Skip to content
Snippets Groups Projects
Select Git revision
  • 97c9d99ffc55d46a22ea3f47888097201fb8fa88
  • deploy/production default
  • deploy/test
3 results

SprintProjectProfilePanelEngine.php

Blame
  • tcp_output.c 109.13 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Implementation of the Transmission Control Protocol(TCP).
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Mark Evans, <evansmp@uhura.aston.ac.uk>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Florian La Roche, <flla@stud.uni-sb.de>
     *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
     *		Linus Torvalds, <torvalds@cs.helsinki.fi>
     *		Alan Cox, <gw4pts@gw4pts.ampr.org>
     *		Matthew Dillon, <dillon@apollo.west.oic.com>
     *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
     *		Jorge Cwik, <jorge@laser.satlink.net>
     */
    
    /*
     * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
     *				:	Fragmentation on mtu decrease
     *				:	Segment collapse on retransmit
     *				:	AF independence
     *
     *		Linus Torvalds	:	send_delayed_ack
     *		David S. Miller	:	Charge memory using the right skb
     *					during syn/ack processing.
     *		David S. Miller :	Output engine completely rewritten.
     *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
     *		Cacophonix Gaul :	draft-minshall-nagle-01
     *		J Hadi Salim	:	ECN support
     *
     */
    
    #define pr_fmt(fmt) "TCP: " fmt
    
    #include <net/tcp.h>
    
    #include <linux/compiler.h>
    #include <linux/gfp.h>
    #include <linux/module.h>
    #include <linux/static_key.h>
    
    #include <trace/events/tcp.h>
    
    /* Refresh clocks of a TCP socket,
     * ensuring monotically increasing values.
     */
    void tcp_mstamp_refresh(struct tcp_sock *tp)
    {
    	u64 val = tcp_clock_ns();
    
    	tp->tcp_clock_cache = val;
    	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
    }
    
    static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
    			   int push_one, gfp_t gfp);
    
    /* Account for new data that has been sent to the network. */
    static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned int prior_packets = tp->packets_out;
    
    	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
    
    	__skb_unlink(skb, &sk->sk_write_queue);
    	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
    
    	tp->packets_out += tcp_skb_pcount(skb);
    	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
    		tcp_rearm_rto(sk);
    
    	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
    		      tcp_skb_pcount(skb));
    }
    
    /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
     * window scaling factor due to loss of precision.
     * If window has been shrunk, what should we make? It is not clear at all.
     * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
     * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
     * invalid. OK, let's make this for now:
     */
    static inline __u32 tcp_acceptable_seq(const struct sock *sk)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    
    	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
    	    (tp->rx_opt.wscale_ok &&
    	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
    		return tp->snd_nxt;
    	else
    		return tcp_wnd_end(tp);
    }
    
    /* Calculate mss to advertise in SYN segment.
     * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
     *
     * 1. It is independent of path mtu.
     * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
     * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
     *    attached devices, because some buggy hosts are confused by
     *    large MSS.
     * 4. We do not make 3, we advertise MSS, calculated from first
     *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
     *    This may be overridden via information stored in routing table.
     * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
     *    probably even Jumbo".
     */
    static __u16 tcp_advertise_mss(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	const struct dst_entry *dst = __sk_dst_get(sk);
    	int mss = tp->advmss;
    
    	if (dst) {
    		unsigned int metric = dst_metric_advmss(dst);
    
    		if (metric < mss) {
    			mss = metric;
    			tp->advmss = mss;
    		}
    	}
    
    	return (__u16)mss;
    }
    
    /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
     * This is the first part of cwnd validation mechanism.
     */
    void tcp_cwnd_restart(struct sock *sk, s32 delta)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
    	u32 cwnd = tp->snd_cwnd;
    
    	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
    
    	tp->snd_ssthresh = tcp_current_ssthresh(sk);
    	restart_cwnd = min(restart_cwnd, cwnd);
    
    	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
    		cwnd >>= 1;
    	tp->snd_cwnd = max(cwnd, restart_cwnd);
    	tp->snd_cwnd_stamp = tcp_jiffies32;
    	tp->snd_cwnd_used = 0;
    }
    
    /* Congestion state accounting after a packet has been sent. */
    static void tcp_event_data_sent(struct tcp_sock *tp,
    				struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	const u32 now = tcp_jiffies32;
    
    	if (tcp_packets_in_flight(tp) == 0)
    		tcp_ca_event(sk, CA_EVENT_TX_START);
    
    	/* If this is the first data packet sent in response to the
    	 * previous received data,
    	 * and it is a reply for ato after last received packet,
    	 * increase pingpong count.
    	 */
    	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
    	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
    		inet_csk_inc_pingpong_cnt(sk);
    
    	tp->lsndtime = now;
    }
    
    /* Account for an ACK we sent. */
    static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
    				      u32 rcv_nxt)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
    		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
    			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
    		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
    		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
    			__sock_put(sk);
    	}
    
    	if (unlikely(rcv_nxt != tp->rcv_nxt))
    		return;  /* Special ACK sent by DCTCP to reflect ECN */
    	tcp_dec_quickack_mode(sk, pkts);
    	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
    }
    
    /* Determine a window scaling and initial window to offer.
     * Based on the assumption that the given amount of space
     * will be offered. Store the results in the tp structure.
     * NOTE: for smooth operation initial space offering should
     * be a multiple of mss if possible. We assume here that mss >= 1.
     * This MUST be enforced by all callers.
     */
    void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
    			       __u32 *rcv_wnd, __u32 *window_clamp,
    			       int wscale_ok, __u8 *rcv_wscale,
    			       __u32 init_rcv_wnd)
    {
    	unsigned int space = (__space < 0 ? 0 : __space);
    
    	/* If no clamp set the clamp to the max possible scaled window */
    	if (*window_clamp == 0)
    		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
    	space = min(*window_clamp, space);
    
    	/* Quantize space offering to a multiple of mss if possible. */
    	if (space > mss)
    		space = rounddown(space, mss);
    
    	/* NOTE: offering an initial window larger than 32767
    	 * will break some buggy TCP stacks. If the admin tells us
    	 * it is likely we could be speaking with such a buggy stack
    	 * we will truncate our initial window offering to 32K-1
    	 * unless the remote has sent us a window scaling option,
    	 * which we interpret as a sign the remote TCP is not
    	 * misinterpreting the window field as a signed quantity.
    	 */
    	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
    		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
    	else
    		(*rcv_wnd) = min_t(u32, space, U16_MAX);
    
    	if (init_rcv_wnd)
    		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
    
    	*rcv_wscale = 0;
    	if (wscale_ok) {
    		/* Set window scaling on max possible window */
    		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
    		space = max_t(u32, space, sysctl_rmem_max);
    		space = min_t(u32, space, *window_clamp);
    		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
    				      0, TCP_MAX_WSCALE);
    	}
    	/* Set the clamp no higher than max representable value */
    	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
    }
    EXPORT_SYMBOL(tcp_select_initial_window);
    
    /* Chose a new window to advertise, update state in tcp_sock for the
     * socket, and return result with RFC1323 scaling applied.  The return
     * value can be stuffed directly into th->window for an outgoing
     * frame.
     */
    static u16 tcp_select_window(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 old_win = tp->rcv_wnd;
    	u32 cur_win = tcp_receive_window(tp);
    	u32 new_win = __tcp_select_window(sk);
    
    	/* Never shrink the offered window */
    	if (new_win < cur_win) {
    		/* Danger Will Robinson!
    		 * Don't update rcv_wup/rcv_wnd here or else
    		 * we will not be able to advertise a zero
    		 * window in time.  --DaveM
    		 *
    		 * Relax Will Robinson.
    		 */
    		if (new_win == 0)
    			NET_INC_STATS(sock_net(sk),
    				      LINUX_MIB_TCPWANTZEROWINDOWADV);
    		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
    	}
    	tp->rcv_wnd = new_win;
    	tp->rcv_wup = tp->rcv_nxt;
    
    	/* Make sure we do not exceed the maximum possible
    	 * scaled window.
    	 */
    	if (!tp->rx_opt.rcv_wscale &&
    	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
    		new_win = min(new_win, MAX_TCP_WINDOW);
    	else
    		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
    
    	/* RFC1323 scaling applied */
    	new_win >>= tp->rx_opt.rcv_wscale;
    
    	/* If we advertise zero window, disable fast path. */
    	if (new_win == 0) {
    		tp->pred_flags = 0;
    		if (old_win)
    			NET_INC_STATS(sock_net(sk),
    				      LINUX_MIB_TCPTOZEROWINDOWADV);
    	} else if (old_win == 0) {
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
    	}
    
    	return new_win;
    }
    
    /* Packet ECN state for a SYN-ACK */
    static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    
    	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
    	if (!(tp->ecn_flags & TCP_ECN_OK))
    		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
    	else if (tcp_ca_needs_ecn(sk) ||
    		 tcp_bpf_ca_needs_ecn(sk))
    		INET_ECN_xmit(sk);
    }
    
    /* Packet ECN state for a SYN.  */
    static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
    	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
    		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
    
    	if (!use_ecn) {
    		const struct dst_entry *dst = __sk_dst_get(sk);
    
    		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
    			use_ecn = true;
    	}
    
    	tp->ecn_flags = 0;
    
    	if (use_ecn) {
    		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
    		tp->ecn_flags = TCP_ECN_OK;
    		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
    			INET_ECN_xmit(sk);
    	}
    }
    
    static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
    {
    	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
    		/* tp->ecn_flags are cleared at a later point in time when
    		 * SYN ACK is ultimatively being received.
    		 */
    		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
    }
    
    static void
    tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
    {
    	if (inet_rsk(req)->ecn_ok)
    		th->ece = 1;
    }
    
    /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
     * be sent.
     */
    static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
    			 struct tcphdr *th, int tcp_header_len)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (tp->ecn_flags & TCP_ECN_OK) {
    		/* Not-retransmitted data segment: set ECT and inject CWR. */
    		if (skb->len != tcp_header_len &&
    		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
    			INET_ECN_xmit(sk);
    			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
    				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
    				th->cwr = 1;
    				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
    			}
    		} else if (!tcp_ca_needs_ecn(sk)) {
    			/* ACK or retransmitted segment: clear ECT|CE */
    			INET_ECN_dontxmit(sk);
    		}
    		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
    			th->ece = 1;
    	}
    }
    
    /* Constructs common control bits of non-data skb. If SYN/FIN is present,
     * auto increment end seqno.
     */
    static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
    {
    	skb->ip_summed = CHECKSUM_PARTIAL;
    
    	TCP_SKB_CB(skb)->tcp_flags = flags;
    	TCP_SKB_CB(skb)->sacked = 0;
    
    	tcp_skb_pcount_set(skb, 1);
    
    	TCP_SKB_CB(skb)->seq = seq;
    	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
    		seq++;
    	TCP_SKB_CB(skb)->end_seq = seq;
    }
    
    static inline bool tcp_urg_mode(const struct tcp_sock *tp)
    {
    	return tp->snd_una != tp->snd_up;
    }
    
    #define OPTION_SACK_ADVERTISE	(1 << 0)
    #define OPTION_TS		(1 << 1)
    #define OPTION_MD5		(1 << 2)
    #define OPTION_WSCALE		(1 << 3)
    #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
    #define OPTION_SMC		(1 << 9)
    
    static void smc_options_write(__be32 *ptr, u16 *options)
    {
    #if IS_ENABLED(CONFIG_SMC)
    	if (static_branch_unlikely(&tcp_have_smc)) {
    		if (unlikely(OPTION_SMC & *options)) {
    			*ptr++ = htonl((TCPOPT_NOP  << 24) |
    				       (TCPOPT_NOP  << 16) |
    				       (TCPOPT_EXP <<  8) |
    				       (TCPOLEN_EXP_SMC_BASE));
    			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
    		}
    	}
    #endif
    }
    
    struct tcp_out_options {
    	u16 options;		/* bit field of OPTION_* */
    	u16 mss;		/* 0 to disable */
    	u8 ws;			/* window scale, 0 to disable */
    	u8 num_sack_blocks;	/* number of SACK blocks to include */
    	u8 hash_size;		/* bytes in hash_location */
    	__u8 *hash_location;	/* temporary pointer, overloaded */
    	__u32 tsval, tsecr;	/* need to include OPTION_TS */
    	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
    };
    
    /* Write previously computed TCP options to the packet.
     *
     * Beware: Something in the Internet is very sensitive to the ordering of
     * TCP options, we learned this through the hard way, so be careful here.
     * Luckily we can at least blame others for their non-compliance but from
     * inter-operability perspective it seems that we're somewhat stuck with
     * the ordering which we have been using if we want to keep working with
     * those broken things (not that it currently hurts anybody as there isn't
     * particular reason why the ordering would need to be changed).
     *
     * At least SACK_PERM as the first option is known to lead to a disaster
     * (but it may well be that other scenarios fail similarly).
     */
    static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
    			      struct tcp_out_options *opts)
    {
    	u16 options = opts->options;	/* mungable copy */
    
    	if (unlikely(OPTION_MD5 & options)) {
    		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
    			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
    		/* overload cookie hash location */
    		opts->hash_location = (__u8 *)ptr;
    		ptr += 4;
    	}
    
    	if (unlikely(opts->mss)) {
    		*ptr++ = htonl((TCPOPT_MSS << 24) |
    			       (TCPOLEN_MSS << 16) |
    			       opts->mss);
    	}
    
    	if (likely(OPTION_TS & options)) {
    		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
    			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
    				       (TCPOLEN_SACK_PERM << 16) |
    				       (TCPOPT_TIMESTAMP << 8) |
    				       TCPOLEN_TIMESTAMP);
    			options &= ~OPTION_SACK_ADVERTISE;
    		} else {
    			*ptr++ = htonl((TCPOPT_NOP << 24) |
    				       (TCPOPT_NOP << 16) |
    				       (TCPOPT_TIMESTAMP << 8) |
    				       TCPOLEN_TIMESTAMP);
    		}
    		*ptr++ = htonl(opts->tsval);
    		*ptr++ = htonl(opts->tsecr);
    	}
    
