Skip to content
Snippets Groups Projects
Select Git revision
  • 31c2611b66e01378b54f7ef641cb0d23fcd8502f
  • master default
  • wip/sjoerd/uml-hwrng
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
23 results

tdc.py

Blame
  • module.c 96.50 KiB
    /*
       Copyright (C) 2002 Richard Henderson
       Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
    
        This program is free software; you can redistribute it and/or modify
        it under the terms of the GNU General Public License as published by
        the Free Software Foundation; either version 2 of the License, or
        (at your option) any later version.
    
        This program is distributed in the hope that it will be useful,
        but WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        GNU General Public License for more details.
    
        You should have received a copy of the GNU General Public License
        along with this program; if not, write to the Free Software
        Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    */
    #include <linux/export.h>
    #include <linux/moduleloader.h>
    #include <linux/ftrace_event.h>
    #include <linux/init.h>
    #include <linux/kallsyms.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/sysfs.h>
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/vmalloc.h>
    #include <linux/elf.h>
    #include <linux/proc_fs.h>
    #include <linux/security.h>
    #include <linux/seq_file.h>
    #include <linux/syscalls.h>
    #include <linux/fcntl.h>
    #include <linux/rcupdate.h>
    #include <linux/capability.h>
    #include <linux/cpu.h>
    #include <linux/moduleparam.h>
    #include <linux/errno.h>
    #include <linux/err.h>
    #include <linux/vermagic.h>
    #include <linux/notifier.h>
    #include <linux/sched.h>
    #include <linux/stop_machine.h>
    #include <linux/device.h>
    #include <linux/string.h>
    #include <linux/mutex.h>
    #include <linux/rculist.h>
    #include <asm/uaccess.h>
    #include <asm/cacheflush.h>
    #include <asm/mmu_context.h>
    #include <linux/license.h>
    #include <asm/sections.h>
    #include <linux/tracepoint.h>
    #include <linux/ftrace.h>
    #include <linux/async.h>
    #include <linux/percpu.h>
    #include <linux/kmemleak.h>
    #include <linux/jump_label.h>
    #include <linux/pfn.h>
    #include <linux/bsearch.h>
    #include <uapi/linux/module.h>
    #include "module-internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/module.h>
    
    #ifndef ARCH_SHF_SMALL
    #define ARCH_SHF_SMALL 0
    #endif
    
    /*
     * Modules' sections will be aligned on page boundaries
     * to ensure complete separation of code and data, but
     * only when CONFIG_DEBUG_SET_MODULE_RONX=y
     */
    #ifdef CONFIG_DEBUG_SET_MODULE_RONX
    # define debug_align(X) ALIGN(X, PAGE_SIZE)
    #else
    # define debug_align(X) (X)
    #endif
    
    /*
     * Given BASE and SIZE this macro calculates the number of pages the
     * memory regions occupies
     */
    #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
    		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
    			 PFN_DOWN((unsigned long)BASE) + 1)	\
    		: (0UL))
    
    /* If this is set, the section belongs in the init part of the module */
    #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
    
    /*
     * Mutex protects:
     * 1) List of modules (also safely readable with preempt_disable),
     * 2) module_use links,
     * 3) module_addr_min/module_addr_max.
     * (delete uses stop_machine/add uses RCU list operations). */
    DEFINE_MUTEX(module_mutex);
    EXPORT_SYMBOL_GPL(module_mutex);
    static LIST_HEAD(modules);
    #ifdef CONFIG_KGDB_KDB
    struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
    #endif /* CONFIG_KGDB_KDB */
    
    #ifdef CONFIG_MODULE_SIG
    #ifdef CONFIG_MODULE_SIG_FORCE
    static bool sig_enforce = true;
    #else
    static bool sig_enforce = false;
    
    static int param_set_bool_enable_only(const char *val,
    				      const struct kernel_param *kp)
    {
    	int err;
    	bool test;
    	struct kernel_param dummy_kp = *kp;
    
    	dummy_kp.arg = &test;
    
    	err = param_set_bool(val, &dummy_kp);
    	if (err)
    		return err;
    
    	/* Don't let them unset it once it's set! */
    	if (!test && sig_enforce)
    		return -EROFS;
    
    	if (test)
    		sig_enforce = true;
    	return 0;
    }
    
    static const struct kernel_param_ops param_ops_bool_enable_only = {
    	.flags = KERNEL_PARAM_FL_NOARG,
    	.set = param_set_bool_enable_only,
    	.get = param_get_bool,
    };
    #define param_check_bool_enable_only param_check_bool
    
    module_param(sig_enforce, bool_enable_only, 0644);
    #endif /* !CONFIG_MODULE_SIG_FORCE */
    #endif /* CONFIG_MODULE_SIG */
    
    /* Block module loading/unloading? */
    int modules_disabled = 0;
    core_param(nomodule, modules_disabled, bint, 0);
    
    /* Waiting for a module to finish initializing? */
    static DECLARE_WAIT_QUEUE_HEAD(module_wq);
    
    static BLOCKING_NOTIFIER_HEAD(module_notify_list);
    
    /* Bounds of module allocation, for speeding __module_address.
     * Protected by module_mutex. */
    static unsigned long module_addr_min = -1UL, module_addr_max = 0;
    
    int register_module_notifier(struct notifier_block * nb)
    {
    	return blocking_notifier_chain_register(&module_notify_list, nb);
    }
    EXPORT_SYMBOL(register_module_notifier);
    
    int unregister_module_notifier(struct notifier_block * nb)
    {
    	return blocking_notifier_chain_unregister(&module_notify_list, nb);
    }
    EXPORT_SYMBOL(unregister_module_notifier);
    
    struct load_info {
    	Elf_Ehdr *hdr;
    	unsigned long len;
    	Elf_Shdr *sechdrs;
    	char *secstrings, *strtab;
    	unsigned long symoffs, stroffs;
    	struct _ddebug *debug;
    	unsigned int num_debug;
    	bool sig_ok;
    	struct {
    		unsigned int sym, str, mod, vers, info, pcpu;
    	} index;
    };
    
    /* We require a truly strong try_module_get(): 0 means failure due to
       ongoing or failed initialization etc. */
    static inline int strong_try_module_get(struct module *mod)
    {
    	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
    	if (mod && mod->state == MODULE_STATE_COMING)
    		return -EBUSY;
    	if (try_module_get(mod))
    		return 0;
    	else
    		return -ENOENT;
    }
    
    static inline void add_taint_module(struct module *mod, unsigned flag,
    				    enum lockdep_ok lockdep_ok)
    {
    	add_taint(flag, lockdep_ok);
    	mod->taints |= (1U << flag);
    }
    
    /*
     * A thread that wants to hold a reference to a module only while it
     * is running can call this to safely exit.  nfsd and lockd use this.
     */
    void __module_put_and_exit(struct module *mod, long code)
    {
    	module_put(mod);
    	do_exit(code);
    }
    EXPORT_SYMBOL(__module_put_and_exit);
    
    /* Find a module section: 0 means not found. */
    static unsigned int find_sec(const struct load_info *info, const char *name)
    {
    	unsigned int i;
    
    	for (i = 1; i < info->hdr->e_shnum; i++) {
    		Elf_Shdr *shdr = &info->sechdrs[i];
    		/* Alloc bit cleared means "ignore it." */
    		if ((shdr->sh_flags & SHF_ALLOC)
    		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
    			return i;
    	}
    	return 0;
    }
    
    /* Find a module section, or NULL. */
    static void *section_addr(const struct load_info *info, const char *name)
    {
    	/* Section 0 has sh_addr 0. */
    	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
    }
    
    /* Find a module section, or NULL.  Fill in number of "objects" in section. */
    static void *section_objs(const struct load_info *info,
    			  const char *name,
    			  size_t object_size,
    			  unsigned int *num)
    {
    	unsigned int sec = find_sec(info, name);
    
    	/* Section 0 has sh_addr 0 and sh_size 0. */
    	*num = info->sechdrs[sec].sh_size / object_size;
    	return (void *)info->sechdrs[sec].sh_addr;
    }
    
    /* Provided by the linker */
    extern const struct kernel_symbol __start___ksymtab[];
    extern const struct kernel_symbol __stop___ksymtab[];
    extern const struct kernel_symbol __start___ksymtab_gpl[];
    extern const struct kernel_symbol __stop___ksymtab_gpl[];
    extern const struct kernel_symbol __start___ksymtab_gpl_future[];
    extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
    extern const unsigned long __start___kcrctab[];
    extern const unsigned long __start___kcrctab_gpl[];
    extern const unsigned long __start___kcrctab_gpl_future[];
    #ifdef CONFIG_UNUSED_SYMBOLS
    extern const struct kernel_symbol __start___ksymtab_unused[];
    extern const struct kernel_symbol __stop___ksymtab_unused[];
    extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
    extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
    extern const unsigned long __start___kcrctab_unused[];
    extern const unsigned long __start___kcrctab_unused_gpl[];
    #endif
    
