Skip to content
Snippets Groups Projects
Select Git revision
  • f69d02e37a85645aa90d18cacfff36dba370f797
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

swapfile.c

Blame
  • swapfile.c 96.36 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     *  linux/mm/swapfile.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *  Swap reorganised 29.12.95, Stephen Tweedie
     */
    
    #include <linux/mm.h>
    #include <linux/sched/mm.h>
    #include <linux/sched/task.h>
    #include <linux/hugetlb.h>
    #include <linux/mman.h>
    #include <linux/slab.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/vmalloc.h>
    #include <linux/pagemap.h>
    #include <linux/namei.h>
    #include <linux/shmem_fs.h>
    #include <linux/blkdev.h>
    #include <linux/random.h>
    #include <linux/writeback.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/init.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/security.h>
    #include <linux/backing-dev.h>
    #include <linux/mutex.h>
    #include <linux/capability.h>
    #include <linux/syscalls.h>
    #include <linux/memcontrol.h>
    #include <linux/poll.h>
    #include <linux/oom.h>
    #include <linux/frontswap.h>
    #include <linux/swapfile.h>
    #include <linux/export.h>
    #include <linux/swap_slots.h>
    #include <linux/sort.h>
    
    #include <asm/tlbflush.h>
    #include <linux/swapops.h>
    #include <linux/swap_cgroup.h>
    
    static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
    				 unsigned char);
    static void free_swap_count_continuations(struct swap_info_struct *);
    
    DEFINE_SPINLOCK(swap_lock);
    static unsigned int nr_swapfiles;
    atomic_long_t nr_swap_pages;
    /*
     * Some modules use swappable objects and may try to swap them out under
     * memory pressure (via the shrinker). Before doing so, they may wish to
     * check to see if any swap space is available.
     */
    EXPORT_SYMBOL_GPL(nr_swap_pages);
    /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
    long total_swap_pages;
    static int least_priority = -1;
    
    static const char Bad_file[] = "Bad swap file entry ";
    static const char Unused_file[] = "Unused swap file entry ";
    static const char Bad_offset[] = "Bad swap offset entry ";
    static const char Unused_offset[] = "Unused swap offset entry ";
    
    /*
     * all active swap_info_structs
     * protected with swap_lock, and ordered by priority.
     */
    PLIST_HEAD(swap_active_head);
    
    /*
     * all available (active, not full) swap_info_structs
     * protected with swap_avail_lock, ordered by priority.
     * This is used by get_swap_page() instead of swap_active_head
     * because swap_active_head includes all swap_info_structs,
     * but get_swap_page() doesn't need to look at full ones.
     * This uses its own lock instead of swap_lock because when a
     * swap_info_struct changes between not-full/full, it needs to
     * add/remove itself to/from this list, but the swap_info_struct->lock
     * is held and the locking order requires swap_lock to be taken
     * before any swap_info_struct->lock.
     */
    static struct plist_head *swap_avail_heads;
    static DEFINE_SPINLOCK(swap_avail_lock);
    
    struct swap_info_struct *swap_info[MAX_SWAPFILES];
    
    static DEFINE_MUTEX(swapon_mutex);
    
    static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
    /* Activity counter to indicate that a swapon or swapoff has occurred */
    static atomic_t proc_poll_event = ATOMIC_INIT(0);
    
    atomic_t nr_rotate_swap = ATOMIC_INIT(0);
    
    static struct swap_info_struct *swap_type_to_swap_info(int type)
    {
    	if (type >= READ_ONCE(nr_swapfiles))
    		return NULL;
    
    	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
    	return READ_ONCE(swap_info[type]);
    }
    
    static inline unsigned char swap_count(unsigned char ent)
    {
    	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
    }
    
    /* Reclaim the swap entry anyway if possible */
    #define TTRS_ANYWAY		0x1
    /*
     * Reclaim the swap entry if there are no more mappings of the
     * corresponding page
     */
    #define TTRS_UNMAPPED		0x2
    /* Reclaim the swap entry if swap is getting full*/
    #define TTRS_FULL		0x4
    
    /* returns 1 if swap entry is freed */
    static int __try_to_reclaim_swap(struct swap_info_struct *si,
    				 unsigned long offset, unsigned long flags)
    {
    	swp_entry_t entry = swp_entry(si->type, offset);
    	struct page *page;
    	int ret = 0;
    
    	page = find_get_page(swap_address_space(entry), offset);
    	if (!page)
    		return 0;
    	/*
    	 * When this function is called from scan_swap_map_slots() and it's
    	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
    	 * here. We have to use trylock for avoiding deadlock. This is a special
    	 * case and you should use try_to_free_swap() with explicit lock_page()
    	 * in usual operations.
    	 */
    	if (trylock_page(page)) {
    		if ((flags & TTRS_ANYWAY) ||
    		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
    		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
    			ret = try_to_free_swap(page);
    		unlock_page(page);
    	}
    	put_page(page);
    	return ret;
    }
    
    static inline struct swap_extent *first_se(struct swap_info_struct *sis)
    {
    	struct rb_node *rb = rb_first(&sis->swap_extent_root);
    	return rb_entry(rb, struct swap_extent, rb_node);
    }
    
    static inline struct swap_extent *next_se(struct swap_extent *se)
    {
    	struct rb_node *rb = rb_next(&se->rb_node);
    	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
    }
    
    /*
     * swapon tell device that all the old swap contents can be discarded,
     * to allow the swap device to optimize its wear-levelling.
     */
    static int discard_swap(struct swap_info_struct *si)
    {
    	struct swap_extent *se;
    	sector_t start_block;
    	sector_t nr_blocks;
    	int err = 0;
    
    	/* Do not discard the swap header page! */
    	se = first_se(si);
    	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
    	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
    	if (nr_blocks) {
    		err = blkdev_issue_discard(si->bdev, start_block,
    				nr_blocks, GFP_KERNEL, 0);
    		if (err)
    			return err;
    		cond_resched();
    	}
    
    	for (se = next_se(se); se; se = next_se(se)) {
    		start_block = se->start_block << (PAGE_SHIFT - 9);
    		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
    
    		err = blkdev_issue_discard(si->bdev, start_block,
    				nr_blocks, GFP_KERNEL, 0);
    		if (err)
    			break;
    
    		cond_resched();
    	}
    	return err;		/* That will often be -EOPNOTSUPP */
    }
    
    static struct swap_extent *
    offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
    {
    	struct swap_extent *se;
    	struct rb_node *rb;
    
    	rb = sis->swap_extent_root.rb_node;
    	while (rb) {
    		se = rb_entry(rb, struct swap_extent, rb_node);
    		if (offset < se->start_page)
    			rb = rb->rb_left;
    		else if (offset >= se->start_page + se->nr_pages)
    			rb = rb->rb_right;
    		else
    			return se;
    	}
    	/* It *must* be present */
    	BUG();
    }
    
    sector_t swap_page_sector(struct page *page)
    {
    	struct swap_info_struct *sis = page_swap_info(page);
    	struct swap_extent *se;
    	sector_t sector;
    	pgoff_t offset;
    
    	offset = __page_file_index(page);
    	se = offset_to_swap_extent(sis, offset);
    	sector = se->start_block + (offset - se->start_page);
    	return sector << (PAGE_SHIFT - 9);
    }
    
    /*
     * swap allocation tell device that a cluster of swap can now be discarded,
     * to allow the swap device to optimize its wear-levelling.
     */
    static void discard_swap_cluster(struct swap_info_struct *si,
    				 pgoff_t start_page, pgoff_t nr_pages)
    {
    	struct swap_extent *se = offset_to_swap_extent(si, start_page);
    
    	while (nr_pages) {
    		pgoff_t offset = start_page - se->start_page;
    		sector_t start_block = se->start_block + offset;
    		sector_t nr_blocks = se->nr_pages - offset;
    
    		if (nr_blocks > nr_pages)
    			nr_blocks = nr_pages;
    		start_page += nr_blocks;
    		nr_pages -= nr_blocks;
    
    		start_block <<= PAGE_SHIFT - 9;
    		nr_blocks <<= PAGE_SHIFT - 9;
    		if (blkdev_issue_discard(si->bdev, start_block,
    					nr_blocks, GFP_NOIO, 0))
    			break;
    
    		se = next_se(se);
    	}
    }
    
    #ifdef CONFIG_THP_SWAP
    #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
    
    #define swap_entry_size(size)	(size)
    #else
    #define SWAPFILE_CLUSTER	256
    
    /*
     * Define swap_entry_size() as constant to let compiler to optimize
     * out some code if !CONFIG_THP_SWAP
     */
    #define swap_entry_size(size)	1
    #endif
    #define LATENCY_LIMIT		256
    
    static inline void cluster_set_flag(struct swap_cluster_info *info,
    	unsigned int flag)
    {
    	info->flags = flag;
    }
    
    static inline unsigned int cluster_count(struct swap_cluster_info *info)
    {
    	return info->data;
    }
    
    static inline void cluster_set_count(struct swap_cluster_info *info,
    				     unsigned int c)
    {
    	info->data = c;
    }
    
    static inline void cluster_set_count_flag(struct swap_cluster_info *info,
    					 unsigned int c, unsigned int f)
    {
    	info->flags = f;
    	info->data = c;
    }
    
    static inline unsigned int cluster_next(struct swap_cluster_info *info)
    {
    	return info->data;
    }
    
    static inline void cluster_set_next(struct swap_cluster_info *info,
    				    unsigned int n)
    {
    	info->data = n;
    }
    
    static inline void cluster_set_next_flag(struct swap_cluster_info *info,
    					 unsigned int n, unsigned int f)
    {
    	info->flags = f;
    	info->data = n;
    }
    
    static inline bool cluster_is_free(struct swap_cluster_info *info)
    {
    	return info->flags & CLUSTER_FLAG_FREE;
    }
    
    static inline bool cluster_is_null(struct swap_cluster_info *info)
    {
    	return info->flags & CLUSTER_FLAG_NEXT_NULL;
    }
    
    static inline void cluster_set_null(struct swap_cluster_info *info)
    {
    	info->flags = CLUSTER_FLAG_NEXT_NULL;
    	info->data = 0;
    }
    
    static inline bool cluster_is_huge(struct swap_cluster_info *info)
    {
    	if (IS_ENABLED(CONFIG_THP_SWAP))
    		return info->flags & CLUSTER_FLAG_HUGE;
    	return false;
    }
    
    static inline void cluster_clear_huge(struct swap_cluster_info *info)
    {
    	info->flags &= ~CLUSTER_FLAG_HUGE;
    }
    
    static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
    						     unsigned long offset)
    {
    	struct swap_cluster_info *ci;
    
    	ci = si->cluster_info;
    	if (ci) {
    		ci += offset / SWAPFILE_CLUSTER;
    		spin_lock(&ci->lock);
    	}
    	return ci;
    }
    
    static inline void unlock_cluster(struct swap_cluster_info *ci)
    {
    	if (ci)
    		spin_unlock(&ci->lock);
    }
    
    /*
     * Determine the locking method in use for this device.  Return
     * swap_cluster_info if SSD-style cluster-based locking is in place.
     */
    static inline struct swap_cluster_info *lock_cluster_or_swap_info(
    		struct swap_info_struct *si, unsigned long offset)
    {
    	struct swap_cluster_info *ci;
    
    	/* Try to use fine-grained SSD-style locking if available: */
    	ci = lock_cluster(si, offset);
    	/* Otherwise, fall back to traditional, coarse locking: */
    	if (!ci)
    		spin_lock(&si->lock);
    
    	return ci;
    }
    
    static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
    					       struct swap_cluster_info *ci)
    {
    	if (ci)
    		unlock_cluster(ci);
    	else
    		spin_unlock(&si->lock);
    }
    
    static inline bool cluster_list_empty(struct swap_cluster_list *list)
    {
    	return cluster_is_null(&list->head);
    }
    
    static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
    {
    	return cluster_next(&list->head);
    }
    
    static void cluster_list_init(struct swap_cluster_list *list)
    {
    	cluster_set_null(&list->head);
    	cluster_set_null(&list->tail);
    }
    
    static void cluster_list_add_tail(struct swap_cluster_list *list,
    				  struct swap_cluster_info *ci,
    				  unsigned int idx)
    {
    	if (cluster_list_empty(list)) {
    		cluster_set_next_flag(&list->head, idx, 0);
    		cluster_set_next_flag(&list->tail, idx, 0);
    	} else {
    		struct swap_cluster_info *ci_tail;
    		unsigned int tail = cluster_next(&list->tail);
    
    		/*
    		 * Nested cluster lock, but both cluster locks are
    		 * only acquired when we held swap_info_struct->lock
    		 */
    		ci_tail = ci + tail;
    		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
    		cluster_set_next(ci_tail, idx);
    		spin_unlock(&ci_tail->lock);
    		cluster_set_next_flag(&list->tail, idx, 0);
    	}
    }
    
    static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
    					   struct swap_cluster_info *ci)
    {
    	unsigned int idx;
    
    	idx = cluster_next(&list->head);
    	if (cluster_next(&list->tail) == idx) {
    		cluster_set_null(&list->head);
    		cluster_set_null(&list->tail);
    	} else
    		cluster_set_next_flag(&list->head,
    				      cluster_next(&ci[idx]), 0);
    
    	return idx;
    }
    
    /* Add a cluster to discard list and schedule it to do discard */
    static void swap_cluster_schedule_discard(struct swap_info_struct *si,
    		unsigned int idx)
    {
    	/*
    	 * If scan_swap_map() can't find a free cluster, it will check
    	 * si->swap_map directly. To make sure the discarding cluster isn't
    	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
    	 * will be cleared after discard
    	 */
    	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
    			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
    
    	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
    
    	schedule_work(&si->discard_work);
    }
    
    static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
    {
    	struct swap_cluster_info *ci = si->cluster_info;
    
