Skip to content
Snippets Groups Projects
Select Git revision
  • 8f80fb07564fe7db60cd56f41ee520da3510a3c7
  • collabora/staging default
  • capture-publish-error
  • update-aptly-tools
  • cherry-pick-5bd7afca
  • collabora/production
  • ci-perl
  • always-tag-staging-production
  • wip/bookworm-backend
  • master
  • wip/refi64/aptly-tests
  • wip/sjoerd/aptly-in-own-container
  • relax-liveness-check
  • wip/integration-test
  • wip/collabora/emulated-builds
  • collabora/master/rebase
  • wip/docker-stuff
  • allow-build-deps
  • 2.10
  • 2.9
  • 2.8
  • 2.10.23
  • 2.10.22
  • 2.10.21
  • 2.10.20
  • 2.10.19
  • 2.10.18
  • 2.10.17
  • 2.10.16
  • 2.10.15
  • 2.10.14
  • 2.10.13
  • 2.10.12
  • 2.10.11
  • 2.10.10
  • 2.10.9
  • 2.10.7
  • 2.10.6
  • 2.10.5
  • 2.10.4
  • 2.10.3
41 results

BSAptly.pm

Blame
  • hugetlb.c 30.85 KiB
    /*
     * Generic hugetlb support.
     * (C) William Irwin, April 2004
     */
    #include <linux/gfp.h>
    #include <linux/list.h>
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/mm.h>
    #include <linux/sysctl.h>
    #include <linux/highmem.h>
    #include <linux/nodemask.h>
    #include <linux/pagemap.h>
    #include <linux/mempolicy.h>
    #include <linux/cpuset.h>
    #include <linux/mutex.h>
    
    #include <asm/page.h>
    #include <asm/pgtable.h>
    
    #include <linux/hugetlb.h>
    #include "internal.h"
    
    const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
    static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
    static unsigned long surplus_huge_pages;
    unsigned long max_huge_pages;
    static struct list_head hugepage_freelists[MAX_NUMNODES];
    static unsigned int nr_huge_pages_node[MAX_NUMNODES];
    static unsigned int free_huge_pages_node[MAX_NUMNODES];
    static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
    static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
    unsigned long hugepages_treat_as_movable;
    unsigned long nr_overcommit_huge_pages;
    static int hugetlb_next_nid;
    
    /*
     * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
     */
    static DEFINE_SPINLOCK(hugetlb_lock);
    
    static void clear_huge_page(struct page *page, unsigned long addr)
    {
    	int i;
    
    	might_sleep();
    	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
    		cond_resched();
    		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
    	}
    }
    
    static void copy_huge_page(struct page *dst, struct page *src,
    			   unsigned long addr, struct vm_area_struct *vma)
    {
    	int i;
    
    	might_sleep();
    	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
    		cond_resched();
    		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
    	}
    }
    
    static void enqueue_huge_page(struct page *page)
    {
    	int nid = page_to_nid(page);
    	list_add(&page->lru, &hugepage_freelists[nid]);
    	free_huge_pages++;
    	free_huge_pages_node[nid]++;
    }
    
    static struct page *dequeue_huge_page(struct vm_area_struct *vma,
    				unsigned long address)
    {
    	int nid;
    	struct page *page = NULL;
    	struct mempolicy *mpol;
    	struct zonelist *zonelist = huge_zonelist(vma, address,
    					htlb_alloc_mask, &mpol);
    	struct zone **z;
    
    	for (z = zonelist->zones; *z; z++) {
    		nid = zone_to_nid(*z);
    		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
    		    !list_empty(&hugepage_freelists[nid])) {
    			page = list_entry(hugepage_freelists[nid].next,
    					  struct page, lru);
    			list_del(&page->lru);
    			free_huge_pages--;
    			free_huge_pages_node[nid]--;
    			if (vma && vma->vm_flags & VM_MAYSHARE)
    				resv_huge_pages--;
    			break;
    		}
    	}
    	mpol_free(mpol);	/* unref if mpol !NULL */
    	return page;
    }
    
    static void update_and_free_page(struct page *page)
    {
    	int i;
    	nr_huge_pages--;
    	nr_huge_pages_node[page_to_nid(page)]--;
    	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
    		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
    				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
    				1 << PG_private | 1<< PG_writeback);
    	}
    	set_compound_page_dtor(page, NULL);
    	set_page_refcounted(page);
    	__free_pages(page, HUGETLB_PAGE_ORDER);
    }
    
    static void free_huge_page(struct page *page)
    {
    	int nid = page_to_nid(page);
    	struct address_space *mapping;
    
    	mapping = (struct address_space *) page_private(page);
    	BUG_ON(page_count(page));
    	INIT_LIST_HEAD(&page->lru);
    
    	spin_lock(&hugetlb_lock);
    	if (surplus_huge_pages_node[nid]) {
    		update_and_free_page(page);
    		surplus_huge_pages--;
    		surplus_huge_pages_node[nid]--;
    	} else {
    		enqueue_huge_page(page);
    	}
    	spin_unlock(&hugetlb_lock);
    	if (mapping)
    		hugetlb_put_quota(mapping, 1);
    	set_page_private(page, 0);
    }
    