    #ifndef CONFIG_MODVERSIONS
    #define symversion(base, idx) NULL
    #else
    #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
    #endif
    
    static bool each_symbol_in_section(const struct symsearch *arr,
    				   unsigned int arrsize,
    				   struct module *owner,
    				   bool (*fn)(const struct symsearch *syms,
    					      struct module *owner,
    					      void *data),
    				   void *data)
    {
    	unsigned int j;
    
    	for (j = 0; j < arrsize; j++) {
    		if (fn(&arr[j], owner, data))
    			return true;
    	}
    
    	return false;
    }
    
    /* Returns true as soon as fn returns true, otherwise false. */
    bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
    				    struct module *owner,
    				    void *data),
    			 void *data)
    {
    	struct module *mod;
    	static const struct symsearch arr[] = {
    		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
    		  NOT_GPL_ONLY, false },
    		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
    		  __start___kcrctab_gpl,
    		  GPL_ONLY, false },
    		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
    		  __start___kcrctab_gpl_future,
    		  WILL_BE_GPL_ONLY, false },
    #ifdef CONFIG_UNUSED_SYMBOLS
    		{ __start___ksymtab_unused, __stop___ksymtab_unused,
    		  __start___kcrctab_unused,
    		  NOT_GPL_ONLY, true },
    		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
    		  __start___kcrctab_unused_gpl,
    		  GPL_ONLY, true },
    #endif
    	};
    
    	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
    		return true;
    
    	list_for_each_entry_rcu(mod, &modules, list) {
    		struct symsearch arr[] = {
    			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
    			  NOT_GPL_ONLY, false },
    			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
    			  mod->gpl_crcs,
    			  GPL_ONLY, false },
    			{ mod->gpl_future_syms,
    			  mod->gpl_future_syms + mod->num_gpl_future_syms,
    			  mod->gpl_future_crcs,
    			  WILL_BE_GPL_ONLY, false },
    #ifdef CONFIG_UNUSED_SYMBOLS
    			{ mod->unused_syms,
    			  mod->unused_syms + mod->num_unused_syms,
    			  mod->unused_crcs,
    			  NOT_GPL_ONLY, true },
    			{ mod->unused_gpl_syms,
    			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
    			  mod->unused_gpl_crcs,
    			  GPL_ONLY, true },
    #endif
    		};
    
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    
    		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
    			return true;
    	}
    	return false;
    }
    EXPORT_SYMBOL_GPL(each_symbol_section);
    
    struct find_symbol_arg {
    	/* Input */
    	const char *name;
    	bool gplok;
    	bool warn;
    
    	/* Output */
    	struct module *owner;
    	const unsigned long *crc;
    	const struct kernel_symbol *sym;
    };
    
    static bool check_symbol(const struct symsearch *syms,
    				 struct module *owner,
    				 unsigned int symnum, void *data)
    {
    	struct find_symbol_arg *fsa = data;
    
    	if (!fsa->gplok) {
    		if (syms->licence == GPL_ONLY)
    			return false;
    		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
    			pr_warn("Symbol %s is being used by a non-GPL module, "
    				"which will not be allowed in the future\n",
    				fsa->name);
    		}
    	}
    
    #ifdef CONFIG_UNUSED_SYMBOLS
    	if (syms->unused && fsa->warn) {
    		pr_warn("Symbol %s is marked as UNUSED, however this module is "
    			"using it.\n", fsa->name);
    		pr_warn("This symbol will go away in the future.\n");
    		pr_warn("Please evalute if this is the right api to use and if "
    			"it really is, submit a report the linux kernel "
    			"mailinglist together with submitting your code for "
    			"inclusion.\n");
    	}
    #endif
    
    	fsa->owner = owner;
    	fsa->crc = symversion(syms->crcs, symnum);
    	fsa->sym = &syms->start[symnum];
    	return true;
    }
    
    static int cmp_name(const void *va, const void *vb)
    {
    	const char *a;
    	const struct kernel_symbol *b;
    	a = va; b = vb;
    	return strcmp(a, b->name);
    }
    
    static bool find_symbol_in_section(const struct symsearch *syms,
    				   struct module *owner,
    				   void *data)
    {
    	struct find_symbol_arg *fsa = data;
    	struct kernel_symbol *sym;
    
    	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
    			sizeof(struct kernel_symbol), cmp_name);
    
    	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
    		return true;
    
    	return false;
    }
    
    /* Find a symbol and return it, along with, (optional) crc and
     * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
    const struct kernel_symbol *find_symbol(const char *name,
    					struct module **owner,
    					const unsigned long **crc,
    					bool gplok,
    					bool warn)
    {
    	struct find_symbol_arg fsa;
    
    	fsa.name = name;
    	fsa.gplok = gplok;
    	fsa.warn = warn;
    
    	if (each_symbol_section(find_symbol_in_section, &fsa)) {
    		if (owner)
    			*owner = fsa.owner;
    		if (crc)
    			*crc = fsa.crc;
    		return fsa.sym;
    	}
    
    	pr_debug("Failed to find symbol %s\n", name);
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(find_symbol);
    
    /* Search for module by name: must hold module_mutex. */
    static struct module *find_module_all(const char *name, size_t len,
    				      bool even_unformed)
    {
    	struct module *mod;
    
    	list_for_each_entry(mod, &modules, list) {
    		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
    			return mod;
    	}
    	return NULL;
    }
    
    struct module *find_module(const char *name)
    {
    	return find_module_all(name, strlen(name), false);
    }
    EXPORT_SYMBOL_GPL(find_module);
    
    #ifdef CONFIG_SMP
    
    static inline void __percpu *mod_percpu(struct module *mod)
    {
    	return mod->percpu;
    }
    
    static int percpu_modalloc(struct module *mod, struct load_info *info)
    {
    	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
    	unsigned long align = pcpusec->sh_addralign;
    
    	if (!pcpusec->sh_size)
    		return 0;
    
    	if (align > PAGE_SIZE) {
    		pr_warn("%s: per-cpu alignment %li > %li\n",
    			mod->name, align, PAGE_SIZE);
    		align = PAGE_SIZE;
    	}
    
    	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
    	if (!mod->percpu) {
    		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
    			mod->name, (unsigned long)pcpusec->sh_size);
    		return -ENOMEM;
    	}
    	mod->percpu_size = pcpusec->sh_size;
    	return 0;
    }
    
    static void percpu_modfree(struct module *mod)
    {
    	free_percpu(mod->percpu);
    }
    
    static unsigned int find_pcpusec(struct load_info *info)
    {
    	return find_sec(info, ".data..percpu");
    }
    
    static void percpu_modcopy(struct module *mod,
    			   const void *from, unsigned long size)
    {
    	int cpu;
    
    	for_each_possible_cpu(cpu)
    		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
    }
    
    /**
     * is_module_percpu_address - test whether address is from module static percpu
     * @addr: address to test
     *
     * Test whether @addr belongs to module static percpu area.
     *
     * RETURNS:
     * %true if @addr is from module static percpu area
     */
    bool is_module_percpu_address(unsigned long addr)
    {
    	struct module *mod;
    	unsigned int cpu;
    
    	preempt_disable();
    
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (!mod->percpu_size)
    			continue;
    		for_each_possible_cpu(cpu) {
    			void *start = per_cpu_ptr(mod->percpu, cpu);
    
    			if ((void *)addr >= start &&
    			    (void *)addr < start + mod->percpu_size) {
    				preempt_enable();
    				return true;
    			}
    		}
    	}
    
    	preempt_enable();
    	return false;
    }
    
    #else /* ... !CONFIG_SMP */
    
    static inline void __percpu *mod_percpu(struct module *mod)
    {
    	return NULL;
    }
    static int percpu_modalloc(struct module *mod, struct load_info *info)
    {
    	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
    	if (info->sechdrs[info->index.pcpu].sh_size != 0)
    		return -ENOMEM;
    	return 0;
    }
    static inline void percpu_modfree(struct module *mod)
    {
    }
    static unsigned int find_pcpusec(struct load_info *info)
    {
    	return 0;
    }
    static inline void percpu_modcopy(struct module *mod,
    				  const void *from, unsigned long size)
    {
    	/* pcpusec should be 0, and size of that section should be 0. */
    	BUG_ON(size != 0);
    }
    bool is_module_percpu_address(unsigned long addr)
    {
    	return false;
    }
    
    #endif /* CONFIG_SMP */
    
    #define MODINFO_ATTR(field)	\
    static void setup_modinfo_##field(struct module *mod, const char *s)  \
    {                                                                     \
    	mod->field = kstrdup(s, GFP_KERNEL);                          \
    }                                                                     \
    static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
    			struct module_kobject *mk, char *buffer)      \
    {                                                                     \
    	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
    }                                                                     \
    static int modinfo_##field##_exists(struct module *mod)               \
    {                                                                     \
    	return mod->field != NULL;                                    \
    }                                                                     \
    static void free_modinfo_##field(struct module *mod)                  \
    {                                                                     \
    	kfree(mod->field);                                            \
    	mod->field = NULL;                                            \
    }                                                                     \
    static struct module_attribute modinfo_##field = {                    \
    	.attr = { .name = __stringify(field), .mode = 0444 },         \
    	.show = show_modinfo_##field,                                 \
    	.setup = setup_modinfo_##field,                               \
    	.test = modinfo_##field##_exists,                             \
    	.free = free_modinfo_##field,                                 \
    };
    
    MODINFO_ATTR(version);
    MODINFO_ATTR(srcversion);
    
    static char last_unloaded_module[MODULE_NAME_LEN+1];
    
    #ifdef CONFIG_MODULE_UNLOAD
    
    EXPORT_TRACEPOINT_SYMBOL(module_get);
    
    /* Init the unload section of the module. */
    static int module_unload_init(struct module *mod)
    {
    	mod->refptr = alloc_percpu(struct module_ref);
    	if (!mod->refptr)
    		return -ENOMEM;
    
    	INIT_LIST_HEAD(&mod->source_list);
    	INIT_LIST_HEAD(&mod->target_list);
    
