_us, NSEC_PER_USEC);
    	return rt_runtime_us;
    }
    
    static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
    {
    	u64 rt_runtime, rt_period;
    
    	rt_period = rt_period_us * NSEC_PER_USEC;
    	rt_runtime = tg->rt_bandwidth.rt_runtime;
    
    	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
    }
    
    static long sched_group_rt_period(struct task_group *tg)
    {
    	u64 rt_period_us;
    
    	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
    	do_div(rt_period_us, NSEC_PER_USEC);
    	return rt_period_us;
    }
    #endif /* CONFIG_RT_GROUP_SCHED */
    
    #ifdef CONFIG_RT_GROUP_SCHED
    static int sched_rt_global_constraints(void)
    {
    	int ret = 0;
    
    	mutex_lock(&rt_constraints_mutex);
    	read_lock(&tasklist_lock);
    	ret = __rt_schedulable(NULL, 0, 0);
    	read_unlock(&tasklist_lock);
    	mutex_unlock(&rt_constraints_mutex);
    
    	return ret;
    }
    
    static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
    {
    	/* Don't accept realtime tasks when there is no way for them to run */
    	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
    		return 0;
    
    	return 1;
    }
    
    #else /* !CONFIG_RT_GROUP_SCHED */
    static int sched_rt_global_constraints(void)
    {
    	unsigned long flags;
    	int i, ret = 0;
    
    	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
    	for_each_possible_cpu(i) {
    		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
    
    		raw_spin_lock(&rt_rq->rt_runtime_lock);
    		rt_rq->rt_runtime = global_rt_runtime();
    		raw_spin_unlock(&rt_rq->rt_runtime_lock);
    	}
    	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
    
    	return ret;
    }
    #endif /* CONFIG_RT_GROUP_SCHED */
    
    static int sched_dl_global_validate(void)
    {
    	u64 runtime = global_rt_runtime();
    	u64 period = global_rt_period();
    	u64 new_bw = to_ratio(period, runtime);
    	struct dl_bw *dl_b;
    	int cpu, ret = 0;
    	unsigned long flags;
    
    	/*
    	 * Here we want to check the bandwidth not being set to some
    	 * value smaller than the currently allocated bandwidth in
    	 * any of the root_domains.
    	 *
    	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
    	 * cycling on root_domains... Discussion on different/better
    	 * solutions is welcome!
    	 */
    	for_each_possible_cpu(cpu) {
    		rcu_read_lock_sched();
    		dl_b = dl_bw_of(cpu);
    
    		raw_spin_lock_irqsave(&dl_b->lock, flags);
    		if (new_bw < dl_b->total_bw)
    			ret = -EBUSY;
    		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
    
    		rcu_read_unlock_sched();
    
    		if (ret)
    			break;
    	}
    
    	return ret;
    }
    
    static void sched_dl_do_global(void)
    {
    	u64 new_bw = -1;
    	struct dl_bw *dl_b;
    	int cpu;
    	unsigned long flags;
    
    	def_dl_bandwidth.dl_period = global_rt_period();
    	def_dl_bandwidth.dl_runtime = global_rt_runtime();
    
    	if (global_rt_runtime() != RUNTIME_INF)
    		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
    
    	/*
    	 * FIXME: As above...
    	 */
    	for_each_possible_cpu(cpu) {
    		rcu_read_lock_sched();
    		dl_b = dl_bw_of(cpu);
    
    		raw_spin_lock_irqsave(&dl_b->lock, flags);
    		dl_b->bw = new_bw;
    		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
    
    		rcu_read_unlock_sched();
    	}
    }
    
    static int sched_rt_global_validate(void)
    {
    	if (sysctl_sched_rt_period <= 0)
    		return -EINVAL;
    
    	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
    		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
    		return -EINVAL;
    
    	return 0;
    }
    
    static void sched_rt_do_global(void)
    {
    	def_rt_bandwidth.rt_runtime = global_rt_runtime();
    	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
    }
    
    int sched_rt_handler(struct ctl_table *table, int write,
    		void __user *buffer, size_t *lenp,
    		loff_t *ppos)
    {
    	int old_period, old_runtime;
    	static DEFINE_MUTEX(mutex);
    	int ret;
    
    	mutex_lock(&mutex);
    	old_period = sysctl_sched_rt_period;
    	old_runtime = sysctl_sched_rt_runtime;
    
    	ret = proc_dointvec(table, write, buffer, lenp, ppos);
    
    	if (!ret && write) {
    		ret = sched_rt_global_validate();
    		if (ret)
    			goto undo;
    
    		ret = sched_dl_global_validate();
    		if (ret)
    			goto undo;
    