    	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
    	cluster_list_add_tail(&si->free_clusters, ci, idx);
    }
    
    /*
     * Doing discard actually. After a cluster discard is finished, the cluster
     * will be added to free cluster list. caller should hold si->lock.
    */
    static void swap_do_scheduled_discard(struct swap_info_struct *si)
    {
    	struct swap_cluster_info *info, *ci;
    	unsigned int idx;
    
    	info = si->cluster_info;
    
    	while (!cluster_list_empty(&si->discard_clusters)) {
    		idx = cluster_list_del_first(&si->discard_clusters, info);
    		spin_unlock(&si->lock);
    
    		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
    				SWAPFILE_CLUSTER);
    
    		spin_lock(&si->lock);
    		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
    		__free_cluster(si, idx);
    		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
    				0, SWAPFILE_CLUSTER);
    		unlock_cluster(ci);
    	}
    }
    
    static void swap_discard_work(struct work_struct *work)
    {
    	struct swap_info_struct *si;
    
    	si = container_of(work, struct swap_info_struct, discard_work);
    
    	spin_lock(&si->lock);
    	swap_do_scheduled_discard(si);
    	spin_unlock(&si->lock);
    }
    
    static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
    {
    	struct swap_cluster_info *ci = si->cluster_info;
    
    	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
    	cluster_list_del_first(&si->free_clusters, ci);
    	cluster_set_count_flag(ci + idx, 0, 0);
    }
    
    static void free_cluster(struct swap_info_struct *si, unsigned long idx)
    {
    	struct swap_cluster_info *ci = si->cluster_info + idx;
    
    	VM_BUG_ON(cluster_count(ci) != 0);
    	/*
    	 * If the swap is discardable, prepare discard the cluster
    	 * instead of free it immediately. The cluster will be freed
    	 * after discard.
    	 */
    	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
    	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
    		swap_cluster_schedule_discard(si, idx);
    		return;
    	}
    
    	__free_cluster(si, idx);
    }
    
    /*
     * The cluster corresponding to page_nr will be used. The cluster will be
     * removed from free cluster list and its usage counter will be increased.
     */
    static void inc_cluster_info_page(struct swap_info_struct *p,
    	struct swap_cluster_info *cluster_info, unsigned long page_nr)
    {
    	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
    
    	if (!cluster_info)
    		return;
    	if (cluster_is_free(&cluster_info[idx]))
    		alloc_cluster(p, idx);
    
    	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
    	cluster_set_count(&cluster_info[idx],
    		cluster_count(&cluster_info[idx]) + 1);
    }
    
    /*
     * The cluster corresponding to page_nr decreases one usage. If the usage
     * counter becomes 0, which means no page in the cluster is in using, we can
     * optionally discard the cluster and add it to free cluster list.
     */
    static void dec_cluster_info_page(struct swap_info_struct *p,
    	struct swap_cluster_info *cluster_info, unsigned long page_nr)
    {
    	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
    
    	if (!cluster_info)
    		return;
    
    	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
    	cluster_set_count(&cluster_info[idx],
    		cluster_count(&cluster_info[idx]) - 1);
    
    	if (cluster_count(&cluster_info[idx]) == 0)
    		free_cluster(p, idx);
    }
    
    /*
     * It's possible scan_swap_map() uses a free cluster in the middle of free
     * cluster list. Avoiding such abuse to avoid list corruption.
     */
    static bool
    scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
    	unsigned long offset)
    {
    	struct percpu_cluster *percpu_cluster;
    	bool conflict;
    
    	offset /= SWAPFILE_CLUSTER;
    	conflict = !cluster_list_empty(&si->free_clusters) &&
    		offset != cluster_list_first(&si->free_clusters) &&
    		cluster_is_free(&si->cluster_info[offset]);
    
    	if (!conflict)
    		return false;
    
    	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
    	cluster_set_null(&percpu_cluster->index);
    	return true;
    }
    
    /*
     * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
     * might involve allocating a new cluster for current CPU too.
     */
    static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
    	unsigned long *offset, unsigned long *scan_base)
    {
    	struct percpu_cluster *cluster;
    	struct swap_cluster_info *ci;
    	unsigned long tmp, max;
    
    new_cluster:
    	cluster = this_cpu_ptr(si->percpu_cluster);
    	if (cluster_is_null(&cluster->index)) {
    		if (!cluster_list_empty(&si->free_clusters)) {
    			cluster->index = si->free_clusters.head;
    			cluster->next = cluster_next(&cluster->index) *
    					SWAPFILE_CLUSTER;
    		} else if (!cluster_list_empty(&si->discard_clusters)) {
    			/*
    			 * we don't have free cluster but have some clusters in
    			 * discarding, do discard now and reclaim them, then
    			 * reread cluster_next_cpu since we dropped si->lock
    			 */
    			swap_do_scheduled_discard(si);
    			*scan_base = this_cpu_read(*si->cluster_next_cpu);
    			*offset = *scan_base;
    			goto new_cluster;
    		} else
    			return false;
    	}
    
    	/*
    	 * Other CPUs can use our cluster if they can't find a free cluster,
    	 * check if there is still free entry in the cluster
    	 */
    	tmp = cluster->next;
    	max = min_t(unsigned long, si->max,
    		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
    	if (tmp < max) {
    		ci = lock_cluster(si, tmp);
    		while (tmp < max) {
    			if (!si->swap_map[tmp])
    				break;
    			tmp++;
    		}
    		unlock_cluster(ci);
    	}
    	if (tmp >= max) {
    		cluster_set_null(&cluster->index);
    		goto new_cluster;
    	}
    	cluster->next = tmp + 1;
    	*offset = tmp;
    	*scan_base = tmp;
    	return true;
    }
    
    static void __del_from_avail_list(struct swap_info_struct *p)
    {
    	int nid;
    
    	for_each_node(nid)
    		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
    }
    
    static void del_from_avail_list(struct swap_info_struct *p)
    {
    	spin_lock(&swap_avail_lock);
    	__del_from_avail_list(p);
    	spin_unlock(&swap_avail_lock);
    }
    
    static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
    			     unsigned int nr_entries)
    {
    	unsigned int end = offset + nr_entries - 1;
    
    	if (offset == si->lowest_bit)
    		si->lowest_bit += nr_entries;
    	if (end == si->highest_bit)
    		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
    	si->inuse_pages += nr_entries;
    	if (si->inuse_pages == si->pages) {
    		si->lowest_bit = si->max;
    		si->highest_bit = 0;
    		del_from_avail_list(si);
    	}
    }
    
    static void add_to_avail_list(struct swap_info_struct *p)
    {
    	int nid;
    
    	spin_lock(&swap_avail_lock);
    	for_each_node(nid) {
    		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
    		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
    	}
    	spin_unlock(&swap_avail_lock);
    }
    
    static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
    			    unsigned int nr_entries)
    {
    	unsigned long begin = offset;
    	unsigned long end = offset + nr_entries - 1;
    	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
    
    	if (offset < si->lowest_bit)
    		si->lowest_bit = offset;
    	if (end > si->highest_bit) {
    		bool was_full = !si->highest_bit;
    
    		WRITE_ONCE(si->highest_bit, end);
    		if (was_full && (si->flags & SWP_WRITEOK))
    			add_to_avail_list(si);
    	}
    	atomic_long_add(nr_entries, &nr_swap_pages);
    	si->inuse_pages -= nr_entries;
    	if (si->flags & SWP_BLKDEV)
    		swap_slot_free_notify =
    			si->bdev->bd_disk->fops->swap_slot_free_notify;
    	else
    		swap_slot_free_notify = NULL;
    	while (offset <= end) {
    		arch_swap_invalidate_page(si->type, offset);
    		frontswap_invalidate_page(si->type, offset);
    		if (swap_slot_free_notify)
    			swap_slot_free_notify(si->bdev, offset);
    		offset++;
    	}
    	clear_shadow_from_swap_cache(si->type, begin, end);
    }
    
    static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
    {
    	unsigned long prev;
    
    	if (!(si->flags & SWP_SOLIDSTATE)) {
    		si->cluster_next = next;
    		return;
    	}
    
    	prev = this_cpu_read(*si->cluster_next_cpu);
    	/*
    	 * Cross the swap address space size aligned trunk, choose
    	 * another trunk randomly to avoid lock contention on swap
    	 * address space if possible.
    	 */
    	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
    	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
    		/* No free swap slots available */
    		if (si->highest_bit <= si->lowest_bit)
    			return;
    		next = si->lowest_bit +
    			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
    		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
    		next = max_t(unsigned int, next, si->lowest_bit);
    	}
    	this_cpu_write(*si->cluster_next_cpu, next);
    }
    
    static int scan_swap_map_slots(struct swap_info_struct *si,
    			       unsigned char usage, int nr,
    			       swp_entry_t slots[])
    {
    	struct swap_cluster_info *ci;
    	unsigned long offset;
    	unsigned long scan_base;
    	unsigned long last_in_cluster = 0;
    	int latency_ration = LATENCY_LIMIT;
    	int n_ret = 0;
    	bool scanned_many = false;
    
    	/*
    	 * We try to cluster swap pages by allocating them sequentially
    	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
    	 * way, however, we resort to first-free allocation, starting
    	 * a new cluster.  This prevents us from scattering swap pages
    	 * all over the entire swap partition, so that we reduce
    	 * overall disk seek times between swap pages.  -- sct
    	 * But we do now try to find an empty cluster.  -Andrea
    	 * And we let swap pages go all over an SSD partition.  Hugh
    	 */
    
    	si->flags += SWP_SCANNING;
    	/*
    	 * Use percpu scan base for SSD to reduce lock contention on
    	 * cluster and swap cache.  For HDD, sequential access is more
    	 * important.
    	 */
    	if (si->flags & SWP_SOLIDSTATE)
    		scan_base = this_cpu_read(*si->cluster_next_cpu);
    	else
    		scan_base = si->cluster_next;
    	offset = scan_base;
    
    	/* SSD algorithm */
    	if (si->cluster_info) {
    		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
    			goto scan;
    	} else if (unlikely(!si->cluster_nr--)) {
    		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
    			si->cluster_nr = SWAPFILE_CLUSTER - 1;
    			goto checks;
    		}
    
    		spin_unlock(&si->lock);
    
    		/*
    		 * If seek is expensive, start searching for new cluster from
    		 * start of partition, to minimize the span of allocated swap.
    		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
    		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
    		 */
    		scan_base = offset = si->lowest_bit;
    		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
    
    		/* Locate the first empty (unaligned) cluster */
    		for (; last_in_cluster <= si->highest_bit; offset++) {
    			if (si->swap_map[offset])
    				last_in_cluster = offset + SWAPFILE_CLUSTER;
    			else if (offset == last_in_cluster) {
    				spin_lock(&si->lock);
    				offset -= SWAPFILE_CLUSTER - 1;
    				si->cluster_next = offset;
    				si->cluster_nr = SWAPFILE_CLUSTER - 1;
    				goto checks;
    			}
    			if (unlikely(--latency_ration < 0)) {
    				cond_resched();
    				latency_ration = LATENCY_LIMIT;
    			}
    		}
    
    		offset = scan_base;
    		spin_lock(&si->lock);
    		si->cluster_nr = SWAPFILE_CLUSTER - 1;
    	}
    
    checks:
    	if (si->cluster_info) {
    		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
    		/* take a break if we already got some slots */
    			if (n_ret)
    				goto done;
    			if (!scan_swap_map_try_ssd_cluster(si, &offset,
    							&scan_base))
    				goto scan;
    		}
    	}
    	if (!(si->flags & SWP_WRITEOK))
    		goto no_page;
    	if (!si->highest_bit)
    		goto no_page;
    	if (offset > si->highest_bit)
    		scan_base = offset = si->lowest_bit;
    
    	ci = lock_cluster(si, offset);
    	/* reuse swap entry of cache-only swap if not busy. */
    	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
    		int swap_was_freed;
    		unlock_cluster(ci);
    		spin_unlock(&si->lock);
    		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
    		spin_lock(&si->lock);
    		/* entry was freed successfully, try to use this again */
    		if (swap_was_freed)
    			goto checks;
    		goto scan; /* check next one */
    	}
    
    	if (si->swap_map[offset]) {
    		unlock_cluster(ci);
    		if (!n_ret)
    			goto scan;
    		else
    			goto done;
    	}
    	WRITE_ONCE(si->swap_map[offset], usage);
    	inc_cluster_info_page(si, si->cluster_info, offset);
    	unlock_cluster(ci);
    
    	swap_range_alloc(si, offset, 1);
    	slots[n_ret++] = swp_entry(si->type, offset);
    
    	/* got enough slots or reach max slots? */
    	if ((n_ret == nr) || (offset >= si->highest_bit))
    		goto done;
    
    	/* search for next available slot */
    
    	/* time to take a break? */
    	if (unlikely(--latency_ration < 0)) {
    		if (n_ret)
    			goto done;
    		spin_unlock(&si->lock);
    		cond_resched();
    		spin_lock(&si->lock);
    		latency_ration = LATENCY_LIMIT;
    	}
    
    	/* try to get more slots in cluster */
    	if (si->cluster_info) {
    		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
    			goto checks;
    	} else if (si->cluster_nr && !si->swap_map[++offset]) {
    		/* non-ssd case, still more slots in cluster? */
    		--si->cluster_nr;
    		goto checks;
    	}
    