    	/* Hold reference count during initialization. */
    	raw_cpu_write(mod->refptr->incs, 1);
    
    	return 0;
    }
    
    /* Does a already use b? */
    static int already_uses(struct module *a, struct module *b)
    {
    	struct module_use *use;
    
    	list_for_each_entry(use, &b->source_list, source_list) {
    		if (use->source == a) {
    			pr_debug("%s uses %s!\n", a->name, b->name);
    			return 1;
    		}
    	}
    	pr_debug("%s does not use %s!\n", a->name, b->name);
    	return 0;
    }
    
    /*
     * Module a uses b
     *  - we add 'a' as a "source", 'b' as a "target" of module use
     *  - the module_use is added to the list of 'b' sources (so
     *    'b' can walk the list to see who sourced them), and of 'a'
     *    targets (so 'a' can see what modules it targets).
     */
    static int add_module_usage(struct module *a, struct module *b)
    {
    	struct module_use *use;
    
    	pr_debug("Allocating new usage for %s.\n", a->name);
    	use = kmalloc(sizeof(*use), GFP_ATOMIC);
    	if (!use) {
    		pr_warn("%s: out of memory loading\n", a->name);
    		return -ENOMEM;
    	}
    
    	use->source = a;
    	use->target = b;
    	list_add(&use->source_list, &b->source_list);
    	list_add(&use->target_list, &a->target_list);
    	return 0;
    }
    
    /* Module a uses b: caller needs module_mutex() */
    int ref_module(struct module *a, struct module *b)
    {
    	int err;
    
    	if (b == NULL || already_uses(a, b))
    		return 0;
    
    	/* If module isn't available, we fail. */
    	err = strong_try_module_get(b);
    	if (err)
    		return err;
    
    	err = add_module_usage(a, b);
    	if (err) {
    		module_put(b);
    		return err;
    	}
    	return 0;
    }
    EXPORT_SYMBOL_GPL(ref_module);
    
    /* Clear the unload stuff of the module. */
    static void module_unload_free(struct module *mod)
    {
    	struct module_use *use, *tmp;
    
    	mutex_lock(&module_mutex);
    	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
    		struct module *i = use->target;
    		pr_debug("%s unusing %s\n", mod->name, i->name);
    		module_put(i);
    		list_del(&use->source_list);
    		list_del(&use->target_list);
    		kfree(use);
    	}
    	mutex_unlock(&module_mutex);
    
    	free_percpu(mod->refptr);
    }
    
    #ifdef CONFIG_MODULE_FORCE_UNLOAD
    static inline int try_force_unload(unsigned int flags)
    {
    	int ret = (flags & O_TRUNC);
    	if (ret)
    		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
    	return ret;
    }
    #else
    static inline int try_force_unload(unsigned int flags)
    {
    	return 0;
    }
    #endif /* CONFIG_MODULE_FORCE_UNLOAD */
    
    struct stopref
    {
    	struct module *mod;
    	int flags;
    	int *forced;
    };
    
    /* Whole machine is stopped with interrupts off when this runs. */
    static int __try_stop_module(void *_sref)
    {
    	struct stopref *sref = _sref;
    
    	/* If it's not unused, quit unless we're forcing. */
    	if (module_refcount(sref->mod) != 0) {
    		if (!(*sref->forced = try_force_unload(sref->flags)))
    			return -EWOULDBLOCK;
    	}
    
    	/* Mark it as dying. */
    	sref->mod->state = MODULE_STATE_GOING;
    	return 0;
    }
    
    static int try_stop_module(struct module *mod, int flags, int *forced)
    {
    	struct stopref sref = { mod, flags, forced };
    
    	return stop_machine(__try_stop_module, &sref, NULL);
    }
    
    unsigned long module_refcount(struct module *mod)
    {
    	unsigned long incs = 0, decs = 0;
    	int cpu;
    
    	for_each_possible_cpu(cpu)
    		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
    	/*
    	 * ensure the incs are added up after the decs.
    	 * module_put ensures incs are visible before decs with smp_wmb.
    	 *
    	 * This 2-count scheme avoids the situation where the refcount
    	 * for CPU0 is read, then CPU0 increments the module refcount,
    	 * then CPU1 drops that refcount, then the refcount for CPU1 is
    	 * read. We would record a decrement but not its corresponding
    	 * increment so we would see a low count (disaster).
    	 *
    	 * Rare situation? But module_refcount can be preempted, and we
    	 * might be tallying up 4096+ CPUs. So it is not impossible.
    	 */
    	smp_rmb();
    	for_each_possible_cpu(cpu)
    		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
    	return incs - decs;
    }
    EXPORT_SYMBOL(module_refcount);
    
    /* This exists whether we can unload or not */
    static void free_module(struct module *mod);
    
    SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
    		unsigned int, flags)
    {
    	struct module *mod;
    	char name[MODULE_NAME_LEN];
    	int ret, forced = 0;
    
    	if (!capable(CAP_SYS_MODULE) || modules_disabled)
    		return -EPERM;
    
    	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
    		return -EFAULT;
    	name[MODULE_NAME_LEN-1] = '\0';
    
    	if (mutex_lock_interruptible(&module_mutex) != 0)
    		return -EINTR;
    
    	mod = find_module(name);
    	if (!mod) {
    		ret = -ENOENT;
    		goto out;
    	}
    
    	if (!list_empty(&mod->source_list)) {
    		/* Other modules depend on us: get rid of them first. */
    		ret = -EWOULDBLOCK;
    		goto out;
    	}
    
    	/* Doing init or already dying? */
    	if (mod->state != MODULE_STATE_LIVE) {
    		/* FIXME: if (force), slam module count damn the torpedoes */
    		pr_debug("%s already dying\n", mod->name);
    		ret = -EBUSY;
    		goto out;
    	}
    
    	/* If it has an init func, it must have an exit func to unload */
    	if (mod->init && !mod->exit) {
    		forced = try_force_unload(flags);
    		if (!forced) {
    			/* This module can't be removed */
    			ret = -EBUSY;
    			goto out;
    		}
    	}
    
    	/* Stop the machine so refcounts can't move and disable module. */
    	ret = try_stop_module(mod, flags, &forced);
    	if (ret != 0)
    		goto out;
    
    	mutex_unlock(&module_mutex);
    	/* Final destruction now no one is using it. */
    	if (mod->exit != NULL)
    		mod->exit();
    	blocking_notifier_call_chain(&module_notify_list,
    				     MODULE_STATE_GOING, mod);
    	async_synchronize_full();
    
    	/* Store the name of the last unloaded module for diagnostic purposes */
    	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
    
    	free_module(mod);
    	return 0;
    out:
    	mutex_unlock(&module_mutex);
    	return ret;
    }
    
    static inline void print_unload_info(struct seq_file *m, struct module *mod)
    {
    	struct module_use *use;
    	int printed_something = 0;
    
    	seq_printf(m, " %lu ", module_refcount(mod));
    
    	/* Always include a trailing , so userspace can differentiate
               between this and the old multi-field proc format. */
    	list_for_each_entry(use, &mod->source_list, source_list) {
    		printed_something = 1;
    		seq_printf(m, "%s,", use->source->name);
    	}
    
    	if (mod->init != NULL && mod->exit == NULL) {
    		printed_something = 1;
    		seq_printf(m, "[permanent],");
    	}
    
    	if (!printed_something)
    		seq_printf(m, "-");
    }
    
    void __symbol_put(const char *symbol)
    {
    	struct module *owner;
    
    	preempt_disable();
    	if (!find_symbol(symbol, &owner, NULL, true, false))
    		BUG();
    	module_put(owner);
    	preempt_enable();
    }
    EXPORT_SYMBOL(__symbol_put);
    
    /* Note this assumes addr is a function, which it currently always is. */
    void symbol_put_addr(void *addr)
    {
    	struct module *modaddr;
    	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
    
    	if (core_kernel_text(a))
    		return;
    
    	/* module_text_address is safe here: we're supposed to have reference
    	 * to module from symbol_get, so it can't go away. */
    	modaddr = __module_text_address(a);
    	BUG_ON(!modaddr);
    	module_put(modaddr);
    }
    EXPORT_SYMBOL_GPL(symbol_put_addr);
    
    static ssize_t show_refcnt(struct module_attribute *mattr,
    			   struct module_kobject *mk, char *buffer)
    {
    	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
    }
    
    static struct module_attribute modinfo_refcnt =
    	__ATTR(refcnt, 0444, show_refcnt, NULL);
    
    void __module_get(struct module *module)
    {
    	if (module) {
    		preempt_disable();
    		__this_cpu_inc(module->refptr->incs);
    		trace_module_get(module, _RET_IP_);
    		preempt_enable();
    	}
    }
    EXPORT_SYMBOL(__module_get);
    
    bool try_module_get(struct module *module)
    {
    	bool ret = true;
    
    	if (module) {
    		preempt_disable();
    
    		if (likely(module_is_live(module))) {
    			__this_cpu_inc(module->refptr->incs);
    			trace_module_get(module, _RET_IP_);
    		} else
    			ret = false;
    
    		preempt_enable();
    	}
    	return ret;
    }
    EXPORT_SYMBOL(try_module_get);
    
    void module_put(struct module *module)
    {
    	if (module) {
    		preempt_disable();
    		smp_wmb(); /* see comment in module_refcount */
    		__this_cpu_inc(module->refptr->decs);
    
    		trace_module_put(module, _RET_IP_);
    		preempt_enable();
    	}
    }
    EXPORT_SYMBOL(module_put);
    