    /*
     * Increment or decrement surplus_huge_pages.  Keep node-specific counters
     * balanced by operating on them in a round-robin fashion.
     * Returns 1 if an adjustment was made.
     */
    static int adjust_pool_surplus(int delta)
    {
    	static int prev_nid;
    	int nid = prev_nid;
    	int ret = 0;
    
    	VM_BUG_ON(delta != -1 && delta != 1);
    	do {
    		nid = next_node(nid, node_online_map);
    		if (nid == MAX_NUMNODES)
    			nid = first_node(node_online_map);
    
    		/* To shrink on this node, there must be a surplus page */
    		if (delta < 0 && !surplus_huge_pages_node[nid])
    			continue;
    		/* Surplus cannot exceed the total number of pages */
    		if (delta > 0 && surplus_huge_pages_node[nid] >=
    						nr_huge_pages_node[nid])
    			continue;
    
    		surplus_huge_pages += delta;
    		surplus_huge_pages_node[nid] += delta;
    		ret = 1;
    		break;
    	} while (nid != prev_nid);
    
    	prev_nid = nid;
    	return ret;
    }
    
    static struct page *alloc_fresh_huge_page_node(int nid)
    {
    	struct page *page;
    
    	page = alloc_pages_node(nid,
    		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
    		HUGETLB_PAGE_ORDER);
    	if (page) {
    		set_compound_page_dtor(page, free_huge_page);
    		spin_lock(&hugetlb_lock);
    		nr_huge_pages++;
    		nr_huge_pages_node[nid]++;
    		spin_unlock(&hugetlb_lock);
    		put_page(page); /* free it into the hugepage allocator */
    	}
    
    	return page;
    }
    
    static int alloc_fresh_huge_page(void)
    {
    	struct page *page;
    	int start_nid;
    	int next_nid;
    	int ret = 0;
    
    	start_nid = hugetlb_next_nid;
    
    	do {
    		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
    		if (page)
    			ret = 1;
    		/*
    		 * Use a helper variable to find the next node and then
    		 * copy it back to hugetlb_next_nid afterwards:
    		 * otherwise there's a window in which a racer might
    		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
    		 * But we don't need to use a spin_lock here: it really
    		 * doesn't matter if occasionally a racer chooses the
    		 * same nid as we do.  Move nid forward in the mask even
    		 * if we just successfully allocated a hugepage so that
    		 * the next caller gets hugepages on the next node.
    		 */
    		next_nid = next_node(hugetlb_next_nid, node_online_map);
    		if (next_nid == MAX_NUMNODES)
    			next_nid = first_node(node_online_map);
    		hugetlb_next_nid = next_nid;
    	} while (!page && hugetlb_next_nid != start_nid);
    
    	return ret;
    }
    
    static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
    						unsigned long address)
    {
    	struct page *page;
    	unsigned int nid;
    
    	/*
    	 * Assume we will successfully allocate the surplus page to
    	 * prevent racing processes from causing the surplus to exceed
    	 * overcommit
    	 *
    	 * This however introduces a different race, where a process B
    	 * tries to grow the static hugepage pool while alloc_pages() is
    	 * called by process A. B will only examine the per-node
    	 * counters in determining if surplus huge pages can be
    	 * converted to normal huge pages in adjust_pool_surplus(). A
    	 * won't be able to increment the per-node counter, until the
    	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
    	 * no more huge pages can be converted from surplus to normal
    	 * state (and doesn't try to convert again). Thus, we have a
    	 * case where a surplus huge page exists, the pool is grown, and
    	 * the surplus huge page still exists after, even though it
    	 * should just have been converted to a normal huge page. This
    	 * does not leak memory, though, as the hugepage will be freed
    	 * once it is out of use. It also does not allow the counters to
    	 * go out of whack in adjust_pool_surplus() as we don't modify
    	 * the node values until we've gotten the hugepage and only the
    	 * per-node value is checked there.
    	 */
    	spin_lock(&hugetlb_lock);
    	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
    		spin_unlock(&hugetlb_lock);
    		return NULL;
    	} else {
    		nr_huge_pages++;
    		surplus_huge_pages++;
    	}
    	spin_unlock(&hugetlb_lock);
    
