Skip to content
Snippets Groups Projects
Select Git revision
  • 1b53cf9815bb4744958d41f3795d5d5a1d365e2d
  • panfrost/ci default
  • jakob-v5.4-patch
  • jakob-v5.4
  • jakob-4.19
  • drm-misc-next-with-blob
  • v5.3-hack-boot/ci
  • v5.3/ci
  • v5.2/ci
  • boot-time-improvement
  • jakob-v4.8
  • jakob-v4.9
12 results

crypto.c

Blame
  • crypto.c 13.57 KiB
    /*
     * This contains encryption functions for per-file encryption.
     *
     * Copyright (C) 2015, Google, Inc.
     * Copyright (C) 2015, Motorola Mobility
     *
     * Written by Michael Halcrow, 2014.
     *
     * Filename encryption additions
     *	Uday Savagaonkar, 2014
     * Encryption policy handling additions
     *	Ildar Muslukhov, 2014
     * Add fscrypt_pullback_bio_page()
     *	Jaegeuk Kim, 2015.
     *
     * This has not yet undergone a rigorous security audit.
     *
     * The usage of AES-XTS should conform to recommendations in NIST
     * Special Publication 800-38E and IEEE P1619/D16.
     */
    
    #include <linux/pagemap.h>
    #include <linux/mempool.h>
    #include <linux/module.h>
    #include <linux/scatterlist.h>
    #include <linux/ratelimit.h>
    #include <linux/dcache.h>
    #include <linux/namei.h>
    #include "fscrypt_private.h"
    
    static unsigned int num_prealloc_crypto_pages = 32;
    static unsigned int num_prealloc_crypto_ctxs = 128;
    
    module_param(num_prealloc_crypto_pages, uint, 0444);
    MODULE_PARM_DESC(num_prealloc_crypto_pages,
    		"Number of crypto pages to preallocate");
    module_param(num_prealloc_crypto_ctxs, uint, 0444);
    MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
    		"Number of crypto contexts to preallocate");
    
    static mempool_t *fscrypt_bounce_page_pool = NULL;
    
    static LIST_HEAD(fscrypt_free_ctxs);
    static DEFINE_SPINLOCK(fscrypt_ctx_lock);
    
    struct workqueue_struct *fscrypt_read_workqueue;
    static DEFINE_MUTEX(fscrypt_init_mutex);
    
    static struct kmem_cache *fscrypt_ctx_cachep;
    struct kmem_cache *fscrypt_info_cachep;
    
    /**
     * fscrypt_release_ctx() - Releases an encryption context
     * @ctx: The encryption context to release.
     *
     * If the encryption context was allocated from the pre-allocated pool, returns
     * it to that pool. Else, frees it.
     *
     * If there's a bounce page in the context, this frees that.
     */
    void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
    {
    	unsigned long flags;
    
    	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
    		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
    		ctx->w.bounce_page = NULL;
    	}
    	ctx->w.control_page = NULL;
    	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
    		kmem_cache_free(fscrypt_ctx_cachep, ctx);
    	} else {
    		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
    		list_add(&ctx->free_list, &fscrypt_free_ctxs);
    		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
    	}
    }
    EXPORT_SYMBOL(fscrypt_release_ctx);
    
    /**
     * fscrypt_get_ctx() - Gets an encryption context
     * @inode:       The inode for which we are doing the crypto
     * @gfp_flags:   The gfp flag for memory allocation
     *
     * Allocates and initializes an encryption context.
     *
     * Return: An allocated and initialized encryption context on success; error
     * value or NULL otherwise.
     */
    struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
    {
    	struct fscrypt_ctx *ctx = NULL;
    	struct fscrypt_info *ci = inode->i_crypt_info;
    	unsigned long flags;
    
    	if (ci == NULL)
    		return ERR_PTR(-ENOKEY);
    