    #else /* !CONFIG_MODULE_UNLOAD */
    static inline void print_unload_info(struct seq_file *m, struct module *mod)
    {
    	/* We don't know the usage count, or what modules are using. */
    	seq_printf(m, " - -");
    }
    
    static inline void module_unload_free(struct module *mod)
    {
    }
    
    int ref_module(struct module *a, struct module *b)
    {
    	return strong_try_module_get(b);
    }
    EXPORT_SYMBOL_GPL(ref_module);
    
    static inline int module_unload_init(struct module *mod)
    {
    	return 0;
    }
    #endif /* CONFIG_MODULE_UNLOAD */
    
    static size_t module_flags_taint(struct module *mod, char *buf)
    {
    	size_t l = 0;
    
    	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
    		buf[l++] = 'P';
    	if (mod->taints & (1 << TAINT_OOT_MODULE))
    		buf[l++] = 'O';
    	if (mod->taints & (1 << TAINT_FORCED_MODULE))
    		buf[l++] = 'F';
    	if (mod->taints & (1 << TAINT_CRAP))
    		buf[l++] = 'C';
    	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
    		buf[l++] = 'E';
    	/*
    	 * TAINT_FORCED_RMMOD: could be added.
    	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
    	 * apply to modules.
    	 */
    	return l;
    }
    
    static ssize_t show_initstate(struct module_attribute *mattr,
    			      struct module_kobject *mk, char *buffer)
    {
    	const char *state = "unknown";
    
    	switch (mk->mod->state) {
    	case MODULE_STATE_LIVE:
    		state = "live";
    		break;
    	case MODULE_STATE_COMING:
    		state = "coming";
    		break;
    	case MODULE_STATE_GOING:
    		state = "going";
    		break;
    	default:
    		BUG();
    	}
    	return sprintf(buffer, "%s\n", state);
    }
    
    static struct module_attribute modinfo_initstate =
    	__ATTR(initstate, 0444, show_initstate, NULL);
    
    static ssize_t store_uevent(struct module_attribute *mattr,
    			    struct module_kobject *mk,
    			    const char *buffer, size_t count)
    {
    	enum kobject_action action;
    
    	if (kobject_action_type(buffer, count, &action) == 0)
    		kobject_uevent(&mk->kobj, action);
    	return count;
    }
    
    struct module_attribute module_uevent =
    	__ATTR(uevent, 0200, NULL, store_uevent);
    
    static ssize_t show_coresize(struct module_attribute *mattr,
    			     struct module_kobject *mk, char *buffer)
    {
    	return sprintf(buffer, "%u\n", mk->mod->core_size);
    }
    
    static struct module_attribute modinfo_coresize =
    	__ATTR(coresize, 0444, show_coresize, NULL);
    
    static ssize_t show_initsize(struct module_attribute *mattr,
    			     struct module_kobject *mk, char *buffer)
    {
    	return sprintf(buffer, "%u\n", mk->mod->init_size);
    }
    
    static struct module_attribute modinfo_initsize =
    	__ATTR(initsize, 0444, show_initsize, NULL);
    
    static ssize_t show_taint(struct module_attribute *mattr,
    			  struct module_kobject *mk, char *buffer)
    {
    	size_t l;
    
    	l = module_flags_taint(mk->mod, buffer);
    	buffer[l++] = '\n';
    	return l;
    }
    
    static struct module_attribute modinfo_taint =
    	__ATTR(taint, 0444, show_taint, NULL);
    
    static struct module_attribute *modinfo_attrs[] = {
    	&module_uevent,
    	&modinfo_version,
    	&modinfo_srcversion,
    	&modinfo_initstate,
    	&modinfo_coresize,
    	&modinfo_initsize,
    	&modinfo_taint,
    #ifdef CONFIG_MODULE_UNLOAD
    	&modinfo_refcnt,
    #endif
    	NULL,
    };
    
    static const char vermagic[] = VERMAGIC_STRING;
    
    static int try_to_force_load(struct module *mod, const char *reason)
    {
    #ifdef CONFIG_MODULE_FORCE_LOAD
    	if (!test_taint(TAINT_FORCED_MODULE))
    		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
    	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
    	return 0;
    #else
    	return -ENOEXEC;
    #endif
    }
    
    #ifdef CONFIG_MODVERSIONS
    /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
    static unsigned long maybe_relocated(unsigned long crc,
    				     const struct module *crc_owner)
    {
    #ifdef ARCH_RELOCATES_KCRCTAB
    	if (crc_owner == NULL)
    		return crc - (unsigned long)reloc_start;
    #endif
    	return crc;
    }
    
    static int check_version(Elf_Shdr *sechdrs,
    			 unsigned int versindex,
    			 const char *symname,
    			 struct module *mod, 
    			 const unsigned long *crc,
    			 const struct module *crc_owner)
    {
    	unsigned int i, num_versions;
    	struct modversion_info *versions;
    
    	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
    	if (!crc)
    		return 1;
    
    	/* No versions at all?  modprobe --force does this. */
    	if (versindex == 0)
    		return try_to_force_load(mod, symname) == 0;
    
    	versions = (void *) sechdrs[versindex].sh_addr;
    	num_versions = sechdrs[versindex].sh_size
    		/ sizeof(struct modversion_info);
    
    	for (i = 0; i < num_versions; i++) {
    		if (strcmp(versions[i].name, symname) != 0)
    			continue;
    
    		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
    			return 1;
    		pr_debug("Found checksum %lX vs module %lX\n",
    		       maybe_relocated(*crc, crc_owner), versions[i].crc);
    		goto bad_version;
    	}
    
    	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
    	return 0;
    
    bad_version:
    	printk("%s: disagrees about version of symbol %s\n",
    	       mod->name, symname);
    	return 0;
    }
    
    static inline int check_modstruct_version(Elf_Shdr *sechdrs,
    					  unsigned int versindex,
    					  struct module *mod)
    {
    	const unsigned long *crc;
    
    	/* Since this should be found in kernel (which can't be removed),
    	 * no locking is necessary. */
    	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
    			 &crc, true, false))
    		BUG();
    	return check_version(sechdrs, versindex,
    			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
    			     NULL);
    }
    
    /* First part is kernel version, which we ignore if module has crcs. */
    static inline int same_magic(const char *amagic, const char *bmagic,
    			     bool has_crcs)
    {
    	if (has_crcs) {
    		amagic += strcspn(amagic, " ");
    		bmagic += strcspn(bmagic, " ");
    	}
    	return strcmp(amagic, bmagic) == 0;
    }
    #else
    static inline int check_version(Elf_Shdr *sechdrs,
    				unsigned int versindex,
    				const char *symname,
    				struct module *mod, 
    				const unsigned long *crc,
    				const struct module *crc_owner)
    {
    	return 1;
    }
    
    static inline int check_modstruct_version(Elf_Shdr *sechdrs,
    					  unsigned int versindex,
    					  struct module *mod)
    {
    	return 1;
    }
    
    static inline int same_magic(const char *amagic, const char *bmagic,
    			     bool has_crcs)
    {
    	return strcmp(amagic, bmagic) == 0;
    }
    #endif /* CONFIG_MODVERSIONS */
    
    /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
    static const struct kernel_symbol *resolve_symbol(struct module *mod,
    						  const struct load_info *info,
    						  const char *name,
    						  char ownername[])
    {
    	struct module *owner;
    	const struct kernel_symbol *sym;
    	const unsigned long *crc;
    	int err;
    
    	mutex_lock(&module_mutex);
    	sym = find_symbol(name, &owner, &crc,
    			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
    	if (!sym)
    		goto unlock;
    
    	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
    			   owner)) {
    		sym = ERR_PTR(-EINVAL);
    		goto getname;
    	}
    
    	err = ref_module(mod, owner);
    	if (err) {
    		sym = ERR_PTR(err);
    		goto getname;
    	}
    
    getname:
    	/* We must make copy under the lock if we failed to get ref. */
    	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
    unlock:
    	mutex_unlock(&module_mutex);
    	return sym;
    }
    
    static const struct kernel_symbol *
    resolve_symbol_wait(struct module *mod,
    		    const struct load_info *info,
    		    const char *name)
    {
    	const struct kernel_symbol *ksym;
    	char owner[MODULE_NAME_LEN];
    
    	if (wait_event_interruptible_timeout(module_wq,
    			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
    			|| PTR_ERR(ksym) != -EBUSY,
    					     30 * HZ) <= 0) {
    		pr_warn("%s: gave up waiting for init of module %s.\n",
    			mod->name, owner);
    	}
    	return ksym;
    }
    
    /*
     * /sys/module/foo/sections stuff
     * J. Corbet <corbet@lwn.net>
     */
    #ifdef CONFIG_SYSFS
    
    #ifdef CONFIG_KALLSYMS
    static inline bool sect_empty(const Elf_Shdr *sect)
    {
    	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
    }
    
    struct module_sect_attr
    {
    	struct module_attribute mattr;
    	char *name;
    	unsigned long address;
    };
    
    struct module_sect_attrs
    {
    	struct attribute_group grp;
    	unsigned int nsections;
    	struct module_sect_attr attrs[0];
    };
    
    static ssize_t module_sect_show(struct module_attribute *mattr,
    				struct module_kobject *mk, char *buf)
    {
    	struct module_sect_attr *sattr =
    		container_of(mattr, struct module_sect_attr, mattr);
    	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
    }
    
    static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
    {
    	unsigned int section;
    
    	for (section = 0; section < sect_attrs->nsections; section++)
    		kfree(sect_attrs->attrs[section].name);
    	kfree(sect_attrs);
    }
    
    static void add_sect_attrs(struct module *mod, const struct load_info *info)
    {
    	unsigned int nloaded = 0, i, size[2];
    	struct module_sect_attrs *sect_attrs;
    	struct module_sect_attr *sattr;
    	struct attribute **gattr;
    