    	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
    					HUGETLB_PAGE_ORDER);
    
    	spin_lock(&hugetlb_lock);
    	if (page) {
    		nid = page_to_nid(page);
    		set_compound_page_dtor(page, free_huge_page);
    		/*
    		 * We incremented the global counters already
    		 */
    		nr_huge_pages_node[nid]++;
    		surplus_huge_pages_node[nid]++;
    	} else {
    		nr_huge_pages--;
    		surplus_huge_pages--;
    	}
    	spin_unlock(&hugetlb_lock);
    
    	return page;
    }
    
    /*
     * Increase the hugetlb pool such that it can accomodate a reservation
     * of size 'delta'.
     */
    static int gather_surplus_pages(int delta)
    {
    	struct list_head surplus_list;
    	struct page *page, *tmp;
    	int ret, i;
    	int needed, allocated;
    
    	needed = (resv_huge_pages + delta) - free_huge_pages;
    	if (needed <= 0)
    		return 0;
    
    	allocated = 0;
    	INIT_LIST_HEAD(&surplus_list);
    
    	ret = -ENOMEM;
    retry:
    	spin_unlock(&hugetlb_lock);
    	for (i = 0; i < needed; i++) {
    		page = alloc_buddy_huge_page(NULL, 0);
    		if (!page) {
    			/*
    			 * We were not able to allocate enough pages to
    			 * satisfy the entire reservation so we free what
    			 * we've allocated so far.
    			 */
    			spin_lock(&hugetlb_lock);
    			needed = 0;
    			goto free;
    		}
    
    		list_add(&page->lru, &surplus_list);
    	}
    	allocated += needed;
    
    	/*
    	 * After retaking hugetlb_lock, we need to recalculate 'needed'
    	 * because either resv_huge_pages or free_huge_pages may have changed.
    	 */
    	spin_lock(&hugetlb_lock);
    	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
    	if (needed > 0)
    		goto retry;
    
    	/*
    	 * The surplus_list now contains _at_least_ the number of extra pages
    	 * needed to accomodate the reservation.  Add the appropriate number
    	 * of pages to the hugetlb pool and free the extras back to the buddy
    	 * allocator.
    	 */
    	needed += allocated;
    	ret = 0;
    free:
    	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
    		list_del(&page->lru);
    		if ((--needed) >= 0)
    			enqueue_huge_page(page);
    		else {
    			/*
    			 * Decrement the refcount and free the page using its
    			 * destructor.  This must be done with hugetlb_lock
    			 * unlocked which is safe because free_huge_page takes
    			 * hugetlb_lock before deciding how to free the page.
    			 */
    			spin_unlock(&hugetlb_lock);
    			put_page(page);
    			spin_lock(&hugetlb_lock);
    		}
    	}
    
    	return ret;
    }
    
    /*
     * When releasing a hugetlb pool reservation, any surplus pages that were
     * allocated to satisfy the reservation must be explicitly freed if they were
     * never used.
     */
    static void return_unused_surplus_pages(unsigned long unused_resv_pages)
    {
    	static int nid = -1;
    	struct page *page;
    	unsigned long nr_pages;
    
    	nr_pages = min(unused_resv_pages, surplus_huge_pages);
    
    	while (nr_pages) {
    		nid = next_node(nid, node_online_map);
    		if (nid == MAX_NUMNODES)
    			nid = first_node(node_online_map);
    
    		if (!surplus_huge_pages_node[nid])
    			continue;
    
    		if (!list_empty(&hugepage_freelists[nid])) {
    			page = list_entry(hugepage_freelists[nid].next,
    					  struct page, lru);
    			list_del(&page->lru);
    			update_and_free_page(page);
    			free_huge_pages--;
    			free_huge_pages_node[nid]--;
    			surplus_huge_pages--;
    			surplus_huge_pages_node[nid]--;
    			nr_pages--;
    		}
    	}
    }
    
    
    static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
    						unsigned long addr)
    {
    	struct page *page;
    
    	spin_lock(&hugetlb_lock);
    	page = dequeue_huge_page(vma, addr);
    	spin_unlock(&hugetlb_lock);
    	return page ? page : ERR_PTR(-VM_FAULT_OOM);
    }
    
    static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
    						unsigned long addr)
    {
    	struct page *page = NULL;
    
