Skip to content
Snippets Groups Projects
Select Git revision
  • ef83b0781a73f9efcb1228256bfdfb97fc9533a8
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

remove.c

Blame
  • fork.c 60.43 KiB
    /*
     *  linux/kernel/fork.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     */
    
    /*
     *  'fork.c' contains the help-routines for the 'fork' system call
     * (see also entry.S and others).
     * Fork is rather simple, once you get the hang of it, but the memory
     * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
     */
    
    #include <linux/slab.h>
    #include <linux/sched/autogroup.h>
    #include <linux/sched/mm.h>
    #include <linux/sched/coredump.h>
    #include <linux/sched/user.h>
    #include <linux/sched/numa_balancing.h>
    #include <linux/sched/stat.h>
    #include <linux/sched/task.h>
    #include <linux/sched/task_stack.h>
    #include <linux/sched/cputime.h>
    #include <linux/rtmutex.h>
    #include <linux/init.h>
    #include <linux/unistd.h>
    #include <linux/module.h>
    #include <linux/vmalloc.h>
    #include <linux/completion.h>
    #include <linux/personality.h>
    #include <linux/mempolicy.h>
    #include <linux/sem.h>
    #include <linux/file.h>
    #include <linux/fdtable.h>
    #include <linux/iocontext.h>
    #include <linux/key.h>
    #include <linux/binfmts.h>
    #include <linux/mman.h>
    #include <linux/mmu_notifier.h>
    #include <linux/hmm.h>
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/vmacache.h>
    #include <linux/nsproxy.h>
    #include <linux/capability.h>
    #include <linux/cpu.h>
    #include <linux/cgroup.h>
    #include <linux/security.h>
    #include <linux/hugetlb.h>
    #include <linux/seccomp.h>
    #include <linux/swap.h>
    #include <linux/syscalls.h>
    #include <linux/jiffies.h>
    #include <linux/futex.h>
    #include <linux/compat.h>
    #include <linux/kthread.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/rcupdate.h>
    #include <linux/ptrace.h>
    #include <linux/mount.h>
    #include <linux/audit.h>
    #include <linux/memcontrol.h>
    #include <linux/ftrace.h>
    #include <linux/proc_fs.h>
    #include <linux/profile.h>
    #include <linux/rmap.h>
    #include <linux/ksm.h>
    #include <linux/acct.h>
    #include <linux/userfaultfd_k.h>
    #include <linux/tsacct_kern.h>
    #include <linux/cn_proc.h>
    #include <linux/freezer.h>
    #include <linux/delayacct.h>
    #include <linux/taskstats_kern.h>
    #include <linux/random.h>
    #include <linux/tty.h>
    #include <linux/blkdev.h>
    #include <linux/fs_struct.h>
    #include <linux/magic.h>
    #include <linux/sched/mm.h>
    #include <linux/perf_event.h>
    #include <linux/posix-timers.h>
    #include <linux/user-return-notifier.h>
    #include <linux/oom.h>
    #include <linux/khugepaged.h>
    #include <linux/signalfd.h>
    #include <linux/uprobes.h>
    #include <linux/aio.h>
    #include <linux/compiler.h>
    #include <linux/sysctl.h>
    #include <linux/kcov.h>
    #include <linux/livepatch.h>
    #include <linux/thread_info.h>
    
    #include <asm/pgtable.h>
    #include <asm/pgalloc.h>
    #include <linux/uaccess.h>
    #include <asm/mmu_context.h>
    #include <asm/cacheflush.h>
    #include <asm/tlbflush.h>
    
    #include <trace/events/sched.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/task.h>
    
    /*
     * Minimum number of threads to boot the kernel
     */
    #define MIN_THREADS 20
    
    /*
     * Maximum number of threads
     */
    #define MAX_THREADS FUTEX_TID_MASK
    
    /*
     * Protected counters by write_lock_irq(&tasklist_lock)
     */
    unsigned long total_forks;	/* Handle normal Linux uptimes. */
    int nr_threads;			/* The idle threads do not count.. */
    
    int max_threads;		/* tunable limit on nr_threads */
    
    DEFINE_PER_CPU(unsigned long, process_counts) = 0;
    
    __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
    
    #ifdef CONFIG_PROVE_RCU
    int lockdep_tasklist_lock_is_held(void)
    {
    	return lockdep_is_held(&tasklist_lock);
    }
    EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
    #endif /* #ifdef CONFIG_PROVE_RCU */
    
    int nr_processes(void)
    {
    	int cpu;
    	int total = 0;
    
    	for_each_possible_cpu(cpu)
    		total += per_cpu(process_counts, cpu);
    
    	return total;
    }
    
    void __weak arch_release_task_struct(struct task_struct *tsk)
    {
    }
    
    #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    static struct kmem_cache *task_struct_cachep;
    
    static inline struct task_struct *alloc_task_struct_node(int node)
    {
    	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
    }
    
    static inline void free_task_struct(struct task_struct *tsk)
    {
    	kmem_cache_free(task_struct_cachep, tsk);
    }
    #endif
    
    void __weak arch_release_thread_stack(unsigned long *stack)
    {
    }
    
    #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
    
    /*
     * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
     * kmemcache based allocator.
     */
    # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
    
    #ifdef CONFIG_VMAP_STACK
    /*
     * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
     * flush.  Try to minimize the number of calls by caching stacks.
     */
    #define NR_CACHED_STACKS 2
    static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
    
    static int free_vm_stack_cache(unsigned int cpu)
    {
    	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
    	int i;
    
    	for (i = 0; i < NR_CACHED_STACKS; i++) {
    		struct vm_struct *vm_stack = cached_vm_stacks[i];
    
    		if (!vm_stack)
    			continue;
    
    		vfree(vm_stack->addr);
    		cached_vm_stacks[i] = NULL;
    	}
    
    	return 0;
    }
    #endif
    
    static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
    {
    #ifdef CONFIG_VMAP_STACK
    	void *stack;
    	int i;
    
    	for (i = 0; i < NR_CACHED_STACKS; i++) {
    		struct vm_struct *s;
    
    		s = this_cpu_xchg(cached_stacks[i], NULL);
    
    		if (!s)
    			continue;
    
    		/* Clear stale pointers from reused stack. */
    		memset(s->addr, 0, THREAD_SIZE);
    
    		tsk->stack_vm_area = s;
    		return s->addr;
    	}
    
    	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
    				     VMALLOC_START, VMALLOC_END,
    				     THREADINFO_GFP,
    				     PAGE_KERNEL,
    				     0, node, __builtin_return_address(0));
    
    	/*
    	 * We can't call find_vm_area() in interrupt context, and
    	 * free_thread_stack() can be called in interrupt context,
    	 * so cache the vm_struct.
    	 */
    	if (stack)
    		tsk->stack_vm_area = find_vm_area(stack);
    	return stack;
    #else
    	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
    					     THREAD_SIZE_ORDER);
    
    	return page ? page_address(page) : NULL;
    #endif
    }
    
    static inline void free_thread_stack(struct task_struct *tsk)
    {
    #ifdef CONFIG_VMAP_STACK
    	if (task_stack_vm_area(tsk)) {
    		int i;
    
    		for (i = 0; i < NR_CACHED_STACKS; i++) {
    			if (this_cpu_cmpxchg(cached_stacks[i],
    					NULL, tsk->stack_vm_area) != NULL)
    				continue;
    
    			return;
    		}
    
    		vfree_atomic(tsk->stack);
    		return;
    	}
    #endif
    
    	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
    }
    # else
    static struct kmem_cache *thread_stack_cache;
    
    static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
    						  int node)
    {
    	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
    }
    
    static void free_thread_stack(struct task_struct *tsk)
    {
    	kmem_cache_free(thread_stack_cache, tsk->stack);
    }
    
    void thread_stack_cache_init(void)
    {
    	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
    					THREAD_SIZE, THREAD_SIZE, 0, 0,
    					THREAD_SIZE, NULL);
    	BUG_ON(thread_stack_cache == NULL);
    }
    # endif
    #endif
    
    /* SLAB cache for signal_struct structures (tsk->signal) */
    static struct kmem_cache *signal_cachep;
    
    /* SLAB cache for sighand_struct structures (tsk->sighand) */
    struct kmem_cache *sighand_cachep;
    
    /* SLAB cache for files_struct structures (tsk->files) */
    struct kmem_cache *files_cachep;
    
    /* SLAB cache for fs_struct structures (tsk->fs) */
    struct kmem_cache *fs_cachep;
    
    /* SLAB cache for vm_area_struct structures */
    struct kmem_cache *vm_area_cachep;
    
    /* SLAB cache for mm_struct structures (tsk->mm) */
    static struct kmem_cache *mm_cachep;
    
    static void account_kernel_stack(struct task_struct *tsk, int account)
    {
    	void *stack = task_stack_page(tsk);
    	struct vm_struct *vm = task_stack_vm_area(tsk);
    
    	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
    
    	if (vm) {
    		int i;
    
    		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
    
    		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
    			mod_zone_page_state(page_zone(vm->pages[i]),
    					    NR_KERNEL_STACK_KB,
    					    PAGE_SIZE / 1024 * account);
    		}
    