    	/*
    	 * We first try getting the ctx from a free list because in
    	 * the common case the ctx will have an allocated and
    	 * initialized crypto tfm, so it's probably a worthwhile
    	 * optimization. For the bounce page, we first try getting it
    	 * from the kernel allocator because that's just about as fast
    	 * as getting it from a list and because a cache of free pages
    	 * should generally be a "last resort" option for a filesystem
    	 * to be able to do its job.
    	 */
    	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
    	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
    					struct fscrypt_ctx, free_list);
    	if (ctx)
    		list_del(&ctx->free_list);
    	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
    	if (!ctx) {
    		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
    		if (!ctx)
    			return ERR_PTR(-ENOMEM);
    		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
    	} else {
    		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
    	}
    	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
    	return ctx;
    }
    EXPORT_SYMBOL(fscrypt_get_ctx);
    
    /**
     * page_crypt_complete() - completion callback for page crypto
     * @req: The asynchronous cipher request context
     * @res: The result of the cipher operation
     */
    static void page_crypt_complete(struct crypto_async_request *req, int res)
    {
    	struct fscrypt_completion_result *ecr = req->data;
    
    	if (res == -EINPROGRESS)
    		return;
    	ecr->res = res;
    	complete(&ecr->completion);
    }
    
    int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
    			   u64 lblk_num, struct page *src_page,
    			   struct page *dest_page, unsigned int len,
    			   unsigned int offs, gfp_t gfp_flags)
    {
    	struct {
    		__le64 index;
    		u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
    	} xts_tweak;
    	struct skcipher_request *req = NULL;
    	DECLARE_FS_COMPLETION_RESULT(ecr);
    	struct scatterlist dst, src;
    	struct fscrypt_info *ci = inode->i_crypt_info;
    	struct crypto_skcipher *tfm = ci->ci_ctfm;
    	int res = 0;
    
    	BUG_ON(len == 0);
    
    	req = skcipher_request_alloc(tfm, gfp_flags);
    	if (!req) {
    		printk_ratelimited(KERN_ERR
    				"%s: crypto_request_alloc() failed\n",
    				__func__);
    		return -ENOMEM;
    	}
    
    	skcipher_request_set_callback(
    		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
    		page_crypt_complete, &ecr);
    
    	BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
    	xts_tweak.index = cpu_to_le64(lblk_num);
    	memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
    
    	sg_init_table(&dst, 1);
    	sg_set_page(&dst, dest_page, len, offs);
    	sg_init_table(&src, 1);
    	sg_set_page(&src, src_page, len, offs);
    	skcipher_request_set_crypt(req, &src, &dst, len, &xts_tweak);
    	if (rw == FS_DECRYPT)
    		res = crypto_skcipher_decrypt(req);
    	else
    		res = crypto_skcipher_encrypt(req);
    	if (res == -EINPROGRESS || res == -EBUSY) {
    		BUG_ON(req->base.data != &ecr);
    		wait_for_completion(&ecr.completion);
    		res = ecr.res;
    	}
    	skcipher_request_free(req);
    	if (res) {
    		printk_ratelimited(KERN_ERR
    			"%s: crypto_skcipher_encrypt() returned %d\n",
    			__func__, res);
    		return res;
    	}
    	return 0;
    }
    
    struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
    				       gfp_t gfp_flags)
    {
    	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
    	if (ctx->w.bounce_page == NULL)
    		return ERR_PTR(-ENOMEM);
    	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
    	return ctx->w.bounce_page;
    }
    
