Skip to content
Snippets Groups Projects
Select Git revision
  • f188b99f0b2d33794b4af8a225f95d1e968c0a3f
  • panfrost/ci default
  • jakob-v5.4-patch
  • jakob-v5.4
  • jakob-4.19
  • drm-misc-next-with-blob
  • v5.3-hack-boot/ci
  • v5.3/ci
  • v5.2/ci
  • boot-time-improvement
  • jakob-v4.8
  • jakob-v4.9
12 results

acpiphp_glue.c

Blame
    • Mika Westerberg's avatar
      f188b99f
      ACPI / hotplug / PCI: Don't scan for non-hotplug bridges if slot is not bridge · f188b99f
      Mika Westerberg authored
      HP 6730b laptop has an ethernet NIC connected to one of the PCIe root
      ports.  The root ports themselves are native PCIe hotplug capable.  Now,
      during boot after PCI devices are scanned the BIOS triggers ACPI bus check
      directly to the NIC:
      
        ACPI: \_SB_.PCI0.RP06.NIC_: Bus check in hotplug_event()
      
      It is not clear why it is sending bus check but regardless the ACPI hotplug
      notify handler calls enable_slot() directly (instead of going through
      acpiphp_check_bridge() as there is no bridge), which ends up handling
      special case for non-hotplug bridges with native PCIe hotplug.  This
      results a crash of some kind but the reporter only sees black screen so it
      is hard to figure out the exact spot and what actually happens.  Based on
      a few fix proposals it was tracked to crash somewhere inside
      pci_assign_unassigned_bridge_resources().
      
      In any case we should not really be in that special branch at all because
      the ACPI notify happened to a slot that is not a PCI bridge (it is just a
      regular PCI device).
      
      Fix this so that we only go to that special branch if we are calling
      enable_slot() for a bridge (e.g., the ACPI notification was for the
      bridge).
      
      Link: https://bugzilla.kernel.org/show_bug.cgi?id=201127
      
      
      Fixes: 84c8b58e ("ACPI / hotplug / PCI: Don't scan bridges managed by native hotplug")
      Reported-by: default avatarPeter Anemone <peter.anemone@gmail.com>
      Signed-off-by: default avatarMika Westerberg <mika.westerberg@linux.intel.com>
      Signed-off-by: default avatarBjorn Helgaas <bhelgaas@google.com>
      Reviewed-by: default avatarRafael J. Wysocki <rafael.j.wysocki@intel.com>
      CC: stable@vger.kernel.org	# v4.18+
      f188b99f
      History
      ACPI / hotplug / PCI: Don't scan for non-hotplug bridges if slot is not bridge
      Mika Westerberg authored
      HP 6730b laptop has an ethernet NIC connected to one of the PCIe root
      ports.  The root ports themselves are native PCIe hotplug capable.  Now,
      during boot after PCI devices are scanned the BIOS triggers ACPI bus check
      directly to the NIC:
      
        ACPI: \_SB_.PCI0.RP06.NIC_: Bus check in hotplug_event()
      
      It is not clear why it is sending bus check but regardless the ACPI hotplug
      notify handler calls enable_slot() directly (instead of going through
      acpiphp_check_bridge() as there is no bridge), which ends up handling
      special case for non-hotplug bridges with native PCIe hotplug.  This
      results a crash of some kind but the reporter only sees black screen so it
      is hard to figure out the exact spot and what actually happens.  Based on
      a few fix proposals it was tracked to crash somewhere inside
      pci_assign_unassigned_bridge_resources().
      
      In any case we should not really be in that special branch at all because
      the ACPI notify happened to a slot that is not a PCI bridge (it is just a
      regular PCI device).
      
      Fix this so that we only go to that special branch if we are calling
      enable_slot() for a bridge (e.g., the ACPI notification was for the
      bridge).
      
      Link: https://bugzilla.kernel.org/show_bug.cgi?id=201127
      
      
      Fixes: 84c8b58e ("ACPI / hotplug / PCI: Don't scan bridges managed by native hotplug")
      Reported-by: default avatarPeter Anemone <peter.anemone@gmail.com>
      Signed-off-by: default avatarMika Westerberg <mika.westerberg@linux.intel.com>
      Signed-off-by: default avatarBjorn Helgaas <bhelgaas@google.com>
      Reviewed-by: default avatarRafael J. Wysocki <rafael.j.wysocki@intel.com>
      CC: stable@vger.kernel.org	# v4.18+
    setup.c 32.38 KiB
    /*
     *  Copyright (C) 1995  Linus Torvalds
     *
     *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
     *
     *  Memory region support
     *	David Parsons <orc@pell.chi.il.us>, July-August 1999
     *
     *  Added E820 sanitization routine (removes overlapping memory regions);
     *  Brian Moyle <bmoyle@mvista.com>, February 2001
     *
     * Moved CPU detection code to cpu/${cpu}.c
     *    Patrick Mochel <mochel@osdl.org>, March 2002
     *
     *  Provisions for empty E820 memory regions (reported by certain BIOSes).
     *  Alex Achenbach <xela@slit.de>, December 2002.
     *
     */
    
    /*
     * This file handles the architecture-dependent parts of initialization
     */
    