    		/* All stack pages belong to the same memcg. */
    		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
    				     account * (THREAD_SIZE / 1024));
    	} else {
    		/*
    		 * All stack pages are in the same zone and belong to the
    		 * same memcg.
    		 */
    		struct page *first_page = virt_to_page(stack);
    
    		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
    				    THREAD_SIZE / 1024 * account);
    
    		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
    				     account * (THREAD_SIZE / 1024));
    	}
    }
    
    static void release_task_stack(struct task_struct *tsk)
    {
    	if (WARN_ON(tsk->state != TASK_DEAD))
    		return;  /* Better to leak the stack than to free prematurely */
    
    	account_kernel_stack(tsk, -1);
    	arch_release_thread_stack(tsk->stack);
    	free_thread_stack(tsk);
    	tsk->stack = NULL;
    #ifdef CONFIG_VMAP_STACK
    	tsk->stack_vm_area = NULL;
    #endif
    }
    
    #ifdef CONFIG_THREAD_INFO_IN_TASK
    void put_task_stack(struct task_struct *tsk)
    {
    	if (atomic_dec_and_test(&tsk->stack_refcount))
    		release_task_stack(tsk);
    }
    #endif
    
    void free_task(struct task_struct *tsk)
    {
    #ifndef CONFIG_THREAD_INFO_IN_TASK
    	/*
    	 * The task is finally done with both the stack and thread_info,
    	 * so free both.
    	 */
    	release_task_stack(tsk);
    #else
    	/*
    	 * If the task had a separate stack allocation, it should be gone
    	 * by now.
    	 */
    	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
    #endif
    	rt_mutex_debug_task_free(tsk);
    	ftrace_graph_exit_task(tsk);
    	put_seccomp_filter(tsk);
    	arch_release_task_struct(tsk);
    	if (tsk->flags & PF_KTHREAD)
    		free_kthread_struct(tsk);
    	free_task_struct(tsk);
    }
    EXPORT_SYMBOL(free_task);
    
    #ifdef CONFIG_MMU
    static __latent_entropy int dup_mmap(struct mm_struct *mm,
    					struct mm_struct *oldmm)
    {
    	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
    	struct rb_node **rb_link, *rb_parent;
    	int retval;
    	unsigned long charge;
    	LIST_HEAD(uf);
    
    	uprobe_start_dup_mmap();
    	if (down_write_killable(&oldmm->mmap_sem)) {
    		retval = -EINTR;
    		goto fail_uprobe_end;
    	}
    	flush_cache_dup_mm(oldmm);
    	uprobe_dup_mmap(oldmm, mm);
    	/*
    	 * Not linked in yet - no deadlock potential:
    	 */
    	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
    
    	/* No ordering required: file already has been exposed. */
    	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
    
    	mm->total_vm = oldmm->total_vm;
    	mm->data_vm = oldmm->data_vm;
    	mm->exec_vm = oldmm->exec_vm;
    	mm->stack_vm = oldmm->stack_vm;
    
    	rb_link = &mm->mm_rb.rb_node;
    	rb_parent = NULL;
    	pprev = &mm->mmap;
    	retval = ksm_fork(mm, oldmm);
    	if (retval)
    		goto out;
    	retval = khugepaged_fork(mm, oldmm);
    	if (retval)
    		goto out;
    
    	prev = NULL;
    	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
    		struct file *file;
    
    		if (mpnt->vm_flags & VM_DONTCOPY) {
    			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
    			continue;
    		}
    		charge = 0;
    		/*
    		 * Don't duplicate many vmas if we've been oom-killed (for
    		 * example)
    		 */
    		if (fatal_signal_pending(current)) {
    			retval = -EINTR;
    			goto out;
    		}
    		if (mpnt->vm_flags & VM_ACCOUNT) {
    			unsigned long len = vma_pages(mpnt);
    
    			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
    				goto fail_nomem;
    			charge = len;
    		}
    		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
    		if (!tmp)
    			goto fail_nomem;
    		*tmp = *mpnt;
    		INIT_LIST_HEAD(&tmp->anon_vma_chain);
    		retval = vma_dup_policy(mpnt, tmp);
    		if (retval)
    			goto fail_nomem_policy;
    		tmp->vm_mm = mm;
    		retval = dup_userfaultfd(tmp, &uf);
    		if (retval)
    			goto fail_nomem_anon_vma_fork;
    		if (tmp->vm_flags & VM_WIPEONFORK) {
    			/* VM_WIPEONFORK gets a clean slate in the child. */
    			tmp->anon_vma = NULL;
    			if (anon_vma_prepare(tmp))
    				goto fail_nomem_anon_vma_fork;
    		} else if (anon_vma_fork(tmp, mpnt))
    			goto fail_nomem_anon_vma_fork;
    		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
    		tmp->vm_next = tmp->vm_prev = NULL;
    		file = tmp->vm_file;
    		if (file) {
    			struct inode *inode = file_inode(file);
    			struct address_space *mapping = file->f_mapping;
    
    			get_file(file);
    			if (tmp->vm_flags & VM_DENYWRITE)
    				atomic_dec(&inode->i_writecount);
    			i_mmap_lock_write(mapping);
    			if (tmp->vm_flags & VM_SHARED)
    				atomic_inc(&mapping->i_mmap_writable);
    			flush_dcache_mmap_lock(mapping);
    			/* insert tmp into the share list, just after mpnt */
    			vma_interval_tree_insert_after(tmp, mpnt,
    					&mapping->i_mmap);
    			flush_dcache_mmap_unlock(mapping);
    			i_mmap_unlock_write(mapping);
    		}
    
    		/*
    		 * Clear hugetlb-related page reserves for children. This only
    		 * affects MAP_PRIVATE mappings. Faults generated by the child
    		 * are not guaranteed to succeed, even if read-only
    		 */
    		if (is_vm_hugetlb_page(tmp))
    			reset_vma_resv_huge_pages(tmp);
    
    		/*
    		 * Link in the new vma and copy the page table entries.
    		 */
    		*pprev = tmp;
    		pprev = &tmp->vm_next;
    		tmp->vm_prev = prev;
    		prev = tmp;
    
    		__vma_link_rb(mm, tmp, rb_link, rb_parent);
    		rb_link = &tmp->vm_rb.rb_right;
    		rb_parent = &tmp->vm_rb;
    
    		mm->map_count++;
    		if (!(tmp->vm_flags & VM_WIPEONFORK))
    			retval = copy_page_range(mm, oldmm, mpnt);
    
    		if (tmp->vm_ops && tmp->vm_ops->open)
    			tmp->vm_ops->open(tmp);
    
    		if (retval)
    			goto out;
    	}
    	/* a new mm has just been created */
    	arch_dup_mmap(oldmm, mm);
    	retval = 0;
    out:
    	up_write(&mm->mmap_sem);
    	flush_tlb_mm(oldmm);
    	up_write(&oldmm->mmap_sem);
    	dup_userfaultfd_complete(&uf);
    fail_uprobe_end:
    	uprobe_end_dup_mmap();
    	return retval;
    fail_nomem_anon_vma_fork:
    	mpol_put(vma_policy(tmp));
    fail_nomem_policy:
    	kmem_cache_free(vm_area_cachep, tmp);
    fail_nomem:
    	retval = -ENOMEM;
    	vm_unacct_memory(charge);
    	goto out;
    }
    
    static inline int mm_alloc_pgd(struct mm_struct *mm)
    {
    	mm->pgd = pgd_alloc(mm);
    	if (unlikely(!mm->pgd))
    		return -ENOMEM;
    	return 0;
    }
    
    static inline void mm_free_pgd(struct mm_struct *mm)
    {
    	pgd_free(mm, mm->pgd);
    }
    #else
    static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
    {
    	down_write(&oldmm->mmap_sem);
    	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
    	up_write(&oldmm->mmap_sem);
    	return 0;
    }
    #define mm_alloc_pgd(mm)	(0)
    #define mm_free_pgd(mm)
    #endif /* CONFIG_MMU */
    
    static void check_mm(struct mm_struct *mm)
    {
    	int i;
    
    	for (i = 0; i < NR_MM_COUNTERS; i++) {
    		long x = atomic_long_read(&mm->rss_stat.count[i]);
    
    		if (unlikely(x))
    			printk(KERN_ALERT "BUG: Bad rss-counter state "
    					  "mm:%p idx:%d val:%ld\n", mm, i, x);
    	}
    
    	if (mm_pgtables_bytes(mm))
    		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
    				mm_pgtables_bytes(mm));
    
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
    	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
    #endif
    }
    
    #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
    #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
    