    	/*
    	 * Even if there's no free clusters available (fragmented),
    	 * try to scan a little more quickly with lock held unless we
    	 * have scanned too many slots already.
    	 */
    	if (!scanned_many) {
    		unsigned long scan_limit;
    
    		if (offset < scan_base)
    			scan_limit = scan_base;
    		else
    			scan_limit = si->highest_bit;
    		for (; offset <= scan_limit && --latency_ration > 0;
    		     offset++) {
    			if (!si->swap_map[offset])
    				goto checks;
    		}
    	}
    
    done:
    	set_cluster_next(si, offset + 1);
    	si->flags -= SWP_SCANNING;
    	return n_ret;
    
    scan:
    	spin_unlock(&si->lock);
    	while (++offset <= READ_ONCE(si->highest_bit)) {
    		if (data_race(!si->swap_map[offset])) {
    			spin_lock(&si->lock);
    			goto checks;
    		}
    		if (vm_swap_full() &&
    		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
    			spin_lock(&si->lock);
    			goto checks;
    		}
    		if (unlikely(--latency_ration < 0)) {
    			cond_resched();
    			latency_ration = LATENCY_LIMIT;
    			scanned_many = true;
    		}
    	}
    	offset = si->lowest_bit;
    	while (offset < scan_base) {
    		if (data_race(!si->swap_map[offset])) {
    			spin_lock(&si->lock);
    			goto checks;
    		}
    		if (vm_swap_full() &&
    		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
    			spin_lock(&si->lock);
    			goto checks;
    		}
    		if (unlikely(--latency_ration < 0)) {
    			cond_resched();
    			latency_ration = LATENCY_LIMIT;
    			scanned_many = true;
    		}
    		offset++;
    	}
    	spin_lock(&si->lock);
    
    no_page:
    	si->flags -= SWP_SCANNING;
    	return n_ret;
    }
    
    static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
    {
    	unsigned long idx;
    	struct swap_cluster_info *ci;
    	unsigned long offset;
    
    	/*
    	 * Should not even be attempting cluster allocations when huge
    	 * page swap is disabled.  Warn and fail the allocation.
    	 */
    	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
    		VM_WARN_ON_ONCE(1);
    		return 0;
    	}
    
    	if (cluster_list_empty(&si->free_clusters))
    		return 0;
    
    	idx = cluster_list_first(&si->free_clusters);
    	offset = idx * SWAPFILE_CLUSTER;
    	ci = lock_cluster(si, offset);
    	alloc_cluster(si, idx);
    	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
    
    	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
    	unlock_cluster(ci);
    	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
    	*slot = swp_entry(si->type, offset);
    
    	return 1;
    }
    
    static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
    {
    	unsigned long offset = idx * SWAPFILE_CLUSTER;
    	struct swap_cluster_info *ci;
    
    	ci = lock_cluster(si, offset);
    	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
    	cluster_set_count_flag(ci, 0, 0);
    	free_cluster(si, idx);
    	unlock_cluster(ci);
    	swap_range_free(si, offset, SWAPFILE_CLUSTER);
    }
    
    static unsigned long scan_swap_map(struct swap_info_struct *si,
    				   unsigned char usage)
    {
    	swp_entry_t entry;
    	int n_ret;
    
    	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
    
    	if (n_ret)
    		return swp_offset(entry);
    	else
    		return 0;
    
    }
    
    int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
    {
    	unsigned long size = swap_entry_size(entry_size);
    	struct swap_info_struct *si, *next;
    	long avail_pgs;
    	int n_ret = 0;
    	int node;
    
    	/* Only single cluster request supported */
    	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
    
    	spin_lock(&swap_avail_lock);
    
    	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
    	if (avail_pgs <= 0) {
    		spin_unlock(&swap_avail_lock);
    		goto noswap;
    	}
    
    	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
    
    	atomic_long_sub(n_goal * size, &nr_swap_pages);
    
    start_over:
    	node = numa_node_id();
    	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
    		/* requeue si to after same-priority siblings */
    		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
    		spin_unlock(&swap_avail_lock);
    		spin_lock(&si->lock);
    		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
    			spin_lock(&swap_avail_lock);
    			if (plist_node_empty(&si->avail_lists[node])) {
    				spin_unlock(&si->lock);
    				goto nextsi;
    			}
    			WARN(!si->highest_bit,
    			     "swap_info %d in list but !highest_bit\n",
    			     si->type);
    			WARN(!(si->flags & SWP_WRITEOK),
    			     "swap_info %d in list but !SWP_WRITEOK\n",
    			     si->type);
    			__del_from_avail_list(si);
    			spin_unlock(&si->lock);
    			goto nextsi;
    		}
    		if (size == SWAPFILE_CLUSTER) {
    			if (si->flags & SWP_BLKDEV)
    				n_ret = swap_alloc_cluster(si, swp_entries);
    		} else
    			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
    						    n_goal, swp_entries);
    		spin_unlock(&si->lock);
    		if (n_ret || size == SWAPFILE_CLUSTER)
    			goto check_out;
    		pr_debug("scan_swap_map of si %d failed to find offset\n",
    			si->type);
    
    		spin_lock(&swap_avail_lock);
    nextsi:
    		/*
    		 * if we got here, it's likely that si was almost full before,
    		 * and since scan_swap_map() can drop the si->lock, multiple
    		 * callers probably all tried to get a page from the same si
    		 * and it filled up before we could get one; or, the si filled
    		 * up between us dropping swap_avail_lock and taking si->lock.
    		 * Since we dropped the swap_avail_lock, the swap_avail_head
    		 * list may have been modified; so if next is still in the
    		 * swap_avail_head list then try it, otherwise start over
    		 * if we have not gotten any slots.
    		 */
    		if (plist_node_empty(&next->avail_lists[node]))
    			goto start_over;
    	}
    
    	spin_unlock(&swap_avail_lock);
    
    check_out:
    	if (n_ret < n_goal)
    		atomic_long_add((long)(n_goal - n_ret) * size,
    				&nr_swap_pages);
    noswap:
    	return n_ret;
    }
    
    /* The only caller of this function is now suspend routine */
    swp_entry_t get_swap_page_of_type(int type)
    {
    	struct swap_info_struct *si = swap_type_to_swap_info(type);
    	pgoff_t offset;
    
    	if (!si)
    		goto fail;
    
    	spin_lock(&si->lock);
    	if (si->flags & SWP_WRITEOK) {
    		/* This is called for allocating swap entry, not cache */
    		offset = scan_swap_map(si, 1);
    		if (offset) {
    			atomic_long_dec(&nr_swap_pages);
    			spin_unlock(&si->lock);
    			return swp_entry(type, offset);
    		}
    	}
    	spin_unlock(&si->lock);
    fail:
    	return (swp_entry_t) {0};
    }
    
    static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
    {
    	struct swap_info_struct *p;
    	unsigned long offset;
    
    	if (!entry.val)
    		goto out;
    	p = swp_swap_info(entry);
    	if (!p)
    		goto bad_nofile;
    	if (data_race(!(p->flags & SWP_USED)))
    		goto bad_device;
    	offset = swp_offset(entry);
    	if (offset >= p->max)
    		goto bad_offset;
    	return p;
    
    bad_offset:
    	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
    	goto out;
    bad_device:
    	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
    	goto out;
    bad_nofile:
    	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    out:
    	return NULL;
    }
    
    static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
    {
    	struct swap_info_struct *p;
    
    	p = __swap_info_get(entry);
    	if (!p)
    		goto out;
    	if (data_race(!p->swap_map[swp_offset(entry)]))
    		goto bad_free;
    	return p;
    
    bad_free:
    	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
    out:
    	return NULL;
    }
    
    static struct swap_info_struct *swap_info_get(swp_entry_t entry)
    {
    	struct swap_info_struct *p;
    
    	p = _swap_info_get(entry);
    	if (p)
    		spin_lock(&p->lock);
    	return p;
    }
    
    static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
    					struct swap_info_struct *q)
    {
    	struct swap_info_struct *p;
    
    	p = _swap_info_get(entry);
    
    	if (p != q) {
    		if (q != NULL)
    			spin_unlock(&q->lock);
    		if (p != NULL)
    			spin_lock(&p->lock);
    	}
    	return p;
    }
    
    static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
    					      unsigned long offset,
    					      unsigned char usage)
    {
    	unsigned char count;
    	unsigned char has_cache;
    
    	count = p->swap_map[offset];
    
    	has_cache = count & SWAP_HAS_CACHE;
    	count &= ~SWAP_HAS_CACHE;
    
    	if (usage == SWAP_HAS_CACHE) {
    		VM_BUG_ON(!has_cache);
    		has_cache = 0;
    	} else if (count == SWAP_MAP_SHMEM) {
    		/*
    		 * Or we could insist on shmem.c using a special
    		 * swap_shmem_free() and free_shmem_swap_and_cache()...
    		 */
    		count = 0;
    	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
    		if (count == COUNT_CONTINUED) {
    			if (swap_count_continued(p, offset, count))
    				count = SWAP_MAP_MAX | COUNT_CONTINUED;
    			else
    				count = SWAP_MAP_MAX;
    		} else
    			count--;
    	}
    
    	usage = count | has_cache;
    	if (usage)
    		WRITE_ONCE(p->swap_map[offset], usage);
    	else
    		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
    
    	return usage;
    }
    
    /*
     * Check whether swap entry is valid in the swap device.  If so,
     * return pointer to swap_info_struct, and keep the swap entry valid
     * via preventing the swap device from being swapoff, until
     * put_swap_device() is called.  Otherwise return NULL.
     *
     * The entirety of the RCU read critical section must come before the
     * return from or after the call to synchronize_rcu() in
     * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
     * true, the si->map, si->cluster_info, etc. must be valid in the
     * critical section.
     *
     * Notice that swapoff or swapoff+swapon can still happen before the
     * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
     * in put_swap_device() if there isn't any other way to prevent
     * swapoff, such as page lock, page table lock, etc.  The caller must
     * be prepared for that.  For example, the following situation is
     * possible.
     *
     *   CPU1				CPU2
     *   do_swap_page()
     *     ...				swapoff+swapon
     *     __read_swap_cache_async()
     *       swapcache_prepare()
     *         __swap_duplicate()
     *           // check swap_map
     *     // verify PTE not changed
     *
     * In __swap_duplicate(), the swap_map need to be checked before
     * changing partly because the specified swap entry may be for another
     * swap device which has been swapoff.  And in do_swap_page(), after
     * the page is read from the swap device, the PTE is verified not
     * changed with the page table locked to check whether the swap device
     * has been swapoff or swapoff+swapon.
     */
    struct swap_info_struct *get_swap_device(swp_entry_t entry)
    {
    	struct swap_info_struct *si;
    	unsigned long offset;
    
    	if (!entry.val)
    		goto out;
    	si = swp_swap_info(entry);
    	if (!si)
    		goto bad_nofile;
    
    	rcu_read_lock();
    	if (data_race(!(si->flags & SWP_VALID)))
    		goto unlock_out;
    	offset = swp_offset(entry);
    	if (offset >= si->max)
    		goto unlock_out;
    
    	return si;
    bad_nofile:
    	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    out:
    	return NULL;
    unlock_out:
    	rcu_read_unlock();
    	return NULL;
    }
    
    static unsigned char __swap_entry_free(struct swap_info_struct *p,
    				       swp_entry_t entry)
    {
    	struct swap_cluster_info *ci;
    	unsigned long offset = swp_offset(entry);
    	unsigned char usage;
    
    	ci = lock_cluster_or_swap_info(p, offset);
    	usage = __swap_entry_free_locked(p, offset, 1);
    	unlock_cluster_or_swap_info(p, ci);
    	if (!usage)
    		free_swap_slot(entry);
    
    	return usage;
    }
    
    static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
    {
    	struct swap_cluster_info *ci;
    	unsigned long offset = swp_offset(entry);
    	unsigned char count;
    
    	ci = lock_cluster(p, offset);
    	count = p->swap_map[offset];
    	VM_BUG_ON(count != SWAP_HAS_CACHE);
    	p->swap_map[offset] = 0;
    	dec_cluster_info_page(p, p->cluster_info, offset);
    	unlock_cluster(ci);
    
    	mem_cgroup_uncharge_swap(entry, 1);
    	swap_range_free(p, offset, 1);
    }
    
    /*
     * Caller has made sure that the swap device corresponding to entry
     * is still around or has not been recycled.
     */
    void swap_free(swp_entry_t entry)
    {
    	struct swap_info_struct *p;
    
    	p = _swap_info_get(entry);
    	if (p)
    		__swap_entry_free(p, entry);
    }
    
    /*
     * Called after dropping swapcache to decrease refcnt to swap entries.
     */
    void put_swap_page(struct page *page, swp_entry_t entry)
    {
    	unsigned long offset = swp_offset(entry);
    	unsigned long idx = offset / SWAPFILE_CLUSTER;
    	struct swap_cluster_info *ci;
    	struct swap_info_struct *si;
    	unsigned char *map;
    	unsigned int i, free_entries = 0;
    	unsigned char val;
    	int size = swap_entry_size(thp_nr_pages(page));
    
    	si = _swap_info_get(entry);
    	if (!si)
    		return;
    
    	ci = lock_cluster_or_swap_info(si, offset);
    	if (size == SWAPFILE_CLUSTER) {
    		VM_BUG_ON(!cluster_is_huge(ci));
    		map = si->swap_map + offset;
    		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    			val = map[i];
    			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
    			if (val == SWAP_HAS_CACHE)
    				free_entries++;
    		}
    		cluster_clear_huge(ci);
    		if (free_entries == SWAPFILE_CLUSTER) {
    			unlock_cluster_or_swap_info(si, ci);
    			spin_lock(&si->lock);
    			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
    			swap_free_cluster(si, idx);
    			spin_unlock(&si->lock);
    			return;
    		}
    	}
    	for (i = 0; i < size; i++, entry.val++) {
    		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
    			unlock_cluster_or_swap_info(si, ci);
    			free_swap_slot(entry);
    			if (i == size - 1)
    				return;
    			lock_cluster_or_swap_info(si, offset);
    		}
    	}
    	unlock_cluster_or_swap_info(si, ci);
    }
    