    	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
    		*ptr++ = htonl((TCPOPT_NOP << 24) |
    			       (TCPOPT_NOP << 16) |
    			       (TCPOPT_SACK_PERM << 8) |
    			       TCPOLEN_SACK_PERM);
    	}
    
    	if (unlikely(OPTION_WSCALE & options)) {
    		*ptr++ = htonl((TCPOPT_NOP << 24) |
    			       (TCPOPT_WINDOW << 16) |
    			       (TCPOLEN_WINDOW << 8) |
    			       opts->ws);
    	}
    
    	if (unlikely(opts->num_sack_blocks)) {
    		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
    			tp->duplicate_sack : tp->selective_acks;
    		int this_sack;
    
    		*ptr++ = htonl((TCPOPT_NOP  << 24) |
    			       (TCPOPT_NOP  << 16) |
    			       (TCPOPT_SACK <<  8) |
    			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
    						     TCPOLEN_SACK_PERBLOCK)));
    
    		for (this_sack = 0; this_sack < opts->num_sack_blocks;
    		     ++this_sack) {
    			*ptr++ = htonl(sp[this_sack].start_seq);
    			*ptr++ = htonl(sp[this_sack].end_seq);
    		}
    
    		tp->rx_opt.dsack = 0;
    	}
    
    	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
    		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
    		u8 *p = (u8 *)ptr;
    		u32 len; /* Fast Open option length */
    
    		if (foc->exp) {
    			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
    			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
    				     TCPOPT_FASTOPEN_MAGIC);
    			p += TCPOLEN_EXP_FASTOPEN_BASE;
    		} else {
    			len = TCPOLEN_FASTOPEN_BASE + foc->len;
    			*p++ = TCPOPT_FASTOPEN;
    			*p++ = len;
    		}
    
    		memcpy(p, foc->val, foc->len);
    		if ((len & 3) == 2) {
    			p[foc->len] = TCPOPT_NOP;
    			p[foc->len + 1] = TCPOPT_NOP;
    		}
    		ptr += (len + 3) >> 2;
    	}
    
    	smc_options_write(ptr, &options);
    }
    
    static void smc_set_option(const struct tcp_sock *tp,
    			   struct tcp_out_options *opts,
    			   unsigned int *remaining)
    {
    #if IS_ENABLED(CONFIG_SMC)
    	if (static_branch_unlikely(&tcp_have_smc)) {
    		if (tp->syn_smc) {
    			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
    				opts->options |= OPTION_SMC;
    				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
    			}
    		}
    	}
    #endif
    }
    
    static void smc_set_option_cond(const struct tcp_sock *tp,
    				const struct inet_request_sock *ireq,
    				struct tcp_out_options *opts,
    				unsigned int *remaining)
    {
    #if IS_ENABLED(CONFIG_SMC)
    	if (static_branch_unlikely(&tcp_have_smc)) {
    		if (tp->syn_smc && ireq->smc_ok) {
    			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
    				opts->options |= OPTION_SMC;
    				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
    			}
    		}
    	}
    #endif
    }
    
    /* Compute TCP options for SYN packets. This is not the final
     * network wire format yet.
     */
    static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
    				struct tcp_out_options *opts,
    				struct tcp_md5sig_key **md5)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned int remaining = MAX_TCP_OPTION_SPACE;
    	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
    
    	*md5 = NULL;
    #ifdef CONFIG_TCP_MD5SIG
    	if (static_branch_unlikely(&tcp_md5_needed) &&
    	    rcu_access_pointer(tp->md5sig_info)) {
    		*md5 = tp->af_specific->md5_lookup(sk, sk);
    		if (*md5) {
    			opts->options |= OPTION_MD5;
    			remaining -= TCPOLEN_MD5SIG_ALIGNED;
    		}
    	}
    #endif
    
    	/* We always get an MSS option.  The option bytes which will be seen in
    	 * normal data packets should timestamps be used, must be in the MSS
    	 * advertised.  But we subtract them from tp->mss_cache so that
    	 * calculations in tcp_sendmsg are simpler etc.  So account for this
    	 * fact here if necessary.  If we don't do this correctly, as a
    	 * receiver we won't recognize data packets as being full sized when we
    	 * should, and thus we won't abide by the delayed ACK rules correctly.
    	 * SACKs don't matter, we never delay an ACK when we have any of those
    	 * going out.  */
    	opts->mss = tcp_advertise_mss(sk);
    	remaining -= TCPOLEN_MSS_ALIGNED;
    
    	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
    		opts->options |= OPTION_TS;
    		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
    		opts->tsecr = tp->rx_opt.ts_recent;
    		remaining -= TCPOLEN_TSTAMP_ALIGNED;
    	}
    	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
    		opts->ws = tp->rx_opt.rcv_wscale;
    		opts->options |= OPTION_WSCALE;
    		remaining -= TCPOLEN_WSCALE_ALIGNED;
    	}
    	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
    		opts->options |= OPTION_SACK_ADVERTISE;
    		if (unlikely(!(OPTION_TS & opts->options)))
    			remaining -= TCPOLEN_SACKPERM_ALIGNED;
    	}
    
    	if (fastopen && fastopen->cookie.len >= 0) {
    		u32 need = fastopen->cookie.len;
    
    		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
    					       TCPOLEN_FASTOPEN_BASE;
    		need = (need + 3) & ~3U;  /* Align to 32 bits */
    		if (remaining >= need) {
    			opts->options |= OPTION_FAST_OPEN_COOKIE;
    			opts->fastopen_cookie = &fastopen->cookie;
    			remaining -= need;
    			tp->syn_fastopen = 1;
    			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
    		}
    	}
    
    	smc_set_option(tp, opts, &remaining);
    
    	return MAX_TCP_OPTION_SPACE - remaining;
    }
    
    /* Set up TCP options for SYN-ACKs. */
    static unsigned int tcp_synack_options(const struct sock *sk,
    				       struct request_sock *req,
    				       unsigned int mss, struct sk_buff *skb,
    				       struct tcp_out_options *opts,
    				       const struct tcp_md5sig_key *md5,
    				       struct tcp_fastopen_cookie *foc)
    {
    	struct inet_request_sock *ireq = inet_rsk(req);
    	unsigned int remaining = MAX_TCP_OPTION_SPACE;
    
    #ifdef CONFIG_TCP_MD5SIG
    	if (md5) {
    		opts->options |= OPTION_MD5;
    		remaining -= TCPOLEN_MD5SIG_ALIGNED;
    
    		/* We can't fit any SACK blocks in a packet with MD5 + TS
    		 * options. There was discussion about disabling SACK
    		 * rather than TS in order to fit in better with old,
    		 * buggy kernels, but that was deemed to be unnecessary.
    		 */
    		ireq->tstamp_ok &= !ireq->sack_ok;
    	}
    #endif
    
    	/* We always send an MSS option. */
    	opts->mss = mss;
    	remaining -= TCPOLEN_MSS_ALIGNED;
    
    	if (likely(ireq->wscale_ok)) {
    		opts->ws = ireq->rcv_wscale;
    		opts->options |= OPTION_WSCALE;
    		remaining -= TCPOLEN_WSCALE_ALIGNED;
    	}
    	if (likely(ireq->tstamp_ok)) {
    		opts->options |= OPTION_TS;
    		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
    		opts->tsecr = req->ts_recent;
    		remaining -= TCPOLEN_TSTAMP_ALIGNED;
    	}
    	if (likely(ireq->sack_ok)) {
    		opts->options |= OPTION_SACK_ADVERTISE;
    		if (unlikely(!ireq->tstamp_ok))
    			remaining -= TCPOLEN_SACKPERM_ALIGNED;
    	}
    	if (foc != NULL && foc->len >= 0) {
    		u32 need = foc->len;
    
    		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
    				   TCPOLEN_FASTOPEN_BASE;
    		need = (need + 3) & ~3U;  /* Align to 32 bits */
    		if (remaining >= need) {
    			opts->options |= OPTION_FAST_OPEN_COOKIE;
    			opts->fastopen_cookie = foc;
    			remaining -= need;
    		}
    	}
    
    	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
    
    	return MAX_TCP_OPTION_SPACE - remaining;
    }
    
    /* Compute TCP options for ESTABLISHED sockets. This is not the
     * final wire format yet.
     */
    static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
    					struct tcp_out_options *opts,
    					struct tcp_md5sig_key **md5)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned int size = 0;
    	unsigned int eff_sacks;
    
    	opts->options = 0;
    
    	*md5 = NULL;
    #ifdef CONFIG_TCP_MD5SIG
    	if (static_branch_unlikely(&tcp_md5_needed) &&
    	    rcu_access_pointer(tp->md5sig_info)) {
    		*md5 = tp->af_specific->md5_lookup(sk, sk);
    		if (*md5) {
    			opts->options |= OPTION_MD5;
    			size += TCPOLEN_MD5SIG_ALIGNED;
    		}
    	}
    #endif
    
    	if (likely(tp->rx_opt.tstamp_ok)) {
    		opts->options |= OPTION_TS;
    		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
    		opts->tsecr = tp->rx_opt.ts_recent;
    		size += TCPOLEN_TSTAMP_ALIGNED;
    	}
    
    	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
    	if (unlikely(eff_sacks)) {
    		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
    		opts->num_sack_blocks =
    			min_t(unsigned int, eff_sacks,
    			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
    			      TCPOLEN_SACK_PERBLOCK);
    		size += TCPOLEN_SACK_BASE_ALIGNED +
    			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
    	}
    
    	return size;
    }
    
    
    /* TCP SMALL QUEUES (TSQ)
     *
     * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
     * to reduce RTT and bufferbloat.
     * We do this using a special skb destructor (tcp_wfree).
     *
     * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
     * needs to be reallocated in a driver.
     * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
     *
     * Since transmit from skb destructor is forbidden, we use a tasklet
     * to process all sockets that eventually need to send more skbs.
     * We use one tasklet per cpu, with its own queue of sockets.
     */
    struct tsq_tasklet {
    	struct tasklet_struct	tasklet;
    	struct list_head	head; /* queue of tcp sockets */
    };
    static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
    
    static void tcp_tsq_write(struct sock *sk)
    {
    	if ((1 << sk->sk_state) &
    	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
    	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
    		struct tcp_sock *tp = tcp_sk(sk);
    
    		if (tp->lost_out > tp->retrans_out &&
    		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
    			tcp_mstamp_refresh(tp);
    			tcp_xmit_retransmit_queue(sk);
    		}
    
    		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
    			       0, GFP_ATOMIC);
    	}
    }
    
    static void tcp_tsq_handler(struct sock *sk)
    {
    	bh_lock_sock(sk);
    	if (!sock_owned_by_user(sk))
    		tcp_tsq_write(sk);
    	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
    		sock_hold(sk);
    	bh_unlock_sock(sk);
    }
    /*
     * One tasklet per cpu tries to send more skbs.
     * We run in tasklet context but need to disable irqs when
     * transferring tsq->head because tcp_wfree() might
     * interrupt us (non NAPI drivers)
     */
    static void tcp_tasklet_func(unsigned long data)
    {
    	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
    	LIST_HEAD(list);
    	unsigned long flags;
    	struct list_head *q, *n;
    	struct tcp_sock *tp;
    	struct sock *sk;
    
    	local_irq_save(flags);
    	list_splice_init(&tsq->head, &list);
    	local_irq_restore(flags);
    
    	list_for_each_safe(q, n, &list) {
    		tp = list_entry(q, struct tcp_sock, tsq_node);
    		list_del(&tp->tsq_node);
    
    		sk = (struct sock *)tp;
    		smp_mb__before_atomic();
    		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
    
    		tcp_tsq_handler(sk);
    		sk_free(sk);
    	}
    }
    
    #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
    			  TCPF_WRITE_TIMER_DEFERRED |	\
    			  TCPF_DELACK_TIMER_DEFERRED |	\
    			  TCPF_MTU_REDUCED_DEFERRED)
    /**
     * tcp_release_cb - tcp release_sock() callback
     * @sk: socket
     *
     * called from release_sock() to perform protocol dependent
     * actions before socket release.
     */
    void tcp_release_cb(struct sock *sk)
    {
    	unsigned long flags, nflags;
    
    	/* perform an atomic operation only if at least one flag is set */
    	do {
    		flags = sk->sk_tsq_flags;
    		if (!(flags & TCP_DEFERRED_ALL))
    			return;
    		nflags = flags & ~TCP_DEFERRED_ALL;
    	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
    
    	if (flags & TCPF_TSQ_DEFERRED) {
    		tcp_tsq_write(sk);
    		__sock_put(sk);
    	}
    	/* Here begins the tricky part :
    	 * We are called from release_sock() with :
    	 * 1) BH disabled
    	 * 2) sk_lock.slock spinlock held
    	 * 3) socket owned by us (sk->sk_lock.owned == 1)
    	 *
    	 * But following code is meant to be called from BH handlers,
    	 * so we should keep BH disabled, but early release socket ownership
    	 */
    	sock_release_ownership(sk);
    