    	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
    		return ERR_PTR(-VM_FAULT_SIGBUS);
    
    	spin_lock(&hugetlb_lock);
    	if (free_huge_pages > resv_huge_pages)
    		page = dequeue_huge_page(vma, addr);
    	spin_unlock(&hugetlb_lock);
    	if (!page) {
    		page = alloc_buddy_huge_page(vma, addr);
    		if (!page) {
    			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
    			return ERR_PTR(-VM_FAULT_OOM);
    		}
    	}
    	return page;
    }
    
    static struct page *alloc_huge_page(struct vm_area_struct *vma,
    				    unsigned long addr)
    {
    	struct page *page;
    	struct address_space *mapping = vma->vm_file->f_mapping;
    
    	if (vma->vm_flags & VM_MAYSHARE)
    		page = alloc_huge_page_shared(vma, addr);
    	else
    		page = alloc_huge_page_private(vma, addr);
    
    	if (!IS_ERR(page)) {
    		set_page_refcounted(page);
    		set_page_private(page, (unsigned long) mapping);
    	}
    	return page;
    }
    
    static int __init hugetlb_init(void)
    {
    	unsigned long i;
    
    	if (HPAGE_SHIFT == 0)
    		return 0;
    
    	for (i = 0; i < MAX_NUMNODES; ++i)
    		INIT_LIST_HEAD(&hugepage_freelists[i]);
    
    	hugetlb_next_nid = first_node(node_online_map);
    
    	for (i = 0; i < max_huge_pages; ++i) {
    		if (!alloc_fresh_huge_page())
    			break;
    	}
    	max_huge_pages = free_huge_pages = nr_huge_pages = i;
    	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
    	return 0;
    }
    module_init(hugetlb_init);
    
    static int __init hugetlb_setup(char *s)
    {
    	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
    		max_huge_pages = 0;
    	return 1;
    }
    __setup("hugepages=", hugetlb_setup);
    
    static unsigned int cpuset_mems_nr(unsigned int *array)
    {
    	int node;
    	unsigned int nr = 0;
    
    	for_each_node_mask(node, cpuset_current_mems_allowed)
    		nr += array[node];
    
    	return nr;
    }
    
    #ifdef CONFIG_SYSCTL
    #ifdef CONFIG_HIGHMEM
    static void try_to_free_low(unsigned long count)
    {
    	int i;
    
    	for (i = 0; i < MAX_NUMNODES; ++i) {
    		struct page *page, *next;
    		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
    			if (count >= nr_huge_pages)
    				return;
    			if (PageHighMem(page))
    				continue;
    			list_del(&page->lru);
    			update_and_free_page(page);
    			free_huge_pages--;
    			free_huge_pages_node[page_to_nid(page)]--;
    		}
    	}
    }
    #else
    static inline void try_to_free_low(unsigned long count)
    {
    }
    #endif
    
    #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
    static unsigned long set_max_huge_pages(unsigned long count)
    {
    	unsigned long min_count, ret;
    
    	/*
    	 * Increase the pool size
    	 * First take pages out of surplus state.  Then make up the
    	 * remaining difference by allocating fresh huge pages.
    	 *
    	 * We might race with alloc_buddy_huge_page() here and be unable
    	 * to convert a surplus huge page to a normal huge page. That is
    	 * not critical, though, it just means the overall size of the
    	 * pool might be one hugepage larger than it needs to be, but
    	 * within all the constraints specified by the sysctls.
    	 */
    	spin_lock(&hugetlb_lock);
    	while (surplus_huge_pages && count > persistent_huge_pages) {
    		if (!adjust_pool_surplus(-1))
    			break;
    	}
    
    	while (count > persistent_huge_pages) {
    		int ret;
    		/*
    		 * If this allocation races such that we no longer need the
    		 * page, free_huge_page will handle it by freeing the page
    		 * and reducing the surplus.
    		 */
    		spin_unlock(&hugetlb_lock);
    		ret = alloc_fresh_huge_page();
    		spin_lock(&hugetlb_lock);
    		if (!ret)
    			goto out;
    
    	}
    
    	/*
    	 * Decrease the pool size
    	 * First return free pages to the buddy allocator (being careful
    	 * to keep enough around to satisfy reservations).  Then place
    	 * pages into surplus state as needed so the pool will shrink
    	 * to the desired size as pages become free.
    	 *
    	 * By placing pages into the surplus state independent of the
    	 * overcommit value, we are allowing the surplus pool size to
    	 * exceed overcommit. There are few sane options here. Since
    	 * alloc_buddy_huge_page() is checking the global counter,
    	 * though, we'll note that we're not allowed to exceed surplus
    	 * and won't grow the pool anywhere else. Not until one of the
    	 * sysctls are changed, or the surplus pages go out of use.
    	 */
    	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
    	min_count = max(count, min_count);
    	try_to_free_low(min_count);
    	while (min_count < persistent_huge_pages) {
    		struct page *page = dequeue_huge_page(NULL, 0);
    		if (!page)
    			break;
    		update_and_free_page(page);
    	}
    	while (count < persistent_huge_pages) {
    		if (!adjust_pool_surplus(1))
    			break;
    	}
    out:
    	ret = persistent_huge_pages;
    	spin_unlock(&hugetlb_lock);
    	return ret;
    }
    