    #include <linux/sched.h>
    #include <linux/mm.h>
    #include <linux/mmzone.h>
    #include <linux/screen_info.h>
    #include <linux/ioport.h>
    #include <linux/acpi.h>
    #include <linux/sfi.h>
    #include <linux/apm_bios.h>
    #include <linux/initrd.h>
    #include <linux/bootmem.h>
    #include <linux/memblock.h>
    #include <linux/seq_file.h>
    #include <linux/console.h>
    #include <linux/root_dev.h>
    #include <linux/highmem.h>
    #include <linux/export.h>
    #include <linux/efi.h>
    #include <linux/init.h>
    #include <linux/edd.h>
    #include <linux/iscsi_ibft.h>
    #include <linux/nodemask.h>
    #include <linux/kexec.h>
    #include <linux/dmi.h>
    #include <linux/pfn.h>
    #include <linux/pci.h>
    #include <asm/pci-direct.h>
    #include <linux/init_ohci1394_dma.h>
    #include <linux/kvm_para.h>
    #include <linux/dma-contiguous.h>
    
    #include <linux/errno.h>
    #include <linux/kernel.h>
    #include <linux/stddef.h>
    #include <linux/unistd.h>
    #include <linux/ptrace.h>
    #include <linux/user.h>
    #include <linux/delay.h>
    
    #include <linux/kallsyms.h>
    #include <linux/cpufreq.h>
    #include <linux/dma-mapping.h>
    #include <linux/ctype.h>
    #include <linux/uaccess.h>
    
    #include <linux/percpu.h>
    #include <linux/crash_dump.h>
    #include <linux/tboot.h>
    #include <linux/jiffies.h>
    #include <linux/mem_encrypt.h>
    
    #include <linux/usb/xhci-dbgp.h>
    #include <video/edid.h>
    
    #include <asm/mtrr.h>
    #include <asm/apic.h>
    #include <asm/realmode.h>
    #include <asm/e820/api.h>
    #include <asm/mpspec.h>
    #include <asm/setup.h>
    #include <asm/efi.h>
    #include <asm/timer.h>
    #include <asm/i8259.h>
    #include <asm/sections.h>
    #include <asm/io_apic.h>
    #include <asm/ist.h>
    #include <asm/setup_arch.h>
    #include <asm/bios_ebda.h>
    #include <asm/cacheflush.h>
    #include <asm/processor.h>
    #include <asm/bugs.h>
    #include <asm/kasan.h>
    
    #include <asm/vsyscall.h>
    #include <asm/cpu.h>
    #include <asm/desc.h>
    #include <asm/dma.h>
    #include <asm/iommu.h>
    #include <asm/gart.h>
    #include <asm/mmu_context.h>
    #include <asm/proto.h>
    
    #include <asm/paravirt.h>
    #include <asm/hypervisor.h>
    #include <asm/olpc_ofw.h>
    
    #include <asm/percpu.h>
    #include <asm/topology.h>
    #include <asm/apicdef.h>
    #include <asm/amd_nb.h>
    #include <asm/mce.h>
    #include <asm/alternative.h>
    #include <asm/prom.h>
    #include <asm/microcode.h>
    #include <asm/kaslr.h>
    #include <asm/unwind.h>
    
    /*
     * max_low_pfn_mapped: highest direct mapped pfn under 4GB
     * max_pfn_mapped:     highest direct mapped pfn over 4GB
     *
     * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
     * represented by pfn_mapped
     */
    unsigned long max_low_pfn_mapped;
    unsigned long max_pfn_mapped;
    
    #ifdef CONFIG_DMI
    RESERVE_BRK(dmi_alloc, 65536);
    #endif
    
    
    static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
    unsigned long _brk_end = (unsigned long)__brk_base;
    
    struct boot_params boot_params;
    
    /*
     * Machine setup..
     */
    static struct resource data_resource = {
    	.name	= "Kernel data",
    	.start	= 0,
    	.end	= 0,
    	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
    };
    
    static struct resource code_resource = {
    	.name	= "Kernel code",
    	.start	= 0,
    	.end	= 0,
    	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
    };
    
    static struct resource bss_resource = {
    	.name	= "Kernel bss",
    	.start	= 0,
    	.end	= 0,
    	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
    };
    
    
    #ifdef CONFIG_X86_32
    /* cpu data as detected by the assembly code in head_32.S */
    struct cpuinfo_x86 new_cpu_data;
    
    /* common cpu data for all cpus */
    struct cpuinfo_x86 boot_cpu_data __read_mostly;
    EXPORT_SYMBOL(boot_cpu_data);
    
    unsigned int def_to_bigsmp;
    
    /* for MCA, but anyone else can use it if they want */
    unsigned int machine_id;
    unsigned int machine_submodel_id;
    unsigned int BIOS_revision;
    
    struct apm_info apm_info;
    EXPORT_SYMBOL(apm_info);
    
    #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
    	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
    struct ist_info ist_info;
    EXPORT_SYMBOL(ist_info);
    #else
    struct ist_info ist_info;
    #endif
    
    #else
    struct cpuinfo_x86 boot_cpu_data __read_mostly = {
    	.x86_phys_bits = MAX_PHYSMEM_BITS,
    };
    EXPORT_SYMBOL(boot_cpu_data);
    #endif
    