    		ret = sched_rt_global_constraints();
    		if (ret)
    			goto undo;
    
    		sched_rt_do_global();
    		sched_dl_do_global();
    	}
    	if (0) {
    undo:
    		sysctl_sched_rt_period = old_period;
    		sysctl_sched_rt_runtime = old_runtime;
    	}
    	mutex_unlock(&mutex);
    
    	return ret;
    }
    
    int sched_rr_handler(struct ctl_table *table, int write,
    		void __user *buffer, size_t *lenp,
    		loff_t *ppos)
    {
    	int ret;
    	static DEFINE_MUTEX(mutex);
    
    	mutex_lock(&mutex);
    	ret = proc_dointvec(table, write, buffer, lenp, ppos);
    	/* make sure that internally we keep jiffies */
    	/* also, writing zero resets timeslice to default */
    	if (!ret && write) {
    		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
    			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
    	}
    	mutex_unlock(&mutex);
    	return ret;
    }
    
    #ifdef CONFIG_CGROUP_SCHED
    
    static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
    {
    	return css ? container_of(css, struct task_group, css) : NULL;
    }
    
    static struct cgroup_subsys_state *
    cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
    {
    	struct task_group *parent = css_tg(parent_css);
    	struct task_group *tg;
    
    	if (!parent) {
    		/* This is early initialization for the top cgroup */
    		return &root_task_group.css;
    	}
    
    	tg = sched_create_group(parent);
    	if (IS_ERR(tg))
    		return ERR_PTR(-ENOMEM);
    
    	return &tg->css;
    }
    
    static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
    {
    	struct task_group *tg = css_tg(css);
    	struct task_group *parent = css_tg(css->parent);
    
    	if (parent)
    		sched_online_group(tg, parent);
    	return 0;
    }
    
    static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
    {
    	struct task_group *tg = css_tg(css);
    
    	sched_destroy_group(tg);
    }
    
    static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
    {
    	struct task_group *tg = css_tg(css);
    
    	sched_offline_group(tg);
    }
    
    static void cpu_cgroup_fork(struct task_struct *task)
    {
    	sched_move_task(task);
    }
    
    static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
    {
    	struct task_struct *task;
    	struct cgroup_subsys_state *css;
    
    	cgroup_taskset_for_each(task, css, tset) {
    #ifdef CONFIG_RT_GROUP_SCHED
    		if (!sched_rt_can_attach(css_tg(css), task))
    			return -EINVAL;
    #else
    		/* We don't support RT-tasks being in separate groups */
    		if (task->sched_class != &fair_sched_class)
    			return -EINVAL;
    #endif
    	}
    	return 0;
    }
    
    static void cpu_cgroup_attach(struct cgroup_taskset *tset)
    {
    	struct task_struct *task;
    	struct cgroup_subsys_state *css;
    
    	cgroup_taskset_for_each(task, css, tset)
    		sched_move_task(task);
    }
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
    				struct cftype *cftype, u64 shareval)
    {
    	return sched_group_set_shares(css_tg(css), scale_load(shareval));
    }
    
    static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
    			       struct cftype *cft)
    {
    	struct task_group *tg = css_tg(css);
    
    	return (u64) scale_load_down(tg->shares);
    }
    
    #ifdef CONFIG_CFS_BANDWIDTH
    static DEFINE_MUTEX(cfs_constraints_mutex);
    
    const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
    const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
    
    static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
    
    static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
    {
    	int i, ret = 0, runtime_enabled, runtime_was_enabled;
    	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    
    	if (tg == &root_task_group)
    		return -EINVAL;
    
    	/*
    	 * Ensure we have at some amount of bandwidth every period.  This is
    	 * to prevent reaching a state of large arrears when throttled via
    	 * entity_tick() resulting in prolonged exit starvation.
    	 */
    	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
    		return -EINVAL;
    
    	/*
    	 * Likewise, bound things on the otherside by preventing insane quota
    	 * periods.  This also allows us to normalize in computing quota
    	 * feasibility.
    	 */
    	if (period > max_cfs_quota_period)
    		return -EINVAL;
    
    	/*
    	 * Prevent race between setting of cfs_rq->runtime_enabled and
    	 * unthrottle_offline_cfs_rqs().
    	 */
    	get_online_cpus();
    	mutex_lock(&cfs_constraints_mutex);
    	ret = __cfs_schedulable(tg, period, quota);
    	if (ret)
    		goto out_unlock;
    
    	runtime_enabled = quota != RUNTIME_INF;
    	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
    	/*
    	 * If we need to toggle cfs_bandwidth_used, off->on must occur
    	 * before making related changes, and on->off must occur afterwards
    	 */
    	if (runtime_enabled && !runtime_was_enabled)
    		cfs_bandwidth_usage_inc();
    	raw_spin_lock_irq(&cfs_b->lock);
    	cfs_b->period = ns_to_ktime(period);
    	cfs_b->quota = quota;
    