    	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
    		tcp_write_timer_handler(sk);
    		__sock_put(sk);
    	}
    	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
    		tcp_delack_timer_handler(sk);
    		__sock_put(sk);
    	}
    	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
    		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
    		__sock_put(sk);
    	}
    }
    EXPORT_SYMBOL(tcp_release_cb);
    
    void __init tcp_tasklet_init(void)
    {
    	int i;
    
    	for_each_possible_cpu(i) {
    		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
    
    		INIT_LIST_HEAD(&tsq->head);
    		tasklet_init(&tsq->tasklet,
    			     tcp_tasklet_func,
    			     (unsigned long)tsq);
    	}
    }
    
    /*
     * Write buffer destructor automatically called from kfree_skb.
     * We can't xmit new skbs from this context, as we might already
     * hold qdisc lock.
     */
    void tcp_wfree(struct sk_buff *skb)
    {
    	struct sock *sk = skb->sk;
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned long flags, nval, oval;
    
    	/* Keep one reference on sk_wmem_alloc.
    	 * Will be released by sk_free() from here or tcp_tasklet_func()
    	 */
    	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
    
    	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
    	 * Wait until our queues (qdisc + devices) are drained.
    	 * This gives :
    	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
    	 * - chance for incoming ACK (processed by another cpu maybe)
    	 *   to migrate this flow (skb->ooo_okay will be eventually set)
    	 */
    	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
    		goto out;
    
    	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
    		struct tsq_tasklet *tsq;
    		bool empty;
    
    		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
    			goto out;
    
    		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
    		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
    		if (nval != oval)
    			continue;
    
    		/* queue this socket to tasklet queue */
    		local_irq_save(flags);
    		tsq = this_cpu_ptr(&tsq_tasklet);
    		empty = list_empty(&tsq->head);
    		list_add(&tp->tsq_node, &tsq->head);
    		if (empty)
    			tasklet_schedule(&tsq->tasklet);
    		local_irq_restore(flags);
    		return;
    	}
    out:
    	sk_free(sk);
    }
    
    /* Note: Called under soft irq.
     * We can call TCP stack right away, unless socket is owned by user.
     */
    enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
    {
    	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
    	struct sock *sk = (struct sock *)tp;
    
    	tcp_tsq_handler(sk);
    	sock_put(sk);
    
    	return HRTIMER_NORESTART;
    }
    
    static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
    				      u64 prior_wstamp)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (sk->sk_pacing_status != SK_PACING_NONE) {
    		unsigned long rate = sk->sk_pacing_rate;
    
    		/* Original sch_fq does not pace first 10 MSS
    		 * Note that tp->data_segs_out overflows after 2^32 packets,
    		 * this is a minor annoyance.
    		 */
    		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
    			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
    			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
    
    			/* take into account OS jitter */
    			len_ns -= min_t(u64, len_ns / 2, credit);
    			tp->tcp_wstamp_ns += len_ns;
    		}
    	}
    	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
    }
    
    /* This routine actually transmits TCP packets queued in by
     * tcp_do_sendmsg().  This is used by both the initial
     * transmission and possible later retransmissions.
     * All SKB's seen here are completely headerless.  It is our
     * job to build the TCP header, and pass the packet down to
     * IP so it can do the same plus pass the packet off to the
     * device.
     *
     * We are working here with either a clone of the original
     * SKB, or a fresh unique copy made by the retransmit engine.
     */
    static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
    			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
    {
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	struct inet_sock *inet;
    	struct tcp_sock *tp;
    	struct tcp_skb_cb *tcb;
    	struct tcp_out_options opts;
    	unsigned int tcp_options_size, tcp_header_size;
    	struct sk_buff *oskb = NULL;
    	struct tcp_md5sig_key *md5;
    	struct tcphdr *th;
    	u64 prior_wstamp;
    	int err;
    
    	BUG_ON(!skb || !tcp_skb_pcount(skb));
    	tp = tcp_sk(sk);
    	prior_wstamp = tp->tcp_wstamp_ns;
    	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
    	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
    	if (clone_it) {
    		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
    			- tp->snd_una;
    		oskb = skb;
    
    		tcp_skb_tsorted_save(oskb) {
    			if (unlikely(skb_cloned(oskb)))
    				skb = pskb_copy(oskb, gfp_mask);
    			else
    				skb = skb_clone(oskb, gfp_mask);
    		} tcp_skb_tsorted_restore(oskb);
    
    		if (unlikely(!skb))
    			return -ENOBUFS;
    	}
    
    	inet = inet_sk(sk);
    	tcb = TCP_SKB_CB(skb);
    	memset(&opts, 0, sizeof(opts));
    
    	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
    		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
    	else
    		tcp_options_size = tcp_established_options(sk, skb, &opts,
    							   &md5);
    	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
    
    	/* if no packet is in qdisc/device queue, then allow XPS to select
    	 * another queue. We can be called from tcp_tsq_handler()
    	 * which holds one reference to sk.
    	 *
    	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
    	 * One way to get this would be to set skb->truesize = 2 on them.
    	 */
    	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
    
    	/* If we had to use memory reserve to allocate this skb,
    	 * this might cause drops if packet is looped back :
    	 * Other socket might not have SOCK_MEMALLOC.
    	 * Packets not looped back do not care about pfmemalloc.
    	 */
    	skb->pfmemalloc = 0;
    
    	skb_push(skb, tcp_header_size);
    	skb_reset_transport_header(skb);
    
    	skb_orphan(skb);
    	skb->sk = sk;
    	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
    	skb_set_hash_from_sk(skb, sk);
    	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
    
    	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
    
    	/* Build TCP header and checksum it. */
    	th = (struct tcphdr *)skb->data;
    	th->source		= inet->inet_sport;
    	th->dest		= inet->inet_dport;
    	th->seq			= htonl(tcb->seq);
    	th->ack_seq		= htonl(rcv_nxt);
    	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
    					tcb->tcp_flags);
    
    	th->check		= 0;
    	th->urg_ptr		= 0;
    
    	/* The urg_mode check is necessary during a below snd_una win probe */
    	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
    		if (before(tp->snd_up, tcb->seq + 0x10000)) {
    			th->urg_ptr = htons(tp->snd_up - tcb->seq);
    			th->urg = 1;
    		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
    			th->urg_ptr = htons(0xFFFF);
    			th->urg = 1;
    		}
    	}
    
    	tcp_options_write((__be32 *)(th + 1), tp, &opts);
    	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
    	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
    		th->window      = htons(tcp_select_window(sk));
    		tcp_ecn_send(sk, skb, th, tcp_header_size);
    	} else {
    		/* RFC1323: The window in SYN & SYN/ACK segments
    		 * is never scaled.
    		 */
    		th->window	= htons(min(tp->rcv_wnd, 65535U));
    	}
    #ifdef CONFIG_TCP_MD5SIG
    	/* Calculate the MD5 hash, as we have all we need now */
    	if (md5) {
    		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
    		tp->af_specific->calc_md5_hash(opts.hash_location,
    					       md5, sk, skb);
    	}
    #endif
    
    	icsk->icsk_af_ops->send_check(sk, skb);
    
    	if (likely(tcb->tcp_flags & TCPHDR_ACK))
    		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
    
    	if (skb->len != tcp_header_size) {
    		tcp_event_data_sent(tp, sk);
    		tp->data_segs_out += tcp_skb_pcount(skb);
    		tp->bytes_sent += skb->len - tcp_header_size;
    	}
    
    	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
    		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
    			      tcp_skb_pcount(skb));
    
    	tp->segs_out += tcp_skb_pcount(skb);
    	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
    	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
    	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
    
    	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
    
    	/* Cleanup our debris for IP stacks */
    	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
    			       sizeof(struct inet6_skb_parm)));
    
    	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
    
    	if (unlikely(err > 0)) {
    		tcp_enter_cwr(sk);
    		err = net_xmit_eval(err);
    	}
    	if (!err && oskb) {
    		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
    		tcp_rate_skb_sent(sk, oskb);
    	}
    	return err;
    }
    
    static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
    			    gfp_t gfp_mask)
    {
    	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
    				  tcp_sk(sk)->rcv_nxt);
    }
    
    /* This routine just queues the buffer for sending.
     *
     * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
     * otherwise socket can stall.
     */
    static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* Advance write_seq and place onto the write_queue. */
    	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
    	__skb_header_release(skb);
    	tcp_add_write_queue_tail(sk, skb);
    	sk->sk_wmem_queued += skb->truesize;
    	sk_mem_charge(sk, skb->truesize);
    }
    
    /* Initialize TSO segments for a packet. */
    static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
    {
    	if (skb->len <= mss_now) {
    		/* Avoid the costly divide in the normal
    		 * non-TSO case.
    		 */
    		tcp_skb_pcount_set(skb, 1);
    		TCP_SKB_CB(skb)->tcp_gso_size = 0;
    	} else {
    		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
    		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
    	}
    }
    
    /* Pcount in the middle of the write queue got changed, we need to do various
     * tweaks to fix counters
     */
    static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	tp->packets_out -= decr;
    
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
    		tp->sacked_out -= decr;
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
    		tp->retrans_out -= decr;
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
    		tp->lost_out -= decr;
    
    	/* Reno case is special. Sigh... */
    	if (tcp_is_reno(tp) && decr > 0)
    		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
    
    	if (tp->lost_skb_hint &&
    	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
    	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
    		tp->lost_cnt_hint -= decr;
    
    	tcp_verify_left_out(tp);
    }
    
    static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
    {
    	return TCP_SKB_CB(skb)->txstamp_ack ||
    		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
    }
    
    static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
    {
    	struct skb_shared_info *shinfo = skb_shinfo(skb);
    
    	if (unlikely(tcp_has_tx_tstamp(skb)) &&
    	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
    		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
    		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
    
    		shinfo->tx_flags &= ~tsflags;
    		shinfo2->tx_flags |= tsflags;
    		swap(shinfo->tskey, shinfo2->tskey);
    		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
    		TCP_SKB_CB(skb)->txstamp_ack = 0;
    	}
    }
    
    static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
    {
    	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
    	TCP_SKB_CB(skb)->eor = 0;
    }
    
    /* Insert buff after skb on the write or rtx queue of sk.  */
    static void tcp_insert_write_queue_after(struct sk_buff *skb,
    					 struct sk_buff *buff,
    					 struct sock *sk,
    					 enum tcp_queue tcp_queue)
    {
    	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
    		__skb_queue_after(&sk->sk_write_queue, skb, buff);
    	else
    		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
    }
    
    /* Function to create two new TCP segments.  Shrinks the given segment
     * to the specified size and appends a new segment with the rest of the
     * packet to the list.  This won't be called frequently, I hope.
     * Remember, these are still headerless SKBs at this point.
     */
    int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
    		 struct sk_buff *skb, u32 len,
    		 unsigned int mss_now, gfp_t gfp)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *buff;
    	int nsize, old_factor;
    	int nlen;
    	u8 flags;
    
    	if (WARN_ON(len > skb->len))
    		return -EINVAL;
    
    	nsize = skb_headlen(skb) - len;
    	if (nsize < 0)
    		nsize = 0;
    
    	if (skb_unclone(skb, gfp))
    		return -ENOMEM;
    
    	/* Get a new skb... force flag on. */
    	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
    	if (!buff)
    		return -ENOMEM; /* We'll just try again later. */
    
    	sk->sk_wmem_queued += buff->truesize;
    	sk_mem_charge(sk, buff->truesize);
    	nlen = skb->len - len - nsize;
    	buff->truesize += nlen;
    	skb->truesize -= nlen;
    
    	/* Correct the sequence numbers. */
    	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
    	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
    
    	/* PSH and FIN should only be set in the second packet. */
    	flags = TCP_SKB_CB(skb)->tcp_flags;
    	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
    	TCP_SKB_CB(buff)->tcp_flags = flags;
    	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
    	tcp_skb_fragment_eor(skb, buff);
    
    	skb_split(skb, buff, len);
    
    	buff->ip_summed = CHECKSUM_PARTIAL;
    
    	buff->tstamp = skb->tstamp;
    	tcp_fragment_tstamp(skb, buff);
    
    	old_factor = tcp_skb_pcount(skb);
    
    	/* Fix up tso_factor for both original and new SKB.  */
    	tcp_set_skb_tso_segs(skb, mss_now);
    	tcp_set_skb_tso_segs(buff, mss_now);
    
    	/* Update delivered info for the new segment */
    	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
    
    	/* If this packet has been sent out already, we must
    	 * adjust the various packet counters.
    	 */
    	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
    		int diff = old_factor - tcp_skb_pcount(skb) -
    			tcp_skb_pcount(buff);
    
    		if (diff)
    			tcp_adjust_pcount(sk, skb, diff);
    	}
    
    	/* Link BUFF into the send queue. */
    	__skb_header_release(buff);
    	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
    	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
    		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
    
    	return 0;
    }
    
    /* This is similar to __pskb_pull_tail(). The difference is that pulled
     * data is not copied, but immediately discarded.
     */
    static int __pskb_trim_head(struct sk_buff *skb, int len)
    {
    	struct skb_shared_info *shinfo;
    	int i, k, eat;
    
    	eat = min_t(int, len, skb_headlen(skb));
    	if (eat) {
    		__skb_pull(skb, eat);
    		len -= eat;
    		if (!len)
    			return 0;
    	}
    	eat = len;
    	k = 0;
    	shinfo = skb_shinfo(skb);
    	for (i = 0; i < shinfo->nr_frags; i++) {
    		int size = skb_frag_size(&shinfo->frags[i]);
    
    		if (size <= eat) {
    			skb_frag_unref(skb, i);
    			eat -= size;
    		} else {
    			shinfo->frags[k] = shinfo->frags[i];
    			if (eat) {
    				shinfo->frags[k].page_offset += eat;
    				skb_frag_size_sub(&shinfo->frags[k], eat);
    				eat = 0;
    			}
    			k++;
    		}
    	}
    	shinfo->nr_frags = k;
    
    	skb->data_len -= len;
    	skb->len = skb->data_len;
    	return len;
    }
    
    /* Remove acked data from a packet in the transmit queue. */
    int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
    {
    	u32 delta_truesize;
    
    	if (skb_unclone(skb, GFP_ATOMIC))
    		return -ENOMEM;
    
    	delta_truesize = __pskb_trim_head(skb, len);
    