    
    #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
    __visible unsigned long mmu_cr4_features __ro_after_init;
    #else
    __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
    #endif
    
    /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
    int bootloader_type, bootloader_version;
    
    /*
     * Setup options
     */
    struct screen_info screen_info;
    EXPORT_SYMBOL(screen_info);
    struct edid_info edid_info;
    EXPORT_SYMBOL_GPL(edid_info);
    
    extern int root_mountflags;
    
    unsigned long saved_video_mode;
    
    #define RAMDISK_IMAGE_START_MASK	0x07FF
    #define RAMDISK_PROMPT_FLAG		0x8000
    #define RAMDISK_LOAD_FLAG		0x4000
    
    static char __initdata command_line[COMMAND_LINE_SIZE];
    #ifdef CONFIG_CMDLINE_BOOL
    static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
    #endif
    
    #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
    struct edd edd;
    #ifdef CONFIG_EDD_MODULE
    EXPORT_SYMBOL(edd);
    #endif
    /**
     * copy_edd() - Copy the BIOS EDD information
     *              from boot_params into a safe place.
     *
     */
    static inline void __init copy_edd(void)
    {
         memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
    	    sizeof(edd.mbr_signature));
         memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
         edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
         edd.edd_info_nr = boot_params.eddbuf_entries;
    }
    #else
    static inline void __init copy_edd(void)
    {
    }
    #endif
    
    void * __init extend_brk(size_t size, size_t align)
    {
    	size_t mask = align - 1;
    	void *ret;
    
    	BUG_ON(_brk_start == 0);
    	BUG_ON(align & mask);
    
    	_brk_end = (_brk_end + mask) & ~mask;
    	BUG_ON((char *)(_brk_end + size) > __brk_limit);
    
    	ret = (void *)_brk_end;
    	_brk_end += size;
    
    	memset(ret, 0, size);
    
    	return ret;
    }
    
    #ifdef CONFIG_X86_32
    static void __init cleanup_highmap(void)
    {
    }
    #endif
    
    static void __init reserve_brk(void)
    {
    	if (_brk_end > _brk_start)
    		memblock_reserve(__pa_symbol(_brk_start),
    				 _brk_end - _brk_start);
    
    	/* Mark brk area as locked down and no longer taking any
    	   new allocations */
    	_brk_start = 0;
    }
    
    u64 relocated_ramdisk;
    
    #ifdef CONFIG_BLK_DEV_INITRD
    
    static u64 __init get_ramdisk_image(void)
    {
    	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
    
    	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
    
    	return ramdisk_image;
    }
    static u64 __init get_ramdisk_size(void)
    {
    	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
    
    	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
    
    	return ramdisk_size;
    }
    
    static void __init relocate_initrd(void)
    {
    	/* Assume only end is not page aligned */
    	u64 ramdisk_image = get_ramdisk_image();
    	u64 ramdisk_size  = get_ramdisk_size();
    	u64 area_size     = PAGE_ALIGN(ramdisk_size);
    
    	/* We need to move the initrd down into directly mapped mem */
    	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
    						   area_size, PAGE_SIZE);
    
    	if (!relocated_ramdisk)
    		panic("Cannot find place for new RAMDISK of size %lld\n",
    		      ramdisk_size);
    
    	/* Note: this includes all the mem currently occupied by
    	   the initrd, we rely on that fact to keep the data intact. */
    	memblock_reserve(relocated_ramdisk, area_size);
    	initrd_start = relocated_ramdisk + PAGE_OFFSET;
    	initrd_end   = initrd_start + ramdisk_size;
    	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
    	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
    
    	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
    
    	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
    		" [mem %#010llx-%#010llx]\n",
    		ramdisk_image, ramdisk_image + ramdisk_size - 1,
    		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
    }
    
    static void __init early_reserve_initrd(void)
    {
    	/* Assume only end is not page aligned */
    	u64 ramdisk_image = get_ramdisk_image();
    	u64 ramdisk_size  = get_ramdisk_size();
    	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
    
    	if (!boot_params.hdr.type_of_loader ||
    	    !ramdisk_image || !ramdisk_size)
    		return;		/* No initrd provided by bootloader */
    
    	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
    }
    static void __init reserve_initrd(void)
    {
    	/* Assume only end is not page aligned */
    	u64 ramdisk_image = get_ramdisk_image();
    	u64 ramdisk_size  = get_ramdisk_size();
    	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
    	u64 mapped_size;
    
    	if (!boot_params.hdr.type_of_loader ||
    	    !ramdisk_image || !ramdisk_size)
    		return;		/* No initrd provided by bootloader */
    
    	initrd_start = 0;
    
    	mapped_size = memblock_mem_size(max_pfn_mapped);
    	if (ramdisk_size >= (mapped_size>>1))
    		panic("initrd too large to handle, "
    		       "disabling initrd (%lld needed, %lld available)\n",
    		       ramdisk_size, mapped_size>>1);
    
    	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
    			ramdisk_end - 1);
    