    	__refill_cfs_bandwidth_runtime(cfs_b);
    	/* restart the period timer (if active) to handle new period expiry */
    	if (runtime_enabled)
    		start_cfs_bandwidth(cfs_b);
    	raw_spin_unlock_irq(&cfs_b->lock);
    
    	for_each_online_cpu(i) {
    		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
    		struct rq *rq = cfs_rq->rq;
    
    		raw_spin_lock_irq(&rq->lock);
    		cfs_rq->runtime_enabled = runtime_enabled;
    		cfs_rq->runtime_remaining = 0;
    
    		if (cfs_rq->throttled)
    			unthrottle_cfs_rq(cfs_rq);
    		raw_spin_unlock_irq(&rq->lock);
    	}
    	if (runtime_was_enabled && !runtime_enabled)
    		cfs_bandwidth_usage_dec();
    out_unlock:
    	mutex_unlock(&cfs_constraints_mutex);
    	put_online_cpus();
    
    	return ret;
    }
    
    int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
    {
    	u64 quota, period;
    
    	period = ktime_to_ns(tg->cfs_bandwidth.period);
    	if (cfs_quota_us < 0)
    		quota = RUNTIME_INF;
    	else
    		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
    
    	return tg_set_cfs_bandwidth(tg, period, quota);
    }
    
    long tg_get_cfs_quota(struct task_group *tg)
    {
    	u64 quota_us;
    
    	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
    		return -1;
    
    	quota_us = tg->cfs_bandwidth.quota;
    	do_div(quota_us, NSEC_PER_USEC);
    
    	return quota_us;
    }
    
    int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
    {
    	u64 quota, period;
    
    	period = (u64)cfs_period_us * NSEC_PER_USEC;
    	quota = tg->cfs_bandwidth.quota;
    
    	return tg_set_cfs_bandwidth(tg, period, quota);
    }
    
    long tg_get_cfs_period(struct task_group *tg)
    {
    	u64 cfs_period_us;
    
    	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
    	do_div(cfs_period_us, NSEC_PER_USEC);
    
    	return cfs_period_us;
    }
    
    static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
    				  struct cftype *cft)
    {
    	return tg_get_cfs_quota(css_tg(css));
    }
    
    static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
    				   struct cftype *cftype, s64 cfs_quota_us)
    {
    	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
    }
    
    static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
    				   struct cftype *cft)
    {
    	return tg_get_cfs_period(css_tg(css));
    }
    
    static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
    				    struct cftype *cftype, u64 cfs_period_us)
    {
    	return tg_set_cfs_period(css_tg(css), cfs_period_us);
    }
    
    struct cfs_schedulable_data {
    	struct task_group *tg;
    	u64 period, quota;
    };
    
    /*
     * normalize group quota/period to be quota/max_period
     * note: units are usecs
     */
    static u64 normalize_cfs_quota(struct task_group *tg,
    			       struct cfs_schedulable_data *d)
    {
    	u64 quota, period;
    
    	if (tg == d->tg) {
    		period = d->period;
    		quota = d->quota;
    	} else {
    		period = tg_get_cfs_period(tg);
    		quota = tg_get_cfs_quota(tg);
    	}
    
    	/* note: these should typically be equivalent */
    	if (quota == RUNTIME_INF || quota == -1)
    		return RUNTIME_INF;
    
    	return to_ratio(period, quota);
    }
    
    static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
    {
    	struct cfs_schedulable_data *d = data;
    	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    	s64 quota = 0, parent_quota = -1;
    
    	if (!tg->parent) {
    		quota = RUNTIME_INF;
    	} else {
    		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
    
    		quota = normalize_cfs_quota(tg, d);
    		parent_quota = parent_b->hierarchical_quota;
    
    		/*
    		 * ensure max(child_quota) <= parent_quota, inherit when no
    		 * limit is set
    		 */
    		if (quota == RUNTIME_INF)
    			quota = parent_quota;
    		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
    			return -EINVAL;
    	}
    	cfs_b->hierarchical_quota = quota;
    
    	return 0;
    }
    
    static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
    {
    	int ret;
    	struct cfs_schedulable_data data = {
    		.tg = tg,
    		.period = period,
    		.quota = quota,
    	};
    
    	if (quota != RUNTIME_INF) {
    		do_div(data.period, NSEC_PER_USEC);
    		do_div(data.quota, NSEC_PER_USEC);
    	}
    
    	rcu_read_lock();
    	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
    	rcu_read_unlock();
    
    	return ret;
    }
    
    static int cpu_stats_show(struct seq_file *sf, void *v)
    {
    	struct task_group *tg = css_tg(seq_css(sf));
    	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    
    	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
    	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
    	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
    
    	return 0;
    }
    #endif /* CONFIG_CFS_BANDWIDTH */
    #endif /* CONFIG_FAIR_GROUP_SCHED */
    