    int hugetlb_sysctl_handler(struct ctl_table *table, int write,
    			   struct file *file, void __user *buffer,
    			   size_t *length, loff_t *ppos)
    {
    	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
    	max_huge_pages = set_max_huge_pages(max_huge_pages);
    	return 0;
    }
    
    int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
    			struct file *file, void __user *buffer,
    			size_t *length, loff_t *ppos)
    {
    	proc_dointvec(table, write, file, buffer, length, ppos);
    	if (hugepages_treat_as_movable)
    		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
    	else
    		htlb_alloc_mask = GFP_HIGHUSER;
    	return 0;
    }
    
    #endif /* CONFIG_SYSCTL */
    
    int hugetlb_report_meminfo(char *buf)
    {
    	return sprintf(buf,
    			"HugePages_Total: %5lu\n"
    			"HugePages_Free:  %5lu\n"
    			"HugePages_Rsvd:  %5lu\n"
    			"HugePages_Surp:  %5lu\n"
    			"Hugepagesize:    %5lu kB\n",
    			nr_huge_pages,
    			free_huge_pages,
    			resv_huge_pages,
    			surplus_huge_pages,
    			HPAGE_SIZE/1024);
    }
    
    int hugetlb_report_node_meminfo(int nid, char *buf)
    {
    	return sprintf(buf,
    		"Node %d HugePages_Total: %5u\n"
    		"Node %d HugePages_Free:  %5u\n",
    		nid, nr_huge_pages_node[nid],
    		nid, free_huge_pages_node[nid]);
    }
    
    /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
    unsigned long hugetlb_total_pages(void)
    {
    	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
    }
    
    /*
     * We cannot handle pagefaults against hugetlb pages at all.  They cause
     * handle_mm_fault() to try to instantiate regular-sized pages in the
     * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
     * this far.
     */
    static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
    {
    	BUG();
    	return 0;
    }
    
    struct vm_operations_struct hugetlb_vm_ops = {
    	.fault = hugetlb_vm_op_fault,
    };
    
    static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
    				int writable)
    {
    	pte_t entry;
    
    	if (writable) {
    		entry =
    		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
    	} else {
    		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
    	}
    	entry = pte_mkyoung(entry);
    	entry = pte_mkhuge(entry);
    
    	return entry;
    }
    
    static void set_huge_ptep_writable(struct vm_area_struct *vma,
    				   unsigned long address, pte_t *ptep)
    {
    	pte_t entry;
    
    	entry = pte_mkwrite(pte_mkdirty(*ptep));
    	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
    		update_mmu_cache(vma, address, entry);
    	}
    }
    
    
    int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
    			    struct vm_area_struct *vma)
    {
    	pte_t *src_pte, *dst_pte, entry;
    	struct page *ptepage;
    	unsigned long addr;
    	int cow;
    
    	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
    
    	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
    		src_pte = huge_pte_offset(src, addr);
    		if (!src_pte)
    			continue;
    		dst_pte = huge_pte_alloc(dst, addr);
    		if (!dst_pte)
    			goto nomem;
    
    		/* If the pagetables are shared don't copy or take references */
    		if (dst_pte == src_pte)
    			continue;
    
    		spin_lock(&dst->page_table_lock);
    		spin_lock(&src->page_table_lock);
    		if (!pte_none(*src_pte)) {
    			if (cow)
    				ptep_set_wrprotect(src, addr, src_pte);
    			entry = *src_pte;
    			ptepage = pte_page(entry);
    			get_page(ptepage);
    			set_huge_pte_at(dst, addr, dst_pte, entry);
    		}
    		spin_unlock(&src->page_table_lock);
    		spin_unlock(&dst->page_table_lock);
    	}
    	return 0;
    
    nomem:
    	return -ENOMEM;
    }
    
    void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
    			    unsigned long end)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long address;
    	pte_t *ptep;
    	pte_t pte;
    	struct page *page;
    	struct page *tmp;
    	/*
    	 * A page gathering list, protected by per file i_mmap_lock. The
    	 * lock is used to avoid list corruption from multiple unmapping
    	 * of the same page since we are using page->lru.
    	 */
    	LIST_HEAD(page_list);
    