    	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
    				PFN_DOWN(ramdisk_end))) {
    		/* All are mapped, easy case */
    		initrd_start = ramdisk_image + PAGE_OFFSET;
    		initrd_end = initrd_start + ramdisk_size;
    		return;
    	}
    
    	relocate_initrd();
    
    	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
    }
    
    #else
    static void __init early_reserve_initrd(void)
    {
    }
    static void __init reserve_initrd(void)
    {
    }
    #endif /* CONFIG_BLK_DEV_INITRD */
    
    static void __init parse_setup_data(void)
    {
    	struct setup_data *data;
    	u64 pa_data, pa_next;
    
    	pa_data = boot_params.hdr.setup_data;
    	while (pa_data) {
    		u32 data_len, data_type;
    
    		data = early_memremap(pa_data, sizeof(*data));
    		data_len = data->len + sizeof(struct setup_data);
    		data_type = data->type;
    		pa_next = data->next;
    		early_memunmap(data, sizeof(*data));
    
    		switch (data_type) {
    		case SETUP_E820_EXT:
    			e820__memory_setup_extended(pa_data, data_len);
    			break;
    		case SETUP_DTB:
    			add_dtb(pa_data);
    			break;
    		case SETUP_EFI:
    			parse_efi_setup(pa_data, data_len);
    			break;
    		default:
    			break;
    		}
    		pa_data = pa_next;
    	}
    }
    
    static void __init memblock_x86_reserve_range_setup_data(void)
    {
    	struct setup_data *data;
    	u64 pa_data;
    
    	pa_data = boot_params.hdr.setup_data;
    	while (pa_data) {
    		data = early_memremap(pa_data, sizeof(*data));
    		memblock_reserve(pa_data, sizeof(*data) + data->len);
    		pa_data = data->next;
    		early_memunmap(data, sizeof(*data));
    	}
    }
    
    /*
     * --------- Crashkernel reservation ------------------------------
     */
    
    #ifdef CONFIG_KEXEC_CORE
    
    /* 16M alignment for crash kernel regions */
    #define CRASH_ALIGN		(16 << 20)
    
    /*
     * Keep the crash kernel below this limit.  On 32 bits earlier kernels
     * would limit the kernel to the low 512 MiB due to mapping restrictions.
     * On 64bit, old kexec-tools need to under 896MiB.
     */
    #ifdef CONFIG_X86_32
    # define CRASH_ADDR_LOW_MAX	(512 << 20)
    # define CRASH_ADDR_HIGH_MAX	(512 << 20)
    #else
    # define CRASH_ADDR_LOW_MAX	(896UL << 20)
    # define CRASH_ADDR_HIGH_MAX	MAXMEM
    #endif
    
    static int __init reserve_crashkernel_low(void)
    {
    #ifdef CONFIG_X86_64
    	unsigned long long base, low_base = 0, low_size = 0;
    	unsigned long total_low_mem;
    	int ret;
    
    	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
    
    	/* crashkernel=Y,low */
    	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
    	if (ret) {
    		/*
    		 * two parts from lib/swiotlb.c:
    		 * -swiotlb size: user-specified with swiotlb= or default.
    		 *
    		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
    		 * to 8M for other buffers that may need to stay low too. Also
    		 * make sure we allocate enough extra low memory so that we
    		 * don't run out of DMA buffers for 32-bit devices.
    		 */
    		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
    	} else {
    		/* passed with crashkernel=0,low ? */
    		if (!low_size)
    			return 0;
    	}
    
    	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
    	if (!low_base) {
    		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
    		       (unsigned long)(low_size >> 20));
    		return -ENOMEM;
    	}
    
    	ret = memblock_reserve(low_base, low_size);
    	if (ret) {
    		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
    		return ret;
    	}
    
    	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
    		(unsigned long)(low_size >> 20),
    		(unsigned long)(low_base >> 20),
    		(unsigned long)(total_low_mem >> 20));
    
    	crashk_low_res.start = low_base;
    	crashk_low_res.end   = low_base + low_size - 1;
    	insert_resource(&iomem_resource, &crashk_low_res);
    #endif
    	return 0;
    }
    
    static void __init reserve_crashkernel(void)
    {
    	unsigned long long crash_size, crash_base, total_mem;
    	bool high = false;
    	int ret;
    
    	total_mem = memblock_phys_mem_size();
    
    	/* crashkernel=XM */
    	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
    	if (ret != 0 || crash_size <= 0) {
    		/* crashkernel=X,high */
    		ret = parse_crashkernel_high(boot_command_line, total_mem,
    					     &crash_size, &crash_base);
    		if (ret != 0 || crash_size <= 0)
    			return;
    		high = true;
    	}
    
    	/* 0 means: find the address automatically */
    	if (crash_base <= 0) {
    		/*
    		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
    		 * as old kexec-tools loads bzImage below that, unless
    		 * "crashkernel=size[KMG],high" is specified.
    		 */
    		crash_base = memblock_find_in_range(CRASH_ALIGN,
    						    high ? CRASH_ADDR_HIGH_MAX
    							 : CRASH_ADDR_LOW_MAX,
    						    crash_size, CRASH_ALIGN);
    		if (!crash_base) {
    			pr_info("crashkernel reservation failed - No suitable area found.\n");
    			return;
    		}
    