    #ifdef CONFIG_THP_SWAP
    int split_swap_cluster(swp_entry_t entry)
    {
    	struct swap_info_struct *si;
    	struct swap_cluster_info *ci;
    	unsigned long offset = swp_offset(entry);
    
    	si = _swap_info_get(entry);
    	if (!si)
    		return -EBUSY;
    	ci = lock_cluster(si, offset);
    	cluster_clear_huge(ci);
    	unlock_cluster(ci);
    	return 0;
    }
    #endif
    
    static int swp_entry_cmp(const void *ent1, const void *ent2)
    {
    	const swp_entry_t *e1 = ent1, *e2 = ent2;
    
    	return (int)swp_type(*e1) - (int)swp_type(*e2);
    }
    
    void swapcache_free_entries(swp_entry_t *entries, int n)
    {
    	struct swap_info_struct *p, *prev;
    	int i;
    
    	if (n <= 0)
    		return;
    
    	prev = NULL;
    	p = NULL;
    
    	/*
    	 * Sort swap entries by swap device, so each lock is only taken once.
    	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
    	 * so low that it isn't necessary to optimize further.
    	 */
    	if (nr_swapfiles > 1)
    		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
    	for (i = 0; i < n; ++i) {
    		p = swap_info_get_cont(entries[i], prev);
    		if (p)
    			swap_entry_free(p, entries[i]);
    		prev = p;
    	}
    	if (p)
    		spin_unlock(&p->lock);
    }
    
    /*
     * How many references to page are currently swapped out?
     * This does not give an exact answer when swap count is continued,
     * but does include the high COUNT_CONTINUED flag to allow for that.
     */
    int page_swapcount(struct page *page)
    {
    	int count = 0;
    	struct swap_info_struct *p;
    	struct swap_cluster_info *ci;
    	swp_entry_t entry;
    	unsigned long offset;
    
    	entry.val = page_private(page);
    	p = _swap_info_get(entry);
    	if (p) {
    		offset = swp_offset(entry);
    		ci = lock_cluster_or_swap_info(p, offset);
    		count = swap_count(p->swap_map[offset]);
    		unlock_cluster_or_swap_info(p, ci);
    	}
    	return count;
    }
    
    int __swap_count(swp_entry_t entry)
    {
    	struct swap_info_struct *si;
    	pgoff_t offset = swp_offset(entry);
    	int count = 0;
    
    	si = get_swap_device(entry);
    	if (si) {
    		count = swap_count(si->swap_map[offset]);
    		put_swap_device(si);
    	}
    	return count;
    }
    
    static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
    {
    	int count = 0;
    	pgoff_t offset = swp_offset(entry);
    	struct swap_cluster_info *ci;
    
    	ci = lock_cluster_or_swap_info(si, offset);
    	count = swap_count(si->swap_map[offset]);
    	unlock_cluster_or_swap_info(si, ci);
    	return count;
    }
    
    /*
     * How many references to @entry are currently swapped out?
     * This does not give an exact answer when swap count is continued,
     * but does include the high COUNT_CONTINUED flag to allow for that.
     */
    int __swp_swapcount(swp_entry_t entry)
    {
    	int count = 0;
    	struct swap_info_struct *si;
    
    	si = get_swap_device(entry);
    	if (si) {
    		count = swap_swapcount(si, entry);
    		put_swap_device(si);
    	}
    	return count;
    }
    
    /*
     * How many references to @entry are currently swapped out?
     * This considers COUNT_CONTINUED so it returns exact answer.
     */
    int swp_swapcount(swp_entry_t entry)
    {
    	int count, tmp_count, n;
    	struct swap_info_struct *p;
    	struct swap_cluster_info *ci;
    	struct page *page;
    	pgoff_t offset;
    	unsigned char *map;
    
    	p = _swap_info_get(entry);
    	if (!p)
    		return 0;
    
    	offset = swp_offset(entry);
    
    	ci = lock_cluster_or_swap_info(p, offset);
    
    	count = swap_count(p->swap_map[offset]);
    	if (!(count & COUNT_CONTINUED))
    		goto out;
    
    	count &= ~COUNT_CONTINUED;
    	n = SWAP_MAP_MAX + 1;
    
    	page = vmalloc_to_page(p->swap_map + offset);
    	offset &= ~PAGE_MASK;
    	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
    
    	do {
    		page = list_next_entry(page, lru);
    		map = kmap_atomic(page);
    		tmp_count = map[offset];
    		kunmap_atomic(map);
    
    		count += (tmp_count & ~COUNT_CONTINUED) * n;
    		n *= (SWAP_CONT_MAX + 1);
    	} while (tmp_count & COUNT_CONTINUED);
    out:
    	unlock_cluster_or_swap_info(p, ci);
    	return count;
    }
    
    static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
    					 swp_entry_t entry)
    {
    	struct swap_cluster_info *ci;
    	unsigned char *map = si->swap_map;
    	unsigned long roffset = swp_offset(entry);
    	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
    	int i;
    	bool ret = false;
    
    	ci = lock_cluster_or_swap_info(si, offset);
    	if (!ci || !cluster_is_huge(ci)) {
    		if (swap_count(map[roffset]))
    			ret = true;
    		goto unlock_out;
    	}
    	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    		if (swap_count(map[offset + i])) {
    			ret = true;
    			break;
    		}
    	}
    unlock_out:
    	unlock_cluster_or_swap_info(si, ci);
    	return ret;
    }
    
    static bool page_swapped(struct page *page)
    {
    	swp_entry_t entry;
    	struct swap_info_struct *si;
    
    	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
    		return page_swapcount(page) != 0;
    
    	page = compound_head(page);
    	entry.val = page_private(page);
    	si = _swap_info_get(entry);
    	if (si)
    		return swap_page_trans_huge_swapped(si, entry);
    	return false;
    }
    
    static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
    					 int *total_swapcount)
    {
    	int i, map_swapcount, _total_mapcount, _total_swapcount;
    	unsigned long offset = 0;
    	struct swap_info_struct *si;
    	struct swap_cluster_info *ci = NULL;
    	unsigned char *map = NULL;
    	int mapcount, swapcount = 0;
    
    	/* hugetlbfs shouldn't call it */
    	VM_BUG_ON_PAGE(PageHuge(page), page);
    
    	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
    		mapcount = page_trans_huge_mapcount(page, total_mapcount);
    		if (PageSwapCache(page))
    			swapcount = page_swapcount(page);
    		if (total_swapcount)
    			*total_swapcount = swapcount;
    		return mapcount + swapcount;
    	}
    
    	page = compound_head(page);
    
    	_total_mapcount = _total_swapcount = map_swapcount = 0;
    	if (PageSwapCache(page)) {
    		swp_entry_t entry;
    
    		entry.val = page_private(page);
    		si = _swap_info_get(entry);
    		if (si) {
    			map = si->swap_map;
    			offset = swp_offset(entry);
    		}
    	}
    	if (map)
    		ci = lock_cluster(si, offset);
    	for (i = 0; i < HPAGE_PMD_NR; i++) {
    		mapcount = atomic_read(&page[i]._mapcount) + 1;
    		_total_mapcount += mapcount;
    		if (map) {
    			swapcount = swap_count(map[offset + i]);
    			_total_swapcount += swapcount;
    		}
    		map_swapcount = max(map_swapcount, mapcount + swapcount);
    	}
    	unlock_cluster(ci);
    	if (PageDoubleMap(page)) {
    		map_swapcount -= 1;
    		_total_mapcount -= HPAGE_PMD_NR;
    	}
    	mapcount = compound_mapcount(page);
    	map_swapcount += mapcount;
    	_total_mapcount += mapcount;
    	if (total_mapcount)
    		*total_mapcount = _total_mapcount;
    	if (total_swapcount)
    		*total_swapcount = _total_swapcount;
    
    	return map_swapcount;
    }
    
    /*
     * We can write to an anon page without COW if there are no other references
     * to it.  And as a side-effect, free up its swap: because the old content
     * on disk will never be read, and seeking back there to write new content
     * later would only waste time away from clustering.
     *
     * NOTE: total_map_swapcount should not be relied upon by the caller if
     * reuse_swap_page() returns false, but it may be always overwritten
     * (see the other implementation for CONFIG_SWAP=n).
     */
    bool reuse_swap_page(struct page *page, int *total_map_swapcount)
    {
    	int count, total_mapcount, total_swapcount;
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	if (unlikely(PageKsm(page)))
    		return false;
    	count = page_trans_huge_map_swapcount(page, &total_mapcount,
    					      &total_swapcount);
    	if (total_map_swapcount)
    		*total_map_swapcount = total_mapcount + total_swapcount;
    	if (count == 1 && PageSwapCache(page) &&
    	    (likely(!PageTransCompound(page)) ||
    	     /* The remaining swap count will be freed soon */
    	     total_swapcount == page_swapcount(page))) {
    		if (!PageWriteback(page)) {
    			page = compound_head(page);
    			delete_from_swap_cache(page);
    			SetPageDirty(page);
    		} else {
    			swp_entry_t entry;
    			struct swap_info_struct *p;
    
    			entry.val = page_private(page);
    			p = swap_info_get(entry);
    			if (p->flags & SWP_STABLE_WRITES) {
    				spin_unlock(&p->lock);
    				return false;
    			}
    			spin_unlock(&p->lock);
    		}
    	}
    
    	return count <= 1;
    }
    
    /*
     * If swap is getting full, or if there are no more mappings of this page,
     * then try_to_free_swap is called to free its swap space.
     */
    int try_to_free_swap(struct page *page)
    {
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    
    	if (!PageSwapCache(page))
    		return 0;
    	if (PageWriteback(page))
    		return 0;
    	if (page_swapped(page))
    		return 0;
    
    	/*
    	 * Once hibernation has begun to create its image of memory,
    	 * there's a danger that one of the calls to try_to_free_swap()
    	 * - most probably a call from __try_to_reclaim_swap() while
    	 * hibernation is allocating its own swap pages for the image,
    	 * but conceivably even a call from memory reclaim - will free
    	 * the swap from a page which has already been recorded in the
    	 * image as a clean swapcache page, and then reuse its swap for
    	 * another page of the image.  On waking from hibernation, the
    	 * original page might be freed under memory pressure, then
    	 * later read back in from swap, now with the wrong data.
    	 *
    	 * Hibernation suspends storage while it is writing the image
    	 * to disk so check that here.
    	 */
    	if (pm_suspended_storage())
    		return 0;
    
    	page = compound_head(page);
    	delete_from_swap_cache(page);
    	SetPageDirty(page);
    	return 1;
    }
    
    /*
     * Free the swap entry like above, but also try to
     * free the page cache entry if it is the last user.
     */
    int free_swap_and_cache(swp_entry_t entry)
    {
    	struct swap_info_struct *p;
    	unsigned char count;
    
    	if (non_swap_entry(entry))
    		return 1;
    
    	p = _swap_info_get(entry);
    	if (p) {
    		count = __swap_entry_free(p, entry);
    		if (count == SWAP_HAS_CACHE &&
    		    !swap_page_trans_huge_swapped(p, entry))
    			__try_to_reclaim_swap(p, swp_offset(entry),
    					      TTRS_UNMAPPED | TTRS_FULL);
    	}
    	return p != NULL;
    }
    
    #ifdef CONFIG_HIBERNATION
    /*
     * Find the swap type that corresponds to given device (if any).
     *
     * @offset - number of the PAGE_SIZE-sized block of the device, starting
     * from 0, in which the swap header is expected to be located.
     *
     * This is needed for the suspend to disk (aka swsusp).
     */
    int swap_type_of(dev_t device, sector_t offset)
    {
    	int type;
    
    	if (!device)
    		return -1;
    
    	spin_lock(&swap_lock);
    	for (type = 0; type < nr_swapfiles; type++) {
    		struct swap_info_struct *sis = swap_info[type];
    
    		if (!(sis->flags & SWP_WRITEOK))
    			continue;
    
    		if (device == sis->bdev->bd_dev) {
    			struct swap_extent *se = first_se(sis);
    
    			if (se->start_block == offset) {
    				spin_unlock(&swap_lock);
    				return type;
    			}
    		}
    	}
    	spin_unlock(&swap_lock);
    	return -ENODEV;
    }
    
    int find_first_swap(dev_t *device)
    {
    	int type;
    
    	spin_lock(&swap_lock);
    	for (type = 0; type < nr_swapfiles; type++) {
    		struct swap_info_struct *sis = swap_info[type];
    
    		if (!(sis->flags & SWP_WRITEOK))
    			continue;
    		*device = sis->bdev->bd_dev;
    		spin_unlock(&swap_lock);
    		return type;
    	}
    	spin_unlock(&swap_lock);
    	return -ENODEV;
    }
    
    /*
     * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
     * corresponding to given index in swap_info (swap type).
     */
    sector_t swapdev_block(int type, pgoff_t offset)
    {
    	struct swap_info_struct *si = swap_type_to_swap_info(type);
    	struct swap_extent *se;
    
    	if (!si || !(si->flags & SWP_WRITEOK))
    		return 0;
    	se = offset_to_swap_extent(si, offset);
    	return se->start_block + (offset - se->start_page);
    }
    
    /*
     * Return either the total number of swap pages of given type, or the number
     * of free pages of that type (depending on @free)
     *
     * This is needed for software suspend
     */
    unsigned int count_swap_pages(int type, int free)
    {
    	unsigned int n = 0;
    
    	spin_lock(&swap_lock);
    	if ((unsigned int)type < nr_swapfiles) {
    		struct swap_info_struct *sis = swap_info[type];
    
    		spin_lock(&sis->lock);
    		if (sis->flags & SWP_WRITEOK) {
    			n = sis->pages;
    			if (free)
    				n -= sis->inuse_pages;
    		}
    		spin_unlock(&sis->lock);
    	}
    	spin_unlock(&swap_lock);
    	return n;
    }
    #endif /* CONFIG_HIBERNATION */
    
    static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
    {
    	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
    }
    