    	WARN_ON(!is_vm_hugetlb_page(vma));
    	BUG_ON(start & ~HPAGE_MASK);
    	BUG_ON(end & ~HPAGE_MASK);
    
    	spin_lock(&mm->page_table_lock);
    	for (address = start; address < end; address += HPAGE_SIZE) {
    		ptep = huge_pte_offset(mm, address);
    		if (!ptep)
    			continue;
    
    		if (huge_pmd_unshare(mm, &address, ptep))
    			continue;
    
    		pte = huge_ptep_get_and_clear(mm, address, ptep);
    		if (pte_none(pte))
    			continue;
    
    		page = pte_page(pte);
    		if (pte_dirty(pte))
    			set_page_dirty(page);
    		list_add(&page->lru, &page_list);
    	}
    	spin_unlock(&mm->page_table_lock);
    	flush_tlb_range(vma, start, end);
    	list_for_each_entry_safe(page, tmp, &page_list, lru) {
    		list_del(&page->lru);
    		put_page(page);
    	}
    }
    
    void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
    			  unsigned long end)
    {
    	/*
    	 * It is undesirable to test vma->vm_file as it should be non-null
    	 * for valid hugetlb area. However, vm_file will be NULL in the error
    	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
    	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
    	 * to clean up. Since no pte has actually been setup, it is safe to
    	 * do nothing in this case.
    	 */
    	if (vma->vm_file) {
    		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
    		__unmap_hugepage_range(vma, start, end);
    		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
    	}
    }
    
    static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
    			unsigned long address, pte_t *ptep, pte_t pte)
    {
    	struct page *old_page, *new_page;
    	int avoidcopy;
    
    	old_page = pte_page(pte);
    
    	/* If no-one else is actually using this page, avoid the copy
    	 * and just make the page writable */
    	avoidcopy = (page_count(old_page) == 1);
    	if (avoidcopy) {
    		set_huge_ptep_writable(vma, address, ptep);
    		return 0;
    	}
    
    	page_cache_get(old_page);
    	new_page = alloc_huge_page(vma, address);
    
    	if (IS_ERR(new_page)) {
    		page_cache_release(old_page);
    		return -PTR_ERR(new_page);
    	}
    
    	spin_unlock(&mm->page_table_lock);
    	copy_huge_page(new_page, old_page, address, vma);
    	spin_lock(&mm->page_table_lock);
    
    	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
    	if (likely(pte_same(*ptep, pte))) {
    		/* Break COW */
    		set_huge_pte_at(mm, address, ptep,
    				make_huge_pte(vma, new_page, 1));
    		/* Make the old page be freed below */
    		new_page = old_page;
    	}
    	page_cache_release(new_page);
    	page_cache_release(old_page);
    	return 0;
    }
    
    static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
    			unsigned long address, pte_t *ptep, int write_access)
    {
    	int ret = VM_FAULT_SIGBUS;
    	unsigned long idx;
    	unsigned long size;
    	struct page *page;
    	struct address_space *mapping;
    	pte_t new_pte;
    
    	mapping = vma->vm_file->f_mapping;
    	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
    		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
    
    	/*
    	 * Use page lock to guard against racing truncation
    	 * before we get page_table_lock.
    	 */
    retry:
    	page = find_lock_page(mapping, idx);
    	if (!page) {
    		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
    		if (idx >= size)
    			goto out;
    		page = alloc_huge_page(vma, address);
    		if (IS_ERR(page)) {
    			ret = -PTR_ERR(page);
    			goto out;
    		}
    		clear_huge_page(page, address);
    
    		if (vma->vm_flags & VM_SHARED) {
    			int err;
    			struct inode *inode = mapping->host;
    
    			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
    			if (err) {
    				put_page(page);
    				if (err == -EEXIST)
    					goto retry;
    				goto out;
    			}
    
    			spin_lock(&inode->i_lock);
    			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
    			spin_unlock(&inode->i_lock);
    		} else
    			lock_page(page);
    	}
    
    	spin_lock(&mm->page_table_lock);
    	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
    	if (idx >= size)
    		goto backout;
    
    	ret = 0;
    	if (!pte_none(*ptep))
    		goto backout;
    
    	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
    				&& (vma->vm_flags & VM_SHARED)));
    	set_huge_pte_at(mm, address, ptep, new_pte);
    
    	if (write_access && !(vma->vm_flags & VM_SHARED)) {
    		/* Optimization, do the COW without a second fault */
    		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
    	}
    
    	spin_unlock(&mm->page_table_lock);
    	unlock_page(page);
    out:
    	return ret;
    
    backout:
    	spin_unlock(&mm->page_table_lock);
    	unlock_page(page);
    	put_page(page);
    	goto out;
    }
    
    int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    			unsigned long address, int write_access)
    {
    	pte_t *ptep;
    	pte_t entry;
    	int ret;
    	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
    
    	ptep = huge_pte_alloc(mm, address);
    	if (!ptep)
    		return VM_FAULT_OOM;
    
