Skip to content
Snippets Groups Projects
Select Git revision
  • fbd5eb54c28ce314e0cca1505d2261a8a84ebc44
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

i40evf_main.c

Blame
  • workqueue.c 23.97 KiB
    /*
     * linux/kernel/workqueue.c
     *
     * Generic mechanism for defining kernel helper threads for running
     * arbitrary tasks in process context.
     *
     * Started by Ingo Molnar, Copyright (C) 2002
     *
     * Derived from the taskqueue/keventd code by:
     *
     *   David Woodhouse <dwmw2@infradead.org>
     *   Andrew Morton
     *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
     *   Theodore Ts'o <tytso@mit.edu>
     *
     * Made to use alloc_percpu by Christoph Lameter.
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/sched.h>
    #include <linux/init.h>
    #include <linux/signal.h>
    #include <linux/completion.h>
    #include <linux/workqueue.h>
    #include <linux/slab.h>
    #include <linux/cpu.h>
    #include <linux/notifier.h>
    #include <linux/kthread.h>
    #include <linux/hardirq.h>
    #include <linux/mempolicy.h>
    #include <linux/freezer.h>
    #include <linux/kallsyms.h>
    #include <linux/debug_locks.h>
    #include <linux/lockdep.h>
    
    /*
     * The per-CPU workqueue (if single thread, we always use the first
     * possible cpu).
     */
    struct cpu_workqueue_struct {
    
    	spinlock_t lock;
    
    	struct list_head worklist;
    	wait_queue_head_t more_work;
    	struct work_struct *current_work;
    
    	struct workqueue_struct *wq;
    	struct task_struct *thread;
    
    	int run_depth;		/* Detect run_workqueue() recursion depth */
    } ____cacheline_aligned;
    
    /*
     * The externally visible workqueue abstraction is an array of
     * per-CPU workqueues:
     */
    struct workqueue_struct {
    	struct cpu_workqueue_struct *cpu_wq;
    	struct list_head list;
    	const char *name;
    	int singlethread;
    	int freezeable;		/* Freeze threads during suspend */
    	int rt;
    #ifdef CONFIG_LOCKDEP
    	struct lockdep_map lockdep_map;
    #endif
    };
    
    /* Serializes the accesses to the list of workqueues. */
    static DEFINE_SPINLOCK(workqueue_lock);
    static LIST_HEAD(workqueues);
    
    static int singlethread_cpu __read_mostly;
    static cpumask_t cpu_singlethread_map __read_mostly;
    /*
     * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
     * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
     * which comes in between can't use for_each_online_cpu(). We could
     * use cpu_possible_map, the cpumask below is more a documentation
     * than optimization.
     */
    static cpumask_t cpu_populated_map __read_mostly;
    
    /* If it's single threaded, it isn't in the list of workqueues. */
    static inline int is_single_threaded(struct workqueue_struct *wq)
    {
    	return wq->singlethread;
    }
    
    static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
    {
    	return is_single_threaded(wq)
    		? &cpu_singlethread_map : &cpu_populated_map;
    }
    
    static
    struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
    {
    	if (unlikely(is_single_threaded(wq)))
    		cpu = singlethread_cpu;
    	return per_cpu_ptr(wq->cpu_wq, cpu);
    }
    
    /*
     * Set the workqueue on which a work item is to be run
     * - Must *only* be called if the pending flag is set
     */
    static inline void set_wq_data(struct work_struct *work,
    				struct cpu_workqueue_struct *cwq)
    {
    	unsigned long new;
    
    	BUG_ON(!work_pending(work));
    
    	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
    	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
    	atomic_long_set(&work->data, new);
    }
    
    static inline
    struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
    {
    	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
    }
    
    static void insert_work(struct cpu_workqueue_struct *cwq,
    			struct work_struct *work, struct list_head *head)
    {
    	set_wq_data(work, cwq);
    	/*
    	 * Ensure that we get the right work->data if we see the
    	 * result of list_add() below, see try_to_grab_pending().
    	 */
    	smp_wmb();
    	list_add_tail(&work->entry, head);
    	wake_up(&cwq->more_work);
    }
    
    static void __queue_work(struct cpu_workqueue_struct *cwq,
    			 struct work_struct *work)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&cwq->lock, flags);
    	insert_work(cwq, work, &cwq->worklist);
    	spin_unlock_irqrestore(&cwq->lock, flags);
    }
    