    /**
     * fscypt_encrypt_page() - Encrypts a page
     * @inode:     The inode for which the encryption should take place
     * @page:      The page to encrypt. Must be locked for bounce-page
     *             encryption.
     * @len:       Length of data to encrypt in @page and encrypted
     *             data in returned page.
     * @offs:      Offset of data within @page and returned
     *             page holding encrypted data.
     * @lblk_num:  Logical block number. This must be unique for multiple
     *             calls with same inode, except when overwriting
     *             previously written data.
     * @gfp_flags: The gfp flag for memory allocation
     *
     * Encrypts @page using the ctx encryption context. Performs encryption
     * either in-place or into a newly allocated bounce page.
     * Called on the page write path.
     *
     * Bounce page allocation is the default.
     * In this case, the contents of @page are encrypted and stored in an
     * allocated bounce page. @page has to be locked and the caller must call
     * fscrypt_restore_control_page() on the returned ciphertext page to
     * release the bounce buffer and the encryption context.
     *
     * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
     * fscrypt_operations. Here, the input-page is returned with its content
     * encrypted.
     *
     * Return: A page with the encrypted content on success. Else, an
     * error value or NULL.
     */
    struct page *fscrypt_encrypt_page(const struct inode *inode,
    				struct page *page,
    				unsigned int len,
    				unsigned int offs,
    				u64 lblk_num, gfp_t gfp_flags)
    
    {
    	struct fscrypt_ctx *ctx;
    	struct page *ciphertext_page = page;
    	int err;
    
    	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
    
    	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
    		/* with inplace-encryption we just encrypt the page */
    		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
    					     ciphertext_page, len, offs,
    					     gfp_flags);
    		if (err)
    			return ERR_PTR(err);
    
    		return ciphertext_page;
    	}
    
    	BUG_ON(!PageLocked(page));
    
    	ctx = fscrypt_get_ctx(inode, gfp_flags);
    	if (IS_ERR(ctx))
    		return (struct page *)ctx;
    
    	/* The encryption operation will require a bounce page. */
    	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
    	if (IS_ERR(ciphertext_page))
    		goto errout;
    
    	ctx->w.control_page = page;
    	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
    				     page, ciphertext_page, len, offs,
    				     gfp_flags);
    	if (err) {
    		ciphertext_page = ERR_PTR(err);
    		goto errout;
    	}
    	SetPagePrivate(ciphertext_page);
    	set_page_private(ciphertext_page, (unsigned long)ctx);
    	lock_page(ciphertext_page);
    	return ciphertext_page;
    
    errout:
    	fscrypt_release_ctx(ctx);
    	return ciphertext_page;
    }
    EXPORT_SYMBOL(fscrypt_encrypt_page);
    
    /**
     * fscrypt_decrypt_page() - Decrypts a page in-place
     * @inode:     The corresponding inode for the page to decrypt.
     * @page:      The page to decrypt. Must be locked in case
     *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
     * @len:       Number of bytes in @page to be decrypted.
     * @offs:      Start of data in @page.
     * @lblk_num:  Logical block number.
     *
     * Decrypts page in-place using the ctx encryption context.
     *
     * Called from the read completion callback.
     *
     * Return: Zero on success, non-zero otherwise.
     */
    int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
    			unsigned int len, unsigned int offs, u64 lblk_num)
    {
    	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
    		BUG_ON(!PageLocked(page));
    
    	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
    				      len, offs, GFP_NOFS);
    }
    EXPORT_SYMBOL(fscrypt_decrypt_page);
    
    /*
     * Validate dentries for encrypted directories to make sure we aren't
     * potentially caching stale data after a key has been added or
     * removed.
     */
    static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
    {
    	struct dentry *dir;
    	int dir_has_key, cached_with_key;
    
    	if (flags & LOOKUP_RCU)
    		return -ECHILD;
    
    	dir = dget_parent(dentry);
    	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
    		dput(dir);
    		return 0;
    	}
    
    	/* this should eventually be an flag in d_flags */
    	spin_lock(&dentry->d_lock);
    	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
    	spin_unlock(&dentry->d_lock);
    	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
    	dput(dir);
    