    	} else {
    		unsigned long long start;
    
    		start = memblock_find_in_range(crash_base,
    					       crash_base + crash_size,
    					       crash_size, 1 << 20);
    		if (start != crash_base) {
    			pr_info("crashkernel reservation failed - memory is in use.\n");
    			return;
    		}
    	}
    	ret = memblock_reserve(crash_base, crash_size);
    	if (ret) {
    		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
    		return;
    	}
    
    	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
    		memblock_free(crash_base, crash_size);
    		return;
    	}
    
    	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
    		(unsigned long)(crash_size >> 20),
    		(unsigned long)(crash_base >> 20),
    		(unsigned long)(total_mem >> 20));
    
    	crashk_res.start = crash_base;
    	crashk_res.end   = crash_base + crash_size - 1;
    	insert_resource(&iomem_resource, &crashk_res);
    }
    #else
    static void __init reserve_crashkernel(void)
    {
    }
    #endif
    
    static struct resource standard_io_resources[] = {
    	{ .name = "dma1", .start = 0x00, .end = 0x1f,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "pic1", .start = 0x20, .end = 0x21,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "timer0", .start = 0x40, .end = 0x43,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "timer1", .start = 0x50, .end = 0x53,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "keyboard", .start = 0x60, .end = 0x60,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "keyboard", .start = 0x64, .end = 0x64,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
    	{ .name = "fpu", .start = 0xf0, .end = 0xff,
    		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
    };
    
    void __init reserve_standard_io_resources(void)
    {
    	int i;
    
    	/* request I/O space for devices used on all i[345]86 PCs */
    	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
    		request_resource(&ioport_resource, &standard_io_resources[i]);
    
    }
    
    static __init void reserve_ibft_region(void)
    {
    	unsigned long addr, size = 0;
    
    	addr = find_ibft_region(&size);
    
    	if (size)
    		memblock_reserve(addr, size);
    }
    
    static bool __init snb_gfx_workaround_needed(void)
    {
    #ifdef CONFIG_PCI
    	int i;
    	u16 vendor, devid;
    	static const __initconst u16 snb_ids[] = {
    		0x0102,
    		0x0112,
    		0x0122,
    		0x0106,
    		0x0116,
    		0x0126,
    		0x010a,
    	};
    
    	/* Assume no if something weird is going on with PCI */
    	if (!early_pci_allowed())
    		return false;
    
    	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
    	if (vendor != 0x8086)
    		return false;
    
    	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
    	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
    		if (devid == snb_ids[i])
    			return true;
    #endif
    
    	return false;
    }
    
    /*
     * Sandy Bridge graphics has trouble with certain ranges, exclude
     * them from allocation.
     */
    static void __init trim_snb_memory(void)
    {
    	static const __initconst unsigned long bad_pages[] = {
    		0x20050000,
    		0x20110000,
    		0x20130000,
    		0x20138000,
    		0x40004000,
    	};
    	int i;
    
    	if (!snb_gfx_workaround_needed())
    		return;
    
    	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
    
    	/*
    	 * Reserve all memory below the 1 MB mark that has not
    	 * already been reserved.
    	 */
    	memblock_reserve(0, 1<<20);
    	
    	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
    		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
    			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
    			       bad_pages[i]);
    	}
    }
    
    /*
     * Here we put platform-specific memory range workarounds, i.e.
     * memory known to be corrupt or otherwise in need to be reserved on
     * specific platforms.
     *
     * If this gets used more widely it could use a real dispatch mechanism.
     */
    static void __init trim_platform_memory_ranges(void)
    {
    	trim_snb_memory();
    }
    
    static void __init trim_bios_range(void)
    {
    	/*
    	 * A special case is the first 4Kb of memory;
    	 * This is a BIOS owned area, not kernel ram, but generally
    	 * not listed as such in the E820 table.
    	 *
    	 * This typically reserves additional memory (64KiB by default)
    	 * since some BIOSes are known to corrupt low memory.  See the
    	 * Kconfig help text for X86_RESERVE_LOW.
    	 */
    	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
    
    	/*
    	 * special case: Some BIOSen report the PC BIOS
    	 * area (640->1Mb) as ram even though it is not.
    	 * take them out.
    	 */
    	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
    
    	e820__update_table(e820_table);
    }
    
    /* called before trim_bios_range() to spare extra sanitize */
    static void __init e820_add_kernel_range(void)
    {
    	u64 start = __pa_symbol(_text);
    	u64 size = __pa_symbol(_end) - start;
    
    	/*
    	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
    	 * attempt to fix it by adding the range. We may have a confused BIOS,
    	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
    	 * exclude kernel range. If we really are running on top non-RAM,
    	 * we will crash later anyways.
    	 */
    	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
    		return;
    
    	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
    	e820__range_remove(start, size, E820_TYPE_RAM, 0);
    	e820__range_add(start, size, E820_TYPE_RAM);
    }
    
    static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
    
    static int __init parse_reservelow(char *p)
    {
    	unsigned long long size;
    
    	if (!p)
    		return -EINVAL;
    
    	size = memparse(p, &p);
    
    	if (size < 4096)
    		size = 4096;
    
    	if (size > 640*1024)
    		size = 640*1024;
    
    	reserve_low = size;
    
    	return 0;
    }
    
    early_param("reservelow", parse_reservelow);
    
    static void __init trim_low_memory_range(void)
    {
    	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
    }
    	