    	/*
    	 * Serialize hugepage allocation and instantiation, so that we don't
    	 * get spurious allocation failures if two CPUs race to instantiate
    	 * the same page in the page cache.
    	 */
    	mutex_lock(&hugetlb_instantiation_mutex);
    	entry = *ptep;
    	if (pte_none(entry)) {
    		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
    		mutex_unlock(&hugetlb_instantiation_mutex);
    		return ret;
    	}
    
    	ret = 0;
    
    	spin_lock(&mm->page_table_lock);
    	/* Check for a racing update before calling hugetlb_cow */
    	if (likely(pte_same(entry, *ptep)))
    		if (write_access && !pte_write(entry))
    			ret = hugetlb_cow(mm, vma, address, ptep, entry);
    	spin_unlock(&mm->page_table_lock);
    	mutex_unlock(&hugetlb_instantiation_mutex);
    
    	return ret;
    }
    
    int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
    			struct page **pages, struct vm_area_struct **vmas,
    			unsigned long *position, int *length, int i,
    			int write)
    {
    	unsigned long pfn_offset;
    	unsigned long vaddr = *position;
    	int remainder = *length;
    
    	spin_lock(&mm->page_table_lock);
    	while (vaddr < vma->vm_end && remainder) {
    		pte_t *pte;
    		struct page *page;
    
    		/*
    		 * Some archs (sparc64, sh*) have multiple pte_ts to
    		 * each hugepage.  We have to make * sure we get the
    		 * first, for the page indexing below to work.
    		 */
    		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
    
    		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
    			int ret;
    
    			spin_unlock(&mm->page_table_lock);
    			ret = hugetlb_fault(mm, vma, vaddr, write);
    			spin_lock(&mm->page_table_lock);
    			if (!(ret & VM_FAULT_ERROR))
    				continue;
    
    			remainder = 0;
    			if (!i)
    				i = -EFAULT;
    			break;
    		}
    
    		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
    		page = pte_page(*pte);
    same_page:
    		if (pages) {
    			get_page(page);
    			pages[i] = page + pfn_offset;
    		}
    
    		if (vmas)
    			vmas[i] = vma;
    
    		vaddr += PAGE_SIZE;
    		++pfn_offset;
    		--remainder;
    		++i;
    		if (vaddr < vma->vm_end && remainder &&
    				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
    			/*
    			 * We use pfn_offset to avoid touching the pageframes
    			 * of this compound page.
    			 */
    			goto same_page;
    		}
    	}
    	spin_unlock(&mm->page_table_lock);
    	*length = remainder;
    	*position = vaddr;
    
    	return i;
    }
    
    void hugetlb_change_protection(struct vm_area_struct *vma,
    		unsigned long address, unsigned long end, pgprot_t newprot)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long start = address;
    	pte_t *ptep;
    	pte_t pte;
    
    	BUG_ON(address >= end);
    	flush_cache_range(vma, address, end);
    
    	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
    	spin_lock(&mm->page_table_lock);
    	for (; address < end; address += HPAGE_SIZE) {
    		ptep = huge_pte_offset(mm, address);
    		if (!ptep)
    			continue;
    		if (huge_pmd_unshare(mm, &address, ptep))
    			continue;
    		if (!pte_none(*ptep)) {
    			pte = huge_ptep_get_and_clear(mm, address, ptep);
    			pte = pte_mkhuge(pte_modify(pte, newprot));
    			set_huge_pte_at(mm, address, ptep, pte);
    		}
    	}
    	spin_unlock(&mm->page_table_lock);
    	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
    
    	flush_tlb_range(vma, start, end);
    }
    
    struct file_region {
    	struct list_head link;
    	long from;
    	long to;
    };
    
    static long region_add(struct list_head *head, long f, long t)
    {
    	struct file_region *rg, *nrg, *trg;
    
    	/* Locate the region we are either in or before. */
    	list_for_each_entry(rg, head, link)
    		if (f <= rg->to)
    			break;
    
    	/* Round our left edge to the current segment if it encloses us. */
    	if (f > rg->from)
    		f = rg->from;
    
    	/* Check for and consume any regions we now overlap with. */
    	nrg = rg;
    	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
    		if (&rg->link == head)
    			break;
    		if (rg->from > t)
    			break;
    
    		/* If this area reaches higher then extend our area to
    		 * include it completely.  If this is not the first area
    		 * which we intend to reuse, free it. */
    		if (rg->to > t)
    			t = rg->to;
    		if (rg != nrg) {
    			list_del(&rg->link);
    			kfree(rg);
    		}
    	}
    	nrg->from = f;
    	nrg->to = t;
    	return 0;
    }
    
    static long region_chg(struct list_head *head, long f, long t)
    {
    	struct file_region *rg, *nrg;
    	long chg = 0;
    