    /*
     * No need to decide whether this PTE shares the swap entry with others,
     * just let do_wp_page work it out if a write is requested later - to
     * force COW, vm_page_prot omits write permission from any private vma.
     */
    static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
    		unsigned long addr, swp_entry_t entry, struct page *page)
    {
    	struct page *swapcache;
    	spinlock_t *ptl;
    	pte_t *pte;
    	int ret = 1;
    
    	swapcache = page;
    	page = ksm_might_need_to_copy(page, vma, addr);
    	if (unlikely(!page))
    		return -ENOMEM;
    
    	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
    		ret = 0;
    		goto out;
    	}
    
    	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    	get_page(page);
    	set_pte_at(vma->vm_mm, addr, pte,
    		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
    	if (page == swapcache) {
    		page_add_anon_rmap(page, vma, addr, false);
    	} else { /* ksm created a completely new copy */
    		page_add_new_anon_rmap(page, vma, addr, false);
    		lru_cache_add_inactive_or_unevictable(page, vma);
    	}
    	swap_free(entry);
    out:
    	pte_unmap_unlock(pte, ptl);
    	if (page != swapcache) {
    		unlock_page(page);
    		put_page(page);
    	}
    	return ret;
    }
    
    static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
    			unsigned long addr, unsigned long end,
    			unsigned int type, bool frontswap,
    			unsigned long *fs_pages_to_unuse)
    {
    	struct page *page;
    	swp_entry_t entry;
    	pte_t *pte;
    	struct swap_info_struct *si;
    	unsigned long offset;
    	int ret = 0;
    	volatile unsigned char *swap_map;
    
    	si = swap_info[type];
    	pte = pte_offset_map(pmd, addr);
    	do {
    		if (!is_swap_pte(*pte))
    			continue;
    
    		entry = pte_to_swp_entry(*pte);
    		if (swp_type(entry) != type)
    			continue;
    
    		offset = swp_offset(entry);
    		if (frontswap && !frontswap_test(si, offset))
    			continue;
    
    		pte_unmap(pte);
    		swap_map = &si->swap_map[offset];
    		page = lookup_swap_cache(entry, vma, addr);
    		if (!page) {
    			struct vm_fault vmf = {
    				.vma = vma,
    				.address = addr,
    				.pmd = pmd,
    			};
    
    			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    						&vmf);
    		}
    		if (!page) {
    			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
    				goto try_next;
    			return -ENOMEM;
    		}
    
    		lock_page(page);
    		wait_on_page_writeback(page);
    		ret = unuse_pte(vma, pmd, addr, entry, page);
    		if (ret < 0) {
    			unlock_page(page);
    			put_page(page);
    			goto out;
    		}
    
    		try_to_free_swap(page);
    		unlock_page(page);
    		put_page(page);
    
    		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
    			ret = FRONTSWAP_PAGES_UNUSED;
    			goto out;
    		}
    try_next:
    		pte = pte_offset_map(pmd, addr);
    	} while (pte++, addr += PAGE_SIZE, addr != end);
    	pte_unmap(pte - 1);
    
    	ret = 0;
    out:
    	return ret;
    }
    
    static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
    				unsigned long addr, unsigned long end,
    				unsigned int type, bool frontswap,
    				unsigned long *fs_pages_to_unuse)
    {
    	pmd_t *pmd;
    	unsigned long next;
    	int ret;
    
    	pmd = pmd_offset(pud, addr);
    	do {
    		cond_resched();
    		next = pmd_addr_end(addr, end);
    		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    			continue;
    		ret = unuse_pte_range(vma, pmd, addr, next, type,
    				      frontswap, fs_pages_to_unuse);
    		if (ret)
    			return ret;
    	} while (pmd++, addr = next, addr != end);
    	return 0;
    }
    
    static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
    				unsigned long addr, unsigned long end,
    				unsigned int type, bool frontswap,
    				unsigned long *fs_pages_to_unuse)
    {
    	pud_t *pud;
    	unsigned long next;
    	int ret;
    
    	pud = pud_offset(p4d, addr);
    	do {
    		next = pud_addr_end(addr, end);
    		if (pud_none_or_clear_bad(pud))
    			continue;
    		ret = unuse_pmd_range(vma, pud, addr, next, type,
    				      frontswap, fs_pages_to_unuse);
    		if (ret)
    			return ret;
    	} while (pud++, addr = next, addr != end);
    	return 0;
    }
    
    static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
    				unsigned long addr, unsigned long end,
    				unsigned int type, bool frontswap,
    				unsigned long *fs_pages_to_unuse)
    {
    	p4d_t *p4d;
    	unsigned long next;
    	int ret;
    
    	p4d = p4d_offset(pgd, addr);
    	do {
    		next = p4d_addr_end(addr, end);
    		if (p4d_none_or_clear_bad(p4d))
    			continue;
    		ret = unuse_pud_range(vma, p4d, addr, next, type,
    				      frontswap, fs_pages_to_unuse);
    		if (ret)
    			return ret;
    	} while (p4d++, addr = next, addr != end);
    	return 0;
    }
    
    static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
    		     bool frontswap, unsigned long *fs_pages_to_unuse)
    {
    	pgd_t *pgd;
    	unsigned long addr, end, next;
    	int ret;
    
    	addr = vma->vm_start;
    	end = vma->vm_end;
    
    	pgd = pgd_offset(vma->vm_mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(pgd))
    			continue;
    		ret = unuse_p4d_range(vma, pgd, addr, next, type,
    				      frontswap, fs_pages_to_unuse);
    		if (ret)
    			return ret;
    	} while (pgd++, addr = next, addr != end);
    	return 0;
    }
    
    static int unuse_mm(struct mm_struct *mm, unsigned int type,
    		    bool frontswap, unsigned long *fs_pages_to_unuse)
    {
    	struct vm_area_struct *vma;
    	int ret = 0;
    
    	mmap_read_lock(mm);
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (vma->anon_vma) {
    			ret = unuse_vma(vma, type, frontswap,
    					fs_pages_to_unuse);
    			if (ret)
    				break;
    		}
    		cond_resched();
    	}
    	mmap_read_unlock(mm);
    	return ret;
    }
    
    /*
     * Scan swap_map (or frontswap_map if frontswap parameter is true)
     * from current position to next entry still in use. Return 0
     * if there are no inuse entries after prev till end of the map.
     */
    static unsigned int find_next_to_unuse(struct swap_info_struct *si,
    					unsigned int prev, bool frontswap)
    {
    	unsigned int i;
    	unsigned char count;
    
    	/*
    	 * No need for swap_lock here: we're just looking
    	 * for whether an entry is in use, not modifying it; false
    	 * hits are okay, and sys_swapoff() has already prevented new
    	 * allocations from this area (while holding swap_lock).
    	 */
    	for (i = prev + 1; i < si->max; i++) {
    		count = READ_ONCE(si->swap_map[i]);
    		if (count && swap_count(count) != SWAP_MAP_BAD)
    			if (!frontswap || frontswap_test(si, i))
    				break;
    		if ((i % LATENCY_LIMIT) == 0)
    			cond_resched();
    	}
    
    	if (i == si->max)
    		i = 0;
    
    	return i;
    }
    
    /*
     * If the boolean frontswap is true, only unuse pages_to_unuse pages;
     * pages_to_unuse==0 means all pages; ignored if frontswap is false
     */
    int try_to_unuse(unsigned int type, bool frontswap,
    		 unsigned long pages_to_unuse)
    {
    	struct mm_struct *prev_mm;
    	struct mm_struct *mm;
    	struct list_head *p;
    	int retval = 0;
    	struct swap_info_struct *si = swap_info[type];
    	struct page *page;
    	swp_entry_t entry;
    	unsigned int i;
    
    	if (!READ_ONCE(si->inuse_pages))
    		return 0;
    
    	if (!frontswap)
    		pages_to_unuse = 0;
    
    retry:
    	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
    	if (retval)
    		goto out;
    
    	prev_mm = &init_mm;
    	mmget(prev_mm);
    
    	spin_lock(&mmlist_lock);
    	p = &init_mm.mmlist;
    	while (READ_ONCE(si->inuse_pages) &&
    	       !signal_pending(current) &&
    	       (p = p->next) != &init_mm.mmlist) {
    
    		mm = list_entry(p, struct mm_struct, mmlist);
    		if (!mmget_not_zero(mm))
    			continue;
    		spin_unlock(&mmlist_lock);
    		mmput(prev_mm);
    		prev_mm = mm;
    		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
    
    		if (retval) {
    			mmput(prev_mm);
    			goto out;
    		}
    
    		/*
    		 * Make sure that we aren't completely killing
    		 * interactive performance.
    		 */
    		cond_resched();
    		spin_lock(&mmlist_lock);
    	}
    	spin_unlock(&mmlist_lock);
    
    	mmput(prev_mm);
    
    	i = 0;
    	while (READ_ONCE(si->inuse_pages) &&
    	       !signal_pending(current) &&
    	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
    
    		entry = swp_entry(type, i);
    		page = find_get_page(swap_address_space(entry), i);
    		if (!page)
    			continue;
    
    		/*
    		 * It is conceivable that a racing task removed this page from
    		 * swap cache just before we acquired the page lock. The page
    		 * might even be back in swap cache on another swap area. But
    		 * that is okay, try_to_free_swap() only removes stale pages.
    		 */
    		lock_page(page);
    		wait_on_page_writeback(page);
    		try_to_free_swap(page);
    		unlock_page(page);
    		put_page(page);
    
    		/*
    		 * For frontswap, we just need to unuse pages_to_unuse, if
    		 * it was specified. Need not check frontswap again here as
    		 * we already zeroed out pages_to_unuse if not frontswap.
    		 */
    		if (pages_to_unuse && --pages_to_unuse == 0)
    			goto out;
    	}
    
    	/*
    	 * Lets check again to see if there are still swap entries in the map.
    	 * If yes, we would need to do retry the unuse logic again.
    	 * Under global memory pressure, swap entries can be reinserted back
    	 * into process space after the mmlist loop above passes over them.
    	 *
    	 * Limit the number of retries? No: when mmget_not_zero() above fails,
    	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
    	 * at its own independent pace; and even shmem_writepage() could have
    	 * been preempted after get_swap_page(), temporarily hiding that swap.
    	 * It's easy and robust (though cpu-intensive) just to keep retrying.
    	 */
    	if (READ_ONCE(si->inuse_pages)) {
    		if (!signal_pending(current))
    			goto retry;
    		retval = -EINTR;
    	}
    out:
    	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
    }
    
    /*
     * After a successful try_to_unuse, if no swap is now in use, we know
     * we can empty the mmlist.  swap_lock must be held on entry and exit.
     * Note that mmlist_lock nests inside swap_lock, and an mm must be
     * added to the mmlist just after page_duplicate - before would be racy.
     */
    static void drain_mmlist(void)
    {
    	struct list_head *p, *next;
    	unsigned int type;
    
    	for (type = 0; type < nr_swapfiles; type++)
    		if (swap_info[type]->inuse_pages)
    			return;
    	spin_lock(&mmlist_lock);
    	list_for_each_safe(p, next, &init_mm.mmlist)
    		list_del_init(p);
    	spin_unlock(&mmlist_lock);
    }
    
    /*
     * Free all of a swapdev's extent information
     */
    static void destroy_swap_extents(struct swap_info_struct *sis)
    {
    	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
    		struct rb_node *rb = sis->swap_extent_root.rb_node;
    		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
    
    		rb_erase(rb, &sis->swap_extent_root);
    		kfree(se);
    	}
    
    	if (sis->flags & SWP_ACTIVATED) {
    		struct file *swap_file = sis->swap_file;
    		struct address_space *mapping = swap_file->f_mapping;
    
    		sis->flags &= ~SWP_ACTIVATED;
    		if (mapping->a_ops->swap_deactivate)
    			mapping->a_ops->swap_deactivate(swap_file);
    	}
    }
    
    /*
     * Add a block range (and the corresponding page range) into this swapdev's
     * extent tree.
     *
     * This function rather assumes that it is called in ascending page order.
     */
    int
    add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
    		unsigned long nr_pages, sector_t start_block)
    {
    	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
    	struct swap_extent *se;
    	struct swap_extent *new_se;
    
    	/*
    	 * place the new node at the right most since the
    	 * function is called in ascending page order.
    	 */
    	while (*link) {
    		parent = *link;
    		link = &parent->rb_right;
    	}
    
    	if (parent) {
    		se = rb_entry(parent, struct swap_extent, rb_node);
    		BUG_ON(se->start_page + se->nr_pages != start_page);
    		if (se->start_block + se->nr_pages == start_block) {
    			/* Merge it */
    			se->nr_pages += nr_pages;
    			return 0;
    		}
    	}
    
    	/* No merge, insert a new extent. */
    	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
    	if (new_se == NULL)
    		return -ENOMEM;
    	new_se->start_page = start_page;
    	new_se->nr_pages = nr_pages;
    	new_se->start_block = start_block;
    
    	rb_link_node(&new_se->rb_node, parent, link);
    	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
    	return 1;
    }
    EXPORT_SYMBOL_GPL(add_swap_extent);
    