    /**
     * queue_work - queue work on a workqueue
     * @wq: workqueue to use
     * @work: work to queue
     *
     * Returns 0 if @work was already on a queue, non-zero otherwise.
     *
     * We queue the work to the CPU on which it was submitted, but if the CPU dies
     * it can be processed by another CPU.
     */
    int queue_work(struct workqueue_struct *wq, struct work_struct *work)
    {
    	int ret;
    
    	ret = queue_work_on(get_cpu(), wq, work);
    	put_cpu();
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(queue_work);
    
    /**
     * queue_work_on - queue work on specific cpu
     * @cpu: CPU number to execute work on
     * @wq: workqueue to use
     * @work: work to queue
     *
     * Returns 0 if @work was already on a queue, non-zero otherwise.
     *
     * We queue the work to a specific CPU, the caller must ensure it
     * can't go away.
     */
    int
    queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
    {
    	int ret = 0;
    
    	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
    		BUG_ON(!list_empty(&work->entry));
    		__queue_work(wq_per_cpu(wq, cpu), work);
    		ret = 1;
    	}
    	return ret;
    }
    EXPORT_SYMBOL_GPL(queue_work_on);
    
    static void delayed_work_timer_fn(unsigned long __data)
    {
    	struct delayed_work *dwork = (struct delayed_work *)__data;
    	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
    	struct workqueue_struct *wq = cwq->wq;
    
    	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
    }
    
    /**
     * queue_delayed_work - queue work on a workqueue after delay
     * @wq: workqueue to use
     * @dwork: delayable work to queue
     * @delay: number of jiffies to wait before queueing
     *
     * Returns 0 if @work was already on a queue, non-zero otherwise.
     */
    int queue_delayed_work(struct workqueue_struct *wq,
    			struct delayed_work *dwork, unsigned long delay)
    {
    	if (delay == 0)
    		return queue_work(wq, &dwork->work);
    
    	return queue_delayed_work_on(-1, wq, dwork, delay);
    }
    EXPORT_SYMBOL_GPL(queue_delayed_work);
    
    /**
     * queue_delayed_work_on - queue work on specific CPU after delay
     * @cpu: CPU number to execute work on
     * @wq: workqueue to use
     * @dwork: work to queue
     * @delay: number of jiffies to wait before queueing
     *
     * Returns 0 if @work was already on a queue, non-zero otherwise.
     */
    int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    			struct delayed_work *dwork, unsigned long delay)
    {
    	int ret = 0;
    	struct timer_list *timer = &dwork->timer;
    	struct work_struct *work = &dwork->work;
    
    	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
    		BUG_ON(timer_pending(timer));
    		BUG_ON(!list_empty(&work->entry));
    
    		timer_stats_timer_set_start_info(&dwork->timer);
    
    		/* This stores cwq for the moment, for the timer_fn */
    		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
    		timer->expires = jiffies + delay;
    		timer->data = (unsigned long)dwork;
    		timer->function = delayed_work_timer_fn;
    
    		if (unlikely(cpu >= 0))
    			add_timer_on(timer, cpu);
    		else
    			add_timer(timer);
    		ret = 1;
    	}
    	return ret;
    }
    EXPORT_SYMBOL_GPL(queue_delayed_work_on);
    
    static void run_workqueue(struct cpu_workqueue_struct *cwq)
    {
    	spin_lock_irq(&cwq->lock);
    	cwq->run_depth++;
    	if (cwq->run_depth > 3) {
    		/* morton gets to eat his hat */
    		printk("%s: recursion depth exceeded: %d\n",
    			__func__, cwq->run_depth);
    		dump_stack();
    	}
    	while (!list_empty(&cwq->worklist)) {
    		struct work_struct *work = list_entry(cwq->worklist.next,
    						struct work_struct, entry);
    		work_func_t f = work->func;
    #ifdef CONFIG_LOCKDEP
    		/*
    		 * It is permissible to free the struct work_struct
    		 * from inside the function that is called from it,
    		 * this we need to take into account for lockdep too.
    		 * To avoid bogus "held lock freed" warnings as well
    		 * as problems when looking into work->lockdep_map,
    		 * make a copy and use that here.
    		 */
    		struct lockdep_map lockdep_map = work->lockdep_map;
    #endif
    