    /*
     * Called when the last reference to the mm
     * is dropped: either by a lazy thread or by
     * mmput. Free the page directory and the mm.
     */
    void __mmdrop(struct mm_struct *mm)
    {
    	BUG_ON(mm == &init_mm);
    	WARN_ON_ONCE(mm == current->mm);
    	WARN_ON_ONCE(mm == current->active_mm);
    	mm_free_pgd(mm);
    	destroy_context(mm);
    	hmm_mm_destroy(mm);
    	mmu_notifier_mm_destroy(mm);
    	check_mm(mm);
    	put_user_ns(mm->user_ns);
    	free_mm(mm);
    }
    EXPORT_SYMBOL_GPL(__mmdrop);
    
    static void mmdrop_async_fn(struct work_struct *work)
    {
    	struct mm_struct *mm;
    
    	mm = container_of(work, struct mm_struct, async_put_work);
    	__mmdrop(mm);
    }
    
    static void mmdrop_async(struct mm_struct *mm)
    {
    	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
    		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
    		schedule_work(&mm->async_put_work);
    	}
    }
    
    static inline void free_signal_struct(struct signal_struct *sig)
    {
    	taskstats_tgid_free(sig);
    	sched_autogroup_exit(sig);
    	/*
    	 * __mmdrop is not safe to call from softirq context on x86 due to
    	 * pgd_dtor so postpone it to the async context
    	 */
    	if (sig->oom_mm)
    		mmdrop_async(sig->oom_mm);
    	kmem_cache_free(signal_cachep, sig);
    }
    
    static inline void put_signal_struct(struct signal_struct *sig)
    {
    	if (atomic_dec_and_test(&sig->sigcnt))
    		free_signal_struct(sig);
    }
    
    void __put_task_struct(struct task_struct *tsk)
    {
    	WARN_ON(!tsk->exit_state);
    	WARN_ON(atomic_read(&tsk->usage));
    	WARN_ON(tsk == current);
    
    	cgroup_free(tsk);
    	task_numa_free(tsk);
    	security_task_free(tsk);
    	exit_creds(tsk);
    	delayacct_tsk_free(tsk);
    	put_signal_struct(tsk->signal);
    
    	if (!profile_handoff_task(tsk))
    		free_task(tsk);
    }
    EXPORT_SYMBOL_GPL(__put_task_struct);
    
    void __init __weak arch_task_cache_init(void) { }
    
    /*
     * set_max_threads
     */
    static void set_max_threads(unsigned int max_threads_suggested)
    {
    	u64 threads;
    
    	/*
    	 * The number of threads shall be limited such that the thread
    	 * structures may only consume a small part of the available memory.
    	 */
    	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
    		threads = MAX_THREADS;
    	else
    		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
    				    (u64) THREAD_SIZE * 8UL);
    
    	if (threads > max_threads_suggested)
    		threads = max_threads_suggested;
    
    	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
    }
    
    #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
    /* Initialized by the architecture: */
    int arch_task_struct_size __read_mostly;
    #endif
    
    static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
    {
    	/* Fetch thread_struct whitelist for the architecture. */
    	arch_thread_struct_whitelist(offset, size);
    
    	/*
    	 * Handle zero-sized whitelist or empty thread_struct, otherwise
    	 * adjust offset to position of thread_struct in task_struct.
    	 */
    	if (unlikely(*size == 0))
    		*offset = 0;
    	else
    		*offset += offsetof(struct task_struct, thread);
    }
    
    void __init fork_init(void)
    {
    	int i;
    #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    #ifndef ARCH_MIN_TASKALIGN
    #define ARCH_MIN_TASKALIGN	0
    #endif
    	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
    	unsigned long useroffset, usersize;
    
    	/* create a slab on which task_structs can be allocated */
    	task_struct_whitelist(&useroffset, &usersize);
    	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
    			arch_task_struct_size, align,
    			SLAB_PANIC|SLAB_ACCOUNT,
    			useroffset, usersize, NULL);
    #endif
    
    	/* do the arch specific task caches init */
    	arch_task_cache_init();
    
    	set_max_threads(MAX_THREADS);
    
    	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
    	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
    	init_task.signal->rlim[RLIMIT_SIGPENDING] =
    		init_task.signal->rlim[RLIMIT_NPROC];
    
    	for (i = 0; i < UCOUNT_COUNTS; i++) {
    		init_user_ns.ucount_max[i] = max_threads/2;
    	}
    
    #ifdef CONFIG_VMAP_STACK
    	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
    			  NULL, free_vm_stack_cache);
    #endif
    
    	lockdep_init_task(&init_task);
    }
    
    int __weak arch_dup_task_struct(struct task_struct *dst,
    					       struct task_struct *src)
    {
    	*dst = *src;
    	return 0;
    }
    
    void set_task_stack_end_magic(struct task_struct *tsk)
    {
    	unsigned long *stackend;
    
    	stackend = end_of_stack(tsk);
    	*stackend = STACK_END_MAGIC;	/* for overflow detection */
    }
    
    static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
    {
    	struct task_struct *tsk;
    	unsigned long *stack;
    	struct vm_struct *stack_vm_area;
    	int err;
    
    	if (node == NUMA_NO_NODE)
    		node = tsk_fork_get_node(orig);
    	tsk = alloc_task_struct_node(node);
    	if (!tsk)
    		return NULL;
    
    	stack = alloc_thread_stack_node(tsk, node);
    	if (!stack)
    		goto free_tsk;
    
    	stack_vm_area = task_stack_vm_area(tsk);
    
    	err = arch_dup_task_struct(tsk, orig);
    
    	/*
    	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
    	 * sure they're properly initialized before using any stack-related
    	 * functions again.
    	 */
    	tsk->stack = stack;
    #ifdef CONFIG_VMAP_STACK
    	tsk->stack_vm_area = stack_vm_area;
    #endif
    #ifdef CONFIG_THREAD_INFO_IN_TASK
    	atomic_set(&tsk->stack_refcount, 1);
    #endif
    
    	if (err)
    		goto free_stack;
    
    #ifdef CONFIG_SECCOMP
    	/*
    	 * We must handle setting up seccomp filters once we're under
    	 * the sighand lock in case orig has changed between now and
    	 * then. Until then, filter must be NULL to avoid messing up
    	 * the usage counts on the error path calling free_task.
    	 */
    	tsk->seccomp.filter = NULL;
    #endif
    
    	setup_thread_stack(tsk, orig);
    	clear_user_return_notifier(tsk);
    	clear_tsk_need_resched(tsk);
    	set_task_stack_end_magic(tsk);
    
    #ifdef CONFIG_STACKPROTECTOR
    	tsk->stack_canary = get_random_canary();
    #endif
    
    	/*
    	 * One for us, one for whoever does the "release_task()" (usually
    	 * parent)
    	 */
    	atomic_set(&tsk->usage, 2);
    #ifdef CONFIG_BLK_DEV_IO_TRACE
    	tsk->btrace_seq = 0;
    #endif
    	tsk->splice_pipe = NULL;
    	tsk->task_frag.page = NULL;
    	tsk->wake_q.next = NULL;
    
    	account_kernel_stack(tsk, 1);
    
    	kcov_task_init(tsk);
    
    #ifdef CONFIG_FAULT_INJECTION
    	tsk->fail_nth = 0;
    #endif
    
    	return tsk;
    
    free_stack:
    	free_thread_stack(tsk);
    free_tsk:
    	free_task_struct(tsk);
    	return NULL;
    }
    
    __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
    
    static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
    
    static int __init coredump_filter_setup(char *s)
    {
    	default_dump_filter =
    		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
    		MMF_DUMP_FILTER_MASK;
    	return 1;
    }
    
    __setup("coredump_filter=", coredump_filter_setup);
    
    #include <linux/init_task.h>
    
    static void mm_init_aio(struct mm_struct *mm)
    {
    #ifdef CONFIG_AIO
    	spin_lock_init(&mm->ioctx_lock);
    	mm->ioctx_table = NULL;
    #endif
    }
    
    static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
    {
    #ifdef CONFIG_MEMCG
    	mm->owner = p;
    #endif
    }
    
    static void mm_init_uprobes_state(struct mm_struct *mm)
    {
    #ifdef CONFIG_UPROBES
    	mm->uprobes_state.xol_area = NULL;
    #endif
    }
    
    static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
    	struct user_namespace *user_ns)
    {
    	mm->mmap = NULL;
    	mm->mm_rb = RB_ROOT;
    	mm->vmacache_seqnum = 0;
    	atomic_set(&mm->mm_users, 1);
    	atomic_set(&mm->mm_count, 1);
    	init_rwsem(&mm->mmap_sem);
    	INIT_LIST_HEAD(&mm->mmlist);
    	mm->core_state = NULL;
    	mm_pgtables_bytes_init(mm);
    	mm->map_count = 0;
    	mm->locked_vm = 0;
    	mm->pinned_vm = 0;
    	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
    	spin_lock_init(&mm->page_table_lock);
    	spin_lock_init(&mm->arg_lock);
    	mm_init_cpumask(mm);
    	mm_init_aio(mm);
    	mm_init_owner(mm, p);
    	RCU_INIT_POINTER(mm->exe_file, NULL);
    	mmu_notifier_mm_init(mm);
    	hmm_mm_init(mm);
    	init_tlb_flush_pending(mm);
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
    	mm->pmd_huge_pte = NULL;
    #endif
    	mm_init_uprobes_state(mm);
    
    	if (current->mm) {
    		mm->flags = current->mm->flags & MMF_INIT_MASK;
    		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
    	} else {
    		mm->flags = default_dump_filter;
    		mm->def_flags = 0;
    	}
    
    	if (mm_alloc_pgd(mm))
    		goto fail_nopgd;
    
    	if (init_new_context(p, mm))
    		goto fail_nocontext;
    
    	mm->user_ns = get_user_ns(user_ns);
    	return mm;
    
    fail_nocontext:
    	mm_free_pgd(mm);
    fail_nopgd:
    	free_mm(mm);
    	return NULL;
    }
    