    	/* Count loaded sections and allocate structures */
    	for (i = 0; i < info->hdr->e_shnum; i++)
    		if (!sect_empty(&info->sechdrs[i]))
    			nloaded++;
    	size[0] = ALIGN(sizeof(*sect_attrs)
    			+ nloaded * sizeof(sect_attrs->attrs[0]),
    			sizeof(sect_attrs->grp.attrs[0]));
    	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
    	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
    	if (sect_attrs == NULL)
    		return;
    
    	/* Setup section attributes. */
    	sect_attrs->grp.name = "sections";
    	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
    
    	sect_attrs->nsections = 0;
    	sattr = &sect_attrs->attrs[0];
    	gattr = &sect_attrs->grp.attrs[0];
    	for (i = 0; i < info->hdr->e_shnum; i++) {
    		Elf_Shdr *sec = &info->sechdrs[i];
    		if (sect_empty(sec))
    			continue;
    		sattr->address = sec->sh_addr;
    		sattr->name = kstrdup(info->secstrings + sec->sh_name,
    					GFP_KERNEL);
    		if (sattr->name == NULL)
    			goto out;
    		sect_attrs->nsections++;
    		sysfs_attr_init(&sattr->mattr.attr);
    		sattr->mattr.show = module_sect_show;
    		sattr->mattr.store = NULL;
    		sattr->mattr.attr.name = sattr->name;
    		sattr->mattr.attr.mode = S_IRUGO;
    		*(gattr++) = &(sattr++)->mattr.attr;
    	}
    	*gattr = NULL;
    
    	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
    		goto out;
    
    	mod->sect_attrs = sect_attrs;
    	return;
      out:
    	free_sect_attrs(sect_attrs);
    }
    
    static void remove_sect_attrs(struct module *mod)
    {
    	if (mod->sect_attrs) {
    		sysfs_remove_group(&mod->mkobj.kobj,
    				   &mod->sect_attrs->grp);
    		/* We are positive that no one is using any sect attrs
    		 * at this point.  Deallocate immediately. */
    		free_sect_attrs(mod->sect_attrs);
    		mod->sect_attrs = NULL;
    	}
    }
    
    /*
     * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
     */
    
    struct module_notes_attrs {
    	struct kobject *dir;
    	unsigned int notes;
    	struct bin_attribute attrs[0];
    };
    
    static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
    				 struct bin_attribute *bin_attr,
    				 char *buf, loff_t pos, size_t count)
    {
    	/*
    	 * The caller checked the pos and count against our size.
    	 */
    	memcpy(buf, bin_attr->private + pos, count);
    	return count;
    }
    
    static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
    			     unsigned int i)
    {
    	if (notes_attrs->dir) {
    		while (i-- > 0)
    			sysfs_remove_bin_file(notes_attrs->dir,
    					      &notes_attrs->attrs[i]);
    		kobject_put(notes_attrs->dir);
    	}
    	kfree(notes_attrs);
    }
    
    static void add_notes_attrs(struct module *mod, const struct load_info *info)
    {
    	unsigned int notes, loaded, i;
    	struct module_notes_attrs *notes_attrs;
    	struct bin_attribute *nattr;
    
    	/* failed to create section attributes, so can't create notes */
    	if (!mod->sect_attrs)
    		return;
    
    	/* Count notes sections and allocate structures.  */
    	notes = 0;
    	for (i = 0; i < info->hdr->e_shnum; i++)
    		if (!sect_empty(&info->sechdrs[i]) &&
    		    (info->sechdrs[i].sh_type == SHT_NOTE))
    			++notes;
    
    	if (notes == 0)
    		return;
    
    	notes_attrs = kzalloc(sizeof(*notes_attrs)
    			      + notes * sizeof(notes_attrs->attrs[0]),
    			      GFP_KERNEL);
    	if (notes_attrs == NULL)
    		return;
    
    	notes_attrs->notes = notes;
    	nattr = &notes_attrs->attrs[0];
    	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
    		if (sect_empty(&info->sechdrs[i]))
    			continue;
    		if (info->sechdrs[i].sh_type == SHT_NOTE) {
    			sysfs_bin_attr_init(nattr);
    			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
    			nattr->attr.mode = S_IRUGO;
    			nattr->size = info->sechdrs[i].sh_size;
    			nattr->private = (void *) info->sechdrs[i].sh_addr;
    			nattr->read = module_notes_read;
    			++nattr;
    		}
    		++loaded;
    	}
    
    	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
    	if (!notes_attrs->dir)
    		goto out;
    
    	for (i = 0; i < notes; ++i)
    		if (sysfs_create_bin_file(notes_attrs->dir,
    					  &notes_attrs->attrs[i]))
    			goto out;
    
    	mod->notes_attrs = notes_attrs;
    	return;
    
      out:
    	free_notes_attrs(notes_attrs, i);
    }
    
    static void remove_notes_attrs(struct module *mod)
    {
    	if (mod->notes_attrs)
    		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
    }
    
    #else
    
    static inline void add_sect_attrs(struct module *mod,
    				  const struct load_info *info)
    {
    }
    
    static inline void remove_sect_attrs(struct module *mod)
    {
    }
    
    static inline void add_notes_attrs(struct module *mod,
    				   const struct load_info *info)
    {
    }
    
    static inline void remove_notes_attrs(struct module *mod)
    {
    }
    #endif /* CONFIG_KALLSYMS */
    
    static void add_usage_links(struct module *mod)
    {
    #ifdef CONFIG_MODULE_UNLOAD
    	struct module_use *use;
    	int nowarn;
    
    	mutex_lock(&module_mutex);
    	list_for_each_entry(use, &mod->target_list, target_list) {
    		nowarn = sysfs_create_link(use->target->holders_dir,
    					   &mod->mkobj.kobj, mod->name);
    	}
    	mutex_unlock(&module_mutex);
    #endif
    }
    
    static void del_usage_links(struct module *mod)
    {
    #ifdef CONFIG_MODULE_UNLOAD
    	struct module_use *use;
    
    	mutex_lock(&module_mutex);
    	list_for_each_entry(use, &mod->target_list, target_list)
    		sysfs_remove_link(use->target->holders_dir, mod->name);
    	mutex_unlock(&module_mutex);
    #endif
    }
    
    static int module_add_modinfo_attrs(struct module *mod)
    {
    	struct module_attribute *attr;
    	struct module_attribute *temp_attr;
    	int error = 0;
    	int i;
    
    	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
    					(ARRAY_SIZE(modinfo_attrs) + 1)),
    					GFP_KERNEL);
    	if (!mod->modinfo_attrs)
    		return -ENOMEM;
    
    	temp_attr = mod->modinfo_attrs;
    	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
    		if (!attr->test ||
    		    (attr->test && attr->test(mod))) {
    			memcpy(temp_attr, attr, sizeof(*temp_attr));
    			sysfs_attr_init(&temp_attr->attr);
    			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
    			++temp_attr;
    		}
    	}
    	return error;
    }
    
    static void module_remove_modinfo_attrs(struct module *mod)
    {
    	struct module_attribute *attr;
    	int i;
    
    	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
    		/* pick a field to test for end of list */
    		if (!attr->attr.name)
    			break;
    		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
    		if (attr->free)
    			attr->free(mod);
    	}
    	kfree(mod->modinfo_attrs);
    }
    
    static void mod_kobject_put(struct module *mod)
    {
    	DECLARE_COMPLETION_ONSTACK(c);
    	mod->mkobj.kobj_completion = &c;
    	kobject_put(&mod->mkobj.kobj);
    	wait_for_completion(&c);
    }
    
    static int mod_sysfs_init(struct module *mod)
    {
    	int err;
    	struct kobject *kobj;
    
    	if (!module_sysfs_initialized) {
    		pr_err("%s: module sysfs not initialized\n", mod->name);
    		err = -EINVAL;
    		goto out;
    	}
    
    	kobj = kset_find_obj(module_kset, mod->name);
    	if (kobj) {
    		pr_err("%s: module is already loaded\n", mod->name);
    		kobject_put(kobj);
    		err = -EINVAL;
    		goto out;
    	}
    
    	mod->mkobj.mod = mod;
    
    	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
    	mod->mkobj.kobj.kset = module_kset;
    	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
    				   "%s", mod->name);
    	if (err)
    		mod_kobject_put(mod);
    
    	/* delay uevent until full sysfs population */
    out:
    	return err;
    }
    
    static int mod_sysfs_setup(struct module *mod,
    			   const struct load_info *info,
    			   struct kernel_param *kparam,
    			   unsigned int num_params)
    {
    	int err;
    
    	err = mod_sysfs_init(mod);
    	if (err)
    		goto out;
    
    	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
    	if (!mod->holders_dir) {
    		err = -ENOMEM;
    		goto out_unreg;
    	}
    
    	err = module_param_sysfs_setup(mod, kparam, num_params);
    	if (err)
    		goto out_unreg_holders;
    
    	err = module_add_modinfo_attrs(mod);
    	if (err)
    		goto out_unreg_param;
    
    	add_usage_links(mod);
    	add_sect_attrs(mod, info);
    	add_notes_attrs(mod, info);
    
    	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
    	return 0;
    
    out_unreg_param:
    	module_param_sysfs_remove(mod);
    out_unreg_holders:
    	kobject_put(mod->holders_dir);
    out_unreg:
    	mod_kobject_put(mod);
    out:
    	return err;
    }
    
    static void mod_sysfs_fini(struct module *mod)
    {
    	remove_notes_attrs(mod);
    	remove_sect_attrs(mod);
    	mod_kobject_put(mod);
    }
    