    		cwq->current_work = work;
    		list_del_init(cwq->worklist.next);
    		spin_unlock_irq(&cwq->lock);
    
    		BUG_ON(get_wq_data(work) != cwq);
    		work_clear_pending(work);
    		lock_map_acquire(&cwq->wq->lockdep_map);
    		lock_map_acquire(&lockdep_map);
    		f(work);
    		lock_map_release(&lockdep_map);
    		lock_map_release(&cwq->wq->lockdep_map);
    
    		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
    					"%s/0x%08x/%d\n",
    					current->comm, preempt_count(),
    				       	task_pid_nr(current));
    			printk(KERN_ERR "    last function: ");
    			print_symbol("%s\n", (unsigned long)f);
    			debug_show_held_locks(current);
    			dump_stack();
    		}
    
    		spin_lock_irq(&cwq->lock);
    		cwq->current_work = NULL;
    	}
    	cwq->run_depth--;
    	spin_unlock_irq(&cwq->lock);
    }
    
    static int worker_thread(void *__cwq)
    {
    	struct cpu_workqueue_struct *cwq = __cwq;
    	DEFINE_WAIT(wait);
    
    	if (cwq->wq->freezeable)
    		set_freezable();
    
    	set_user_nice(current, -5);
    
    	for (;;) {
    		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
    		if (!freezing(current) &&
    		    !kthread_should_stop() &&
    		    list_empty(&cwq->worklist))
    			schedule();
    		finish_wait(&cwq->more_work, &wait);
    
    		try_to_freeze();
    
    		if (kthread_should_stop())
    			break;
    
    		run_workqueue(cwq);
    	}
    
    	return 0;
    }
    
    struct wq_barrier {
    	struct work_struct	work;
    	struct completion	done;
    };
    
    static void wq_barrier_func(struct work_struct *work)
    {
    	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    	complete(&barr->done);
    }
    
    static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
    			struct wq_barrier *barr, struct list_head *head)
    {
    	INIT_WORK(&barr->work, wq_barrier_func);
    	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
    
    	init_completion(&barr->done);
    
    	insert_work(cwq, &barr->work, head);
    }
    
    static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
    {
    	int active;
    
    	if (cwq->thread == current) {
    		/*
    		 * Probably keventd trying to flush its own queue. So simply run
    		 * it by hand rather than deadlocking.
    		 */
    		run_workqueue(cwq);
    		active = 1;
    	} else {
    		struct wq_barrier barr;
    
    		active = 0;
    		spin_lock_irq(&cwq->lock);
    		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
    			insert_wq_barrier(cwq, &barr, &cwq->worklist);
    			active = 1;
    		}
    		spin_unlock_irq(&cwq->lock);
    
    		if (active)
    			wait_for_completion(&barr.done);
    	}
    
    	return active;
    }
    
    /**
     * flush_workqueue - ensure that any scheduled work has run to completion.
     * @wq: workqueue to flush
     *
     * Forces execution of the workqueue and blocks until its completion.
     * This is typically used in driver shutdown handlers.
     *
     * We sleep until all works which were queued on entry have been handled,
     * but we are not livelocked by new incoming ones.
     *
     * This function used to run the workqueues itself.  Now we just wait for the
     * helper threads to do it.
     */
    void flush_workqueue(struct workqueue_struct *wq)
    {
    	const cpumask_t *cpu_map = wq_cpu_map(wq);
    	int cpu;
    
    	might_sleep();
    	lock_map_acquire(&wq->lockdep_map);
    	lock_map_release(&wq->lockdep_map);
    	for_each_cpu_mask_nr(cpu, *cpu_map)
    		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
    }
    EXPORT_SYMBOL_GPL(flush_workqueue);
    