    /*
     * Allocate and initialize an mm_struct.
     */
    struct mm_struct *mm_alloc(void)
    {
    	struct mm_struct *mm;
    
    	mm = allocate_mm();
    	if (!mm)
    		return NULL;
    
    	memset(mm, 0, sizeof(*mm));
    	return mm_init(mm, current, current_user_ns());
    }
    
    static inline void __mmput(struct mm_struct *mm)
    {
    	VM_BUG_ON(atomic_read(&mm->mm_users));
    
    	uprobe_clear_state(mm);
    	exit_aio(mm);
    	ksm_exit(mm);
    	khugepaged_exit(mm); /* must run before exit_mmap */
    	exit_mmap(mm);
    	mm_put_huge_zero_page(mm);
    	set_mm_exe_file(mm, NULL);
    	if (!list_empty(&mm->mmlist)) {
    		spin_lock(&mmlist_lock);
    		list_del(&mm->mmlist);
    		spin_unlock(&mmlist_lock);
    	}
    	if (mm->binfmt)
    		module_put(mm->binfmt->module);
    	mmdrop(mm);
    }
    
    /*
     * Decrement the use count and release all resources for an mm.
     */
    void mmput(struct mm_struct *mm)
    {
    	might_sleep();
    
    	if (atomic_dec_and_test(&mm->mm_users))
    		__mmput(mm);
    }
    EXPORT_SYMBOL_GPL(mmput);
    
    #ifdef CONFIG_MMU
    static void mmput_async_fn(struct work_struct *work)
    {
    	struct mm_struct *mm = container_of(work, struct mm_struct,
    					    async_put_work);
    
    	__mmput(mm);
    }
    
    void mmput_async(struct mm_struct *mm)
    {
    	if (atomic_dec_and_test(&mm->mm_users)) {
    		INIT_WORK(&mm->async_put_work, mmput_async_fn);
    		schedule_work(&mm->async_put_work);
    	}
    }
    #endif
    
    /**
     * set_mm_exe_file - change a reference to the mm's executable file
     *
     * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
     *
     * Main users are mmput() and sys_execve(). Callers prevent concurrent
     * invocations: in mmput() nobody alive left, in execve task is single
     * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
     * mm->exe_file, but does so without using set_mm_exe_file() in order
     * to do avoid the need for any locks.
     */
    void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
    {
    	struct file *old_exe_file;
    
    	/*
    	 * It is safe to dereference the exe_file without RCU as
    	 * this function is only called if nobody else can access
    	 * this mm -- see comment above for justification.
    	 */
    	old_exe_file = rcu_dereference_raw(mm->exe_file);
    
    	if (new_exe_file)
    		get_file(new_exe_file);
    	rcu_assign_pointer(mm->exe_file, new_exe_file);
    	if (old_exe_file)
    		fput(old_exe_file);
    }
    
    /**
     * get_mm_exe_file - acquire a reference to the mm's executable file
     *
     * Returns %NULL if mm has no associated executable file.
     * User must release file via fput().
     */
    struct file *get_mm_exe_file(struct mm_struct *mm)
    {
    	struct file *exe_file;
    
    	rcu_read_lock();
    	exe_file = rcu_dereference(mm->exe_file);
    	if (exe_file && !get_file_rcu(exe_file))
    		exe_file = NULL;
    	rcu_read_unlock();
    	return exe_file;
    }
    EXPORT_SYMBOL(get_mm_exe_file);
    
    /**
     * get_task_exe_file - acquire a reference to the task's executable file
     *
     * Returns %NULL if task's mm (if any) has no associated executable file or
     * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
     * User must release file via fput().
     */
    struct file *get_task_exe_file(struct task_struct *task)
    {
    	struct file *exe_file = NULL;
    	struct mm_struct *mm;
    
    	task_lock(task);
    	mm = task->mm;
    	if (mm) {
    		if (!(task->flags & PF_KTHREAD))
    			exe_file = get_mm_exe_file(mm);
    	}
    	task_unlock(task);
    	return exe_file;
    }
    EXPORT_SYMBOL(get_task_exe_file);
    
    /**
     * get_task_mm - acquire a reference to the task's mm
     *
     * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
     * this kernel workthread has transiently adopted a user mm with use_mm,
     * to do its AIO) is not set and if so returns a reference to it, after
     * bumping up the use count.  User must release the mm via mmput()
     * after use.  Typically used by /proc and ptrace.
     */
    struct mm_struct *get_task_mm(struct task_struct *task)
    {
    	struct mm_struct *mm;
    
    	task_lock(task);
    	mm = task->mm;
    	if (mm) {
    		if (task->flags & PF_KTHREAD)
    			mm = NULL;
    		else
    			mmget(mm);
    	}
    	task_unlock(task);
    	return mm;
    }
    EXPORT_SYMBOL_GPL(get_task_mm);
    
    struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
    {
    	struct mm_struct *mm;
    	int err;
    
    	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
    	if (err)
    		return ERR_PTR(err);
    
    	mm = get_task_mm(task);
    	if (mm && mm != current->mm &&
    			!ptrace_may_access(task, mode)) {
    		mmput(mm);
    		mm = ERR_PTR(-EACCES);
    	}
    	mutex_unlock(&task->signal->cred_guard_mutex);
    
    	return mm;
    }
    
    static void complete_vfork_done(struct task_struct *tsk)
    {
    	struct completion *vfork;
    
    	task_lock(tsk);
    	vfork = tsk->vfork_done;
    	if (likely(vfork)) {
    		tsk->vfork_done = NULL;
    		complete(vfork);
    	}
    	task_unlock(tsk);
    }
    
    static int wait_for_vfork_done(struct task_struct *child,
    				struct completion *vfork)
    {
    	int killed;
    
    	freezer_do_not_count();
    	killed = wait_for_completion_killable(vfork);
    	freezer_count();
    
    	if (killed) {
    		task_lock(child);
    		child->vfork_done = NULL;
    		task_unlock(child);
    	}
    
    	put_task_struct(child);
    	return killed;
    }
    
    /* Please note the differences between mmput and mm_release.
     * mmput is called whenever we stop holding onto a mm_struct,
     * error success whatever.
     *
     * mm_release is called after a mm_struct has been removed
     * from the current process.
     *
     * This difference is important for error handling, when we
     * only half set up a mm_struct for a new process and need to restore
     * the old one.  Because we mmput the new mm_struct before
     * restoring the old one. . .
     * Eric Biederman 10 January 1998
     */
    void mm_release(struct task_struct *tsk, struct mm_struct *mm)
    {
    	/* Get rid of any futexes when releasing the mm */
    #ifdef CONFIG_FUTEX
    	if (unlikely(tsk->robust_list)) {
    		exit_robust_list(tsk);
    		tsk->robust_list = NULL;
    	}
    #ifdef CONFIG_COMPAT
    	if (unlikely(tsk->compat_robust_list)) {
    		compat_exit_robust_list(tsk);
    		tsk->compat_robust_list = NULL;
    	}
    #endif
    	if (unlikely(!list_empty(&tsk->pi_state_list)))
    		exit_pi_state_list(tsk);
    #endif
    
    	uprobe_free_utask(tsk);
    
    	/* Get rid of any cached register state */
    	deactivate_mm(tsk, mm);
    
    	/*
    	 * Signal userspace if we're not exiting with a core dump
    	 * because we want to leave the value intact for debugging
    	 * purposes.
    	 */
    	if (tsk->clear_child_tid) {
    		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
    		    atomic_read(&mm->mm_users) > 1) {
    			/*
    			 * We don't check the error code - if userspace has
    			 * not set up a proper pointer then tough luck.
    			 */
    			put_user(0, tsk->clear_child_tid);
    			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
    					1, NULL, NULL, 0, 0);
    		}
    		tsk->clear_child_tid = NULL;
    	}
    
    	/*
    	 * All done, finally we can wake up parent and return this mm to him.
    	 * Also kthread_stop() uses this completion for synchronization.
    	 */
    	if (tsk->vfork_done)
    		complete_vfork_done(tsk);
    }
    
    /*
     * Allocate a new mm structure and copy contents from the
     * mm structure of the passed in task structure.
     */
    static struct mm_struct *dup_mm(struct task_struct *tsk)
    {
    	struct mm_struct *mm, *oldmm = current->mm;
    	int err;
    
    	mm = allocate_mm();
    	if (!mm)
    		goto fail_nomem;
    
    	memcpy(mm, oldmm, sizeof(*mm));
    
    	if (!mm_init(mm, tsk, mm->user_ns))
    		goto fail_nomem;
    
    	err = dup_mmap(mm, oldmm);
    	if (err)
    		goto free_pt;
    
    	mm->hiwater_rss = get_mm_rss(mm);
    	mm->hiwater_vm = mm->total_vm;
    
    	if (mm->binfmt && !try_module_get(mm->binfmt->module))
    		goto free_pt;
    
    	return mm;
    
    free_pt:
    	/* don't put binfmt in mmput, we haven't got module yet */
    	mm->binfmt = NULL;
    	mmput(mm);
    
    fail_nomem:
    	return NULL;
    }
    
    static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct mm_struct *mm, *oldmm;
    	int retval;
    
    	tsk->min_flt = tsk->maj_flt = 0;
    	tsk->nvcsw = tsk->nivcsw = 0;
    #ifdef CONFIG_DETECT_HUNG_TASK
    	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
    #endif
    
    	tsk->mm = NULL;
    	tsk->active_mm = NULL;
    