    /*
     * A `swap extent' is a simple thing which maps a contiguous range of pages
     * onto a contiguous range of disk blocks.  An ordered list of swap extents
     * is built at swapon time and is then used at swap_writepage/swap_readpage
     * time for locating where on disk a page belongs.
     *
     * If the swapfile is an S_ISBLK block device, a single extent is installed.
     * This is done so that the main operating code can treat S_ISBLK and S_ISREG
     * swap files identically.
     *
     * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
     * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
     * swapfiles are handled *identically* after swapon time.
     *
     * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
     * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
     * some stray blocks are found which do not fall within the PAGE_SIZE alignment
     * requirements, they are simply tossed out - we will never use those blocks
     * for swapping.
     *
     * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
     * prevents users from writing to the swap device, which will corrupt memory.
     *
     * The amount of disk space which a single swap extent represents varies.
     * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
     * extents in the list.  To avoid much list walking, we cache the previous
     * search location in `curr_swap_extent', and start new searches from there.
     * This is extremely effective.  The average number of iterations in
     * map_swap_page() has been measured at about 0.3 per page.  - akpm.
     */
    static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
    {
    	struct file *swap_file = sis->swap_file;
    	struct address_space *mapping = swap_file->f_mapping;
    	struct inode *inode = mapping->host;
    	int ret;
    
    	if (S_ISBLK(inode->i_mode)) {
    		ret = add_swap_extent(sis, 0, sis->max, 0);
    		*span = sis->pages;
    		return ret;
    	}
    
    	if (mapping->a_ops->swap_activate) {
    		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
    		if (ret >= 0)
    			sis->flags |= SWP_ACTIVATED;
    		if (!ret) {
    			sis->flags |= SWP_FS_OPS;
    			ret = add_swap_extent(sis, 0, sis->max, 0);
    			*span = sis->pages;
    		}
    		return ret;
    	}
    
    	return generic_swapfile_activate(sis, swap_file, span);
    }
    
    static int swap_node(struct swap_info_struct *p)
    {
    	struct block_device *bdev;
    
    	if (p->bdev)
    		bdev = p->bdev;
    	else
    		bdev = p->swap_file->f_inode->i_sb->s_bdev;
    
    	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
    }
    
    static void setup_swap_info(struct swap_info_struct *p, int prio,
    			    unsigned char *swap_map,
    			    struct swap_cluster_info *cluster_info)
    {
    	int i;
    
    	if (prio >= 0)
    		p->prio = prio;
    	else
    		p->prio = --least_priority;
    	/*
    	 * the plist prio is negated because plist ordering is
    	 * low-to-high, while swap ordering is high-to-low
    	 */
    	p->list.prio = -p->prio;
    	for_each_node(i) {
    		if (p->prio >= 0)
    			p->avail_lists[i].prio = -p->prio;
    		else {
    			if (swap_node(p) == i)
    				p->avail_lists[i].prio = 1;
    			else
    				p->avail_lists[i].prio = -p->prio;
    		}
    	}
    	p->swap_map = swap_map;
    	p->cluster_info = cluster_info;
    }
    
    static void _enable_swap_info(struct swap_info_struct *p)
    {
    	p->flags |= SWP_WRITEOK | SWP_VALID;
    	atomic_long_add(p->pages, &nr_swap_pages);
    	total_swap_pages += p->pages;
    
    	assert_spin_locked(&swap_lock);
    	/*
    	 * both lists are plists, and thus priority ordered.
    	 * swap_active_head needs to be priority ordered for swapoff(),
    	 * which on removal of any swap_info_struct with an auto-assigned
    	 * (i.e. negative) priority increments the auto-assigned priority
    	 * of any lower-priority swap_info_structs.
    	 * swap_avail_head needs to be priority ordered for get_swap_page(),
    	 * which allocates swap pages from the highest available priority
    	 * swap_info_struct.
    	 */
    	plist_add(&p->list, &swap_active_head);
    	add_to_avail_list(p);
    }
    
    static void enable_swap_info(struct swap_info_struct *p, int prio,
    				unsigned char *swap_map,
    				struct swap_cluster_info *cluster_info,
    				unsigned long *frontswap_map)
    {
    	frontswap_init(p->type, frontswap_map);
    	spin_lock(&swap_lock);
    	spin_lock(&p->lock);
    	setup_swap_info(p, prio, swap_map, cluster_info);
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    	/*
    	 * Guarantee swap_map, cluster_info, etc. fields are valid
    	 * between get/put_swap_device() if SWP_VALID bit is set
    	 */
    	synchronize_rcu();
    	spin_lock(&swap_lock);
    	spin_lock(&p->lock);
    	_enable_swap_info(p);
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    }
    
    static void reinsert_swap_info(struct swap_info_struct *p)
    {
    	spin_lock(&swap_lock);
    	spin_lock(&p->lock);
    	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
    	_enable_swap_info(p);
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    }
    
    bool has_usable_swap(void)
    {
    	bool ret = true;
    
    	spin_lock(&swap_lock);
    	if (plist_head_empty(&swap_active_head))
    		ret = false;
    	spin_unlock(&swap_lock);
    	return ret;
    }
    
    SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
    {
    	struct swap_info_struct *p = NULL;
    	unsigned char *swap_map;
    	struct swap_cluster_info *cluster_info;
    	unsigned long *frontswap_map;
    	struct file *swap_file, *victim;
    	struct address_space *mapping;
    	struct inode *inode;
    	struct filename *pathname;
    	int err, found = 0;
    	unsigned int old_block_size;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	BUG_ON(!current->mm);
    
    	pathname = getname(specialfile);
    	if (IS_ERR(pathname))
    		return PTR_ERR(pathname);
    
    	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
    	err = PTR_ERR(victim);
    	if (IS_ERR(victim))
    		goto out;
    
    	mapping = victim->f_mapping;
    	spin_lock(&swap_lock);
    	plist_for_each_entry(p, &swap_active_head, list) {
    		if (p->flags & SWP_WRITEOK) {
    			if (p->swap_file->f_mapping == mapping) {
    				found = 1;
    				break;
    			}
    		}
    	}
    	if (!found) {
    		err = -EINVAL;
    		spin_unlock(&swap_lock);
    		goto out_dput;
    	}
    	if (!security_vm_enough_memory_mm(current->mm, p->pages))
    		vm_unacct_memory(p->pages);
    	else {
    		err = -ENOMEM;
    		spin_unlock(&swap_lock);
    		goto out_dput;
    	}
    	del_from_avail_list(p);
    	spin_lock(&p->lock);
    	if (p->prio < 0) {
    		struct swap_info_struct *si = p;
    		int nid;
    
    		plist_for_each_entry_continue(si, &swap_active_head, list) {
    			si->prio++;
    			si->list.prio--;
    			for_each_node(nid) {
    				if (si->avail_lists[nid].prio != 1)
    					si->avail_lists[nid].prio--;
    			}
    		}
    		least_priority++;
    	}
    	plist_del(&p->list, &swap_active_head);
    	atomic_long_sub(p->pages, &nr_swap_pages);
    	total_swap_pages -= p->pages;
    	p->flags &= ~SWP_WRITEOK;
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    
    	disable_swap_slots_cache_lock();
    
    	set_current_oom_origin();
    	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
    	clear_current_oom_origin();
    
    	if (err) {
    		/* re-insert swap space back into swap_list */
    		reinsert_swap_info(p);
    		reenable_swap_slots_cache_unlock();
    		goto out_dput;
    	}
    
    	reenable_swap_slots_cache_unlock();
    
    	spin_lock(&swap_lock);
    	spin_lock(&p->lock);
    	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    	/*
    	 * wait for swap operations protected by get/put_swap_device()
    	 * to complete
    	 */
    	synchronize_rcu();
    
    	flush_work(&p->discard_work);
    
    	destroy_swap_extents(p);
    	if (p->flags & SWP_CONTINUED)
    		free_swap_count_continuations(p);
    
    	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
    		atomic_dec(&nr_rotate_swap);
    
    	mutex_lock(&swapon_mutex);
    	spin_lock(&swap_lock);
    	spin_lock(&p->lock);
    	drain_mmlist();
    
    	/* wait for anyone still in scan_swap_map */
    	p->highest_bit = 0;		/* cuts scans short */
    	while (p->flags >= SWP_SCANNING) {
    		spin_unlock(&p->lock);
    		spin_unlock(&swap_lock);
    		schedule_timeout_uninterruptible(1);
    		spin_lock(&swap_lock);
    		spin_lock(&p->lock);
    	}
    
    	swap_file = p->swap_file;
    	old_block_size = p->old_block_size;
    	p->swap_file = NULL;
    	p->max = 0;
    	swap_map = p->swap_map;
    	p->swap_map = NULL;
    	cluster_info = p->cluster_info;
    	p->cluster_info = NULL;
    	frontswap_map = frontswap_map_get(p);
    	spin_unlock(&p->lock);
    	spin_unlock(&swap_lock);
    	arch_swap_invalidate_area(p->type);
    	frontswap_invalidate_area(p->type);
    	frontswap_map_set(p, NULL);
    	mutex_unlock(&swapon_mutex);
    	free_percpu(p->percpu_cluster);
    	p->percpu_cluster = NULL;
    	free_percpu(p->cluster_next_cpu);
    	p->cluster_next_cpu = NULL;
    	vfree(swap_map);
    	kvfree(cluster_info);
    	kvfree(frontswap_map);
    	/* Destroy swap account information */
    	swap_cgroup_swapoff(p->type);
    	exit_swap_address_space(p->type);
    
    	inode = mapping->host;
    	if (S_ISBLK(inode->i_mode)) {
    		struct block_device *bdev = I_BDEV(inode);
    
    		set_blocksize(bdev, old_block_size);
    		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    	}
    
    	inode_lock(inode);
    	inode->i_flags &= ~S_SWAPFILE;
    	inode_unlock(inode);
    	filp_close(swap_file, NULL);
    
    	/*
    	 * Clear the SWP_USED flag after all resources are freed so that swapon
    	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
    	 * not hold p->lock after we cleared its SWP_WRITEOK.
    	 */
    	spin_lock(&swap_lock);
    	p->flags = 0;
    	spin_unlock(&swap_lock);
    
    	err = 0;
    	atomic_inc(&proc_poll_event);
    	wake_up_interruptible(&proc_poll_wait);
    
    out_dput:
    	filp_close(victim, NULL);
    out:
    	putname(pathname);
    	return err;
    }
    
    #ifdef CONFIG_PROC_FS
    static __poll_t swaps_poll(struct file *file, poll_table *wait)
    {
    	struct seq_file *seq = file->private_data;
    
    	poll_wait(file, &proc_poll_wait, wait);
    
    	if (seq->poll_event != atomic_read(&proc_poll_event)) {
    		seq->poll_event = atomic_read(&proc_poll_event);
    		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
    	}
    
    	return EPOLLIN | EPOLLRDNORM;
    }
    
    /* iterator */
    static void *swap_start(struct seq_file *swap, loff_t *pos)
    {
    	struct swap_info_struct *si;
    	int type;
    	loff_t l = *pos;
    
    	mutex_lock(&swapon_mutex);
    
    	if (!l)
    		return SEQ_START_TOKEN;
    
    	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
    		if (!(si->flags & SWP_USED) || !si->swap_map)
    			continue;
    		if (!--l)
    			return si;
    	}
    
    	return NULL;
    }
    
    static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
    {
    	struct swap_info_struct *si = v;
    	int type;
    
    	if (v == SEQ_START_TOKEN)
    		type = 0;
    	else
    		type = si->type + 1;
    
    	++(*pos);
    	for (; (si = swap_type_to_swap_info(type)); type++) {
    		if (!(si->flags & SWP_USED) || !si->swap_map)
    			continue;
    		return si;
    	}
    
    	return NULL;
    }
    
    static void swap_stop(struct seq_file *swap, void *v)
    {
    	mutex_unlock(&swapon_mutex);
    }
    
    static int swap_show(struct seq_file *swap, void *v)
    {
    	struct swap_info_struct *si = v;
    	struct file *file;
    	int len;
    	unsigned int bytes, inuse;
    
    	if (si == SEQ_START_TOKEN) {
    		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
    		return 0;
    	}
    
    	bytes = si->pages << (PAGE_SHIFT - 10);
    	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
    
    	file = si->swap_file;
    	len = seq_file_path(swap, file, " \t\n\\");
    	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
    			len < 40 ? 40 - len : 1, " ",
    			S_ISBLK(file_inode(file)->i_mode) ?
    				"partition" : "file\t",
    			bytes, bytes < 10000000 ? "\t" : "",
    			inuse, inuse < 10000000 ? "\t" : "",
    			si->prio);
    	return 0;
    }
    
    static const struct seq_operations swaps_op = {
    	.start =	swap_start,
    	.next =		swap_next,
    	.stop =		swap_stop,
    	.show =		swap_show
    };
    
    static int swaps_open(struct inode *inode, struct file *file)
    {
    	struct seq_file *seq;
    	int ret;
    
    	ret = seq_open(file, &swaps_op);
    	if (ret)
    		return ret;
    
    	seq = file->private_data;
    	seq->poll_event = atomic_read(&proc_poll_event);
    	return 0;
    }
    
    static const struct proc_ops swaps_proc_ops = {
    	.proc_flags	= PROC_ENTRY_PERMANENT,
    	.proc_open	= swaps_open,
    	.proc_read	= seq_read,
    	.proc_lseek	= seq_lseek,
    	.proc_release	= seq_release,
    	.proc_poll	= swaps_poll,
    };
    
    static int __init procswaps_init(void)
    {
    	proc_create("swaps", 0, NULL, &swaps_proc_ops);
    	return 0;
    }
    __initcall(procswaps_init);
    #endif /* CONFIG_PROC_FS */
    
    #ifdef MAX_SWAPFILES_CHECK
    static int __init max_swapfiles_check(void)
    {
    	MAX_SWAPFILES_CHECK();
    	return 0;
    }
    late_initcall(max_swapfiles_check);
    #endif
    
    static struct swap_info_struct *alloc_swap_info(void)
    {
    	struct swap_info_struct *p;
    	struct swap_info_struct *defer = NULL;
    	unsigned int type;
    	int i;
    