    	TCP_SKB_CB(skb)->seq += len;
    	skb->ip_summed = CHECKSUM_PARTIAL;
    
    	if (delta_truesize) {
    		skb->truesize	   -= delta_truesize;
    		sk->sk_wmem_queued -= delta_truesize;
    		sk_mem_uncharge(sk, delta_truesize);
    		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
    	}
    
    	/* Any change of skb->len requires recalculation of tso factor. */
    	if (tcp_skb_pcount(skb) > 1)
    		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
    
    	return 0;
    }
    
    /* Calculate MSS not accounting any TCP options.  */
    static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	int mss_now;
    
    	/* Calculate base mss without TCP options:
    	   It is MMS_S - sizeof(tcphdr) of rfc1122
    	 */
    	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
    
    	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
    	if (icsk->icsk_af_ops->net_frag_header_len) {
    		const struct dst_entry *dst = __sk_dst_get(sk);
    
    		if (dst && dst_allfrag(dst))
    			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
    	}
    
    	/* Clamp it (mss_clamp does not include tcp options) */
    	if (mss_now > tp->rx_opt.mss_clamp)
    		mss_now = tp->rx_opt.mss_clamp;
    
    	/* Now subtract optional transport overhead */
    	mss_now -= icsk->icsk_ext_hdr_len;
    
    	/* Then reserve room for full set of TCP options and 8 bytes of data */
    	if (mss_now < 48)
    		mss_now = 48;
    	return mss_now;
    }
    
    /* Calculate MSS. Not accounting for SACKs here.  */
    int tcp_mtu_to_mss(struct sock *sk, int pmtu)
    {
    	/* Subtract TCP options size, not including SACKs */
    	return __tcp_mtu_to_mss(sk, pmtu) -
    	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
    }
    
    /* Inverse of above */
    int tcp_mss_to_mtu(struct sock *sk, int mss)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	int mtu;
    
    	mtu = mss +
    	      tp->tcp_header_len +
    	      icsk->icsk_ext_hdr_len +
    	      icsk->icsk_af_ops->net_header_len;
    
    	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
    	if (icsk->icsk_af_ops->net_frag_header_len) {
    		const struct dst_entry *dst = __sk_dst_get(sk);
    
    		if (dst && dst_allfrag(dst))
    			mtu += icsk->icsk_af_ops->net_frag_header_len;
    	}
    	return mtu;
    }
    EXPORT_SYMBOL(tcp_mss_to_mtu);
    
    /* MTU probing init per socket */
    void tcp_mtup_init(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct net *net = sock_net(sk);
    
    	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
    	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
    			       icsk->icsk_af_ops->net_header_len;
    	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
    	icsk->icsk_mtup.probe_size = 0;
    	if (icsk->icsk_mtup.enabled)
    		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
    }
    EXPORT_SYMBOL(tcp_mtup_init);
    
    /* This function synchronize snd mss to current pmtu/exthdr set.
    
       tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
       for TCP options, but includes only bare TCP header.
    
       tp->rx_opt.mss_clamp is mss negotiated at connection setup.
       It is minimum of user_mss and mss received with SYN.
       It also does not include TCP options.
    
       inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
    
       tp->mss_cache is current effective sending mss, including
       all tcp options except for SACKs. It is evaluated,
       taking into account current pmtu, but never exceeds
       tp->rx_opt.mss_clamp.
    
       NOTE1. rfc1122 clearly states that advertised MSS
       DOES NOT include either tcp or ip options.
    
       NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
       are READ ONLY outside this function.		--ANK (980731)
     */
    unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	int mss_now;
    
    	if (icsk->icsk_mtup.search_high > pmtu)
    		icsk->icsk_mtup.search_high = pmtu;
    
    	mss_now = tcp_mtu_to_mss(sk, pmtu);
    	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
    
    	/* And store cached results */
    	icsk->icsk_pmtu_cookie = pmtu;
    	if (icsk->icsk_mtup.enabled)
    		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
    	tp->mss_cache = mss_now;
    
    	return mss_now;
    }
    EXPORT_SYMBOL(tcp_sync_mss);
    
    /* Compute the current effective MSS, taking SACKs and IP options,
     * and even PMTU discovery events into account.
     */
    unsigned int tcp_current_mss(struct sock *sk)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	const struct dst_entry *dst = __sk_dst_get(sk);
    	u32 mss_now;
    	unsigned int header_len;
    	struct tcp_out_options opts;
    	struct tcp_md5sig_key *md5;
    
    	mss_now = tp->mss_cache;
    
    	if (dst) {
    		u32 mtu = dst_mtu(dst);
    		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
    			mss_now = tcp_sync_mss(sk, mtu);
    	}
    
    	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
    		     sizeof(struct tcphdr);
    	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
    	 * some common options. If this is an odd packet (because we have SACK
    	 * blocks etc) then our calculated header_len will be different, and
    	 * we have to adjust mss_now correspondingly */
    	if (header_len != tp->tcp_header_len) {
    		int delta = (int) header_len - tp->tcp_header_len;
    		mss_now -= delta;
    	}
    
    	return mss_now;
    }
    
    /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
     * As additional protections, we do not touch cwnd in retransmission phases,
     * and if application hit its sndbuf limit recently.
     */
    static void tcp_cwnd_application_limited(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
    	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
    		/* Limited by application or receiver window. */
    		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
    		u32 win_used = max(tp->snd_cwnd_used, init_win);
    		if (win_used < tp->snd_cwnd) {
    			tp->snd_ssthresh = tcp_current_ssthresh(sk);
    			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
    		}
    		tp->snd_cwnd_used = 0;
    	}
    	tp->snd_cwnd_stamp = tcp_jiffies32;
    }
    
    static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
    {
    	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* Track the maximum number of outstanding packets in each
    	 * window, and remember whether we were cwnd-limited then.
    	 */
    	if (!before(tp->snd_una, tp->max_packets_seq) ||
    	    tp->packets_out > tp->max_packets_out) {
    		tp->max_packets_out = tp->packets_out;
    		tp->max_packets_seq = tp->snd_nxt;
    		tp->is_cwnd_limited = is_cwnd_limited;
    	}
    
    	if (tcp_is_cwnd_limited(sk)) {
    		/* Network is feed fully. */
    		tp->snd_cwnd_used = 0;
    		tp->snd_cwnd_stamp = tcp_jiffies32;
    	} else {
    		/* Network starves. */
    		if (tp->packets_out > tp->snd_cwnd_used)
    			tp->snd_cwnd_used = tp->packets_out;
    
    		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
    		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
    		    !ca_ops->cong_control)
    			tcp_cwnd_application_limited(sk);
    
    		/* The following conditions together indicate the starvation
    		 * is caused by insufficient sender buffer:
    		 * 1) just sent some data (see tcp_write_xmit)
    		 * 2) not cwnd limited (this else condition)
    		 * 3) no more data to send (tcp_write_queue_empty())
    		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
    		 */
    		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
    		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
    		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
    			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
    	}
    }
    
    /* Minshall's variant of the Nagle send check. */
    static bool tcp_minshall_check(const struct tcp_sock *tp)
    {
    	return after(tp->snd_sml, tp->snd_una) &&
    		!after(tp->snd_sml, tp->snd_nxt);
    }
    
    /* Update snd_sml if this skb is under mss
     * Note that a TSO packet might end with a sub-mss segment
     * The test is really :
     * if ((skb->len % mss) != 0)
     *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
     * But we can avoid doing the divide again given we already have
     *  skb_pcount = skb->len / mss_now
     */
    static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
    				const struct sk_buff *skb)
    {
    	if (skb->len < tcp_skb_pcount(skb) * mss_now)
    		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
    }
    
    /* Return false, if packet can be sent now without violation Nagle's rules:
     * 1. It is full sized. (provided by caller in %partial bool)
     * 2. Or it contains FIN. (already checked by caller)
     * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
     * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
     *    With Minshall's modification: all sent small packets are ACKed.
     */
    static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
    			    int nonagle)
    {
    	return partial &&
    		((nonagle & TCP_NAGLE_CORK) ||
    		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
    }
    
    /* Return how many segs we'd like on a TSO packet,
     * to send one TSO packet per ms
     */
    static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
    			    int min_tso_segs)
    {
    	u32 bytes, segs;
    
    	bytes = min_t(unsigned long,
    		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
    		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
    
    	/* Goal is to send at least one packet per ms,
    	 * not one big TSO packet every 100 ms.
    	 * This preserves ACK clocking and is consistent
    	 * with tcp_tso_should_defer() heuristic.
    	 */
    	segs = max_t(u32, bytes / mss_now, min_tso_segs);
    
    	return segs;
    }
    
    /* Return the number of segments we want in the skb we are transmitting.
     * See if congestion control module wants to decide; otherwise, autosize.
     */
    static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
    {
    	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
    	u32 min_tso, tso_segs;
    
    	min_tso = ca_ops->min_tso_segs ?
    			ca_ops->min_tso_segs(sk) :
    			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
    
    	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
    	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
    }
    
    /* Returns the portion of skb which can be sent right away */
    static unsigned int tcp_mss_split_point(const struct sock *sk,
    					const struct sk_buff *skb,
    					unsigned int mss_now,
    					unsigned int max_segs,
    					int nonagle)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	u32 partial, needed, window, max_len;
    
    	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
    	max_len = mss_now * max_segs;
    
    	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
    		return max_len;
    
    	needed = min(skb->len, window);
    
    	if (max_len <= needed)
    		return max_len;
    
    	partial = needed % mss_now;
    	/* If last segment is not a full MSS, check if Nagle rules allow us
    	 * to include this last segment in this skb.
    	 * Otherwise, we'll split the skb at last MSS boundary
    	 */
    	if (tcp_nagle_check(partial != 0, tp, nonagle))
    		return needed - partial;
    
    	return needed;
    }
    
    /* Can at least one segment of SKB be sent right now, according to the
     * congestion window rules?  If so, return how many segments are allowed.
     */
    static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
    					 const struct sk_buff *skb)
    {
    	u32 in_flight, cwnd, halfcwnd;
    
    	/* Don't be strict about the congestion window for the final FIN.  */
    	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
    	    tcp_skb_pcount(skb) == 1)
    		return 1;
    
    	in_flight = tcp_packets_in_flight(tp);
    	cwnd = tp->snd_cwnd;
    	if (in_flight >= cwnd)
    		return 0;
    
    	/* For better scheduling, ensure we have at least
    	 * 2 GSO packets in flight.
    	 */
    	halfcwnd = max(cwnd >> 1, 1U);
    	return min(halfcwnd, cwnd - in_flight);
    }
    
    /* Initialize TSO state of a skb.
     * This must be invoked the first time we consider transmitting
     * SKB onto the wire.
     */
    static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
    {
    	int tso_segs = tcp_skb_pcount(skb);
    
    	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
    		tcp_set_skb_tso_segs(skb, mss_now);
    		tso_segs = tcp_skb_pcount(skb);
    	}
    	return tso_segs;
    }
    
    
    /* Return true if the Nagle test allows this packet to be
     * sent now.
     */
    static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
    				  unsigned int cur_mss, int nonagle)
    {
    	/* Nagle rule does not apply to frames, which sit in the middle of the
    	 * write_queue (they have no chances to get new data).
    	 *
    	 * This is implemented in the callers, where they modify the 'nonagle'
    	 * argument based upon the location of SKB in the send queue.
    	 */
    	if (nonagle & TCP_NAGLE_PUSH)
    		return true;
    
    	/* Don't use the nagle rule for urgent data (or for the final FIN). */
    	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
    		return true;
    
    	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
    		return true;
    
    	return false;
    }
    
    /* Does at least the first segment of SKB fit into the send window? */
    static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
    			     const struct sk_buff *skb,
    			     unsigned int cur_mss)
    {
    	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
    
    	if (skb->len > cur_mss)
    		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
    
    	return !after(end_seq, tcp_wnd_end(tp));
    }
    
    /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
     * which is put after SKB on the list.  It is very much like
     * tcp_fragment() except that it may make several kinds of assumptions
     * in order to speed up the splitting operation.  In particular, we
     * know that all the data is in scatter-gather pages, and that the
     * packet has never been sent out before (and thus is not cloned).
     */
    static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
    			unsigned int mss_now, gfp_t gfp)
    {
    	int nlen = skb->len - len;
    	struct sk_buff *buff;
    	u8 flags;
    
    	/* All of a TSO frame must be composed of paged data.  */
    	if (skb->len != skb->data_len)
    		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
    				    skb, len, mss_now, gfp);
    
    	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
    	if (unlikely(!buff))
    		return -ENOMEM;
    
    	sk->sk_wmem_queued += buff->truesize;
    	sk_mem_charge(sk, buff->truesize);
    	buff->truesize += nlen;
    	skb->truesize -= nlen;
    
    	/* Correct the sequence numbers. */
    	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
    	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
    