    	/*
    	 * Are we cloning a kernel thread?
    	 *
    	 * We need to steal a active VM for that..
    	 */
    	oldmm = current->mm;
    	if (!oldmm)
    		return 0;
    
    	/* initialize the new vmacache entries */
    	vmacache_flush(tsk);
    
    	if (clone_flags & CLONE_VM) {
    		mmget(oldmm);
    		mm = oldmm;
    		goto good_mm;
    	}
    
    	retval = -ENOMEM;
    	mm = dup_mm(tsk);
    	if (!mm)
    		goto fail_nomem;
    
    good_mm:
    	tsk->mm = mm;
    	tsk->active_mm = mm;
    	return 0;
    
    fail_nomem:
    	return retval;
    }
    
    static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct fs_struct *fs = current->fs;
    	if (clone_flags & CLONE_FS) {
    		/* tsk->fs is already what we want */
    		spin_lock(&fs->lock);
    		if (fs->in_exec) {
    			spin_unlock(&fs->lock);
    			return -EAGAIN;
    		}
    		fs->users++;
    		spin_unlock(&fs->lock);
    		return 0;
    	}
    	tsk->fs = copy_fs_struct(fs);
    	if (!tsk->fs)
    		return -ENOMEM;
    	return 0;
    }
    
    static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct files_struct *oldf, *newf;
    	int error = 0;
    
    	/*
    	 * A background process may not have any files ...
    	 */
    	oldf = current->files;
    	if (!oldf)
    		goto out;
    
    	if (clone_flags & CLONE_FILES) {
    		atomic_inc(&oldf->count);
    		goto out;
    	}
    
    	newf = dup_fd(oldf, &error);
    	if (!newf)
    		goto out;
    
    	tsk->files = newf;
    	error = 0;
    out:
    	return error;
    }
    
    static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
    {
    #ifdef CONFIG_BLOCK
    	struct io_context *ioc = current->io_context;
    	struct io_context *new_ioc;
    
    	if (!ioc)
    		return 0;
    	/*
    	 * Share io context with parent, if CLONE_IO is set
    	 */
    	if (clone_flags & CLONE_IO) {
    		ioc_task_link(ioc);
    		tsk->io_context = ioc;
    	} else if (ioprio_valid(ioc->ioprio)) {
    		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
    		if (unlikely(!new_ioc))
    			return -ENOMEM;
    
    		new_ioc->ioprio = ioc->ioprio;
    		put_io_context(new_ioc);
    	}
    #endif
    	return 0;
    }
    
    static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct sighand_struct *sig;
    
    	if (clone_flags & CLONE_SIGHAND) {
    		atomic_inc(&current->sighand->count);
    		return 0;
    	}
    	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
    	rcu_assign_pointer(tsk->sighand, sig);
    	if (!sig)
    		return -ENOMEM;
    
    	atomic_set(&sig->count, 1);
    	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
    	return 0;
    }
    
    void __cleanup_sighand(struct sighand_struct *sighand)
    {
    	if (atomic_dec_and_test(&sighand->count)) {
    		signalfd_cleanup(sighand);
    		/*
    		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
    		 * without an RCU grace period, see __lock_task_sighand().
    		 */
    		kmem_cache_free(sighand_cachep, sighand);
    	}
    }
    
    #ifdef CONFIG_POSIX_TIMERS
    /*
     * Initialize POSIX timer handling for a thread group.
     */
    static void posix_cpu_timers_init_group(struct signal_struct *sig)
    {
    	unsigned long cpu_limit;
    
    	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
    	if (cpu_limit != RLIM_INFINITY) {
    		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
    		sig->cputimer.running = true;
    	}
    
    	/* The timer lists. */
    	INIT_LIST_HEAD(&sig->cpu_timers[0]);
    	INIT_LIST_HEAD(&sig->cpu_timers[1]);
    	INIT_LIST_HEAD(&sig->cpu_timers[2]);
    }
    #else
    static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
    #endif
    
    static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct signal_struct *sig;
    
    	if (clone_flags & CLONE_THREAD)
    		return 0;
    
    	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
    	tsk->signal = sig;
    	if (!sig)
    		return -ENOMEM;
    
    	sig->nr_threads = 1;
    	atomic_set(&sig->live, 1);
    	atomic_set(&sig->sigcnt, 1);
    
    	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
    	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
    	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
    
    	init_waitqueue_head(&sig->wait_chldexit);
    	sig->curr_target = tsk;
    	init_sigpending(&sig->shared_pending);
    	seqlock_init(&sig->stats_lock);
    	prev_cputime_init(&sig->prev_cputime);
    
    #ifdef CONFIG_POSIX_TIMERS
    	INIT_LIST_HEAD(&sig->posix_timers);
    	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    	sig->real_timer.function = it_real_fn;
    #endif
    
    	task_lock(current->group_leader);
    	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
    	task_unlock(current->group_leader);
    
    	posix_cpu_timers_init_group(sig);
    
    	tty_audit_fork(sig);
    	sched_autogroup_fork(sig);
    
    	sig->oom_score_adj = current->signal->oom_score_adj;
    	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
    
    	mutex_init(&sig->cred_guard_mutex);
    
    	return 0;
    }
    
    static void copy_seccomp(struct task_struct *p)
    {
    #ifdef CONFIG_SECCOMP
    	/*
    	 * Must be called with sighand->lock held, which is common to
    	 * all threads in the group. Holding cred_guard_mutex is not
    	 * needed because this new task is not yet running and cannot
    	 * be racing exec.
    	 */
    	assert_spin_locked(&current->sighand->siglock);
    
    	/* Ref-count the new filter user, and assign it. */
    	get_seccomp_filter(current);
    	p->seccomp = current->seccomp;
    
    	/*
    	 * Explicitly enable no_new_privs here in case it got set
    	 * between the task_struct being duplicated and holding the
    	 * sighand lock. The seccomp state and nnp must be in sync.
    	 */
    	if (task_no_new_privs(current))
    		task_set_no_new_privs(p);
    
    	/*
    	 * If the parent gained a seccomp mode after copying thread
    	 * flags and between before we held the sighand lock, we have
    	 * to manually enable the seccomp thread flag here.
    	 */
    	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
    		set_tsk_thread_flag(p, TIF_SECCOMP);
    #endif
    }
    
    SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
    {
    	current->clear_child_tid = tidptr;
    
    	return task_pid_vnr(current);
    }
    
    static void rt_mutex_init_task(struct task_struct *p)
    {
    	raw_spin_lock_init(&p->pi_lock);
    #ifdef CONFIG_RT_MUTEXES
    	p->pi_waiters = RB_ROOT_CACHED;
    	p->pi_top_task = NULL;
    	p->pi_blocked_on = NULL;
    #endif
    }
    
    #ifdef CONFIG_POSIX_TIMERS
    /*
     * Initialize POSIX timer handling for a single task.
     */
    static void posix_cpu_timers_init(struct task_struct *tsk)
    {
    	tsk->cputime_expires.prof_exp = 0;
    	tsk->cputime_expires.virt_exp = 0;
    	tsk->cputime_expires.sched_exp = 0;
    	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
    	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
    	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
    }
    #else
    static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
    #endif
    
    static inline void
    init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
    {
    	 task->pids[type].pid = pid;
    }
    
    static inline void rcu_copy_process(struct task_struct *p)
    {
    #ifdef CONFIG_PREEMPT_RCU
    	p->rcu_read_lock_nesting = 0;
    	p->rcu_read_unlock_special.s = 0;
    	p->rcu_blocked_node = NULL;
    	INIT_LIST_HEAD(&p->rcu_node_entry);
    #endif /* #ifdef CONFIG_PREEMPT_RCU */
    #ifdef CONFIG_TASKS_RCU
    	p->rcu_tasks_holdout = false;
    	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
    	p->rcu_tasks_idle_cpu = -1;
    #endif /* #ifdef CONFIG_TASKS_RCU */
    }
    
    /*
     * This creates a new process as a copy of the old one,
     * but does not actually start it yet.
     *
     * It copies the registers, and all the appropriate
     * parts of the process environment (as per the clone
     * flags). The actual kick-off is left to the caller.
     */
    static __latent_entropy struct task_struct *copy_process(
    					unsigned long clone_flags,
    					unsigned long stack_start,
    					unsigned long stack_size,
    					int __user *child_tidptr,
    					struct pid *pid,
    					int trace,
    					unsigned long tls,
    					int node)
    {
    	int retval;
    	struct task_struct *p;
    
    	/*
    	 * Don't allow sharing the root directory with processes in a different
    	 * namespace
    	 */
    	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
    		return ERR_PTR(-EINVAL);
    
    	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
    		return ERR_PTR(-EINVAL);
    
    	/*
    	 * Thread groups must share signals as well, and detached threads
    	 * can only be started up within the thread group.
    	 */
    	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
    		return ERR_PTR(-EINVAL);
    