    /**
     * flush_work - block until a work_struct's callback has terminated
     * @work: the work which is to be flushed
     *
     * Returns false if @work has already terminated.
     *
     * It is expected that, prior to calling flush_work(), the caller has
     * arranged for the work to not be requeued, otherwise it doesn't make
     * sense to use this function.
     */
    int flush_work(struct work_struct *work)
    {
    	struct cpu_workqueue_struct *cwq;
    	struct list_head *prev;
    	struct wq_barrier barr;
    
    	might_sleep();
    	cwq = get_wq_data(work);
    	if (!cwq)
    		return 0;
    
    	lock_map_acquire(&cwq->wq->lockdep_map);
    	lock_map_release(&cwq->wq->lockdep_map);
    
    	prev = NULL;
    	spin_lock_irq(&cwq->lock);
    	if (!list_empty(&work->entry)) {
    		/*
    		 * See the comment near try_to_grab_pending()->smp_rmb().
    		 * If it was re-queued under us we are not going to wait.
    		 */
    		smp_rmb();
    		if (unlikely(cwq != get_wq_data(work)))
    			goto out;
    		prev = &work->entry;
    	} else {
    		if (cwq->current_work != work)
    			goto out;
    		prev = &cwq->worklist;
    	}
    	insert_wq_barrier(cwq, &barr, prev->next);
    out:
    	spin_unlock_irq(&cwq->lock);
    	if (!prev)
    		return 0;
    
    	wait_for_completion(&barr.done);
    	return 1;
    }
    EXPORT_SYMBOL_GPL(flush_work);
    
    /*
     * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
     * so this work can't be re-armed in any way.
     */
    static int try_to_grab_pending(struct work_struct *work)
    {
    	struct cpu_workqueue_struct *cwq;
    	int ret = -1;
    
    	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
    		return 0;
    
    	/*
    	 * The queueing is in progress, or it is already queued. Try to
    	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    	 */
    
    	cwq = get_wq_data(work);
    	if (!cwq)
    		return ret;
    
    	spin_lock_irq(&cwq->lock);
    	if (!list_empty(&work->entry)) {
    		/*
    		 * This work is queued, but perhaps we locked the wrong cwq.
    		 * In that case we must see the new value after rmb(), see
    		 * insert_work()->wmb().
    		 */
    		smp_rmb();
    		if (cwq == get_wq_data(work)) {
    			list_del_init(&work->entry);
    			ret = 1;
    		}
    	}
    	spin_unlock_irq(&cwq->lock);
    
    	return ret;
    }
    
    static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
    				struct work_struct *work)
    {
    	struct wq_barrier barr;
    	int running = 0;
    
    	spin_lock_irq(&cwq->lock);
    	if (unlikely(cwq->current_work == work)) {
    		insert_wq_barrier(cwq, &barr, cwq->worklist.next);
    		running = 1;
    	}
    	spin_unlock_irq(&cwq->lock);
    
    	if (unlikely(running))
    		wait_for_completion(&barr.done);
    }
    
    static void wait_on_work(struct work_struct *work)
    {
    	struct cpu_workqueue_struct *cwq;
    	struct workqueue_struct *wq;
    	const cpumask_t *cpu_map;
    	int cpu;
    
    	might_sleep();
    
    	lock_map_acquire(&work->lockdep_map);
    	lock_map_release(&work->lockdep_map);
    
    	cwq = get_wq_data(work);
    	if (!cwq)
    		return;
    
    	wq = cwq->wq;
    	cpu_map = wq_cpu_map(wq);
    
    	for_each_cpu_mask_nr(cpu, *cpu_map)
    		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
    }
    
    static int __cancel_work_timer(struct work_struct *work,
    				struct timer_list* timer)
    {
    	int ret;
    
    	do {
    		ret = (timer && likely(del_timer(timer)));
    		if (!ret)
    			ret = try_to_grab_pending(work);
    		wait_on_work(work);
    	} while (unlikely(ret < 0));
    