    	/* PSH and FIN should only be set in the second packet. */
    	flags = TCP_SKB_CB(skb)->tcp_flags;
    	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
    	TCP_SKB_CB(buff)->tcp_flags = flags;
    
    	/* This packet was never sent out yet, so no SACK bits. */
    	TCP_SKB_CB(buff)->sacked = 0;
    
    	tcp_skb_fragment_eor(skb, buff);
    
    	buff->ip_summed = CHECKSUM_PARTIAL;
    	skb_split(skb, buff, len);
    	tcp_fragment_tstamp(skb, buff);
    
    	/* Fix up tso_factor for both original and new SKB.  */
    	tcp_set_skb_tso_segs(skb, mss_now);
    	tcp_set_skb_tso_segs(buff, mss_now);
    
    	/* Link BUFF into the send queue. */
    	__skb_header_release(buff);
    	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
    
    	return 0;
    }
    
    /* Try to defer sending, if possible, in order to minimize the amount
     * of TSO splitting we do.  View it as a kind of TSO Nagle test.
     *
     * This algorithm is from John Heffner.
     */
    static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
    				 bool *is_cwnd_limited,
    				 bool *is_rwnd_limited,
    				 u32 max_segs)
    {
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	u32 send_win, cong_win, limit, in_flight;
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *head;
    	int win_divisor;
    	s64 delta;
    
    	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
    		goto send_now;
    
    	/* Avoid bursty behavior by allowing defer
    	 * only if the last write was recent (1 ms).
    	 * Note that tp->tcp_wstamp_ns can be in the future if we have
    	 * packets waiting in a qdisc or device for EDT delivery.
    	 */
    	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
    	if (delta > 0)
    		goto send_now;
    
    	in_flight = tcp_packets_in_flight(tp);
    
    	BUG_ON(tcp_skb_pcount(skb) <= 1);
    	BUG_ON(tp->snd_cwnd <= in_flight);
    
    	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
    
    	/* From in_flight test above, we know that cwnd > in_flight.  */
    	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
    
    	limit = min(send_win, cong_win);
    
    	/* If a full-sized TSO skb can be sent, do it. */
    	if (limit >= max_segs * tp->mss_cache)
    		goto send_now;
    
    	/* Middle in queue won't get any more data, full sendable already? */
    	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
    		goto send_now;
    
    	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
    	if (win_divisor) {
    		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
    
    		/* If at least some fraction of a window is available,
    		 * just use it.
    		 */
    		chunk /= win_divisor;
    		if (limit >= chunk)
    			goto send_now;
    	} else {
    		/* Different approach, try not to defer past a single
    		 * ACK.  Receiver should ACK every other full sized
    		 * frame, so if we have space for more than 3 frames
    		 * then send now.
    		 */
    		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
    			goto send_now;
    	}
    
    	/* TODO : use tsorted_sent_queue ? */
    	head = tcp_rtx_queue_head(sk);
    	if (!head)
    		goto send_now;
    	delta = tp->tcp_clock_cache - head->tstamp;
    	/* If next ACK is likely to come too late (half srtt), do not defer */
    	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
    		goto send_now;
    
    	/* Ok, it looks like it is advisable to defer.
    	 * Three cases are tracked :
    	 * 1) We are cwnd-limited
    	 * 2) We are rwnd-limited
    	 * 3) We are application limited.
    	 */
    	if (cong_win < send_win) {
    		if (cong_win <= skb->len) {
    			*is_cwnd_limited = true;
    			return true;
    		}
    	} else {
    		if (send_win <= skb->len) {
    			*is_rwnd_limited = true;
    			return true;
    		}
    	}
    
    	/* If this packet won't get more data, do not wait. */
    	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
    	    TCP_SKB_CB(skb)->eor)
    		goto send_now;
    
    	return true;
    
    send_now:
    	return false;
    }
    
    static inline void tcp_mtu_check_reprobe(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct net *net = sock_net(sk);
    	u32 interval;
    	s32 delta;
    
    	interval = net->ipv4.sysctl_tcp_probe_interval;
    	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
    	if (unlikely(delta >= interval * HZ)) {
    		int mss = tcp_current_mss(sk);
    
    		/* Update current search range */
    		icsk->icsk_mtup.probe_size = 0;
    		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
    			sizeof(struct tcphdr) +
    			icsk->icsk_af_ops->net_header_len;
    		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
    
    		/* Update probe time stamp */
    		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
    	}
    }
    
    static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
    {
    	struct sk_buff *skb, *next;
    
    	skb = tcp_send_head(sk);
    	tcp_for_write_queue_from_safe(skb, next, sk) {
    		if (len <= skb->len)
    			break;
    
    		if (unlikely(TCP_SKB_CB(skb)->eor))
    			return false;
    
    		len -= skb->len;
    	}
    
    	return true;
    }
    
    /* Create a new MTU probe if we are ready.
     * MTU probe is regularly attempting to increase the path MTU by
     * deliberately sending larger packets.  This discovers routing
     * changes resulting in larger path MTUs.
     *
     * Returns 0 if we should wait to probe (no cwnd available),
     *         1 if a probe was sent,
     *         -1 otherwise
     */
    static int tcp_mtu_probe(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb, *nskb, *next;
    	struct net *net = sock_net(sk);
    	int probe_size;
    	int size_needed;
    	int copy, len;
    	int mss_now;
    	int interval;
    
    	/* Not currently probing/verifying,
    	 * not in recovery,
    	 * have enough cwnd, and
    	 * not SACKing (the variable headers throw things off)
    	 */
    	if (likely(!icsk->icsk_mtup.enabled ||
    		   icsk->icsk_mtup.probe_size ||
    		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
    		   tp->snd_cwnd < 11 ||
    		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
    		return -1;
    
    	/* Use binary search for probe_size between tcp_mss_base,
    	 * and current mss_clamp. if (search_high - search_low)
    	 * smaller than a threshold, backoff from probing.
    	 */
    	mss_now = tcp_current_mss(sk);
    	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
    				    icsk->icsk_mtup.search_low) >> 1);
    	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
    	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
    	/* When misfortune happens, we are reprobing actively,
    	 * and then reprobe timer has expired. We stick with current
    	 * probing process by not resetting search range to its orignal.
    	 */
    	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
    		interval < net->ipv4.sysctl_tcp_probe_threshold) {
    		/* Check whether enough time has elaplased for
    		 * another round of probing.
    		 */
    		tcp_mtu_check_reprobe(sk);
    		return -1;
    	}
    
    	/* Have enough data in the send queue to probe? */
    	if (tp->write_seq - tp->snd_nxt < size_needed)
    		return -1;
    
    	if (tp->snd_wnd < size_needed)
    		return -1;
    	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
    		return 0;
    
    	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
    	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
    		if (!tcp_packets_in_flight(tp))
    			return -1;
    		else
    			return 0;
    	}
    
    	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
    		return -1;
    
    	/* We're allowed to probe.  Build it now. */
    	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
    	if (!nskb)
    		return -1;
    	sk->sk_wmem_queued += nskb->truesize;
    	sk_mem_charge(sk, nskb->truesize);
    
    	skb = tcp_send_head(sk);
    
    	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
    	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
    	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
    	TCP_SKB_CB(nskb)->sacked = 0;
    	nskb->csum = 0;
    	nskb->ip_summed = CHECKSUM_PARTIAL;
    
    	tcp_insert_write_queue_before(nskb, skb, sk);
    	tcp_highest_sack_replace(sk, skb, nskb);
    
    	len = 0;
    	tcp_for_write_queue_from_safe(skb, next, sk) {
    		copy = min_t(int, skb->len, probe_size - len);
    		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
    
    		if (skb->len <= copy) {
    			/* We've eaten all the data from this skb.
    			 * Throw it away. */
    			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
    			/* If this is the last SKB we copy and eor is set
    			 * we need to propagate it to the new skb.
    			 */
    			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
    			tcp_unlink_write_queue(skb, sk);
    			sk_wmem_free_skb(sk, skb);
    		} else {
    			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
    						   ~(TCPHDR_FIN|TCPHDR_PSH);
    			if (!skb_shinfo(skb)->nr_frags) {
    				skb_pull(skb, copy);
    			} else {
    				__pskb_trim_head(skb, copy);
    				tcp_set_skb_tso_segs(skb, mss_now);
    			}
    			TCP_SKB_CB(skb)->seq += copy;
    		}
    
    		len += copy;
    
    		if (len >= probe_size)
    			break;
    	}
    	tcp_init_tso_segs(nskb, nskb->len);
    
    	/* We're ready to send.  If this fails, the probe will
    	 * be resegmented into mss-sized pieces by tcp_write_xmit().
    	 */
    	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
    		/* Decrement cwnd here because we are sending
    		 * effectively two packets. */
    		tp->snd_cwnd--;
    		tcp_event_new_data_sent(sk, nskb);
    
    		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
    		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
    		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
    
    		return 1;
    	}
    
    	return -1;
    }
    
    static bool tcp_pacing_check(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (!tcp_needs_internal_pacing(sk))
    		return false;
    
    	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
    		return false;
    
    	if (!hrtimer_is_queued(&tp->pacing_timer)) {
    		hrtimer_start(&tp->pacing_timer,
    			      ns_to_ktime(tp->tcp_wstamp_ns),
    			      HRTIMER_MODE_ABS_PINNED_SOFT);
    		sock_hold(sk);
    	}
    	return true;
    }
    
    /* TCP Small Queues :
     * Control number of packets in qdisc/devices to two packets / or ~1 ms.
     * (These limits are doubled for retransmits)
     * This allows for :
     *  - better RTT estimation and ACK scheduling
     *  - faster recovery
     *  - high rates
     * Alas, some drivers / subsystems require a fair amount
     * of queued bytes to ensure line rate.
     * One example is wifi aggregation (802.11 AMPDU)
     */
    static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
    				  unsigned int factor)
    {
    	unsigned long limit;
    
    	limit = max_t(unsigned long,
    		      2 * skb->truesize,
    		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
    	if (sk->sk_pacing_status == SK_PACING_NONE)
    		limit = min_t(unsigned long, limit,
    			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
    	limit <<= factor;
    
    	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
    		/* Always send skb if rtx queue is empty.
    		 * No need to wait for TX completion to call us back,
    		 * after softirq/tasklet schedule.
    		 * This helps when TX completions are delayed too much.
    		 */
    		if (tcp_rtx_queue_empty(sk))
    			return false;
    
    		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
    		/* It is possible TX completion already happened
    		 * before we set TSQ_THROTTLED, so we must
    		 * test again the condition.
    		 */
    		smp_mb__after_atomic();
    		if (refcount_read(&sk->sk_wmem_alloc) > limit)
    			return true;
    	}
    	return false;
    }
    
    static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
    {
    	const u32 now = tcp_jiffies32;
    	enum tcp_chrono old = tp->chrono_type;
    
    	if (old > TCP_CHRONO_UNSPEC)
    		tp->chrono_stat[old - 1] += now - tp->chrono_start;
    	tp->chrono_start = now;
    	tp->chrono_type = new;
    }
    
    void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* If there are multiple conditions worthy of tracking in a
    	 * chronograph then the highest priority enum takes precedence
    	 * over the other conditions. So that if something "more interesting"
    	 * starts happening, stop the previous chrono and start a new one.
    	 */
    	if (type > tp->chrono_type)
    		tcp_chrono_set(tp, type);
    }
    
    void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    
    	/* There are multiple conditions worthy of tracking in a
    	 * chronograph, so that the highest priority enum takes
    	 * precedence over the other conditions (see tcp_chrono_start).
    	 * If a condition stops, we only stop chrono tracking if
    	 * it's the "most interesting" or current chrono we are
    	 * tracking and starts busy chrono if we have pending data.
    	 */
    	if (tcp_rtx_and_write_queues_empty(sk))
    		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
    	else if (type == tp->chrono_type)
    		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
    }
    
    /* This routine writes packets to the network.  It advances the
     * send_head.  This happens as incoming acks open up the remote
     * window for us.
     *
     * LARGESEND note: !tcp_urg_mode is overkill, only frames between
     * snd_up-64k-mss .. snd_up cannot be large. However, taking into
     * account rare use of URG, this is not a big flaw.
     *
     * Send at most one packet when push_one > 0. Temporarily ignore
     * cwnd limit to force at most one packet out when push_one == 2.
    