    	/*
    	 * Shared signal handlers imply shared VM. By way of the above,
    	 * thread groups also imply shared VM. Blocking this case allows
    	 * for various simplifications in other code.
    	 */
    	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
    		return ERR_PTR(-EINVAL);
    
    	/*
    	 * Siblings of global init remain as zombies on exit since they are
    	 * not reaped by their parent (swapper). To solve this and to avoid
    	 * multi-rooted process trees, prevent global and container-inits
    	 * from creating siblings.
    	 */
    	if ((clone_flags & CLONE_PARENT) &&
    				current->signal->flags & SIGNAL_UNKILLABLE)
    		return ERR_PTR(-EINVAL);
    
    	/*
    	 * If the new process will be in a different pid or user namespace
    	 * do not allow it to share a thread group with the forking task.
    	 */
    	if (clone_flags & CLONE_THREAD) {
    		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
    		    (task_active_pid_ns(current) !=
    				current->nsproxy->pid_ns_for_children))
    			return ERR_PTR(-EINVAL);
    	}
    
    	retval = -ENOMEM;
    	p = dup_task_struct(current, node);
    	if (!p)
    		goto fork_out;
    
    	/*
    	 * This _must_ happen before we call free_task(), i.e. before we jump
    	 * to any of the bad_fork_* labels. This is to avoid freeing
    	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
    	 * kernel threads (PF_KTHREAD).
    	 */
    	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
    	/*
    	 * Clear TID on mm_release()?
    	 */
    	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
    
    	ftrace_graph_init_task(p);
    
    	rt_mutex_init_task(p);
    
    #ifdef CONFIG_PROVE_LOCKING
    	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
    	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
    #endif
    	retval = -EAGAIN;
    	if (atomic_read(&p->real_cred->user->processes) >=
    			task_rlimit(p, RLIMIT_NPROC)) {
    		if (p->real_cred->user != INIT_USER &&
    		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
    			goto bad_fork_free;
    	}
    	current->flags &= ~PF_NPROC_EXCEEDED;
    
    	retval = copy_creds(p, clone_flags);
    	if (retval < 0)
    		goto bad_fork_free;
    
    	/*
    	 * If multiple threads are within copy_process(), then this check
    	 * triggers too late. This doesn't hurt, the check is only there
    	 * to stop root fork bombs.
    	 */
    	retval = -EAGAIN;
    	if (nr_threads >= max_threads)
    		goto bad_fork_cleanup_count;
    
    	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
    	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
    	p->flags |= PF_FORKNOEXEC;
    	INIT_LIST_HEAD(&p->children);
    	INIT_LIST_HEAD(&p->sibling);
    	rcu_copy_process(p);
    	p->vfork_done = NULL;
    	spin_lock_init(&p->alloc_lock);
    
    	init_sigpending(&p->pending);
    
    	p->utime = p->stime = p->gtime = 0;
    #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    	p->utimescaled = p->stimescaled = 0;
    #endif
    	prev_cputime_init(&p->prev_cputime);
    
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    	seqcount_init(&p->vtime.seqcount);
    	p->vtime.starttime = 0;
    	p->vtime.state = VTIME_INACTIVE;
    #endif
    
    #if defined(SPLIT_RSS_COUNTING)
    	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
    #endif
    
    	p->default_timer_slack_ns = current->timer_slack_ns;
    
    	task_io_accounting_init(&p->ioac);
    	acct_clear_integrals(p);
    
    	posix_cpu_timers_init(p);
    
    	p->start_time = ktime_get_ns();
    	p->real_start_time = ktime_get_boot_ns();
    	p->io_context = NULL;
    	audit_set_context(p, NULL);
    	cgroup_fork(p);
    #ifdef CONFIG_NUMA
    	p->mempolicy = mpol_dup(p->mempolicy);
    	if (IS_ERR(p->mempolicy)) {
    		retval = PTR_ERR(p->mempolicy);
    		p->mempolicy = NULL;
    		goto bad_fork_cleanup_threadgroup_lock;
    	}
    #endif
    #ifdef CONFIG_CPUSETS
    	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
    	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
    	seqcount_init(&p->mems_allowed_seq);
    #endif
    #ifdef CONFIG_TRACE_IRQFLAGS
    	p->irq_events = 0;
    	p->hardirqs_enabled = 0;
    	p->hardirq_enable_ip = 0;
    	p->hardirq_enable_event = 0;
    	p->hardirq_disable_ip = _THIS_IP_;
    	p->hardirq_disable_event = 0;
    	p->softirqs_enabled = 1;
    	p->softirq_enable_ip = _THIS_IP_;
    	p->softirq_enable_event = 0;
    	p->softirq_disable_ip = 0;
    	p->softirq_disable_event = 0;
    	p->hardirq_context = 0;
    	p->softirq_context = 0;
    #endif
    
    	p->pagefault_disabled = 0;
    
    #ifdef CONFIG_LOCKDEP
    	p->lockdep_depth = 0; /* no locks held yet */
    	p->curr_chain_key = 0;
    	p->lockdep_recursion = 0;
    	lockdep_init_task(p);
    #endif
    
    #ifdef CONFIG_DEBUG_MUTEXES
    	p->blocked_on = NULL; /* not blocked yet */
    #endif
    #ifdef CONFIG_BCACHE
    	p->sequential_io	= 0;
    	p->sequential_io_avg	= 0;
    #endif
    
    	/* Perform scheduler related setup. Assign this task to a CPU. */
    	retval = sched_fork(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_policy;
    
    	retval = perf_event_init_task(p);
    	if (retval)
    		goto bad_fork_cleanup_policy;
    	retval = audit_alloc(p);
    	if (retval)
    		goto bad_fork_cleanup_perf;
    	/* copy all the process information */
    	shm_init_task(p);
    	retval = security_task_alloc(p, clone_flags);
    	if (retval)
    		goto bad_fork_cleanup_audit;
    	retval = copy_semundo(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_security;
    	retval = copy_files(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_semundo;
    	retval = copy_fs(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_files;
    	retval = copy_sighand(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_fs;
    	retval = copy_signal(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_sighand;
    	retval = copy_mm(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_signal;
    	retval = copy_namespaces(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_mm;
    	retval = copy_io(clone_flags, p);
    	if (retval)
    		goto bad_fork_cleanup_namespaces;
    	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
    	if (retval)
    		goto bad_fork_cleanup_io;
    
    	if (pid != &init_struct_pid) {
    		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
    		if (IS_ERR(pid)) {
    			retval = PTR_ERR(pid);
    			goto bad_fork_cleanup_thread;
    		}
    	}
    
    #ifdef CONFIG_BLOCK
    	p->plug = NULL;
    #endif
    #ifdef CONFIG_FUTEX
    	p->robust_list = NULL;
    #ifdef CONFIG_COMPAT
    	p->compat_robust_list = NULL;
    #endif
    	INIT_LIST_HEAD(&p->pi_state_list);
    	p->pi_state_cache = NULL;
    #endif
    	/*
    	 * sigaltstack should be cleared when sharing the same VM
    	 */
    	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
    		sas_ss_reset(p);
    
    	/*
    	 * Syscall tracing and stepping should be turned off in the
    	 * child regardless of CLONE_PTRACE.
    	 */
    	user_disable_single_step(p);
    	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
    #ifdef TIF_SYSCALL_EMU
    	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
    #endif
    	clear_all_latency_tracing(p);
    
    	/* ok, now we should be set up.. */
    	p->pid = pid_nr(pid);
    	if (clone_flags & CLONE_THREAD) {
    		p->exit_signal = -1;
    		p->group_leader = current->group_leader;
    		p->tgid = current->tgid;
    	} else {
    		if (clone_flags & CLONE_PARENT)
    			p->exit_signal = current->group_leader->exit_signal;
    		else
    			p->exit_signal = (clone_flags & CSIGNAL);
    		p->group_leader = p;
    		p->tgid = p->pid;
    	}
    
    	p->nr_dirtied = 0;
    	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
    	p->dirty_paused_when = 0;
    
    	p->pdeath_signal = 0;
    	INIT_LIST_HEAD(&p->thread_group);
    	p->task_works = NULL;
    
    	cgroup_threadgroup_change_begin(current);
    	/*
    	 * Ensure that the cgroup subsystem policies allow the new process to be
    	 * forked. It should be noted the the new process's css_set can be changed
    	 * between here and cgroup_post_fork() if an organisation operation is in
    	 * progress.
    	 */
    	retval = cgroup_can_fork(p);
    	if (retval)
    		goto bad_fork_free_pid;
    
    	/*
    	 * Make it visible to the rest of the system, but dont wake it up yet.
    	 * Need tasklist lock for parent etc handling!
    	 */
    	write_lock_irq(&tasklist_lock);
    
    	/* CLONE_PARENT re-uses the old parent */
    	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
    		p->real_parent = current->real_parent;
    		p->parent_exec_id = current->parent_exec_id;
    	} else {
    		p->real_parent = current;
    		p->parent_exec_id = current->self_exec_id;
    	}
    
    	klp_copy_process(p);
    
    	spin_lock(&current->sighand->siglock);
    