    /*
     * Dump out kernel offset information on panic.
     */
    static int
    dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
    {
    	if (kaslr_enabled()) {
    		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
    			 kaslr_offset(),
    			 __START_KERNEL,
    			 __START_KERNEL_map,
    			 MODULES_VADDR-1);
    	} else {
    		pr_emerg("Kernel Offset: disabled\n");
    	}
    
    	return 0;
    }
    
    /*
     * Determine if we were loaded by an EFI loader.  If so, then we have also been
     * passed the efi memmap, systab, etc., so we should use these data structures
     * for initialization.  Note, the efi init code path is determined by the
     * global efi_enabled. This allows the same kernel image to be used on existing
     * systems (with a traditional BIOS) as well as on EFI systems.
     */
    /*
     * setup_arch - architecture-specific boot-time initializations
     *
     * Note: On x86_64, fixmaps are ready for use even before this is called.
     */
    
    void __init setup_arch(char **cmdline_p)
    {
    	memblock_reserve(__pa_symbol(_text),
    			 (unsigned long)__bss_stop - (unsigned long)_text);
    
    	early_reserve_initrd();
    
    	/*
    	 * At this point everything still needed from the boot loader
    	 * or BIOS or kernel text should be early reserved or marked not
    	 * RAM in e820. All other memory is free game.
    	 */
    
    #ifdef CONFIG_X86_32
    	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
    
    	/*
    	 * copy kernel address range established so far and switch
    	 * to the proper swapper page table
    	 */
    	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
    			initial_page_table + KERNEL_PGD_BOUNDARY,
    			KERNEL_PGD_PTRS);
    
    	load_cr3(swapper_pg_dir);
    	/*
    	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
    	 * a cr3 based tlb flush, so the following __flush_tlb_all()
    	 * will not flush anything because the cpu quirk which clears
    	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
    	 * load_cr3() above the TLB has been flushed already. The
    	 * quirk is invoked before subsequent calls to __flush_tlb_all()
    	 * so proper operation is guaranteed.
    	 */
    	__flush_tlb_all();
    #else
    	printk(KERN_INFO "Command line: %s\n", boot_command_line);
    #endif
    
    	/*
    	 * If we have OLPC OFW, we might end up relocating the fixmap due to
    	 * reserve_top(), so do this before touching the ioremap area.
    	 */
    	olpc_ofw_detect();
    
    	idt_setup_early_traps();
    	early_cpu_init();
    	early_ioremap_init();
    
    	setup_olpc_ofw_pgd();
    
    	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
    	screen_info = boot_params.screen_info;
    	edid_info = boot_params.edid_info;
    #ifdef CONFIG_X86_32
    	apm_info.bios = boot_params.apm_bios_info;
    	ist_info = boot_params.ist_info;
    #endif
    	saved_video_mode = boot_params.hdr.vid_mode;
    	bootloader_type = boot_params.hdr.type_of_loader;
    	if ((bootloader_type >> 4) == 0xe) {
    		bootloader_type &= 0xf;
    		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
    	}
    	bootloader_version  = bootloader_type & 0xf;
    	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
    
    #ifdef CONFIG_BLK_DEV_RAM
    	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
    	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
    	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
    #endif
    #ifdef CONFIG_EFI
    	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
    		     EFI32_LOADER_SIGNATURE, 4)) {
    		set_bit(EFI_BOOT, &efi.flags);
    	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
    		     EFI64_LOADER_SIGNATURE, 4)) {
    		set_bit(EFI_BOOT, &efi.flags);
    		set_bit(EFI_64BIT, &efi.flags);
    	}
    #endif
    
    	x86_init.oem.arch_setup();
    
    	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
    	e820__memory_setup();
    	parse_setup_data();
    
    	copy_edd();
    
    	if (!boot_params.hdr.root_flags)
    		root_mountflags &= ~MS_RDONLY;
    	init_mm.start_code = (unsigned long) _text;
    	init_mm.end_code = (unsigned long) _etext;
    	init_mm.end_data = (unsigned long) _edata;
    	init_mm.brk = _brk_end;
    
    	mpx_mm_init(&init_mm);
    
    	code_resource.start = __pa_symbol(_text);
    	code_resource.end = __pa_symbol(_etext)-1;
    	data_resource.start = __pa_symbol(_etext);
    	data_resource.end = __pa_symbol(_edata)-1;
    	bss_resource.start = __pa_symbol(__bss_start);
    	bss_resource.end = __pa_symbol(__bss_stop)-1;
    
    #ifdef CONFIG_CMDLINE_BOOL
    #ifdef CONFIG_CMDLINE_OVERRIDE
    	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
    #else
    	if (builtin_cmdline[0]) {
    		/* append boot loader cmdline to builtin */
    		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
    		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
    		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
    	}
    #endif
    #endif
    
    	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
    	*cmdline_p = command_line;
    