     * Returns true, if no segments are in flight and we have queued segments,
     * but cannot send anything now because of SWS or another problem.
     */
    static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
    			   int push_one, gfp_t gfp)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    	unsigned int tso_segs, sent_pkts;
    	int cwnd_quota;
    	int result;
    	bool is_cwnd_limited = false, is_rwnd_limited = false;
    	u32 max_segs;
    
    	sent_pkts = 0;
    
    	tcp_mstamp_refresh(tp);
    	if (!push_one) {
    		/* Do MTU probing. */
    		result = tcp_mtu_probe(sk);
    		if (!result) {
    			return false;
    		} else if (result > 0) {
    			sent_pkts = 1;
    		}
    	}
    
    	max_segs = tcp_tso_segs(sk, mss_now);
    	while ((skb = tcp_send_head(sk))) {
    		unsigned int limit;
    
    		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
    			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
    			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
    			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
    			tcp_init_tso_segs(skb, mss_now);
    			goto repair; /* Skip network transmission */
    		}
    
    		if (tcp_pacing_check(sk))
    			break;
    
    		tso_segs = tcp_init_tso_segs(skb, mss_now);
    		BUG_ON(!tso_segs);
    
    		cwnd_quota = tcp_cwnd_test(tp, skb);
    		if (!cwnd_quota) {
    			if (push_one == 2)
    				/* Force out a loss probe pkt. */
    				cwnd_quota = 1;
    			else
    				break;
    		}
    
    		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
    			is_rwnd_limited = true;
    			break;
    		}
    
    		if (tso_segs == 1) {
    			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
    						     (tcp_skb_is_last(sk, skb) ?
    						      nonagle : TCP_NAGLE_PUSH))))
    				break;
    		} else {
    			if (!push_one &&
    			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
    						 &is_rwnd_limited, max_segs))
    				break;
    		}
    
    		limit = mss_now;
    		if (tso_segs > 1 && !tcp_urg_mode(tp))
    			limit = tcp_mss_split_point(sk, skb, mss_now,
    						    min_t(unsigned int,
    							  cwnd_quota,
    							  max_segs),
    						    nonagle);
    
    		if (skb->len > limit &&
    		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
    			break;
    
    		if (tcp_small_queue_check(sk, skb, 0))
    			break;
    
    		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
    			break;
    
    repair:
    		/* Advance the send_head.  This one is sent out.
    		 * This call will increment packets_out.
    		 */
    		tcp_event_new_data_sent(sk, skb);
    
    		tcp_minshall_update(tp, mss_now, skb);
    		sent_pkts += tcp_skb_pcount(skb);
    
    		if (push_one)
    			break;
    	}
    
    	if (is_rwnd_limited)
    		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
    	else
    		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
    
    	if (likely(sent_pkts)) {
    		if (tcp_in_cwnd_reduction(sk))
    			tp->prr_out += sent_pkts;
    
    		/* Send one loss probe per tail loss episode. */
    		if (push_one != 2)
    			tcp_schedule_loss_probe(sk, false);
    		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
    		tcp_cwnd_validate(sk, is_cwnd_limited);
    		return false;
    	}
    	return !tp->packets_out && !tcp_write_queue_empty(sk);
    }
    
    bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 timeout, rto_delta_us;
    	int early_retrans;
    
    	/* Don't do any loss probe on a Fast Open connection before 3WHS
    	 * finishes.
    	 */
    	if (tp->fastopen_rsk)
    		return false;
    
    	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
    	/* Schedule a loss probe in 2*RTT for SACK capable connections
    	 * not in loss recovery, that are either limited by cwnd or application.
    	 */
    	if ((early_retrans != 3 && early_retrans != 4) ||
    	    !tp->packets_out || !tcp_is_sack(tp) ||
    	    (icsk->icsk_ca_state != TCP_CA_Open &&
    	     icsk->icsk_ca_state != TCP_CA_CWR))
    		return false;
    
    	/* Probe timeout is 2*rtt. Add minimum RTO to account
    	 * for delayed ack when there's one outstanding packet. If no RTT
    	 * sample is available then probe after TCP_TIMEOUT_INIT.
    	 */
    	if (tp->srtt_us) {
    		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
    		if (tp->packets_out == 1)
    			timeout += TCP_RTO_MIN;
    		else
    			timeout += TCP_TIMEOUT_MIN;
    	} else {
    		timeout = TCP_TIMEOUT_INIT;
    	}
    
    	/* If the RTO formula yields an earlier time, then use that time. */
    	rto_delta_us = advancing_rto ?
    			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
    			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
    	if (rto_delta_us > 0)
    		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
    
    	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
    			     TCP_RTO_MAX, NULL);
    	return true;
    }
    
    /* Thanks to skb fast clones, we can detect if a prior transmit of
     * a packet is still in a qdisc or driver queue.
     * In this case, there is very little point doing a retransmit !
     */
    static bool skb_still_in_host_queue(const struct sock *sk,
    				    const struct sk_buff *skb)
    {
    	if (unlikely(skb_fclone_busy(sk, skb))) {
    		NET_INC_STATS(sock_net(sk),
    			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
    		return true;
    	}
    	return false;
    }
    
    /* When probe timeout (PTO) fires, try send a new segment if possible, else
     * retransmit the last segment.
     */
    void tcp_send_loss_probe(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    	int pcount;
    	int mss = tcp_current_mss(sk);
    
    	skb = tcp_send_head(sk);
    	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
    		pcount = tp->packets_out;
    		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
    		if (tp->packets_out > pcount)
    			goto probe_sent;
    		goto rearm_timer;
    	}
    	skb = skb_rb_last(&sk->tcp_rtx_queue);
    	if (unlikely(!skb)) {
    		WARN_ONCE(tp->packets_out,
    			  "invalid inflight: %u state %u cwnd %u mss %d\n",
    			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
    		inet_csk(sk)->icsk_pending = 0;
    		return;
    	}
    
    	/* At most one outstanding TLP retransmission. */
    	if (tp->tlp_high_seq)
    		goto rearm_timer;
    
    	if (skb_still_in_host_queue(sk, skb))
    		goto rearm_timer;
    
    	pcount = tcp_skb_pcount(skb);
    	if (WARN_ON(!pcount))
    		goto rearm_timer;
    
    	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
    		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
    					  (pcount - 1) * mss, mss,
    					  GFP_ATOMIC)))
    			goto rearm_timer;
    		skb = skb_rb_next(skb);
    	}
    
    	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
    		goto rearm_timer;
    
    	if (__tcp_retransmit_skb(sk, skb, 1))
    		goto rearm_timer;
    
    	/* Record snd_nxt for loss detection. */
    	tp->tlp_high_seq = tp->snd_nxt;
    
    probe_sent:
    	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
    	/* Reset s.t. tcp_rearm_rto will restart timer from now */
    	inet_csk(sk)->icsk_pending = 0;
    rearm_timer:
    	tcp_rearm_rto(sk);
    }
    
    /* Push out any pending frames which were held back due to
     * TCP_CORK or attempt at coalescing tiny packets.
     * The socket must be locked by the caller.
     */
    void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
    			       int nonagle)
    {
    	/* If we are closed, the bytes will have to remain here.
    	 * In time closedown will finish, we empty the write queue and
    	 * all will be happy.
    	 */
    	if (unlikely(sk->sk_state == TCP_CLOSE))
    		return;
    
    	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
    			   sk_gfp_mask(sk, GFP_ATOMIC)))
    		tcp_check_probe_timer(sk);
    }
    
    /* Send _single_ skb sitting at the send head. This function requires
     * true push pending frames to setup probe timer etc.
     */
    void tcp_push_one(struct sock *sk, unsigned int mss_now)
    {
    	struct sk_buff *skb = tcp_send_head(sk);
    
    	BUG_ON(!skb || skb->len < mss_now);
    
    	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
    }
    
    /* This function returns the amount that we can raise the
     * usable window based on the following constraints
     *
     * 1. The window can never be shrunk once it is offered (RFC 793)
     * 2. We limit memory per socket
     *
     * RFC 1122:
     * "the suggested [SWS] avoidance algorithm for the receiver is to keep
     *  RECV.NEXT + RCV.WIN fixed until:
     *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
     *
     * i.e. don't raise the right edge of the window until you can raise
     * it at least MSS bytes.
     *
     * Unfortunately, the recommended algorithm breaks header prediction,
     * since header prediction assumes th->window stays fixed.
     *
     * Strictly speaking, keeping th->window fixed violates the receiver
     * side SWS prevention criteria. The problem is that under this rule
     * a stream of single byte packets will cause the right side of the
     * window to always advance by a single byte.
     *
     * Of course, if the sender implements sender side SWS prevention
     * then this will not be a problem.
     *
     * BSD seems to make the following compromise:
     *
     *	If the free space is less than the 1/4 of the maximum
     *	space available and the free space is less than 1/2 mss,
     *	then set the window to 0.
     *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
     *	Otherwise, just prevent the window from shrinking
     *	and from being larger than the largest representable value.
     *
     * This prevents incremental opening of the window in the regime
     * where TCP is limited by the speed of the reader side taking
     * data out of the TCP receive queue. It does nothing about
     * those cases where the window is constrained on the sender side
     * because the pipeline is full.
     *
     * BSD also seems to "accidentally" limit itself to windows that are a
     * multiple of MSS, at least until the free space gets quite small.
     * This would appear to be a side effect of the mbuf implementation.
     * Combining these two algorithms results in the observed behavior
     * of having a fixed window size at almost all times.
     *
     * Below we obtain similar behavior by forcing the offered window to
     * a multiple of the mss when it is feasible to do so.
     *
     * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
     * Regular options like TIMESTAMP are taken into account.
     */
    u32 __tcp_select_window(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	/* MSS for the peer's data.  Previous versions used mss_clamp
    	 * here.  I don't know if the value based on our guesses
    	 * of peer's MSS is better for the performance.  It's more correct
    	 * but may be worse for the performance because of rcv_mss
    	 * fluctuations.  --SAW  1998/11/1
    	 */
    	int mss = icsk->icsk_ack.rcv_mss;
    	int free_space = tcp_space(sk);
    	int allowed_space = tcp_full_space(sk);
    	int full_space = min_t(int, tp->window_clamp, allowed_space);
    	int window;
    
    	if (unlikely(mss > full_space)) {
    		mss = full_space;
    		if (mss <= 0)
    			return 0;
    	}
    	if (free_space < (full_space >> 1)) {
    		icsk->icsk_ack.quick = 0;
    
    		if (tcp_under_memory_pressure(sk))
    			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
    					       4U * tp->advmss);
    
    		/* free_space might become our new window, make sure we don't
    		 * increase it due to wscale.
    		 */
    		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
    
    		/* if free space is less than mss estimate, or is below 1/16th
    		 * of the maximum allowed, try to move to zero-window, else
    		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
    		 * new incoming data is dropped due to memory limits.
    		 * With large window, mss test triggers way too late in order
    		 * to announce zero window in time before rmem limit kicks in.
    		 */
    		if (free_space < (allowed_space >> 4) || free_space < mss)
    			return 0;
    	}
    
    	if (free_space > tp->rcv_ssthresh)
    		free_space = tp->rcv_ssthresh;
    
    	/* Don't do rounding if we are using window scaling, since the
    	 * scaled window will not line up with the MSS boundary anyway.
    	 */
    	if (tp->rx_opt.rcv_wscale) {
    		window = free_space;
    
    		/* Advertise enough space so that it won't get scaled away.
    		 * Import case: prevent zero window announcement if
    		 * 1<<rcv_wscale > mss.
    		 */
    		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
    	} else {
    		window = tp->rcv_wnd;
    		/* Get the largest window that is a nice multiple of mss.
    		 * Window clamp already applied above.
    		 * If our current window offering is within 1 mss of the
    		 * free space we just keep it. This prevents the divide
    		 * and multiply from happening most of the time.
    		 * We also don't do any window rounding when the free space
    		 * is too small.
    		 */
    		if (window <= free_space - mss || window > free_space)
    			window = rounddown(free_space, mss);
    		else if (mss == full_space &&
    			 free_space > window + (full_space >> 1))
    			window = free_space;
    	}
    
    	return window;
    }
    
    void tcp_skb_collapse_tstamp(struct sk_buff *skb,
    			     const struct sk_buff *next_skb)
    {
    	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
    		const struct skb_shared_info *next_shinfo =
    			skb_shinfo(next_skb);
    		struct skb_shared_info *shinfo = skb_shinfo(skb);
    
    		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
    		shinfo->tskey = next_shinfo->tskey;
    		TCP_SKB_CB(skb)->txstamp_ack |=
    			TCP_SKB_CB(next_skb)->txstamp_ack;
    	}
    }
    
    /* Collapses two adjacent SKB's during retransmission. */
    static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *next_skb = skb_rb_next(skb);
    	int next_skb_size;
    
    	next_skb_size = next_skb->len;
    
    	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
    
    	if (next_skb_size) {
    		if (next_skb_size <= skb_availroom(skb))
    			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
    				      next_skb_size);
    		else if (!skb_shift(skb, next_skb, next_skb_size))
    			return false;
    	}
    	tcp_highest_sack_replace(sk, next_skb, skb);
    
    	/* Update sequence range on original skb. */
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
    
    	/* Merge over control information. This moves PSH/FIN etc. over */
    	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
    
    	/* All done, get rid of second SKB and account for it so
    	 * packet counting does not break.
    	 */
    	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
    	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
    
    	/* changed transmit queue under us so clear hints */
    	tcp_clear_retrans_hints_partial(tp);
    	if (next_skb == tp->retransmit_skb_hint)
    		tp->retransmit_skb_hint = skb;
    
    	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
    
    	tcp_skb_collapse_tstamp(skb, next_skb);
    
    	tcp_rtx_queue_unlink_and_free(next_skb, sk);
    	return true;
    }
    
    /* Check if coalescing SKBs is legal. */
    static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
    {
    	if (tcp_skb_pcount(skb) > 1)
    		return false;
    	if (skb_cloned(skb))
    		return false;
    	/* Some heuristics for collapsing over SACK'd could be invented */
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
    		return false;
    
    	return true;
    }
    
    /* Collapse packets in the retransmit queue to make to create
     * less packets on the wire. This is only done on retransmission.
     */
    static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
    				     int space)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb = to, *tmp;
    	bool first = true;
    
    	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
    		return;
    	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
    		return;
    
    	skb_rbtree_walk_from_safe(skb, tmp) {
    		if (!tcp_can_collapse(sk, skb))
    			break;
    
    		if (!tcp_skb_can_collapse_to(to))
    			break;
    
    		space -= skb->len;
    
    		if (first) {
    			first = false;
    			continue;
    		}
    
    		if (space < 0)
    			break;
    
    		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
    			break;
    
    		if (!tcp_collapse_retrans(sk, to))
    			break;
    	}
    }
    
    /* This retransmits one SKB.  Policy decisions and retransmit queue
     * state updates are done by the caller.  Returns non-zero if an
     * error occurred which prevented the send.
     */
    int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned int cur_mss;
    	int diff, len, err;
    