    #else /* !CONFIG_SYSFS */
    
    static int mod_sysfs_setup(struct module *mod,
    			   const struct load_info *info,
    			   struct kernel_param *kparam,
    			   unsigned int num_params)
    {
    	return 0;
    }
    
    static void mod_sysfs_fini(struct module *mod)
    {
    }
    
    static void module_remove_modinfo_attrs(struct module *mod)
    {
    }
    
    static void del_usage_links(struct module *mod)
    {
    }
    
    #endif /* CONFIG_SYSFS */
    
    static void mod_sysfs_teardown(struct module *mod)
    {
    	del_usage_links(mod);
    	module_remove_modinfo_attrs(mod);
    	module_param_sysfs_remove(mod);
    	kobject_put(mod->mkobj.drivers_dir);
    	kobject_put(mod->holders_dir);
    	mod_sysfs_fini(mod);
    }
    
    /*
     * unlink the module with the whole machine is stopped with interrupts off
     * - this defends against kallsyms not taking locks
     */
    static int __unlink_module(void *_mod)
    {
    	struct module *mod = _mod;
    	list_del(&mod->list);
    	module_bug_cleanup(mod);
    	return 0;
    }
    
    #ifdef CONFIG_DEBUG_SET_MODULE_RONX
    /*
     * LKM RO/NX protection: protect module's text/ro-data
     * from modification and any data from execution.
     */
    void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
    {
    	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
    	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
    
    	if (end_pfn > begin_pfn)
    		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
    }
    
    static void set_section_ro_nx(void *base,
    			unsigned long text_size,
    			unsigned long ro_size,
    			unsigned long total_size)
    {
    	/* begin and end PFNs of the current subsection */
    	unsigned long begin_pfn;
    	unsigned long end_pfn;
    
    	/*
    	 * Set RO for module text and RO-data:
    	 * - Always protect first page.
    	 * - Do not protect last partial page.
    	 */
    	if (ro_size > 0)
    		set_page_attributes(base, base + ro_size, set_memory_ro);
    
    	/*
    	 * Set NX permissions for module data:
    	 * - Do not protect first partial page.
    	 * - Always protect last page.
    	 */
    	if (total_size > text_size) {
    		begin_pfn = PFN_UP((unsigned long)base + text_size);
    		end_pfn = PFN_UP((unsigned long)base + total_size);
    		if (end_pfn > begin_pfn)
    			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
    	}
    }
    
    static void unset_module_core_ro_nx(struct module *mod)
    {
    	set_page_attributes(mod->module_core + mod->core_text_size,
    		mod->module_core + mod->core_size,
    		set_memory_x);
    	set_page_attributes(mod->module_core,
    		mod->module_core + mod->core_ro_size,
    		set_memory_rw);
    }
    
    static void unset_module_init_ro_nx(struct module *mod)
    {
    	set_page_attributes(mod->module_init + mod->init_text_size,
    		mod->module_init + mod->init_size,
    		set_memory_x);
    	set_page_attributes(mod->module_init,
    		mod->module_init + mod->init_ro_size,
    		set_memory_rw);
    }
    
    /* Iterate through all modules and set each module's text as RW */
    void set_all_modules_text_rw(void)
    {
    	struct module *mod;
    
    	mutex_lock(&module_mutex);
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if ((mod->module_core) && (mod->core_text_size)) {
    			set_page_attributes(mod->module_core,
    						mod->module_core + mod->core_text_size,
    						set_memory_rw);
    		}
    		if ((mod->module_init) && (mod->init_text_size)) {
    			set_page_attributes(mod->module_init,
    						mod->module_init + mod->init_text_size,
    						set_memory_rw);
    		}
    	}
    	mutex_unlock(&module_mutex);
    }
    
    /* Iterate through all modules and set each module's text as RO */
    void set_all_modules_text_ro(void)
    {
    	struct module *mod;
    
    	mutex_lock(&module_mutex);
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if ((mod->module_core) && (mod->core_text_size)) {
    			set_page_attributes(mod->module_core,
    						mod->module_core + mod->core_text_size,
    						set_memory_ro);
    		}
    		if ((mod->module_init) && (mod->init_text_size)) {
    			set_page_attributes(mod->module_init,
    						mod->module_init + mod->init_text_size,
    						set_memory_ro);
    		}
    	}
    	mutex_unlock(&module_mutex);
    }
    #else
    static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
    static void unset_module_core_ro_nx(struct module *mod) { }
    static void unset_module_init_ro_nx(struct module *mod) { }
    #endif
    
    void __weak module_free(struct module *mod, void *module_region)
    {
    	vfree(module_region);
    }
    
    void __weak module_arch_cleanup(struct module *mod)
    {
    }
    
    /* Free a module, remove from lists, etc. */
    static void free_module(struct module *mod)
    {
    	trace_module_free(mod);
    
    	mod_sysfs_teardown(mod);
    
    	/* We leave it in list to prevent duplicate loads, but make sure
    	 * that noone uses it while it's being deconstructed. */
    	mod->state = MODULE_STATE_UNFORMED;
    
    	/* Remove dynamic debug info */
    	ddebug_remove_module(mod->name);
    
    	/* Arch-specific cleanup. */
    	module_arch_cleanup(mod);
    
    	/* Module unload stuff */
    	module_unload_free(mod);
    
    	/* Free any allocated parameters. */
    	destroy_params(mod->kp, mod->num_kp);
    
    	/* Now we can delete it from the lists */
    	mutex_lock(&module_mutex);
    	stop_machine(__unlink_module, mod, NULL);
    	mutex_unlock(&module_mutex);
    
    	/* This may be NULL, but that's OK */
    	unset_module_init_ro_nx(mod);
    	module_free(mod, mod->module_init);
    	kfree(mod->args);
    	percpu_modfree(mod);
    
    	/* Free lock-classes: */
    	lockdep_free_key_range(mod->module_core, mod->core_size);
    
    	/* Finally, free the core (containing the module structure) */
    	unset_module_core_ro_nx(mod);
    	module_free(mod, mod->module_core);
    
    #ifdef CONFIG_MPU
    	update_protections(current->mm);
    #endif
    }
    
    void *__symbol_get(const char *symbol)
    {
    	struct module *owner;
    	const struct kernel_symbol *sym;
    
    	preempt_disable();
    	sym = find_symbol(symbol, &owner, NULL, true, true);
    	if (sym && strong_try_module_get(owner))
    		sym = NULL;
    	preempt_enable();
    
    	return sym ? (void *)sym->value : NULL;
    }
    EXPORT_SYMBOL_GPL(__symbol_get);
    
    /*
     * Ensure that an exported symbol [global namespace] does not already exist
     * in the kernel or in some other module's exported symbol table.
     *
     * You must hold the module_mutex.
     */
    static int verify_export_symbols(struct module *mod)
    {
    	unsigned int i;
    	struct module *owner;
    	const struct kernel_symbol *s;
    	struct {
    		const struct kernel_symbol *sym;
    		unsigned int num;
    	} arr[] = {
    		{ mod->syms, mod->num_syms },
    		{ mod->gpl_syms, mod->num_gpl_syms },
    		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
    #ifdef CONFIG_UNUSED_SYMBOLS
    		{ mod->unused_syms, mod->num_unused_syms },
    		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
    #endif
    	};
    
    	for (i = 0; i < ARRAY_SIZE(arr); i++) {
    		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
    			if (find_symbol(s->name, &owner, NULL, true, false)) {
    				pr_err("%s: exports duplicate symbol %s"
    				       " (owned by %s)\n",
    				       mod->name, s->name, module_name(owner));
    				return -ENOEXEC;
    			}
    		}
    	}
    	return 0;
    }
    
    /* Change all symbols so that st_value encodes the pointer directly. */
    static int simplify_symbols(struct module *mod, const struct load_info *info)
    {
    	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
    	Elf_Sym *sym = (void *)symsec->sh_addr;
    	unsigned long secbase;
    	unsigned int i;
    	int ret = 0;
    	const struct kernel_symbol *ksym;
    
    	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
    		const char *name = info->strtab + sym[i].st_name;
    
    		switch (sym[i].st_shndx) {
    		case SHN_COMMON:
    			/* Ignore common symbols */
    			if (!strncmp(name, "__gnu_lto", 9))
    				break;
    
    			/* We compiled with -fno-common.  These are not
    			   supposed to happen.  */
    			pr_debug("Common symbol: %s\n", name);
    			printk("%s: please compile with -fno-common\n",
    			       mod->name);
    			ret = -ENOEXEC;
    			break;
    
    		case SHN_ABS:
    			/* Don't need to do anything */
    			pr_debug("Absolute symbol: 0x%08lx\n",
    			       (long)sym[i].st_value);
    			break;
    
    		case SHN_UNDEF:
    			ksym = resolve_symbol_wait(mod, info, name);
    			/* Ok if resolved.  */
    			if (ksym && !IS_ERR(ksym)) {
    				sym[i].st_value = ksym->value;
    				break;
    			}
    
    			/* Ok if weak.  */
    			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
    				break;
    
    			pr_warn("%s: Unknown symbol %s (err %li)\n",
    				mod->name, name, PTR_ERR(ksym));
    			ret = PTR_ERR(ksym) ?: -ENOENT;
    			break;
    
    		default:
    			/* Divert to percpu allocation if a percpu var. */
    			if (sym[i].st_shndx == info->index.pcpu)
    				secbase = (unsigned long)mod_percpu(mod);
    			else
    				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
    			sym[i].st_value += secbase;
    			break;
    		}
    	}
    
    	return ret;
    }
    
    static int apply_relocations(struct module *mod, const struct load_info *info)
    {
    	unsigned int i;
    	int err = 0;
    