    	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
    	if (!p)
    		return ERR_PTR(-ENOMEM);
    
    	spin_lock(&swap_lock);
    	for (type = 0; type < nr_swapfiles; type++) {
    		if (!(swap_info[type]->flags & SWP_USED))
    			break;
    	}
    	if (type >= MAX_SWAPFILES) {
    		spin_unlock(&swap_lock);
    		kvfree(p);
    		return ERR_PTR(-EPERM);
    	}
    	if (type >= nr_swapfiles) {
    		p->type = type;
    		WRITE_ONCE(swap_info[type], p);
    		/*
    		 * Write swap_info[type] before nr_swapfiles, in case a
    		 * racing procfs swap_start() or swap_next() is reading them.
    		 * (We never shrink nr_swapfiles, we never free this entry.)
    		 */
    		smp_wmb();
    		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
    	} else {
    		defer = p;
    		p = swap_info[type];
    		/*
    		 * Do not memset this entry: a racing procfs swap_next()
    		 * would be relying on p->type to remain valid.
    		 */
    	}
    	p->swap_extent_root = RB_ROOT;
    	plist_node_init(&p->list, 0);
    	for_each_node(i)
    		plist_node_init(&p->avail_lists[i], 0);
    	p->flags = SWP_USED;
    	spin_unlock(&swap_lock);
    	kvfree(defer);
    	spin_lock_init(&p->lock);
    	spin_lock_init(&p->cont_lock);
    
    	return p;
    }
    
    static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
    {
    	int error;
    
    	if (S_ISBLK(inode->i_mode)) {
    		p->bdev = blkdev_get_by_dev(inode->i_rdev,
    				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
    		if (IS_ERR(p->bdev)) {
    			error = PTR_ERR(p->bdev);
    			p->bdev = NULL;
    			return error;
    		}
    		p->old_block_size = block_size(p->bdev);
    		error = set_blocksize(p->bdev, PAGE_SIZE);
    		if (error < 0)
    			return error;
    		/*
    		 * Zoned block devices contain zones that have a sequential
    		 * write only restriction.  Hence zoned block devices are not
    		 * suitable for swapping.  Disallow them here.
    		 */
    		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
    			return -EINVAL;
    		p->flags |= SWP_BLKDEV;
    	} else if (S_ISREG(inode->i_mode)) {
    		p->bdev = inode->i_sb->s_bdev;
    	}
    
    	return 0;
    }
    
    
    /*
     * Find out how many pages are allowed for a single swap device. There
     * are two limiting factors:
     * 1) the number of bits for the swap offset in the swp_entry_t type, and
     * 2) the number of bits in the swap pte, as defined by the different
     * architectures.
     *
     * In order to find the largest possible bit mask, a swap entry with
     * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
     * decoded to a swp_entry_t again, and finally the swap offset is
     * extracted.
     *
     * This will mask all the bits from the initial ~0UL mask that can't
     * be encoded in either the swp_entry_t or the architecture definition
     * of a swap pte.
     */
    unsigned long generic_max_swapfile_size(void)
    {
    	return swp_offset(pte_to_swp_entry(
    			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
    }
    
    /* Can be overridden by an architecture for additional checks. */
    __weak unsigned long max_swapfile_size(void)
    {
    	return generic_max_swapfile_size();
    }
    
    static unsigned long read_swap_header(struct swap_info_struct *p,
    					union swap_header *swap_header,
    					struct inode *inode)
    {
    	int i;
    	unsigned long maxpages;
    	unsigned long swapfilepages;
    	unsigned long last_page;
    
    	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
    		pr_err("Unable to find swap-space signature\n");
    		return 0;
    	}
    
    	/* swap partition endianess hack... */
    	if (swab32(swap_header->info.version) == 1) {
    		swab32s(&swap_header->info.version);
    		swab32s(&swap_header->info.last_page);
    		swab32s(&swap_header->info.nr_badpages);
    		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    			return 0;
    		for (i = 0; i < swap_header->info.nr_badpages; i++)
    			swab32s(&swap_header->info.badpages[i]);
    	}
    	/* Check the swap header's sub-version */
    	if (swap_header->info.version != 1) {
    		pr_warn("Unable to handle swap header version %d\n",
    			swap_header->info.version);
    		return 0;
    	}
    
    	p->lowest_bit  = 1;
    	p->cluster_next = 1;
    	p->cluster_nr = 0;
    
    	maxpages = max_swapfile_size();
    	last_page = swap_header->info.last_page;
    	if (!last_page) {
    		pr_warn("Empty swap-file\n");
    		return 0;
    	}
    	if (last_page > maxpages) {
    		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
    			maxpages << (PAGE_SHIFT - 10),
    			last_page << (PAGE_SHIFT - 10));
    	}
    	if (maxpages > last_page) {
    		maxpages = last_page + 1;
    		/* p->max is an unsigned int: don't overflow it */
    		if ((unsigned int)maxpages == 0)
    			maxpages = UINT_MAX;
    	}
    	p->highest_bit = maxpages - 1;
    
    	if (!maxpages)
    		return 0;
    	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
    	if (swapfilepages && maxpages > swapfilepages) {
    		pr_warn("Swap area shorter than signature indicates\n");
    		return 0;
    	}
    	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
    		return 0;
    	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    		return 0;
    
    	return maxpages;
    }
    
    #define SWAP_CLUSTER_INFO_COLS						\
    	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
    #define SWAP_CLUSTER_SPACE_COLS						\
    	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
    #define SWAP_CLUSTER_COLS						\
    	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
    
    static int setup_swap_map_and_extents(struct swap_info_struct *p,
    					union swap_header *swap_header,
    					unsigned char *swap_map,
    					struct swap_cluster_info *cluster_info,
    					unsigned long maxpages,
    					sector_t *span)
    {
    	unsigned int j, k;
    	unsigned int nr_good_pages;
    	int nr_extents;
    	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
    	unsigned long i, idx;
    
    	nr_good_pages = maxpages - 1;	/* omit header page */
    
    	cluster_list_init(&p->free_clusters);
    	cluster_list_init(&p->discard_clusters);
    
    	for (i = 0; i < swap_header->info.nr_badpages; i++) {
    		unsigned int page_nr = swap_header->info.badpages[i];
    		if (page_nr == 0 || page_nr > swap_header->info.last_page)
    			return -EINVAL;
    		if (page_nr < maxpages) {
    			swap_map[page_nr] = SWAP_MAP_BAD;
    			nr_good_pages--;
    			/*
    			 * Haven't marked the cluster free yet, no list
    			 * operation involved
    			 */
    			inc_cluster_info_page(p, cluster_info, page_nr);
    		}
    	}
    
    	/* Haven't marked the cluster free yet, no list operation involved */
    	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
    		inc_cluster_info_page(p, cluster_info, i);
    
    	if (nr_good_pages) {
    		swap_map[0] = SWAP_MAP_BAD;
    		/*
    		 * Not mark the cluster free yet, no list
    		 * operation involved
    		 */
    		inc_cluster_info_page(p, cluster_info, 0);
    		p->max = maxpages;
    		p->pages = nr_good_pages;
    		nr_extents = setup_swap_extents(p, span);
    		if (nr_extents < 0)
    			return nr_extents;
    		nr_good_pages = p->pages;
    	}
    	if (!nr_good_pages) {
    		pr_warn("Empty swap-file\n");
    		return -EINVAL;
    	}
    
    	if (!cluster_info)
    		return nr_extents;
    
    
    	/*
    	 * Reduce false cache line sharing between cluster_info and
    	 * sharing same address space.
    	 */
    	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
    		j = (k + col) % SWAP_CLUSTER_COLS;
    		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
    			idx = i * SWAP_CLUSTER_COLS + j;
    			if (idx >= nr_clusters)
    				continue;
    			if (cluster_count(&cluster_info[idx]))
    				continue;
    			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
    			cluster_list_add_tail(&p->free_clusters, cluster_info,
    					      idx);
    		}
    	}
    	return nr_extents;
    }
    
    /*
     * Helper to sys_swapon determining if a given swap
     * backing device queue supports DISCARD operations.
     */
    static bool swap_discardable(struct swap_info_struct *si)
    {
    	struct request_queue *q = bdev_get_queue(si->bdev);
    
    	if (!q || !blk_queue_discard(q))
    		return false;
    
    	return true;
    }
    
    SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
    {
    	struct swap_info_struct *p;
    	struct filename *name;
    	struct file *swap_file = NULL;
    	struct address_space *mapping;
    	int prio;
    	int error;
    	union swap_header *swap_header;
    	int nr_extents;
    	sector_t span;
    	unsigned long maxpages;
    	unsigned char *swap_map = NULL;
    	struct swap_cluster_info *cluster_info = NULL;
    	unsigned long *frontswap_map = NULL;
    	struct page *page = NULL;
    	struct inode *inode = NULL;
    	bool inced_nr_rotate_swap = false;
    
    	if (swap_flags & ~SWAP_FLAGS_VALID)
    		return -EINVAL;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (!swap_avail_heads)
    		return -ENOMEM;
    
    	p = alloc_swap_info();
    	if (IS_ERR(p))
    		return PTR_ERR(p);
    
    	INIT_WORK(&p->discard_work, swap_discard_work);
    
    	name = getname(specialfile);
    	if (IS_ERR(name)) {
    		error = PTR_ERR(name);
    		name = NULL;
    		goto bad_swap;
    	}
    	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
    	if (IS_ERR(swap_file)) {
    		error = PTR_ERR(swap_file);
    		swap_file = NULL;
    		goto bad_swap;
    	}
    
    	p->swap_file = swap_file;
    	mapping = swap_file->f_mapping;
    	inode = mapping->host;
    
    	error = claim_swapfile(p, inode);
    	if (unlikely(error))
    		goto bad_swap;
    
    	inode_lock(inode);
    	if (IS_SWAPFILE(inode)) {
    		error = -EBUSY;
    		goto bad_swap_unlock_inode;
    	}
    
    	/*
    	 * Read the swap header.
    	 */
    	if (!mapping->a_ops->readpage) {
    		error = -EINVAL;
    		goto bad_swap_unlock_inode;
    	}
    	page = read_mapping_page(mapping, 0, swap_file);
    	if (IS_ERR(page)) {
    		error = PTR_ERR(page);
    		goto bad_swap_unlock_inode;
    	}
    	swap_header = kmap(page);
    
    	maxpages = read_swap_header(p, swap_header, inode);
    	if (unlikely(!maxpages)) {
    		error = -EINVAL;
    		goto bad_swap_unlock_inode;
    	}
    
    	/* OK, set up the swap map and apply the bad block list */
    	swap_map = vzalloc(maxpages);
    	if (!swap_map) {
    		error = -ENOMEM;
    		goto bad_swap_unlock_inode;
    	}
    
    	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
    		p->flags |= SWP_STABLE_WRITES;
    
    	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
    		p->flags |= SWP_SYNCHRONOUS_IO;
    
    	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
    		int cpu;
    		unsigned long ci, nr_cluster;
    
    		p->flags |= SWP_SOLIDSTATE;
    		p->cluster_next_cpu = alloc_percpu(unsigned int);
    		if (!p->cluster_next_cpu) {
    			error = -ENOMEM;
    			goto bad_swap_unlock_inode;
    		}
    		/*
    		 * select a random position to start with to help wear leveling
    		 * SSD
    		 */
    		for_each_possible_cpu(cpu) {
    			per_cpu(*p->cluster_next_cpu, cpu) =
    				1 + prandom_u32_max(p->highest_bit);
    		}
    		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    
    		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
    					GFP_KERNEL);
    		if (!cluster_info) {
    			error = -ENOMEM;
    			goto bad_swap_unlock_inode;
    		}
    
    		for (ci = 0; ci < nr_cluster; ci++)
    			spin_lock_init(&((cluster_info + ci)->lock));
    
    		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
    		if (!p->percpu_cluster) {
    			error = -ENOMEM;
    			goto bad_swap_unlock_inode;
    		}
    		for_each_possible_cpu(cpu) {
    			struct percpu_cluster *cluster;
    			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
    			cluster_set_null(&cluster->index);
    		}
    	} else {
    		atomic_inc(&nr_rotate_swap);
    		inced_nr_rotate_swap = true;
    	}
    
    	error = swap_cgroup_swapon(p->type, maxpages);
    	if (error)
    		goto bad_swap_unlock_inode;
    
    	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
    		cluster_info, maxpages, &span);
    	if (unlikely(nr_extents < 0)) {
    		error = nr_extents;
    		goto bad_swap_unlock_inode;
    	}
    	/* frontswap enabled? set up bit-per-page map for frontswap */
    	if (IS_ENABLED(CONFIG_FRONTSWAP))
    		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
    					 sizeof(long),
    					 GFP_KERNEL);
    
    	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
    		/*
    		 * When discard is enabled for swap with no particular
    		 * policy flagged, we set all swap discard flags here in
    		 * order to sustain backward compatibility with older
    		 * swapon(8) releases.
    		 */
    		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
    			     SWP_PAGE_DISCARD);
    
    		/*
    		 * By flagging sys_swapon, a sysadmin can tell us to
    		 * either do single-time area discards only, or to just
    		 * perform discards for released swap page-clusters.
    		 * Now it's time to adjust the p->flags accordingly.
    		 */
    		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
    			p->flags &= ~SWP_PAGE_DISCARD;
    		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
    			p->flags &= ~SWP_AREA_DISCARD;
    
    		/* issue a swapon-time discard if it's still required */
    		if (p->flags & SWP_AREA_DISCARD) {
    			int err = discard_swap(p);
    			if (unlikely(err))
    				pr_err("swapon: discard_swap(%p): %d\n",
    					p, err);
    		}
    	}
    
    	error = init_swap_address_space(p->type, maxpages);
    	if (error)
    		goto bad_swap_unlock_inode;
    