    	work_clear_pending(work);
    	return ret;
    }
    
    /**
     * cancel_work_sync - block until a work_struct's callback has terminated
     * @work: the work which is to be flushed
     *
     * Returns true if @work was pending.
     *
     * cancel_work_sync() will cancel the work if it is queued. If the work's
     * callback appears to be running, cancel_work_sync() will block until it
     * has completed.
     *
     * It is possible to use this function if the work re-queues itself. It can
     * cancel the work even if it migrates to another workqueue, however in that
     * case it only guarantees that work->func() has completed on the last queued
     * workqueue.
     *
     * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
     * pending, otherwise it goes into a busy-wait loop until the timer expires.
     *
     * The caller must ensure that workqueue_struct on which this work was last
     * queued can't be destroyed before this function returns.
     */
    int cancel_work_sync(struct work_struct *work)
    {
    	return __cancel_work_timer(work, NULL);
    }
    EXPORT_SYMBOL_GPL(cancel_work_sync);
    
    /**
     * cancel_delayed_work_sync - reliably kill off a delayed work.
     * @dwork: the delayed work struct
     *
     * Returns true if @dwork was pending.
     *
     * It is possible to use this function if @dwork rearms itself via queue_work()
     * or queue_delayed_work(). See also the comment for cancel_work_sync().
     */
    int cancel_delayed_work_sync(struct delayed_work *dwork)
    {
    	return __cancel_work_timer(&dwork->work, &dwork->timer);
    }
    EXPORT_SYMBOL(cancel_delayed_work_sync);
    
    static struct workqueue_struct *keventd_wq __read_mostly;
    
    /**
     * schedule_work - put work task in global workqueue
     * @work: job to be done
     *
     * This puts a job in the kernel-global workqueue.
     */
    int schedule_work(struct work_struct *work)
    {
    	return queue_work(keventd_wq, work);
    }
    EXPORT_SYMBOL(schedule_work);
    
    /*
     * schedule_work_on - put work task on a specific cpu
     * @cpu: cpu to put the work task on
     * @work: job to be done
     *
     * This puts a job on a specific cpu
     */
    int schedule_work_on(int cpu, struct work_struct *work)
    {
    	return queue_work_on(cpu, keventd_wq, work);
    }
    EXPORT_SYMBOL(schedule_work_on);
    
    /**
     * schedule_delayed_work - put work task in global workqueue after delay
     * @dwork: job to be done
     * @delay: number of jiffies to wait or 0 for immediate execution
     *
     * After waiting for a given time this puts a job in the kernel-global
     * workqueue.
     */
    int schedule_delayed_work(struct delayed_work *dwork,
    					unsigned long delay)
    {
    	return queue_delayed_work(keventd_wq, dwork, delay);
    }
    EXPORT_SYMBOL(schedule_delayed_work);
    
    /**
     * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
     * @cpu: cpu to use
     * @dwork: job to be done
     * @delay: number of jiffies to wait
     *
     * After waiting for a given time this puts a job in the kernel-global
     * workqueue on the specified CPU.
     */
    int schedule_delayed_work_on(int cpu,
    			struct delayed_work *dwork, unsigned long delay)
    {
    	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
    }
    EXPORT_SYMBOL(schedule_delayed_work_on);
    
    /**
     * schedule_on_each_cpu - call a function on each online CPU from keventd
     * @func: the function to call
     *
     * Returns zero on success.
     * Returns -ve errno on failure.
     *
     * schedule_on_each_cpu() is very slow.
     */
    int schedule_on_each_cpu(work_func_t func)
    {
    	int cpu;
    	struct work_struct *works;
    
    	works = alloc_percpu(struct work_struct);
    	if (!works)
    		return -ENOMEM;
    
    	get_online_cpus();
    	for_each_online_cpu(cpu) {
    		struct work_struct *work = per_cpu_ptr(works, cpu);
    