    	/* Now do relocations. */
    	for (i = 1; i < info->hdr->e_shnum; i++) {
    		unsigned int infosec = info->sechdrs[i].sh_info;
    
    		/* Not a valid relocation section? */
    		if (infosec >= info->hdr->e_shnum)
    			continue;
    
    		/* Don't bother with non-allocated sections */
    		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
    			continue;
    
    		if (info->sechdrs[i].sh_type == SHT_REL)
    			err = apply_relocate(info->sechdrs, info->strtab,
    					     info->index.sym, i, mod);
    		else if (info->sechdrs[i].sh_type == SHT_RELA)
    			err = apply_relocate_add(info->sechdrs, info->strtab,
    						 info->index.sym, i, mod);
    		if (err < 0)
    			break;
    	}
    	return err;
    }
    
    /* Additional bytes needed by arch in front of individual sections */
    unsigned int __weak arch_mod_section_prepend(struct module *mod,
    					     unsigned int section)
    {
    	/* default implementation just returns zero */
    	return 0;
    }
    
    /* Update size with this section: return offset. */
    static long get_offset(struct module *mod, unsigned int *size,
    		       Elf_Shdr *sechdr, unsigned int section)
    {
    	long ret;
    
    	*size += arch_mod_section_prepend(mod, section);
    	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
    	*size = ret + sechdr->sh_size;
    	return ret;
    }
    
    /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
       might -- code, read-only data, read-write data, small data.  Tally
       sizes, and place the offsets into sh_entsize fields: high bit means it
       belongs in init. */
    static void layout_sections(struct module *mod, struct load_info *info)
    {
    	static unsigned long const masks[][2] = {
    		/* NOTE: all executable code must be the first section
    		 * in this array; otherwise modify the text_size
    		 * finder in the two loops below */
    		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
    		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
    		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
    		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
    	};
    	unsigned int m, i;
    
    	for (i = 0; i < info->hdr->e_shnum; i++)
    		info->sechdrs[i].sh_entsize = ~0UL;
    
    	pr_debug("Core section allocation order:\n");
    	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
    		for (i = 0; i < info->hdr->e_shnum; ++i) {
    			Elf_Shdr *s = &info->sechdrs[i];
    			const char *sname = info->secstrings + s->sh_name;
    
    			if ((s->sh_flags & masks[m][0]) != masks[m][0]
    			    || (s->sh_flags & masks[m][1])
    			    || s->sh_entsize != ~0UL
    			    || strstarts(sname, ".init"))
    				continue;
    			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
    			pr_debug("\t%s\n", sname);
    		}
    		switch (m) {
    		case 0: /* executable */
    			mod->core_size = debug_align(mod->core_size);
    			mod->core_text_size = mod->core_size;
    			break;
    		case 1: /* RO: text and ro-data */
    			mod->core_size = debug_align(mod->core_size);
    			mod->core_ro_size = mod->core_size;
    			break;
    		case 3: /* whole core */
    			mod->core_size = debug_align(mod->core_size);
    			break;
    		}
    	}
    
    	pr_debug("Init section allocation order:\n");
    	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
    		for (i = 0; i < info->hdr->e_shnum; ++i) {
    			Elf_Shdr *s = &info->sechdrs[i];
    			const char *sname = info->secstrings + s->sh_name;
    
    			if ((s->sh_flags & masks[m][0]) != masks[m][0]
    			    || (s->sh_flags & masks[m][1])
    			    || s->sh_entsize != ~0UL
    			    || !strstarts(sname, ".init"))
    				continue;
    			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
    					 | INIT_OFFSET_MASK);
    			pr_debug("\t%s\n", sname);
    		}
    		switch (m) {
    		case 0: /* executable */
    			mod->init_size = debug_align(mod->init_size);
    			mod->init_text_size = mod->init_size;
    			break;
    		case 1: /* RO: text and ro-data */
    			mod->init_size = debug_align(mod->init_size);
    			mod->init_ro_size = mod->init_size;
    			break;
    		case 3: /* whole init */
    			mod->init_size = debug_align(mod->init_size);
    			break;
    		}
    	}
    }
    
    static void set_license(struct module *mod, const char *license)
    {
    	if (!license)
    		license = "unspecified";
    
    	if (!license_is_gpl_compatible(license)) {
    		if (!test_taint(TAINT_PROPRIETARY_MODULE))
    			pr_warn("%s: module license '%s' taints kernel.\n",
    				mod->name, license);
    		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
    				 LOCKDEP_NOW_UNRELIABLE);
    	}
    }
    
    /* Parse tag=value strings from .modinfo section */
    static char *next_string(char *string, unsigned long *secsize)
    {
    	/* Skip non-zero chars */
    	while (string[0]) {
    		string++;
    		if ((*secsize)-- <= 1)
    			return NULL;
    	}
    
    	/* Skip any zero padding. */
    	while (!string[0]) {
    		string++;
    		if ((*secsize)-- <= 1)
    			return NULL;
    	}
    	return string;
    }
    
    static char *get_modinfo(struct load_info *info, const char *tag)
    {
    	char *p;
    	unsigned int taglen = strlen(tag);
    	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
    	unsigned long size = infosec->sh_size;
    
    	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
    		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
    			return p + taglen + 1;
    	}
    	return NULL;
    }
    
    static void setup_modinfo(struct module *mod, struct load_info *info)
    {
    	struct module_attribute *attr;
    	int i;
    
    	for (i = 0; (attr = modinfo_attrs[i]); i++) {
    		if (attr->setup)
    			attr->setup(mod, get_modinfo(info, attr->attr.name));
    	}
    }
    
    static void free_modinfo(struct module *mod)
    {
    	struct module_attribute *attr;
    	int i;
    
    	for (i = 0; (attr = modinfo_attrs[i]); i++) {
    		if (attr->free)
    			attr->free(mod);
    	}
    }
    
    #ifdef CONFIG_KALLSYMS
    
    /* lookup symbol in given range of kernel_symbols */
    static const struct kernel_symbol *lookup_symbol(const char *name,
    	const struct kernel_symbol *start,
    	const struct kernel_symbol *stop)
    {
    	return bsearch(name, start, stop - start,
    			sizeof(struct kernel_symbol), cmp_name);
    }
    
    static int is_exported(const char *name, unsigned long value,
    		       const struct module *mod)
    {
    	const struct kernel_symbol *ks;
    	if (!mod)
    		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
    	else
    		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
    	return ks != NULL && ks->value == value;
    }
    
    /* As per nm */
    static char elf_type(const Elf_Sym *sym, const struct load_info *info)
    {
    	const Elf_Shdr *sechdrs = info->sechdrs;
    
    	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
    		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
    			return 'v';
    		else
    			return 'w';
    	}
    	if (sym->st_shndx == SHN_UNDEF)
    		return 'U';
    	if (sym->st_shndx == SHN_ABS)
    		return 'a';
    	if (sym->st_shndx >= SHN_LORESERVE)
    		return '?';
    	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
    		return 't';
    	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
    	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
    		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
    			return 'r';
    		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
    			return 'g';
    		else
    			return 'd';
    	}
    	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
    		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
    			return 's';
    		else
    			return 'b';
    	}
    	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
    		      ".debug")) {
    		return 'n';
    	}
    	return '?';
    }
    
    static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
                               unsigned int shnum)
    {
    	const Elf_Shdr *sec;
    
    	if (src->st_shndx == SHN_UNDEF
    	    || src->st_shndx >= shnum
    	    || !src->st_name)
    		return false;
    
    	sec = sechdrs + src->st_shndx;
    	if (!(sec->sh_flags & SHF_ALLOC)
    #ifndef CONFIG_KALLSYMS_ALL
    	    || !(sec->sh_flags & SHF_EXECINSTR)
    #endif
    	    || (sec->sh_entsize & INIT_OFFSET_MASK))
    		return false;
    
    	return true;
    }
    
    /*
     * We only allocate and copy the strings needed by the parts of symtab
     * we keep.  This is simple, but has the effect of making multiple
     * copies of duplicates.  We could be more sophisticated, see
     * linux-kernel thread starting with
     * <73defb5e4bca04a6431392cc341112b1@localhost>.
     */
    static void layout_symtab(struct module *mod, struct load_info *info)
    {
    	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
    	Elf_Shdr *strsect = info->sechdrs + info->index.str;
    	const Elf_Sym *src;
    	unsigned int i, nsrc, ndst, strtab_size = 0;
    
    	/* Put symbol section at end of init part of module. */
    	symsect->sh_flags |= SHF_ALLOC;
    	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
    					 info->index.sym) | INIT_OFFSET_MASK;
    	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
    
    	src = (void *)info->hdr + symsect->sh_offset;
    	nsrc = symsect->sh_size / sizeof(*src);
    
    	/* Compute total space required for the core symbols' strtab. */
    	for (ndst = i = 0; i < nsrc; i++) {
    		if (i == 0 ||
    		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
    			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
    			ndst++;
    		}
    	}
    
    	/* Append room for core symbols at end of core part. */
    	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
    	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
    	mod->core_size += strtab_size;
    
    	/* Put string table section at end of init part of module. */
    	strsect->sh_flags |= SHF_ALLOC;
    	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
    					 info->index.str) | INIT_OFFSET_MASK;
    	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
    }
    
    static void add_kallsyms(struct module *mod, const struct load_info *info)
    {
    	unsigned int i, ndst;
    	const Elf_Sym *src;
    	Elf_Sym *dst;
    	char *s;
    	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
    
    	mod->symtab = (void *)symsec->sh_addr;
    	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
    	/* Make sure we get permanent strtab: don't use info->strtab. */
    	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
    