    	/*
    	 * Copy seccomp details explicitly here, in case they were changed
    	 * before holding sighand lock.
    	 */
    	copy_seccomp(p);
    
    	rseq_fork(p, clone_flags);
    
    	/*
    	 * Process group and session signals need to be delivered to just the
    	 * parent before the fork or both the parent and the child after the
    	 * fork. Restart if a signal comes in before we add the new process to
    	 * it's process group.
    	 * A fatal signal pending means that current will exit, so the new
    	 * thread can't slip out of an OOM kill (or normal SIGKILL).
    	*/
    	recalc_sigpending();
    	if (signal_pending(current)) {
    		retval = -ERESTARTNOINTR;
    		goto bad_fork_cancel_cgroup;
    	}
    	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
    		retval = -ENOMEM;
    		goto bad_fork_cancel_cgroup;
    	}
    
    	if (likely(p->pid)) {
    		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
    
    		init_task_pid(p, PIDTYPE_PID, pid);
    		if (thread_group_leader(p)) {
    			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
    			init_task_pid(p, PIDTYPE_SID, task_session(current));
    
    			if (is_child_reaper(pid)) {
    				ns_of_pid(pid)->child_reaper = p;
    				p->signal->flags |= SIGNAL_UNKILLABLE;
    			}
    
    			p->signal->leader_pid = pid;
    			p->signal->tty = tty_kref_get(current->signal->tty);
    			/*
    			 * Inherit has_child_subreaper flag under the same
    			 * tasklist_lock with adding child to the process tree
    			 * for propagate_has_child_subreaper optimization.
    			 */
    			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
    							 p->real_parent->signal->is_child_subreaper;
    			list_add_tail(&p->sibling, &p->real_parent->children);
    			list_add_tail_rcu(&p->tasks, &init_task.tasks);
    			attach_pid(p, PIDTYPE_PGID);
    			attach_pid(p, PIDTYPE_SID);
    			__this_cpu_inc(process_counts);
    		} else {
    			current->signal->nr_threads++;
    			atomic_inc(&current->signal->live);
    			atomic_inc(&current->signal->sigcnt);
    			list_add_tail_rcu(&p->thread_group,
    					  &p->group_leader->thread_group);
    			list_add_tail_rcu(&p->thread_node,
    					  &p->signal->thread_head);
    		}
    		attach_pid(p, PIDTYPE_PID);
    		nr_threads++;
    	}
    
    	total_forks++;
    	spin_unlock(&current->sighand->siglock);
    	syscall_tracepoint_update(p);
    	write_unlock_irq(&tasklist_lock);
    
    	proc_fork_connector(p);
    	cgroup_post_fork(p);
    	cgroup_threadgroup_change_end(current);
    	perf_event_fork(p);
    
    	trace_task_newtask(p, clone_flags);
    	uprobe_copy_process(p, clone_flags);
    
    	return p;
    
    bad_fork_cancel_cgroup:
    	spin_unlock(&current->sighand->siglock);
    	write_unlock_irq(&tasklist_lock);
    	cgroup_cancel_fork(p);
    bad_fork_free_pid:
    	cgroup_threadgroup_change_end(current);
    	if (pid != &init_struct_pid)
    		free_pid(pid);
    bad_fork_cleanup_thread:
    	exit_thread(p);
    bad_fork_cleanup_io:
    	if (p->io_context)
    		exit_io_context(p);
    bad_fork_cleanup_namespaces:
    	exit_task_namespaces(p);
    bad_fork_cleanup_mm:
    	if (p->mm)
    		mmput(p->mm);
    bad_fork_cleanup_signal:
    	if (!(clone_flags & CLONE_THREAD))
    		free_signal_struct(p->signal);
    bad_fork_cleanup_sighand:
    	__cleanup_sighand(p->sighand);
    bad_fork_cleanup_fs:
    	exit_fs(p); /* blocking */
    bad_fork_cleanup_files:
    	exit_files(p); /* blocking */
    bad_fork_cleanup_semundo:
    	exit_sem(p);
    bad_fork_cleanup_security:
    	security_task_free(p);
    bad_fork_cleanup_audit:
    	audit_free(p);
    bad_fork_cleanup_perf:
    	perf_event_free_task(p);
    bad_fork_cleanup_policy:
    	lockdep_free_task(p);
    #ifdef CONFIG_NUMA
    	mpol_put(p->mempolicy);
    bad_fork_cleanup_threadgroup_lock:
    #endif
    	delayacct_tsk_free(p);
    bad_fork_cleanup_count:
    	atomic_dec(&p->cred->user->processes);
    	exit_creds(p);
    bad_fork_free:
    	p->state = TASK_DEAD;
    	put_task_stack(p);
    	free_task(p);
    fork_out:
    	return ERR_PTR(retval);
    }
    
    static inline void init_idle_pids(struct pid_link *links)
    {
    	enum pid_type type;
    
    	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
    		INIT_HLIST_NODE(&links[type].node); /* not really needed */
    		links[type].pid = &init_struct_pid;
    	}
    }
    
    struct task_struct *fork_idle(int cpu)
    {
    	struct task_struct *task;
    	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
    			    cpu_to_node(cpu));
    	if (!IS_ERR(task)) {
    		init_idle_pids(task->pids);
    		init_idle(task, cpu);
    	}
    
    	return task;
    }
    
    /*
     *  Ok, this is the main fork-routine.
     *
     * It copies the process, and if successful kick-starts
     * it and waits for it to finish using the VM if required.
     */
    long _do_fork(unsigned long clone_flags,
    	      unsigned long stack_start,
    	      unsigned long stack_size,
    	      int __user *parent_tidptr,
    	      int __user *child_tidptr,
    	      unsigned long tls)
    {
    	struct completion vfork;
    	struct pid *pid;
    	struct task_struct *p;
    	int trace = 0;
    	long nr;
    
    	/*
    	 * Determine whether and which event to report to ptracer.  When
    	 * called from kernel_thread or CLONE_UNTRACED is explicitly
    	 * requested, no event is reported; otherwise, report if the event
    	 * for the type of forking is enabled.
    	 */
    	if (!(clone_flags & CLONE_UNTRACED)) {
    		if (clone_flags & CLONE_VFORK)
    			trace = PTRACE_EVENT_VFORK;
    		else if ((clone_flags & CSIGNAL) != SIGCHLD)
    			trace = PTRACE_EVENT_CLONE;
    		else
    			trace = PTRACE_EVENT_FORK;
    
    		if (likely(!ptrace_event_enabled(current, trace)))
    			trace = 0;
    	}
    
    	p = copy_process(clone_flags, stack_start, stack_size,
    			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
    	add_latent_entropy();
    
    	if (IS_ERR(p))
    		return PTR_ERR(p);
    
    	/*
    	 * Do this prior waking up the new thread - the thread pointer
    	 * might get invalid after that point, if the thread exits quickly.
    	 */
    	trace_sched_process_fork(current, p);
    
    	pid = get_task_pid(p, PIDTYPE_PID);
    	nr = pid_vnr(pid);
    
    	if (clone_flags & CLONE_PARENT_SETTID)
    		put_user(nr, parent_tidptr);
    
    	if (clone_flags & CLONE_VFORK) {
    		p->vfork_done = &vfork;
    		init_completion(&vfork);
    		get_task_struct(p);
    	}
    
    	wake_up_new_task(p);
    
    	/* forking complete and child started to run, tell ptracer */
    	if (unlikely(trace))
    		ptrace_event_pid(trace, pid);
    
    	if (clone_flags & CLONE_VFORK) {
    		if (!wait_for_vfork_done(p, &vfork))
    			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
    	}
    
    	put_pid(pid);
    	return nr;
    }
    
    #ifndef CONFIG_HAVE_COPY_THREAD_TLS
    /* For compatibility with architectures that call do_fork directly rather than
     * using the syscall entry points below. */
    long do_fork(unsigned long clone_flags,
    	      unsigned long stack_start,
    	      unsigned long stack_size,
    	      int __user *parent_tidptr,
    	      int __user *child_tidptr)
    {
    	return _do_fork(clone_flags, stack_start, stack_size,
    			parent_tidptr, child_tidptr, 0);
    }
    #endif
    
    /*
     * Create a kernel thread.
     */
    pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
    {
    	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
    		(unsigned long)arg, NULL, NULL, 0);
    }
    
    #ifdef __ARCH_WANT_SYS_FORK
    SYSCALL_DEFINE0(fork)
    {
    #ifdef CONFIG_MMU
    	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
    #else
    	/* can not support in nommu mode */
    	return -EINVAL;
    #endif
    }
    #endif
    
    #ifdef __ARCH_WANT_SYS_VFORK
    SYSCALL_DEFINE0(vfork)
    {
    	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
    			0, NULL, NULL, 0);
    }
    #endif
    