    		INIT_WORK(work, func);
    		schedule_work_on(cpu, work);
    	}
    	for_each_online_cpu(cpu)
    		flush_work(per_cpu_ptr(works, cpu));
    	put_online_cpus();
    	free_percpu(works);
    	return 0;
    }
    
    void flush_scheduled_work(void)
    {
    	flush_workqueue(keventd_wq);
    }
    EXPORT_SYMBOL(flush_scheduled_work);
    
    /**
     * execute_in_process_context - reliably execute the routine with user context
     * @fn:		the function to execute
     * @ew:		guaranteed storage for the execute work structure (must
     *		be available when the work executes)
     *
     * Executes the function immediately if process context is available,
     * otherwise schedules the function for delayed execution.
     *
     * Returns:	0 - function was executed
     *		1 - function was scheduled for execution
     */
    int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    {
    	if (!in_interrupt()) {
    		fn(&ew->work);
    		return 0;
    	}
    
    	INIT_WORK(&ew->work, fn);
    	schedule_work(&ew->work);
    
    	return 1;
    }
    EXPORT_SYMBOL_GPL(execute_in_process_context);
    
    int keventd_up(void)
    {
    	return keventd_wq != NULL;
    }
    
    int current_is_keventd(void)
    {
    	struct cpu_workqueue_struct *cwq;
    	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
    	int ret = 0;
    
    	BUG_ON(!keventd_wq);
    
    	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
    	if (current == cwq->thread)
    		ret = 1;
    
    	return ret;
    
    }
    
    static struct cpu_workqueue_struct *
    init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
    {
    	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
    
    	cwq->wq = wq;
    	spin_lock_init(&cwq->lock);
    	INIT_LIST_HEAD(&cwq->worklist);
    	init_waitqueue_head(&cwq->more_work);
    
    	return cwq;
    }
    
    static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
    {
    	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
    	struct workqueue_struct *wq = cwq->wq;
    	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
    	struct task_struct *p;
    
    	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
    	/*
    	 * Nobody can add the work_struct to this cwq,
    	 *	if (caller is __create_workqueue)
    	 *		nobody should see this wq
    	 *	else // caller is CPU_UP_PREPARE
    	 *		cpu is not on cpu_online_map
    	 * so we can abort safely.
    	 */
    	if (IS_ERR(p))
    		return PTR_ERR(p);
    	if (cwq->wq->rt)
    		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
    	cwq->thread = p;
    
    	return 0;
    }
    
    static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
    {
    	struct task_struct *p = cwq->thread;
    
    	if (p != NULL) {
    		if (cpu >= 0)
    			kthread_bind(p, cpu);
    		wake_up_process(p);
    	}
    }
    
    struct workqueue_struct *__create_workqueue_key(const char *name,
    						int singlethread,
    						int freezeable,
    						int rt,
    						struct lock_class_key *key,
    						const char *lock_name)
    {
    	struct workqueue_struct *wq;
    	struct cpu_workqueue_struct *cwq;
    	int err = 0, cpu;
    
    	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
    	if (!wq)
    		return NULL;
    
    	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
    	if (!wq->cpu_wq) {
    		kfree(wq);
    		return NULL;
    	}
    
    	wq->name = name;
    	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
    	wq->singlethread = singlethread;
    	wq->freezeable = freezeable;
    	wq->rt = rt;
    	INIT_LIST_HEAD(&wq->list);
    
    	if (singlethread) {
    		cwq = init_cpu_workqueue(wq, singlethread_cpu);
    		err = create_workqueue_thread(cwq, singlethread_cpu);
    		start_workqueue_thread(cwq, -1);
    	} else {
    		cpu_maps_update_begin();
    		/*
    		 * We must place this wq on list even if the code below fails.
    		 * cpu_down(cpu) can remove cpu from cpu_populated_map before
    		 * destroy_workqueue() takes the lock, in that case we leak
    		 * cwq[cpu]->thread.
    		 */
    		spin_lock(&workqueue_lock);
    		list_add(&wq->list, &workqueues);
    		spin_unlock(&workqueue_lock);
    		/*
    		 * We must initialize cwqs for each possible cpu even if we
    		 * are going to call destroy_workqueue() finally. Otherwise
    		 * cpu_up() can hit the uninitialized cwq once we drop the
    		 * lock.
    		 */
    		for_each_possible_cpu(cpu) {
    			cwq = init_cpu_workqueue(wq, cpu);
    			if (err || !cpu_online(cpu))
    				continue;
    			err = create_workqueue_thread(cwq, cpu);
    			start_workqueue_thread(cwq, cpu);
    		}
    		cpu_maps_update_done();
    	}
    