    	/* Locate the region we are before or in. */
    	list_for_each_entry(rg, head, link)
    		if (f <= rg->to)
    			break;
    
    	/* If we are below the current region then a new region is required.
    	 * Subtle, allocate a new region at the position but make it zero
    	 * size such that we can guarantee to record the reservation. */
    	if (&rg->link == head || t < rg->from) {
    		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
    		if (!nrg)
    			return -ENOMEM;
    		nrg->from = f;
    		nrg->to   = f;
    		INIT_LIST_HEAD(&nrg->link);
    		list_add(&nrg->link, rg->link.prev);
    
    		return t - f;
    	}
    
    	/* Round our left edge to the current segment if it encloses us. */
    	if (f > rg->from)
    		f = rg->from;
    	chg = t - f;
    
    	/* Check for and consume any regions we now overlap with. */
    	list_for_each_entry(rg, rg->link.prev, link) {
    		if (&rg->link == head)
    			break;
    		if (rg->from > t)
    			return chg;
    
    		/* We overlap with this area, if it extends futher than
    		 * us then we must extend ourselves.  Account for its
    		 * existing reservation. */
    		if (rg->to > t) {
    			chg += rg->to - t;
    			t = rg->to;
    		}
    		chg -= rg->to - rg->from;
    	}
    	return chg;
    }
    
    static long region_truncate(struct list_head *head, long end)
    {
    	struct file_region *rg, *trg;
    	long chg = 0;
    
    	/* Locate the region we are either in or before. */
    	list_for_each_entry(rg, head, link)
    		if (end <= rg->to)
    			break;
    	if (&rg->link == head)
    		return 0;
    
    	/* If we are in the middle of a region then adjust it. */
    	if (end > rg->from) {
    		chg = rg->to - end;
    		rg->to = end;
    		rg = list_entry(rg->link.next, typeof(*rg), link);
    	}
    
    	/* Drop any remaining regions. */
    	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
    		if (&rg->link == head)
    			break;
    		chg += rg->to - rg->from;
    		list_del(&rg->link);
    		kfree(rg);
    	}
    	return chg;
    }
    
    static int hugetlb_acct_memory(long delta)
    {
    	int ret = -ENOMEM;
    
    	spin_lock(&hugetlb_lock);
    	/*
    	 * When cpuset is configured, it breaks the strict hugetlb page
    	 * reservation as the accounting is done on a global variable. Such
    	 * reservation is completely rubbish in the presence of cpuset because
    	 * the reservation is not checked against page availability for the
    	 * current cpuset. Application can still potentially OOM'ed by kernel
    	 * with lack of free htlb page in cpuset that the task is in.
    	 * Attempt to enforce strict accounting with cpuset is almost
    	 * impossible (or too ugly) because cpuset is too fluid that
    	 * task or memory node can be dynamically moved between cpusets.
    	 *
    	 * The change of semantics for shared hugetlb mapping with cpuset is
    	 * undesirable. However, in order to preserve some of the semantics,
    	 * we fall back to check against current free page availability as
    	 * a best attempt and hopefully to minimize the impact of changing
    	 * semantics that cpuset has.
    	 */
    	if (delta > 0) {
    		if (gather_surplus_pages(delta) < 0)
    			goto out;
    
    		if (delta > cpuset_mems_nr(free_huge_pages_node))
    			goto out;
    	}
    
    	ret = 0;
    	resv_huge_pages += delta;
    	if (delta < 0)
    		return_unused_surplus_pages((unsigned long) -delta);
    
    out:
    	spin_unlock(&hugetlb_lock);
    	return ret;
    }
    
    int hugetlb_reserve_pages(struct inode *inode, long from, long to)
    {
    	long ret, chg;
    
    	chg = region_chg(&inode->i_mapping->private_list, from, to);
    	if (chg < 0)
    		return chg;
    
    	if (hugetlb_get_quota(inode->i_mapping, chg))
    		return -ENOSPC;
    	ret = hugetlb_acct_memory(chg);
    	if (ret < 0) {
    		hugetlb_put_quota(inode->i_mapping, chg);
    		return ret;
    	}
    	region_add(&inode->i_mapping->private_list, from, to);
    	return 0;
    }
    
    void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
    {
    	long chg = region_truncate(&inode->i_mapping->private_list, offset);
    
    	spin_lock(&inode->i_lock);
    	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
    	spin_unlock(&inode->i_lock);
    
    	hugetlb_put_quota(inode->i_mapping, (chg - freed));
    	hugetlb_acct_memory(-(chg - freed));
    }