    	/*
    	 * x86_configure_nx() is called before parse_early_param() to detect
    	 * whether hardware doesn't support NX (so that the early EHCI debug
    	 * console setup can safely call set_fixmap()). It may then be called
    	 * again from within noexec_setup() during parsing early parameters
    	 * to honor the respective command line option.
    	 */
    	x86_configure_nx();
    
    	parse_early_param();
    
    	if (efi_enabled(EFI_BOOT))
    		efi_memblock_x86_reserve_range();
    #ifdef CONFIG_MEMORY_HOTPLUG
    	/*
    	 * Memory used by the kernel cannot be hot-removed because Linux
    	 * cannot migrate the kernel pages. When memory hotplug is
    	 * enabled, we should prevent memblock from allocating memory
    	 * for the kernel.
    	 *
    	 * ACPI SRAT records all hotpluggable memory ranges. But before
    	 * SRAT is parsed, we don't know about it.
    	 *
    	 * The kernel image is loaded into memory at very early time. We
    	 * cannot prevent this anyway. So on NUMA system, we set any
    	 * node the kernel resides in as un-hotpluggable.
    	 *
    	 * Since on modern servers, one node could have double-digit
    	 * gigabytes memory, we can assume the memory around the kernel
    	 * image is also un-hotpluggable. So before SRAT is parsed, just
    	 * allocate memory near the kernel image to try the best to keep
    	 * the kernel away from hotpluggable memory.
    	 */
    	if (movable_node_is_enabled())
    		memblock_set_bottom_up(true);
    #endif
    
    	x86_report_nx();
    
    	/* after early param, so could get panic from serial */
    	memblock_x86_reserve_range_setup_data();
    
    	if (acpi_mps_check()) {
    #ifdef CONFIG_X86_LOCAL_APIC
    		disable_apic = 1;
    #endif
    		setup_clear_cpu_cap(X86_FEATURE_APIC);
    	}
    
    #ifdef CONFIG_PCI
    	if (pci_early_dump_regs)
    		early_dump_pci_devices();
    #endif
    
    	e820__reserve_setup_data();
    	e820__finish_early_params();
    
    	if (efi_enabled(EFI_BOOT))
    		efi_init();
    
    	dmi_scan_machine();
    	dmi_memdev_walk();
    	dmi_set_dump_stack_arch_desc();
    
    	/*
    	 * VMware detection requires dmi to be available, so this
    	 * needs to be done after dmi_scan_machine(), for the boot CPU.
    	 */
    	init_hypervisor_platform();
    
    	x86_init.resources.probe_roms();
    
    	/* after parse_early_param, so could debug it */
    	insert_resource(&iomem_resource, &code_resource);
    	insert_resource(&iomem_resource, &data_resource);
    	insert_resource(&iomem_resource, &bss_resource);
    
    	e820_add_kernel_range();
    	trim_bios_range();
    #ifdef CONFIG_X86_32
    	if (ppro_with_ram_bug()) {
    		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
    				  E820_TYPE_RESERVED);
    		e820__update_table(e820_table);
    		printk(KERN_INFO "fixed physical RAM map:\n");
    		e820__print_table("bad_ppro");
    	}
    #else
    	early_gart_iommu_check();
    #endif
    
    	/*
    	 * partially used pages are not usable - thus
    	 * we are rounding upwards:
    	 */
    	max_pfn = e820__end_of_ram_pfn();
    
    	/* update e820 for memory not covered by WB MTRRs */
    	mtrr_bp_init();
    	if (mtrr_trim_uncached_memory(max_pfn))
    		max_pfn = e820__end_of_ram_pfn();
    
    	max_possible_pfn = max_pfn;
    
    	/*
    	 * This call is required when the CPU does not support PAT. If
    	 * mtrr_bp_init() invoked it already via pat_init() the call has no
    	 * effect.
    	 */
    	init_cache_modes();
    
    	/*
    	 * Define random base addresses for memory sections after max_pfn is
    	 * defined and before each memory section base is used.
    	 */
    	kernel_randomize_memory();
    
    #ifdef CONFIG_X86_32
    	/* max_low_pfn get updated here */
    	find_low_pfn_range();
    #else
    	check_x2apic();
    
    	/* How many end-of-memory variables you have, grandma! */
    	/* need this before calling reserve_initrd */
    	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
    		max_low_pfn = e820__end_of_low_ram_pfn();
    	else
    		max_low_pfn = max_pfn;
    
    	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
    #endif
    
    	/*
    	 * Find and reserve possible boot-time SMP configuration:
    	 */
    	find_smp_config();
    
    	reserve_ibft_region();
    
    	early_alloc_pgt_buf();
    
    	/*
    	 * Need to conclude brk, before e820__memblock_setup()
    	 *  it could use memblock_find_in_range, could overlap with
    	 *  brk area.
    	 */
    	reserve_brk();
    
    	cleanup_highmap();
    
    	memblock_set_current_limit(ISA_END_ADDRESS);
    	e820__memblock_setup();
    
    	reserve_bios_regions();
    
    	if (efi_enabled(EFI_MEMMAP)) {
    		efi_fake_memmap();
    		efi_find_mirror();
    		efi_esrt_init();
    
    		/*
    		 * The EFI specification says that boot service code won't be
    		 * called after ExitBootServices(). This is, in fact, a lie.
    		 */
    		efi_reserve_boot_services();
    	}
    