    	if (err) {
    		destroy_workqueue(wq);
    		wq = NULL;
    	}
    	return wq;
    }
    EXPORT_SYMBOL_GPL(__create_workqueue_key);
    
    static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
    {
    	/*
    	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
    	 * cpu_add_remove_lock protects cwq->thread.
    	 */
    	if (cwq->thread == NULL)
    		return;
    
    	lock_map_acquire(&cwq->wq->lockdep_map);
    	lock_map_release(&cwq->wq->lockdep_map);
    
    	flush_cpu_workqueue(cwq);
    	/*
    	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
    	 * a concurrent flush_workqueue() can insert a barrier after us.
    	 * However, in that case run_workqueue() won't return and check
    	 * kthread_should_stop() until it flushes all work_struct's.
    	 * When ->worklist becomes empty it is safe to exit because no
    	 * more work_structs can be queued on this cwq: flush_workqueue
    	 * checks list_empty(), and a "normal" queue_work() can't use
    	 * a dead CPU.
    	 */
    	kthread_stop(cwq->thread);
    	cwq->thread = NULL;
    }
    
    /**
     * destroy_workqueue - safely terminate a workqueue
     * @wq: target workqueue
     *
     * Safely destroy a workqueue. All work currently pending will be done first.
     */
    void destroy_workqueue(struct workqueue_struct *wq)
    {
    	const cpumask_t *cpu_map = wq_cpu_map(wq);
    	int cpu;
    
    	cpu_maps_update_begin();
    	spin_lock(&workqueue_lock);
    	list_del(&wq->list);
    	spin_unlock(&workqueue_lock);
    
    	for_each_cpu_mask_nr(cpu, *cpu_map)
    		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
     	cpu_maps_update_done();
    
    	free_percpu(wq->cpu_wq);
    	kfree(wq);
    }
    EXPORT_SYMBOL_GPL(destroy_workqueue);
    
    static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
    						unsigned long action,
    						void *hcpu)
    {
    	unsigned int cpu = (unsigned long)hcpu;
    	struct cpu_workqueue_struct *cwq;
    	struct workqueue_struct *wq;
    	int ret = NOTIFY_OK;
    
    	action &= ~CPU_TASKS_FROZEN;
    
    	switch (action) {
    	case CPU_UP_PREPARE:
    		cpu_set(cpu, cpu_populated_map);
    	}
    undo:
    	list_for_each_entry(wq, &workqueues, list) {
    		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
    
    		switch (action) {
    		case CPU_UP_PREPARE:
    			if (!create_workqueue_thread(cwq, cpu))
    				break;
    			printk(KERN_ERR "workqueue [%s] for %i failed\n",
    				wq->name, cpu);
    			action = CPU_UP_CANCELED;
    			ret = NOTIFY_BAD;
    			goto undo;
    
    		case CPU_ONLINE:
    			start_workqueue_thread(cwq, cpu);
    			break;
    
    		case CPU_UP_CANCELED:
    			start_workqueue_thread(cwq, -1);
    		case CPU_POST_DEAD:
    			cleanup_workqueue_thread(cwq);
    			break;
    		}
    	}
    
    	switch (action) {
    	case CPU_UP_CANCELED:
    	case CPU_POST_DEAD:
    		cpu_clear(cpu, cpu_populated_map);
    	}
    
    	return ret;
    }
    
    void __init init_workqueues(void)
    {
    	cpu_populated_map = cpu_online_map;
    	singlethread_cpu = first_cpu(cpu_possible_map);
    	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
    	hotcpu_notifier(workqueue_cpu_callback, 0);
    	keventd_wq = create_workqueue("events");
    	BUG_ON(!keventd_wq);
    }