    #ifdef __ARCH_WANT_SYS_CLONE
    #ifdef CONFIG_CLONE_BACKWARDS
    SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    		 int __user *, parent_tidptr,
    		 unsigned long, tls,
    		 int __user *, child_tidptr)
    #elif defined(CONFIG_CLONE_BACKWARDS2)
    SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
    		 int __user *, parent_tidptr,
    		 int __user *, child_tidptr,
    		 unsigned long, tls)
    #elif defined(CONFIG_CLONE_BACKWARDS3)
    SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
    		int, stack_size,
    		int __user *, parent_tidptr,
    		int __user *, child_tidptr,
    		unsigned long, tls)
    #else
    SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
    		 int __user *, parent_tidptr,
    		 int __user *, child_tidptr,
    		 unsigned long, tls)
    #endif
    {
    	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
    }
    #endif
    
    void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
    {
    	struct task_struct *leader, *parent, *child;
    	int res;
    
    	read_lock(&tasklist_lock);
    	leader = top = top->group_leader;
    down:
    	for_each_thread(leader, parent) {
    		list_for_each_entry(child, &parent->children, sibling) {
    			res = visitor(child, data);
    			if (res) {
    				if (res < 0)
    					goto out;
    				leader = child;
    				goto down;
    			}
    up:
    			;
    		}
    	}
    
    	if (leader != top) {
    		child = leader;
    		parent = child->real_parent;
    		leader = parent->group_leader;
    		goto up;
    	}
    out:
    	read_unlock(&tasklist_lock);
    }
    
    #ifndef ARCH_MIN_MMSTRUCT_ALIGN
    #define ARCH_MIN_MMSTRUCT_ALIGN 0
    #endif
    
    static void sighand_ctor(void *data)
    {
    	struct sighand_struct *sighand = data;
    
    	spin_lock_init(&sighand->siglock);
    	init_waitqueue_head(&sighand->signalfd_wqh);
    }
    
    void __init proc_caches_init(void)
    {
    	sighand_cachep = kmem_cache_create("sighand_cache",
    			sizeof(struct sighand_struct), 0,
    			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
    			SLAB_ACCOUNT, sighand_ctor);
    	signal_cachep = kmem_cache_create("signal_cache",
    			sizeof(struct signal_struct), 0,
    			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    			NULL);
    	files_cachep = kmem_cache_create("files_cache",
    			sizeof(struct files_struct), 0,
    			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    			NULL);
    	fs_cachep = kmem_cache_create("fs_cache",
    			sizeof(struct fs_struct), 0,
    			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    			NULL);
    	/*
    	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
    	 * whole struct cpumask for the OFFSTACK case. We could change
    	 * this to *only* allocate as much of it as required by the
    	 * maximum number of CPU's we can ever have.  The cpumask_allocation
    	 * is at the end of the structure, exactly for that reason.
    	 */
    	mm_cachep = kmem_cache_create_usercopy("mm_struct",
    			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
    			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
    			offsetof(struct mm_struct, saved_auxv),
    			sizeof_field(struct mm_struct, saved_auxv),
    			NULL);
    	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
    	mmap_init();
    	nsproxy_cache_init();
    }
    
    /*
     * Check constraints on flags passed to the unshare system call.
     */
    static int check_unshare_flags(unsigned long unshare_flags)
    {
    	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
    				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
    				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
    				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
    		return -EINVAL;
    	/*
    	 * Not implemented, but pretend it works if there is nothing
    	 * to unshare.  Note that unsharing the address space or the
    	 * signal handlers also need to unshare the signal queues (aka
    	 * CLONE_THREAD).
    	 */
    	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
    		if (!thread_group_empty(current))
    			return -EINVAL;
    	}
    	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
    		if (atomic_read(&current->sighand->count) > 1)
    			return -EINVAL;
    	}
    	if (unshare_flags & CLONE_VM) {
    		if (!current_is_single_threaded())
    			return -EINVAL;
    	}
    
    	return 0;
    }
    
    /*
     * Unshare the filesystem structure if it is being shared
     */
    static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
    {
    	struct fs_struct *fs = current->fs;
    
    	if (!(unshare_flags & CLONE_FS) || !fs)
    		return 0;
    
    	/* don't need lock here; in the worst case we'll do useless copy */
    	if (fs->users == 1)
    		return 0;
    
    	*new_fsp = copy_fs_struct(fs);
    	if (!*new_fsp)
    		return -ENOMEM;
    
    	return 0;
    }
    
    /*
     * Unshare file descriptor table if it is being shared
     */
    static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
    {
    	struct files_struct *fd = current->files;
    	int error = 0;
    
    	if ((unshare_flags & CLONE_FILES) &&
    	    (fd && atomic_read(&fd->count) > 1)) {
    		*new_fdp = dup_fd(fd, &error);
    		if (!*new_fdp)
    			return error;
    	}
    
    	return 0;
    }
    
    /*
     * unshare allows a process to 'unshare' part of the process
     * context which was originally shared using clone.  copy_*
     * functions used by do_fork() cannot be used here directly
     * because they modify an inactive task_struct that is being
     * constructed. Here we are modifying the current, active,
     * task_struct.
     */
    int ksys_unshare(unsigned long unshare_flags)
    {
    	struct fs_struct *fs, *new_fs = NULL;
    	struct files_struct *fd, *new_fd = NULL;
    	struct cred *new_cred = NULL;
    	struct nsproxy *new_nsproxy = NULL;
    	int do_sysvsem = 0;
    	int err;
    
    	/*
    	 * If unsharing a user namespace must also unshare the thread group
    	 * and unshare the filesystem root and working directories.
    	 */
    	if (unshare_flags & CLONE_NEWUSER)
    		unshare_flags |= CLONE_THREAD | CLONE_FS;
    	/*
    	 * If unsharing vm, must also unshare signal handlers.
    	 */
    	if (unshare_flags & CLONE_VM)
    		unshare_flags |= CLONE_SIGHAND;
    	/*
    	 * If unsharing a signal handlers, must also unshare the signal queues.
    	 */
    	if (unshare_flags & CLONE_SIGHAND)
    		unshare_flags |= CLONE_THREAD;
    	/*
    	 * If unsharing namespace, must also unshare filesystem information.
    	 */
    	if (unshare_flags & CLONE_NEWNS)
    		unshare_flags |= CLONE_FS;
    
    	err = check_unshare_flags(unshare_flags);
    	if (err)
    		goto bad_unshare_out;
    	/*
    	 * CLONE_NEWIPC must also detach from the undolist: after switching
    	 * to a new ipc namespace, the semaphore arrays from the old
    	 * namespace are unreachable.
    	 */
    	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
    		do_sysvsem = 1;
    	err = unshare_fs(unshare_flags, &new_fs);
    	if (err)
    		goto bad_unshare_out;
    	err = unshare_fd(unshare_flags, &new_fd);
    	if (err)
    		goto bad_unshare_cleanup_fs;
    	err = unshare_userns(unshare_flags, &new_cred);
    	if (err)
    		goto bad_unshare_cleanup_fd;
    	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
    					 new_cred, new_fs);
    	if (err)
    		goto bad_unshare_cleanup_cred;
    
    	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
    		if (do_sysvsem) {
    			/*
    			 * CLONE_SYSVSEM is equivalent to sys_exit().
    			 */
    			exit_sem(current);
    		}
    		if (unshare_flags & CLONE_NEWIPC) {
    			/* Orphan segments in old ns (see sem above). */
    			exit_shm(current);
    			shm_init_task(current);
    		}
    
    		if (new_nsproxy)
    			switch_task_namespaces(current, new_nsproxy);
    
    		task_lock(current);
    
    		if (new_fs) {
    			fs = current->fs;
    			spin_lock(&fs->lock);
    			current->fs = new_fs;
    			if (--fs->users)
    				new_fs = NULL;
    			else
    				new_fs = fs;
    			spin_unlock(&fs->lock);
    		}
    
    		if (new_fd) {
    			fd = current->files;
    			current->files = new_fd;
    			new_fd = fd;
    		}
    
    		task_unlock(current);
    
    		if (new_cred) {
    			/* Install the new user namespace */
    			commit_creds(new_cred);
    			new_cred = NULL;
    		}
    	}
    
    	perf_event_namespaces(current);
    
    bad_unshare_cleanup_cred:
    	if (new_cred)
    		put_cred(new_cred);
    bad_unshare_cleanup_fd:
    	if (new_fd)
    		put_files_struct(new_fd);
    
    bad_unshare_cleanup_fs:
    	if (new_fs)
    		free_fs_struct(new_fs);
    
    bad_unshare_out:
    	return err;
    }
    
    SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
    {
    	return ksys_unshare(unshare_flags);
    }
    
    /*
     *	Helper to unshare the files of the current task.
     *	We don't want to expose copy_files internals to
     *	the exec layer of the kernel.
     */
    
    int unshare_files(struct files_struct **displaced)
    {
    	struct task_struct *task = current;
    	struct files_struct *copy = NULL;
    	int error;
    
    	error = unshare_fd(CLONE_FILES, &copy);
    	if (error || !copy) {
    		*displaced = NULL;
    		return error;
    	}
    	*displaced = task->files;
    	task_lock(task);
    	task->files = copy;
    	task_unlock(task);
    	return 0;
    }
    
    int sysctl_max_threads(struct ctl_table *table, int write,
    		       void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	struct ctl_table t;
    	int ret;
    	int threads = max_threads;
    	int min = MIN_THREADS;
    	int max = MAX_THREADS;
    
    	t = *table;
    	t.data = &threads;
    	t.extra1 = &min;
    	t.extra2 = &max;
    
    	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    	if (ret || !write)
    		return ret;
    
    	set_max_threads(threads);
    
    	return 0;
    }