    	/*
    	 * Flush any pending IO and dirty mappings before we start using this
    	 * swap device.
    	 */
    	inode->i_flags |= S_SWAPFILE;
    	error = inode_drain_writes(inode);
    	if (error) {
    		inode->i_flags &= ~S_SWAPFILE;
    		goto free_swap_address_space;
    	}
    
    	mutex_lock(&swapon_mutex);
    	prio = -1;
    	if (swap_flags & SWAP_FLAG_PREFER)
    		prio =
    		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
    	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
    
    	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
    		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
    		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
    		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
    		(p->flags & SWP_DISCARDABLE) ? "D" : "",
    		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
    		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
    		(frontswap_map) ? "FS" : "");
    
    	mutex_unlock(&swapon_mutex);
    	atomic_inc(&proc_poll_event);
    	wake_up_interruptible(&proc_poll_wait);
    
    	error = 0;
    	goto out;
    free_swap_address_space:
    	exit_swap_address_space(p->type);
    bad_swap_unlock_inode:
    	inode_unlock(inode);
    bad_swap:
    	free_percpu(p->percpu_cluster);
    	p->percpu_cluster = NULL;
    	free_percpu(p->cluster_next_cpu);
    	p->cluster_next_cpu = NULL;
    	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
    		set_blocksize(p->bdev, p->old_block_size);
    		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    	}
    	inode = NULL;
    	destroy_swap_extents(p);
    	swap_cgroup_swapoff(p->type);
    	spin_lock(&swap_lock);
    	p->swap_file = NULL;
    	p->flags = 0;
    	spin_unlock(&swap_lock);
    	vfree(swap_map);
    	kvfree(cluster_info);
    	kvfree(frontswap_map);
    	if (inced_nr_rotate_swap)
    		atomic_dec(&nr_rotate_swap);
    	if (swap_file)
    		filp_close(swap_file, NULL);
    out:
    	if (page && !IS_ERR(page)) {
    		kunmap(page);
    		put_page(page);
    	}
    	if (name)
    		putname(name);
    	if (inode)
    		inode_unlock(inode);
    	if (!error)
    		enable_swap_slots_cache();
    	return error;
    }
    
    void si_swapinfo(struct sysinfo *val)
    {
    	unsigned int type;
    	unsigned long nr_to_be_unused = 0;
    
    	spin_lock(&swap_lock);
    	for (type = 0; type < nr_swapfiles; type++) {
    		struct swap_info_struct *si = swap_info[type];
    
    		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
    			nr_to_be_unused += si->inuse_pages;
    	}
    	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
    	val->totalswap = total_swap_pages + nr_to_be_unused;
    	spin_unlock(&swap_lock);
    }
    
    /*
     * Verify that a swap entry is valid and increment its swap map count.
     *
     * Returns error code in following case.
     * - success -> 0
     * - swp_entry is invalid -> EINVAL
     * - swp_entry is migration entry -> EINVAL
     * - swap-cache reference is requested but there is already one. -> EEXIST
     * - swap-cache reference is requested but the entry is not used. -> ENOENT
     * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
     */
    static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
    {
    	struct swap_info_struct *p;
    	struct swap_cluster_info *ci;
    	unsigned long offset;
    	unsigned char count;
    	unsigned char has_cache;
    	int err;
    
    	p = get_swap_device(entry);
    	if (!p)
    		return -EINVAL;
    
    	offset = swp_offset(entry);
    	ci = lock_cluster_or_swap_info(p, offset);
    
    	count = p->swap_map[offset];
    
    	/*
    	 * swapin_readahead() doesn't check if a swap entry is valid, so the
    	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
    	 */
    	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
    		err = -ENOENT;
    		goto unlock_out;
    	}
    
    	has_cache = count & SWAP_HAS_CACHE;
    	count &= ~SWAP_HAS_CACHE;
    	err = 0;
    
    	if (usage == SWAP_HAS_CACHE) {
    
    		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
    		if (!has_cache && count)
    			has_cache = SWAP_HAS_CACHE;
    		else if (has_cache)		/* someone else added cache */
    			err = -EEXIST;
    		else				/* no users remaining */
    			err = -ENOENT;
    
    	} else if (count || has_cache) {
    
    		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
    			count += usage;
    		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
    			err = -EINVAL;
    		else if (swap_count_continued(p, offset, count))
    			count = COUNT_CONTINUED;
    		else
    			err = -ENOMEM;
    	} else
    		err = -ENOENT;			/* unused swap entry */
    
    	WRITE_ONCE(p->swap_map[offset], count | has_cache);
    
    unlock_out:
    	unlock_cluster_or_swap_info(p, ci);
    	if (p)
    		put_swap_device(p);
    	return err;
    }
    
    /*
     * Help swapoff by noting that swap entry belongs to shmem/tmpfs
     * (in which case its reference count is never incremented).
     */
    void swap_shmem_alloc(swp_entry_t entry)
    {
    	__swap_duplicate(entry, SWAP_MAP_SHMEM);
    }
    
    /*
     * Increase reference count of swap entry by 1.
     * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
     * but could not be atomically allocated.  Returns 0, just as if it succeeded,
     * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
     * might occur if a page table entry has got corrupted.
     */
    int swap_duplicate(swp_entry_t entry)
    {
    	int err = 0;
    
    	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
    		err = add_swap_count_continuation(entry, GFP_ATOMIC);
    	return err;
    }
    
    /*
     * @entry: swap entry for which we allocate swap cache.
     *
     * Called when allocating swap cache for existing swap entry,
     * This can return error codes. Returns 0 at success.
     * -EEXIST means there is a swap cache.
     * Note: return code is different from swap_duplicate().
     */
    int swapcache_prepare(swp_entry_t entry)
    {
    	return __swap_duplicate(entry, SWAP_HAS_CACHE);
    }
    
    struct swap_info_struct *swp_swap_info(swp_entry_t entry)
    {
    	return swap_type_to_swap_info(swp_type(entry));
    }
    
    struct swap_info_struct *page_swap_info(struct page *page)
    {
    	swp_entry_t entry = { .val = page_private(page) };
    	return swp_swap_info(entry);
    }
    
    /*
     * out-of-line __page_file_ methods to avoid include hell.
     */
    struct address_space *__page_file_mapping(struct page *page)
    {
    	return page_swap_info(page)->swap_file->f_mapping;
    }
    EXPORT_SYMBOL_GPL(__page_file_mapping);
    
    pgoff_t __page_file_index(struct page *page)
    {
    	swp_entry_t swap = { .val = page_private(page) };
    	return swp_offset(swap);
    }
    EXPORT_SYMBOL_GPL(__page_file_index);
    
    /*
     * add_swap_count_continuation - called when a swap count is duplicated
     * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
     * page of the original vmalloc'ed swap_map, to hold the continuation count
     * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
     * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
     *
     * These continuation pages are seldom referenced: the common paths all work
     * on the original swap_map, only referring to a continuation page when the
     * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
     *
     * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
     * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
     * can be called after dropping locks.
     */
    int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
    {
    	struct swap_info_struct *si;
    	struct swap_cluster_info *ci;
    	struct page *head;
    	struct page *page;
    	struct page *list_page;
    	pgoff_t offset;
    	unsigned char count;
    	int ret = 0;
    
    	/*
    	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
    	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
    	 */
    	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
    
    	si = get_swap_device(entry);
    	if (!si) {
    		/*
    		 * An acceptable race has occurred since the failing
    		 * __swap_duplicate(): the swap device may be swapoff
    		 */
    		goto outer;
    	}
    	spin_lock(&si->lock);
    
    	offset = swp_offset(entry);
    
    	ci = lock_cluster(si, offset);
    
    	count = swap_count(si->swap_map[offset]);
    
    	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
    		/*
    		 * The higher the swap count, the more likely it is that tasks
    		 * will race to add swap count continuation: we need to avoid
    		 * over-provisioning.
    		 */
    		goto out;
    	}
    
    	if (!page) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	/*
    	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
    	 * no architecture is using highmem pages for kernel page tables: so it
    	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
    	 */
    	head = vmalloc_to_page(si->swap_map + offset);
    	offset &= ~PAGE_MASK;
    
    	spin_lock(&si->cont_lock);
    	/*
    	 * Page allocation does not initialize the page's lru field,
    	 * but it does always reset its private field.
    	 */
    	if (!page_private(head)) {
    		BUG_ON(count & COUNT_CONTINUED);
    		INIT_LIST_HEAD(&head->lru);
    		set_page_private(head, SWP_CONTINUED);
    		si->flags |= SWP_CONTINUED;
    	}
    
    	list_for_each_entry(list_page, &head->lru, lru) {
    		unsigned char *map;
    
    		/*
    		 * If the previous map said no continuation, but we've found
    		 * a continuation page, free our allocation and use this one.
    		 */
    		if (!(count & COUNT_CONTINUED))
    			goto out_unlock_cont;
    
    		map = kmap_atomic(list_page) + offset;
    		count = *map;
    		kunmap_atomic(map);
    
    		/*
    		 * If this continuation count now has some space in it,
    		 * free our allocation and use this one.
    		 */
    		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
    			goto out_unlock_cont;
    	}
    
    	list_add_tail(&page->lru, &head->lru);
    	page = NULL;			/* now it's attached, don't free it */
    out_unlock_cont:
    	spin_unlock(&si->cont_lock);
    out:
    	unlock_cluster(ci);
    	spin_unlock(&si->lock);
    	put_swap_device(si);
    outer:
    	if (page)
    		__free_page(page);
    	return ret;
    }
    
    /*
     * swap_count_continued - when the original swap_map count is incremented
     * from SWAP_MAP_MAX, check if there is already a continuation page to carry
     * into, carry if so, or else fail until a new continuation page is allocated;
     * when the original swap_map count is decremented from 0 with continuation,
     * borrow from the continuation and report whether it still holds more.
     * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
     * lock.
     */
    static bool swap_count_continued(struct swap_info_struct *si,
    				 pgoff_t offset, unsigned char count)
    {
    	struct page *head;
    	struct page *page;
    	unsigned char *map;
    	bool ret;
    
    	head = vmalloc_to_page(si->swap_map + offset);
    	if (page_private(head) != SWP_CONTINUED) {
    		BUG_ON(count & COUNT_CONTINUED);
    		return false;		/* need to add count continuation */
    	}
    
    	spin_lock(&si->cont_lock);
    	offset &= ~PAGE_MASK;
    	page = list_next_entry(head, lru);
    	map = kmap_atomic(page) + offset;
    
    	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
    		goto init_map;		/* jump over SWAP_CONT_MAX checks */
    
    	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
    		/*
    		 * Think of how you add 1 to 999
    		 */
    		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
    			kunmap_atomic(map);
    			page = list_next_entry(page, lru);
    			BUG_ON(page == head);
    			map = kmap_atomic(page) + offset;
    		}
    		if (*map == SWAP_CONT_MAX) {
    			kunmap_atomic(map);
    			page = list_next_entry(page, lru);
    			if (page == head) {
    				ret = false;	/* add count continuation */
    				goto out;
    			}
    			map = kmap_atomic(page) + offset;
    init_map:		*map = 0;		/* we didn't zero the page */
    		}
    		*map += 1;
    		kunmap_atomic(map);
    		while ((page = list_prev_entry(page, lru)) != head) {
    			map = kmap_atomic(page) + offset;
    			*map = COUNT_CONTINUED;
    			kunmap_atomic(map);
    		}
    		ret = true;			/* incremented */
    
    	} else {				/* decrementing */
    		/*
    		 * Think of how you subtract 1 from 1000
    		 */
    		BUG_ON(count != COUNT_CONTINUED);
    		while (*map == COUNT_CONTINUED) {
    			kunmap_atomic(map);
    			page = list_next_entry(page, lru);
    			BUG_ON(page == head);
    			map = kmap_atomic(page) + offset;
    		}
    		BUG_ON(*map == 0);
    		*map -= 1;
    		if (*map == 0)
    			count = 0;
    		kunmap_atomic(map);
    		while ((page = list_prev_entry(page, lru)) != head) {
    			map = kmap_atomic(page) + offset;
    			*map = SWAP_CONT_MAX | count;
    			count = COUNT_CONTINUED;
    			kunmap_atomic(map);
    		}
    		ret = count == COUNT_CONTINUED;
    	}
    out:
    	spin_unlock(&si->cont_lock);
    	return ret;
    }
    
    /*
     * free_swap_count_continuations - swapoff free all the continuation pages
     * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
     */
    static void free_swap_count_continuations(struct swap_info_struct *si)
    {
    	pgoff_t offset;
    
    	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
    		struct page *head;
    		head = vmalloc_to_page(si->swap_map + offset);
    		if (page_private(head)) {
    			struct page *page, *next;
    
    			list_for_each_entry_safe(page, next, &head->lru, lru) {
    				list_del(&page->lru);
    				__free_page(page);
    			}
    		}
    	}
    }
    
    #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
    void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
    {
    	struct swap_info_struct *si, *next;
    	int nid = page_to_nid(page);
    
    	if (!(gfp_mask & __GFP_IO))
    		return;
    
    	if (!blk_cgroup_congested())
    		return;
    
    	/*
    	 * We've already scheduled a throttle, avoid taking the global swap
    	 * lock.
    	 */
    	if (current->throttle_queue)
    		return;
    
    	spin_lock(&swap_avail_lock);
    	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
    				  avail_lists[nid]) {
    		if (si->bdev) {
    			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
    			break;
    		}
    	}
    	spin_unlock(&swap_avail_lock);
    }
    #endif
    
    static int __init swapfile_init(void)
    {
    	int nid;
    
    	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
    					 GFP_KERNEL);
    	if (!swap_avail_heads) {
    		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
    		return -ENOMEM;
    	}
    
    	for_each_node(nid)
    		plist_head_init(&swap_avail_heads[nid]);
    
    	return 0;
    }
    subsys_initcall(swapfile_init);