    	/* preallocate 4k for mptable mpc */
    	e820__memblock_alloc_reserved_mpc_new();
    
    #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
    	setup_bios_corruption_check();
    #endif
    
    #ifdef CONFIG_X86_32
    	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
    			(max_pfn_mapped<<PAGE_SHIFT) - 1);
    #endif
    
    	reserve_real_mode();
    
    	trim_platform_memory_ranges();
    	trim_low_memory_range();
    
    	init_mem_mapping();
    
    	idt_setup_early_pf();
    
    	/*
    	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
    	 * with the current CR4 value.  This may not be necessary, but
    	 * auditing all the early-boot CR4 manipulation would be needed to
    	 * rule it out.
    	 *
    	 * Mask off features that don't work outside long mode (just
    	 * PCIDE for now).
    	 */
    	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
    
    	memblock_set_current_limit(get_max_mapped());
    
    	/*
    	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
    	 */
    
    #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
    	if (init_ohci1394_dma_early)
    		init_ohci1394_dma_on_all_controllers();
    #endif
    	/* Allocate bigger log buffer */
    	setup_log_buf(1);
    
    	if (efi_enabled(EFI_BOOT)) {
    		switch (boot_params.secure_boot) {
    		case efi_secureboot_mode_disabled:
    			pr_info("Secure boot disabled\n");
    			break;
    		case efi_secureboot_mode_enabled:
    			pr_info("Secure boot enabled\n");
    			break;
    		default:
    			pr_info("Secure boot could not be determined\n");
    			break;
    		}
    	}
    
    	reserve_initrd();
    
    	acpi_table_upgrade();
    
    	vsmp_init();
    
    	io_delay_init();
    
    	early_platform_quirks();
    
    	/*
    	 * Parse the ACPI tables for possible boot-time SMP configuration.
    	 */
    	acpi_boot_table_init();
    
    	early_acpi_boot_init();
    
    	initmem_init();
    	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
    
    	/*
    	 * Reserve memory for crash kernel after SRAT is parsed so that it
    	 * won't consume hotpluggable memory.
    	 */
    	reserve_crashkernel();
    
    	memblock_find_dma_reserve();
    
    #ifdef CONFIG_KVM_GUEST
    	kvmclock_init();
    #endif
    
    	tsc_early_delay_calibrate();
    	if (!early_xdbc_setup_hardware())
    		early_xdbc_register_console();
    
    	x86_init.paging.pagetable_init();
    
    	kasan_init();
    
    	/*
    	 * Sync back kernel address range.
    	 *
    	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
    	 * this call?
    	 */
    	sync_initial_page_table();
    
    	tboot_probe();
    
    	map_vsyscall();
    
    	generic_apic_probe();
    
    	early_quirks();
    
    	/*
    	 * Read APIC and some other early information from ACPI tables.
    	 */
    	acpi_boot_init();
    	sfi_init();
    	x86_dtb_init();
    
    	/*
    	 * get boot-time SMP configuration:
    	 */
    	get_smp_config();
    
    	/*
    	 * Systems w/o ACPI and mptables might not have it mapped the local
    	 * APIC yet, but prefill_possible_map() might need to access it.
    	 */
    	init_apic_mappings();
    
    	prefill_possible_map();
    
    	init_cpu_to_node();
    
    	io_apic_init_mappings();
    
    	x86_init.hyper.guest_late_init();
    
    	e820__reserve_resources();
    	e820__register_nosave_regions(max_low_pfn);
    
    	x86_init.resources.reserve_resources();
    
    	e820__setup_pci_gap();
    
    #ifdef CONFIG_VT
    #if defined(CONFIG_VGA_CONSOLE)
    	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
    		conswitchp = &vga_con;
    #elif defined(CONFIG_DUMMY_CONSOLE)
    	conswitchp = &dummy_con;
    #endif
    #endif
    	x86_init.oem.banner();
    
    	x86_init.timers.wallclock_init();
    
    	mcheck_init();
    
    	arch_init_ideal_nops();
    
    	register_refined_jiffies(CLOCK_TICK_RATE);
    
    #ifdef CONFIG_EFI
    	if (efi_enabled(EFI_BOOT))
    		efi_apply_memmap_quirks();
    #endif
    
    	unwind_init();
    }
    
    #ifdef CONFIG_X86_32
    
    static struct resource video_ram_resource = {
    	.name	= "Video RAM area",
    	.start	= 0xa0000,
    	.end	= 0xbffff,
    	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
    };
    
    void __init i386_reserve_resources(void)
    {
    	request_resource(&iomem_resource, &video_ram_resource);
    	reserve_standard_io_resources();
    }
    
    #endif /* CONFIG_X86_32 */
    
    static struct notifier_block kernel_offset_notifier = {
    	.notifier_call = dump_kernel_offset
    };
    
    static int __init register_kernel_offset_dumper(void)
    {
    	atomic_notifier_chain_register(&panic_notifier_list,
    					&kernel_offset_notifier);
    	return 0;
    }
    __initcall(register_kernel_offset_dumper);
    
    void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
    {
    	if (!boot_cpu_has(X86_FEATURE_OSPKE))
    		return;
    
    	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
    }