    #ifdef CONFIG_RT_GROUP_SCHED
    static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
    				struct cftype *cft, s64 val)
    {
    	return sched_group_set_rt_runtime(css_tg(css), val);
    }
    
    static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
    			       struct cftype *cft)
    {
    	return sched_group_rt_runtime(css_tg(css));
    }
    
    static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
    				    struct cftype *cftype, u64 rt_period_us)
    {
    	return sched_group_set_rt_period(css_tg(css), rt_period_us);
    }
    
    static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
    				   struct cftype *cft)
    {
    	return sched_group_rt_period(css_tg(css));
    }
    #endif /* CONFIG_RT_GROUP_SCHED */
    
    static struct cftype cpu_files[] = {
    #ifdef CONFIG_FAIR_GROUP_SCHED
    	{
    		.name = "shares",
    		.read_u64 = cpu_shares_read_u64,
    		.write_u64 = cpu_shares_write_u64,
    	},
    #endif
    #ifdef CONFIG_CFS_BANDWIDTH
    	{
    		.name = "cfs_quota_us",
    		.read_s64 = cpu_cfs_quota_read_s64,
    		.write_s64 = cpu_cfs_quota_write_s64,
    	},
    	{
    		.name = "cfs_period_us",
    		.read_u64 = cpu_cfs_period_read_u64,
    		.write_u64 = cpu_cfs_period_write_u64,
    	},
    	{
    		.name = "stat",
    		.seq_show = cpu_stats_show,
    	},
    #endif
    #ifdef CONFIG_RT_GROUP_SCHED
    	{
    		.name = "rt_runtime_us",
    		.read_s64 = cpu_rt_runtime_read,
    		.write_s64 = cpu_rt_runtime_write,
    	},
    	{
    		.name = "rt_period_us",
    		.read_u64 = cpu_rt_period_read_uint,
    		.write_u64 = cpu_rt_period_write_uint,
    	},
    #endif
    	{ }	/* terminate */
    };
    
    struct cgroup_subsys cpu_cgrp_subsys = {
    	.css_alloc	= cpu_cgroup_css_alloc,
    	.css_free	= cpu_cgroup_css_free,
    	.css_online	= cpu_cgroup_css_online,
    	.css_offline	= cpu_cgroup_css_offline,
    	.fork		= cpu_cgroup_fork,
    	.can_attach	= cpu_cgroup_can_attach,
    	.attach		= cpu_cgroup_attach,
    	.legacy_cftypes	= cpu_files,
    	.early_init	= 1,
    };
    
    #endif	/* CONFIG_CGROUP_SCHED */
    
    void dump_cpu_task(int cpu)
    {
    	pr_info("Task dump for CPU %d:\n", cpu);
    	sched_show_task(cpu_curr(cpu));
    }
    
    /*
     * Nice levels are multiplicative, with a gentle 10% change for every
     * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
     * nice 1, it will get ~10% less CPU time than another CPU-bound task
     * that remained on nice 0.
     *
     * The "10% effect" is relative and cumulative: from _any_ nice level,
     * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
     * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
     * If a task goes up by ~10% and another task goes down by ~10% then
     * the relative distance between them is ~25%.)
     */
    const int sched_prio_to_weight[40] = {
     /* -20 */     88761,     71755,     56483,     46273,     36291,
     /* -15 */     29154,     23254,     18705,     14949,     11916,
     /* -10 */      9548,      7620,      6100,      4904,      3906,
     /*  -5 */      3121,      2501,      1991,      1586,      1277,
     /*   0 */      1024,       820,       655,       526,       423,
     /*   5 */       335,       272,       215,       172,       137,
     /*  10 */       110,        87,        70,        56,        45,
     /*  15 */        36,        29,        23,        18,        15,
    };
    
    /*
     * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
     *
     * In cases where the weight does not change often, we can use the
     * precalculated inverse to speed up arithmetics by turning divisions
     * into multiplications:
     */
    const u32 sched_prio_to_wmult[40] = {
     /* -20 */     48388,     59856,     76040,     92818,    118348,
     /* -15 */    147320,    184698,    229616,    287308,    360437,
     /* -10 */    449829,    563644,    704093,    875809,   1099582,
     /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
     /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
     /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
     /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
     /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
    };