    
    	/* Inconclusive MTU probe */
    	if (icsk->icsk_mtup.probe_size)
    		icsk->icsk_mtup.probe_size = 0;
    
    	/* Do not sent more than we queued. 1/4 is reserved for possible
    	 * copying overhead: fragmentation, tunneling, mangling etc.
    	 */
    	if (refcount_read(&sk->sk_wmem_alloc) >
    	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
    		  sk->sk_sndbuf))
    		return -EAGAIN;
    
    	if (skb_still_in_host_queue(sk, skb))
    		return -EBUSY;
    
    	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
    		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
    			WARN_ON_ONCE(1);
    			return -EINVAL;
    		}
    		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
    			return -ENOMEM;
    	}
    
    	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
    		return -EHOSTUNREACH; /* Routing failure or similar. */
    
    	cur_mss = tcp_current_mss(sk);
    
    	/* If receiver has shrunk his window, and skb is out of
    	 * new window, do not retransmit it. The exception is the
    	 * case, when window is shrunk to zero. In this case
    	 * our retransmit serves as a zero window probe.
    	 */
    	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
    	    TCP_SKB_CB(skb)->seq != tp->snd_una)
    		return -EAGAIN;
    
    	len = cur_mss * segs;
    	if (skb->len > len) {
    		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
    				 cur_mss, GFP_ATOMIC))
    			return -ENOMEM; /* We'll try again later. */
    	} else {
    		if (skb_unclone(skb, GFP_ATOMIC))
    			return -ENOMEM;
    
    		diff = tcp_skb_pcount(skb);
    		tcp_set_skb_tso_segs(skb, cur_mss);
    		diff -= tcp_skb_pcount(skb);
    		if (diff)
    			tcp_adjust_pcount(sk, skb, diff);
    		if (skb->len < cur_mss)
    			tcp_retrans_try_collapse(sk, skb, cur_mss);
    	}
    
    	/* RFC3168, section 6.1.1.1. ECN fallback */
    	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
    		tcp_ecn_clear_syn(sk, skb);
    
    	/* Update global and local TCP statistics. */
    	segs = tcp_skb_pcount(skb);
    	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
    	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
    		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
    	tp->total_retrans += segs;
    	tp->bytes_retrans += skb->len;
    
    	/* make sure skb->data is aligned on arches that require it
    	 * and check if ack-trimming & collapsing extended the headroom
    	 * beyond what csum_start can cover.
    	 */
    	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
    		     skb_headroom(skb) >= 0xFFFF)) {
    		struct sk_buff *nskb;
    
    		tcp_skb_tsorted_save(skb) {
    			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
    			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
    				     -ENOBUFS;
    		} tcp_skb_tsorted_restore(skb);
    
    		if (!err) {
    			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
    			tcp_rate_skb_sent(sk, skb);
    		}
    	} else {
    		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
    	}
    
    	/* To avoid taking spuriously low RTT samples based on a timestamp
    	 * for a transmit that never happened, always mark EVER_RETRANS
    	 */
    	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
    
    	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
    		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
    				  TCP_SKB_CB(skb)->seq, segs, err);
    
    	if (likely(!err)) {
    		trace_tcp_retransmit_skb(sk, skb);
    	} else if (err != -EBUSY) {
    		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
    	}
    	return err;
    }
    
    int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int err = __tcp_retransmit_skb(sk, skb, segs);
    
    	if (err == 0) {
    #if FASTRETRANS_DEBUG > 0
    		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
    			net_dbg_ratelimited("retrans_out leaked\n");
    		}
    #endif
    		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
    		tp->retrans_out += tcp_skb_pcount(skb);
    	}
    
    	/* Save stamp of the first (attempted) retransmit. */
    	if (!tp->retrans_stamp)
    		tp->retrans_stamp = tcp_skb_timestamp(skb);
    
    	if (tp->undo_retrans < 0)
    		tp->undo_retrans = 0;
    	tp->undo_retrans += tcp_skb_pcount(skb);
    	return err;
    }
    
    /* This gets called after a retransmit timeout, and the initially
     * retransmitted data is acknowledged.  It tries to continue
     * resending the rest of the retransmit queue, until either
     * we've sent it all or the congestion window limit is reached.
     */
    void tcp_xmit_retransmit_queue(struct sock *sk)
    {
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	struct sk_buff *skb, *rtx_head, *hole = NULL;
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 max_segs;
    	int mib_idx;
    
    	if (!tp->packets_out)
    		return;
    
    	rtx_head = tcp_rtx_queue_head(sk);
    	skb = tp->retransmit_skb_hint ?: rtx_head;
    	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
    	skb_rbtree_walk_from(skb) {
    		__u8 sacked;
    		int segs;
    
    		if (tcp_pacing_check(sk))
    			break;
    
    		/* we could do better than to assign each time */
    		if (!hole)
    			tp->retransmit_skb_hint = skb;
    
    		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
    		if (segs <= 0)
    			return;
    		sacked = TCP_SKB_CB(skb)->sacked;
    		/* In case tcp_shift_skb_data() have aggregated large skbs,
    		 * we need to make sure not sending too bigs TSO packets
    		 */
    		segs = min_t(int, segs, max_segs);
    
    		if (tp->retrans_out >= tp->lost_out) {
    			break;
    		} else if (!(sacked & TCPCB_LOST)) {
    			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
    				hole = skb;
    			continue;
    
    		} else {
    			if (icsk->icsk_ca_state != TCP_CA_Loss)
    				mib_idx = LINUX_MIB_TCPFASTRETRANS;
    			else
    				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
    		}
    
    		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
    			continue;
    
    		if (tcp_small_queue_check(sk, skb, 1))
    			return;
    
    		if (tcp_retransmit_skb(sk, skb, segs))
    			return;
    
    		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
    
    		if (tcp_in_cwnd_reduction(sk))
    			tp->prr_out += tcp_skb_pcount(skb);
    
    		if (skb == rtx_head &&
    		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
    			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
    					     inet_csk(sk)->icsk_rto,
    					     TCP_RTO_MAX,
    					     skb);
    	}
    }
    
    /* We allow to exceed memory limits for FIN packets to expedite
     * connection tear down and (memory) recovery.
     * Otherwise tcp_send_fin() could be tempted to either delay FIN
     * or even be forced to close flow without any FIN.
     * In general, we want to allow one skb per socket to avoid hangs
     * with edge trigger epoll()
     */
    void sk_forced_mem_schedule(struct sock *sk, int size)
    {
    	int amt;
    
    	if (size <= sk->sk_forward_alloc)
    		return;
    	amt = sk_mem_pages(size);
    	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
    	sk_memory_allocated_add(sk, amt);
    
    	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
    		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
    }
    
    /* Send a FIN. The caller locks the socket for us.
     * We should try to send a FIN packet really hard, but eventually give up.
     */
    void tcp_send_fin(struct sock *sk)
    {
    	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* Optimization, tack on the FIN if we have one skb in write queue and
    	 * this skb was not yet sent, or we are under memory pressure.
    	 * Note: in the latter case, FIN packet will be sent after a timeout,
    	 * as TCP stack thinks it has already been transmitted.
    	 */
    	if (!tskb && tcp_under_memory_pressure(sk))
    		tskb = skb_rb_last(&sk->tcp_rtx_queue);
    
    	if (tskb) {
    		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
    		TCP_SKB_CB(tskb)->end_seq++;
    		tp->write_seq++;
    		if (tcp_write_queue_empty(sk)) {
    			/* This means tskb was already sent.
    			 * Pretend we included the FIN on previous transmit.
    			 * We need to set tp->snd_nxt to the value it would have
    			 * if FIN had been sent. This is because retransmit path
    			 * does not change tp->snd_nxt.
    			 */
    			tp->snd_nxt++;
    			return;
    		}
    	} else {
    		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
    		if (unlikely(!skb))
    			return;
    
    		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
    		skb_reserve(skb, MAX_TCP_HEADER);
    		sk_forced_mem_schedule(sk, skb->truesize);
    		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
    		tcp_init_nondata_skb(skb, tp->write_seq,
    				     TCPHDR_ACK | TCPHDR_FIN);
    		tcp_queue_skb(sk, skb);
    	}
    	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
    }
    
    /* We get here when a process closes a file descriptor (either due to
     * an explicit close() or as a byproduct of exit()'ing) and there
     * was unread data in the receive queue.  This behavior is recommended
     * by RFC 2525, section 2.17.  -DaveM
     */
    void tcp_send_active_reset(struct sock *sk, gfp_t priority)
    {
    	struct sk_buff *skb;
    
    	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
    
    	/* NOTE: No TCP options attached and we never retransmit this. */
    	skb = alloc_skb(MAX_TCP_HEADER, priority);
    	if (!skb) {
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
    		return;
    	}
    
    	/* Reserve space for headers and prepare control bits. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
    			     TCPHDR_ACK | TCPHDR_RST);
    	tcp_mstamp_refresh(tcp_sk(sk));
    	/* Send it off. */
    	if (tcp_transmit_skb(sk, skb, 0, priority))
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
    
    	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
    	 * skb here is different to the troublesome skb, so use NULL
    	 */
    	trace_tcp_send_reset(sk, NULL);
    }
    
    /* Send a crossed SYN-ACK during socket establishment.
     * WARNING: This routine must only be called when we have already sent
     * a SYN packet that crossed the incoming SYN that caused this routine
     * to get called. If this assumption fails then the initial rcv_wnd
     * and rcv_wscale values will not be correct.
     */
    int tcp_send_synack(struct sock *sk)
    {
    	struct sk_buff *skb;
    
    	skb = tcp_rtx_queue_head(sk);
    	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
    		pr_err("%s: wrong queue state\n", __func__);
    		return -EFAULT;
    	}
    	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
    		if (skb_cloned(skb)) {
    			struct sk_buff *nskb;
    
    			tcp_skb_tsorted_save(skb) {
    				nskb = skb_copy(skb, GFP_ATOMIC);
    			} tcp_skb_tsorted_restore(skb);
    			if (!nskb)
    				return -ENOMEM;
    			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
    			tcp_rtx_queue_unlink_and_free(skb, sk);
    			__skb_header_release(nskb);
    			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
    			sk->sk_wmem_queued += nskb->truesize;
    			sk_mem_charge(sk, nskb->truesize);
    			skb = nskb;
    		}
    
    		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
    		tcp_ecn_send_synack(sk, skb);
    	}
    	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
    }
    
    /**
     * tcp_make_synack - Prepare a SYN-ACK.
     * sk: listener socket
     * dst: dst entry attached to the SYNACK
     * req: request_sock pointer
     *
     * Allocate one skb and build a SYNACK packet.
     * @dst is consumed : Caller should not use it again.
     */
    struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
    				struct request_sock *req,
    				struct tcp_fastopen_cookie *foc,
    				enum tcp_synack_type synack_type)
    {
    	struct inet_request_sock *ireq = inet_rsk(req);
    	const struct tcp_sock *tp = tcp_sk(sk);
    	struct tcp_md5sig_key *md5 = NULL;
    	struct tcp_out_options opts;
    	struct sk_buff *skb;
    	int tcp_header_size;
    	struct tcphdr *th;
    	int mss;
    
    	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
    	if (unlikely(!skb)) {
    		dst_release(dst);
    		return NULL;
    	}
    	/* Reserve space for headers. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    
    	switch (synack_type) {
    	case TCP_SYNACK_NORMAL:
    		skb_set_owner_w(skb, req_to_sk(req));
    		break;
    	case TCP_SYNACK_COOKIE:
    		/* Under synflood, we do not attach skb to a socket,
    		 * to avoid false sharing.
    		 */
    		break;
    	case TCP_SYNACK_FASTOPEN:
    		/* sk is a const pointer, because we want to express multiple
    		 * cpu might call us concurrently.
    		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
    		 */
    		skb_set_owner_w(skb, (struct sock *)sk);
    		break;
    	}
    	skb_dst_set(skb, dst);
    
    	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
    
    	memset(&opts, 0, sizeof(opts));
    #ifdef CONFIG_SYN_COOKIES
    	if (unlikely(req->cookie_ts))
    		skb->skb_mstamp_ns = cookie_init_timestamp(req);
    	else
    #endif
    	{
    		skb->skb_mstamp_ns = tcp_clock_ns();
    		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
    			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
    	}
    
    #ifdef CONFIG_TCP_MD5SIG
    	rcu_read_lock();
    	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
    #endif
    	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
    	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
    					     foc) + sizeof(*th);
    
    	skb_push(skb, tcp_header_size);
    	skb_reset_transport_header(skb);
    
    	th = (struct tcphdr *)skb->data;
    	memset(th, 0, sizeof(struct tcphdr));
    	th->syn = 1;
    	th->ack = 1;
    	tcp_ecn_make_synack(req, th);
    	th->source = htons(ireq->ir_num);
    	th->dest = ireq->ir_rmt_port;
    	skb->mark = ireq->ir_mark;
    	skb->ip_summed = CHECKSUM_PARTIAL;
    	th->seq = htonl(tcp_rsk(req)->snt_isn);
    	/* XXX data is queued and acked as is. No buffer/window check */
    	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
    
    	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
    	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
    	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
    	th->doff = (tcp_header_size >> 2);
    	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
    
    #ifdef CONFIG_TCP_MD5SIG
    	/* Okay, we have all we need - do the md5 hash if needed */
    	if (md5)
    		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
    					       md5, req_to_sk(req), skb);
    	rcu_read_unlock();
    #endif
    