    	/*
    	 * If the dentry was cached without the key, and it is a
    	 * negative dentry, it might be a valid name.  We can't check
    	 * if the key has since been made available due to locking
    	 * reasons, so we fail the validation so ext4_lookup() can do
    	 * this check.
    	 *
    	 * We also fail the validation if the dentry was created with
    	 * the key present, but we no longer have the key, or vice versa.
    	 */
    	if ((!cached_with_key && d_is_negative(dentry)) ||
    			(!cached_with_key && dir_has_key) ||
    			(cached_with_key && !dir_has_key))
    		return 0;
    	return 1;
    }
    
    const struct dentry_operations fscrypt_d_ops = {
    	.d_revalidate = fscrypt_d_revalidate,
    };
    EXPORT_SYMBOL(fscrypt_d_ops);
    
    void fscrypt_restore_control_page(struct page *page)
    {
    	struct fscrypt_ctx *ctx;
    
    	ctx = (struct fscrypt_ctx *)page_private(page);
    	set_page_private(page, (unsigned long)NULL);
    	ClearPagePrivate(page);
    	unlock_page(page);
    	fscrypt_release_ctx(ctx);
    }
    EXPORT_SYMBOL(fscrypt_restore_control_page);
    
    static void fscrypt_destroy(void)
    {
    	struct fscrypt_ctx *pos, *n;
    
    	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
    		kmem_cache_free(fscrypt_ctx_cachep, pos);
    	INIT_LIST_HEAD(&fscrypt_free_ctxs);
    	mempool_destroy(fscrypt_bounce_page_pool);
    	fscrypt_bounce_page_pool = NULL;
    }
    
    /**
     * fscrypt_initialize() - allocate major buffers for fs encryption.
     * @cop_flags:  fscrypt operations flags
     *
     * We only call this when we start accessing encrypted files, since it
     * results in memory getting allocated that wouldn't otherwise be used.
     *
     * Return: Zero on success, non-zero otherwise.
     */
    int fscrypt_initialize(unsigned int cop_flags)
    {
    	int i, res = -ENOMEM;
    
    	/*
    	 * No need to allocate a bounce page pool if there already is one or
    	 * this FS won't use it.
    	 */
    	if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool)
    		return 0;
    
    	mutex_lock(&fscrypt_init_mutex);
    	if (fscrypt_bounce_page_pool)
    		goto already_initialized;
    
    	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
    		struct fscrypt_ctx *ctx;
    
    		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
    		if (!ctx)
    			goto fail;
    		list_add(&ctx->free_list, &fscrypt_free_ctxs);
    	}
    
    	fscrypt_bounce_page_pool =
    		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
    	if (!fscrypt_bounce_page_pool)
    		goto fail;
    
    already_initialized:
    	mutex_unlock(&fscrypt_init_mutex);
    	return 0;
    fail:
    	fscrypt_destroy();
    	mutex_unlock(&fscrypt_init_mutex);
    	return res;
    }
    
    /**
     * fscrypt_init() - Set up for fs encryption.
     */
    static int __init fscrypt_init(void)
    {
    	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
    							WQ_HIGHPRI, 0);
    	if (!fscrypt_read_workqueue)
    		goto fail;
    
    	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
    	if (!fscrypt_ctx_cachep)
    		goto fail_free_queue;
    
    	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
    	if (!fscrypt_info_cachep)
    		goto fail_free_ctx;
    
    	return 0;
    
    fail_free_ctx:
    	kmem_cache_destroy(fscrypt_ctx_cachep);
    fail_free_queue:
    	destroy_workqueue(fscrypt_read_workqueue);
    fail:
    	return -ENOMEM;
    }
    module_init(fscrypt_init)
    
    /**
     * fscrypt_exit() - Shutdown the fs encryption system
     */
    static void __exit fscrypt_exit(void)
    {
    	fscrypt_destroy();
    
    	if (fscrypt_read_workqueue)
    		destroy_workqueue(fscrypt_read_workqueue);
    	kmem_cache_destroy(fscrypt_ctx_cachep);
    	kmem_cache_destroy(fscrypt_info_cachep);
    }
    module_exit(fscrypt_exit);
    
    MODULE_LICENSE("GPL");