    	/* Do not fool tcpdump (if any), clean our debris */
    	skb->tstamp = 0;
    	return skb;
    }
    EXPORT_SYMBOL(tcp_make_synack);
    
    static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	const struct tcp_congestion_ops *ca;
    	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
    
    	if (ca_key == TCP_CA_UNSPEC)
    		return;
    
    	rcu_read_lock();
    	ca = tcp_ca_find_key(ca_key);
    	if (likely(ca && try_module_get(ca->owner))) {
    		module_put(icsk->icsk_ca_ops->owner);
    		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
    		icsk->icsk_ca_ops = ca;
    	}
    	rcu_read_unlock();
    }
    
    /* Do all connect socket setups that can be done AF independent. */
    static void tcp_connect_init(struct sock *sk)
    {
    	const struct dst_entry *dst = __sk_dst_get(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	__u8 rcv_wscale;
    	u32 rcv_wnd;
    
    	/* We'll fix this up when we get a response from the other end.
    	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
    	 */
    	tp->tcp_header_len = sizeof(struct tcphdr);
    	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
    		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
    
    #ifdef CONFIG_TCP_MD5SIG
    	if (tp->af_specific->md5_lookup(sk, sk))
    		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
    #endif
    
    	/* If user gave his TCP_MAXSEG, record it to clamp */
    	if (tp->rx_opt.user_mss)
    		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
    	tp->max_window = 0;
    	tcp_mtup_init(sk);
    	tcp_sync_mss(sk, dst_mtu(dst));
    
    	tcp_ca_dst_init(sk, dst);
    
    	if (!tp->window_clamp)
    		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
    	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
    
    	tcp_initialize_rcv_mss(sk);
    
    	/* limit the window selection if the user enforce a smaller rx buffer */
    	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
    	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
    		tp->window_clamp = tcp_full_space(sk);
    
    	rcv_wnd = tcp_rwnd_init_bpf(sk);
    	if (rcv_wnd == 0)
    		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
    
    	tcp_select_initial_window(sk, tcp_full_space(sk),
    				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
    				  &tp->rcv_wnd,
    				  &tp->window_clamp,
    				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
    				  &rcv_wscale,
    				  rcv_wnd);
    
    	tp->rx_opt.rcv_wscale = rcv_wscale;
    	tp->rcv_ssthresh = tp->rcv_wnd;
    
    	sk->sk_err = 0;
    	sock_reset_flag(sk, SOCK_DONE);
    	tp->snd_wnd = 0;
    	tcp_init_wl(tp, 0);
    	tcp_write_queue_purge(sk);
    	tp->snd_una = tp->write_seq;
    	tp->snd_sml = tp->write_seq;
    	tp->snd_up = tp->write_seq;
    	tp->snd_nxt = tp->write_seq;
    
    	if (likely(!tp->repair))
    		tp->rcv_nxt = 0;
    	else
    		tp->rcv_tstamp = tcp_jiffies32;
    	tp->rcv_wup = tp->rcv_nxt;
    	tp->copied_seq = tp->rcv_nxt;
    
    	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
    	inet_csk(sk)->icsk_retransmits = 0;
    	tcp_clear_retrans(tp);
    }
    
    static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
    
    	tcb->end_seq += skb->len;
    	__skb_header_release(skb);
    	sk->sk_wmem_queued += skb->truesize;
    	sk_mem_charge(sk, skb->truesize);
    	tp->write_seq = tcb->end_seq;
    	tp->packets_out += tcp_skb_pcount(skb);
    }
    
    /* Build and send a SYN with data and (cached) Fast Open cookie. However,
     * queue a data-only packet after the regular SYN, such that regular SYNs
     * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
     * only the SYN sequence, the data are retransmitted in the first ACK.
     * If cookie is not cached or other error occurs, falls back to send a
     * regular SYN with Fast Open cookie request option.
     */
    static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct tcp_fastopen_request *fo = tp->fastopen_req;
    	int space, err = 0;
    	struct sk_buff *syn_data;
    
    	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
    	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
    		goto fallback;
    
    	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
    	 * user-MSS. Reserve maximum option space for middleboxes that add
    	 * private TCP options. The cost is reduced data space in SYN :(
    	 */
    	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
    
    	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
    		MAX_TCP_OPTION_SPACE;
    
    	space = min_t(size_t, space, fo->size);
    
    	/* limit to order-0 allocations */
    	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
    
    	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
    	if (!syn_data)
    		goto fallback;
    	syn_data->ip_summed = CHECKSUM_PARTIAL;
    	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
    	if (space) {
    		int copied = copy_from_iter(skb_put(syn_data, space), space,
    					    &fo->data->msg_iter);
    		if (unlikely(!copied)) {
    			tcp_skb_tsorted_anchor_cleanup(syn_data);
    			kfree_skb(syn_data);
    			goto fallback;
    		}
    		if (copied != space) {
    			skb_trim(syn_data, copied);
    			space = copied;
    		}
    		skb_zcopy_set(syn_data, fo->uarg, NULL);
    	}
    	/* No more data pending in inet_wait_for_connect() */
    	if (space == fo->size)
    		fo->data = NULL;
    	fo->copied = space;
    
    	tcp_connect_queue_skb(sk, syn_data);
    	if (syn_data->len)
    		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
    
    	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
    
    	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
    
    	/* Now full SYN+DATA was cloned and sent (or not),
    	 * remove the SYN from the original skb (syn_data)
    	 * we keep in write queue in case of a retransmit, as we
    	 * also have the SYN packet (with no data) in the same queue.
    	 */
    	TCP_SKB_CB(syn_data)->seq++;
    	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
    	if (!err) {
    		tp->syn_data = (fo->copied > 0);
    		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
    		goto done;
    	}
    
    	/* data was not sent, put it in write_queue */
    	__skb_queue_tail(&sk->sk_write_queue, syn_data);
    	tp->packets_out -= tcp_skb_pcount(syn_data);
    
    fallback:
    	/* Send a regular SYN with Fast Open cookie request option */
    	if (fo->cookie.len > 0)
    		fo->cookie.len = 0;
    	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
    	if (err)
    		tp->syn_fastopen = 0;
    done:
    	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
    	return err;
    }
    
    /* Build a SYN and send it off. */
    int tcp_connect(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *buff;
    	int err;
    
    	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
    
    	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
    		return -EHOSTUNREACH; /* Routing failure or similar. */
    
    	tcp_connect_init(sk);
    
    	if (unlikely(tp->repair)) {
    		tcp_finish_connect(sk, NULL);
    		return 0;
    	}
    
    	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
    	if (unlikely(!buff))
    		return -ENOBUFS;
    
    	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
    	tcp_mstamp_refresh(tp);
    	tp->retrans_stamp = tcp_time_stamp(tp);
    	tcp_connect_queue_skb(sk, buff);
    	tcp_ecn_send_syn(sk, buff);
    	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
    
    	/* Send off SYN; include data in Fast Open. */
    	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
    	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
    	if (err == -ECONNREFUSED)
    		return err;
    
    	/* We change tp->snd_nxt after the tcp_transmit_skb() call
    	 * in order to make this packet get counted in tcpOutSegs.
    	 */
    	tp->snd_nxt = tp->write_seq;
    	tp->pushed_seq = tp->write_seq;
    	buff = tcp_send_head(sk);
    	if (unlikely(buff)) {
    		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
    		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
    	}
    	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
    
    	/* Timer for repeating the SYN until an answer. */
    	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
    				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
    	return 0;
    }
    EXPORT_SYMBOL(tcp_connect);
    
    /* Send out a delayed ack, the caller does the policy checking
     * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
     * for details.
     */
    void tcp_send_delayed_ack(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	int ato = icsk->icsk_ack.ato;
    	unsigned long timeout;
    
    	if (ato > TCP_DELACK_MIN) {
    		const struct tcp_sock *tp = tcp_sk(sk);
    		int max_ato = HZ / 2;
    
    		if (inet_csk_in_pingpong_mode(sk) ||
    		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
    			max_ato = TCP_DELACK_MAX;
    
    		/* Slow path, intersegment interval is "high". */
    
    		/* If some rtt estimate is known, use it to bound delayed ack.
    		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
    		 * directly.
    		 */
    		if (tp->srtt_us) {
    			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
    					TCP_DELACK_MIN);
    
    			if (rtt < max_ato)
    				max_ato = rtt;
    		}
    
    		ato = min(ato, max_ato);
    	}
    
    	/* Stay within the limit we were given */
    	timeout = jiffies + ato;
    
    	/* Use new timeout only if there wasn't a older one earlier. */
    	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
    		/* If delack timer was blocked or is about to expire,
    		 * send ACK now.
    		 */
    		if (icsk->icsk_ack.blocked ||
    		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
    			tcp_send_ack(sk);
    			return;
    		}
    
    		if (!time_before(timeout, icsk->icsk_ack.timeout))
    			timeout = icsk->icsk_ack.timeout;
    	}
    	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
    	icsk->icsk_ack.timeout = timeout;
    	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
    }
    
    /* This routine sends an ack and also updates the window. */
    void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
    {
    	struct sk_buff *buff;
    
    	/* If we have been reset, we may not send again. */
    	if (sk->sk_state == TCP_CLOSE)
    		return;
    
    	/* We are not putting this on the write queue, so
    	 * tcp_transmit_skb() will set the ownership to this
    	 * sock.
    	 */
    	buff = alloc_skb(MAX_TCP_HEADER,
    			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
    	if (unlikely(!buff)) {
    		inet_csk_schedule_ack(sk);
    		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
    		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
    					  TCP_DELACK_MAX, TCP_RTO_MAX);
    		return;
    	}
    
    	/* Reserve space for headers and prepare control bits. */
    	skb_reserve(buff, MAX_TCP_HEADER);
    	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
    
    	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
    	 * too much.
    	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
    	 */
    	skb_set_tcp_pure_ack(buff);
    
    	/* Send it off, this clears delayed acks for us. */
    	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
    }
    EXPORT_SYMBOL_GPL(__tcp_send_ack);
    
    void tcp_send_ack(struct sock *sk)
    {
    	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
    }
    
    /* This routine sends a packet with an out of date sequence
     * number. It assumes the other end will try to ack it.
     *
     * Question: what should we make while urgent mode?
     * 4.4BSD forces sending single byte of data. We cannot send
     * out of window data, because we have SND.NXT==SND.MAX...
     *
     * Current solution: to send TWO zero-length segments in urgent mode:
     * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
     * out-of-date with SND.UNA-1 to probe window.
     */
    static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    
    	/* We don't queue it, tcp_transmit_skb() sets ownership. */
    	skb = alloc_skb(MAX_TCP_HEADER,
    			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
    	if (!skb)
    		return -1;
    
    	/* Reserve space for headers and set control bits. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    	/* Use a previous sequence.  This should cause the other
    	 * end to send an ack.  Don't queue or clone SKB, just
    	 * send it.
    	 */
    	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
    	NET_INC_STATS(sock_net(sk), mib);
    	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
    }
    
    /* Called from setsockopt( ... TCP_REPAIR ) */
    void tcp_send_window_probe(struct sock *sk)
    {
    	if (sk->sk_state == TCP_ESTABLISHED) {
    		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
    		tcp_mstamp_refresh(tcp_sk(sk));
    		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
    	}
    }
    
    /* Initiate keepalive or window probe from timer. */
    int tcp_write_wakeup(struct sock *sk, int mib)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    
    	if (sk->sk_state == TCP_CLOSE)
    		return -1;
    
    	skb = tcp_send_head(sk);
    	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
    		int err;
    		unsigned int mss = tcp_current_mss(sk);
    		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
    
    		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
    			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
    
    		/* We are probing the opening of a window
    		 * but the window size is != 0
    		 * must have been a result SWS avoidance ( sender )
    		 */
    		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
    		    skb->len > mss) {
    			seg_size = min(seg_size, mss);
    			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
    			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
    					 skb, seg_size, mss, GFP_ATOMIC))
    				return -1;
    		} else if (!tcp_skb_pcount(skb))
    			tcp_set_skb_tso_segs(skb, mss);
    
    		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
    		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
    		if (!err)
    			tcp_event_new_data_sent(sk, skb);
    		return err;
    	} else {
    		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
    			tcp_xmit_probe_skb(sk, 1, mib);
    		return tcp_xmit_probe_skb(sk, 0, mib);
    	}
    }
    
    /* A window probe timeout has occurred.  If window is not closed send
     * a partial packet else a zero probe.
     */
    void tcp_send_probe0(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct net *net = sock_net(sk);
    	unsigned long timeout;
    	int err;
    
    	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
    
    	if (tp->packets_out || tcp_write_queue_empty(sk)) {
    		/* Cancel probe timer, if it is not required. */
    		icsk->icsk_probes_out = 0;
    		icsk->icsk_backoff = 0;
    		return;
    	}
    
    	icsk->icsk_probes_out++;
    	if (err <= 0) {
    		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
    			icsk->icsk_backoff++;
    		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
    	} else {
    		/* If packet was not sent due to local congestion,
    		 * Let senders fight for local resources conservatively.
    		 */
    		timeout = TCP_RESOURCE_PROBE_INTERVAL;
    	}
    	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
    }
    
    int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
    {
    	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
    	struct flowi fl;
    	int res;
    
    	tcp_rsk(req)->txhash = net_tx_rndhash();
    	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
    	if (!res) {
    		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
    		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
    		if (unlikely(tcp_passive_fastopen(sk)))
    			tcp_sk(sk)->total_retrans++;
    		trace_tcp_retransmit_synack(sk, req);
    	}
    	return res;
    }
    EXPORT_SYMBOL(tcp_rtx_synack);