    	/* Set types up while we still have access to sections. */
    	for (i = 0; i < mod->num_symtab; i++)
    		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
    
    	mod->core_symtab = dst = mod->module_core + info->symoffs;
    	mod->core_strtab = s = mod->module_core + info->stroffs;
    	src = mod->symtab;
    	for (ndst = i = 0; i < mod->num_symtab; i++) {
    		if (i == 0 ||
    		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
    			dst[ndst] = src[i];
    			dst[ndst++].st_name = s - mod->core_strtab;
    			s += strlcpy(s, &mod->strtab[src[i].st_name],
    				     KSYM_NAME_LEN) + 1;
    		}
    	}
    	mod->core_num_syms = ndst;
    }
    #else
    static inline void layout_symtab(struct module *mod, struct load_info *info)
    {
    }
    
    static void add_kallsyms(struct module *mod, const struct load_info *info)
    {
    }
    #endif /* CONFIG_KALLSYMS */
    
    static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
    {
    	if (!debug)
    		return;
    #ifdef CONFIG_DYNAMIC_DEBUG
    	if (ddebug_add_module(debug, num, debug->modname))
    		pr_err("dynamic debug error adding module: %s\n",
    			debug->modname);
    #endif
    }
    
    static void dynamic_debug_remove(struct _ddebug *debug)
    {
    	if (debug)
    		ddebug_remove_module(debug->modname);
    }
    
    void * __weak module_alloc(unsigned long size)
    {
    	return vmalloc_exec(size);
    }
    
    static void *module_alloc_update_bounds(unsigned long size)
    {
    	void *ret = module_alloc(size);
    
    	if (ret) {
    		mutex_lock(&module_mutex);
    		/* Update module bounds. */
    		if ((unsigned long)ret < module_addr_min)
    			module_addr_min = (unsigned long)ret;
    		if ((unsigned long)ret + size > module_addr_max)
    			module_addr_max = (unsigned long)ret + size;
    		mutex_unlock(&module_mutex);
    	}
    	return ret;
    }
    
    #ifdef CONFIG_DEBUG_KMEMLEAK
    static void kmemleak_load_module(const struct module *mod,
    				 const struct load_info *info)
    {
    	unsigned int i;
    
    	/* only scan the sections containing data */
    	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
    
    	for (i = 1; i < info->hdr->e_shnum; i++) {
    		/* Scan all writable sections that's not executable */
    		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
    		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
    		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
    			continue;
    
    		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
    				   info->sechdrs[i].sh_size, GFP_KERNEL);
    	}
    }
    #else
    static inline void kmemleak_load_module(const struct module *mod,
    					const struct load_info *info)
    {
    }
    #endif
    
    #ifdef CONFIG_MODULE_SIG
    static int module_sig_check(struct load_info *info)
    {
    	int err = -ENOKEY;
    	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
    	const void *mod = info->hdr;
    
    	if (info->len > markerlen &&
    	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
    		/* We truncate the module to discard the signature */
    		info->len -= markerlen;
    		err = mod_verify_sig(mod, &info->len);
    	}
    
    	if (!err) {
    		info->sig_ok = true;
    		return 0;
    	}
    
    	/* Not having a signature is only an error if we're strict. */
    	if (err == -ENOKEY && !sig_enforce)
    		err = 0;
    
    	return err;
    }
    #else /* !CONFIG_MODULE_SIG */
    static int module_sig_check(struct load_info *info)
    {
    	return 0;
    }
    #endif /* !CONFIG_MODULE_SIG */
    
    /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
    static int elf_header_check(struct load_info *info)
    {
    	if (info->len < sizeof(*(info->hdr)))
    		return -ENOEXEC;
    
    	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
    	    || info->hdr->e_type != ET_REL
    	    || !elf_check_arch(info->hdr)
    	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
    		return -ENOEXEC;
    
    	if (info->hdr->e_shoff >= info->len
    	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
    		info->len - info->hdr->e_shoff))
    		return -ENOEXEC;
    
    	return 0;
    }
    
    /* Sets info->hdr and info->len. */
    static int copy_module_from_user(const void __user *umod, unsigned long len,
    				  struct load_info *info)
    {
    	int err;
    
    	info->len = len;
    	if (info->len < sizeof(*(info->hdr)))
    		return -ENOEXEC;
    
    	err = security_kernel_module_from_file(NULL);
    	if (err)
    		return err;
    
    	/* Suck in entire file: we'll want most of it. */
    	info->hdr = vmalloc(info->len);
    	if (!info->hdr)
    		return -ENOMEM;
    
    	if (copy_from_user(info->hdr, umod, info->len) != 0) {
    		vfree(info->hdr);
    		return -EFAULT;
    	}
    
    	return 0;
    }
    
    /* Sets info->hdr and info->len. */
    static int copy_module_from_fd(int fd, struct load_info *info)
    {
    	struct fd f = fdget(fd);
    	int err;
    	struct kstat stat;
    	loff_t pos;
    	ssize_t bytes = 0;
    
    	if (!f.file)
    		return -ENOEXEC;
    
    	err = security_kernel_module_from_file(f.file);
    	if (err)
    		goto out;
    
    	err = vfs_getattr(&f.file->f_path, &stat);
    	if (err)
    		goto out;
    
    	if (stat.size > INT_MAX) {
    		err = -EFBIG;
    		goto out;
    	}
    
    	/* Don't hand 0 to vmalloc, it whines. */
    	if (stat.size == 0) {
    		err = -EINVAL;
    		goto out;
    	}
    
    	info->hdr = vmalloc(stat.size);
    	if (!info->hdr) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	pos = 0;
    	while (pos < stat.size) {
    		bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
    				    stat.size - pos);
    		if (bytes < 0) {
    			vfree(info->hdr);
    			err = bytes;
    			goto out;
    		}
    		if (bytes == 0)
    			break;
    		pos += bytes;
    	}
    	info->len = pos;
    
    out:
    	fdput(f);
    	return err;
    }
    
    static void free_copy(struct load_info *info)
    {
    	vfree(info->hdr);
    }
    
    static int rewrite_section_headers(struct load_info *info, int flags)
    {
    	unsigned int i;
    
    	/* This should always be true, but let's be sure. */
    	info->sechdrs[0].sh_addr = 0;
    
    	for (i = 1; i < info->hdr->e_shnum; i++) {
    		Elf_Shdr *shdr = &info->sechdrs[i];
    		if (shdr->sh_type != SHT_NOBITS
    		    && info->len < shdr->sh_offset + shdr->sh_size) {
    			pr_err("Module len %lu truncated\n", info->len);
    			return -ENOEXEC;
    		}
    
    		/* Mark all sections sh_addr with their address in the
    		   temporary image. */
    		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
    
    #ifndef CONFIG_MODULE_UNLOAD
    		/* Don't load .exit sections */
    		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
    			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
    #endif
    	}
    
    	/* Track but don't keep modinfo and version sections. */
    	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
    		info->index.vers = 0; /* Pretend no __versions section! */
    	else
    		info->index.vers = find_sec(info, "__versions");
    	info->index.info = find_sec(info, ".modinfo");
    	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
    	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
    	return 0;
    }
    
    /*
     * Set up our basic convenience variables (pointers to section headers,
     * search for module section index etc), and do some basic section
     * verification.
     *
     * Return the temporary module pointer (we'll replace it with the final
     * one when we move the module sections around).
     */
    static struct module *setup_load_info(struct load_info *info, int flags)
    {
    	unsigned int i;
    	int err;
    	struct module *mod;
    
    	/* Set up the convenience variables */
    	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
    	info->secstrings = (void *)info->hdr
    		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
    
    	err = rewrite_section_headers(info, flags);
    	if (err)
    		return ERR_PTR(err);
    
    	/* Find internal symbols and strings. */
    	for (i = 1; i < info->hdr->e_shnum; i++) {
    		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
    			info->index.sym = i;
    			info->index.str = info->sechdrs[i].sh_link;
    			info->strtab = (char *)info->hdr
    				+ info->sechdrs[info->index.str].sh_offset;
    			break;
    		}
    	}
    
    	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
    	if (!info->index.mod) {
    		pr_warn("No module found in object\n");
    		return ERR_PTR(-ENOEXEC);
    	}
    	/* This is temporary: point mod into copy of data. */
    	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
    
    	if (info->index.sym == 0) {
    		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
    		return ERR_PTR(-ENOEXEC);
    	}
    
    	info->index.pcpu = find_pcpusec(info);
    
    	/* Check module struct version now, before we try to use module. */
    	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
    		return ERR_PTR(-ENOEXEC);
    
    	return mod;
    }
    
    static int check_modinfo(struct module *mod, struct load_info *info, int flags)
    {
    	const char *modmagic = get_modinfo(info, "vermagic");
    	int err;
    
    	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
    		modmagic = NULL;
    
    	/* This is allowed: modprobe --force will invalidate it. */
    	if (!modmagic) {
    		err = try_to_force_load(mod, "bad vermagic");
    		if (err)
    			return err;
    	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
    		pr_err("%s: version magic '%s' should be '%s'\n",
    		       mod->name, modmagic, vermagic);
    		return -ENOEXEC;
    	}
    
    	if (!get_modinfo(info, "intree"))
    		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
    
    	if (get_modinfo(info, "staging")) {
    		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
    		pr_warn("%s: module is from the staging directory, the quality "
    			"is unknown, you have been warned.\n", mod->name);
    	}
    
    	/* Set up license info based on the info section */
    	set_license(mod, get_modinfo(info, "license"));
    
    	return 0;
    }
    
    static int find_module_sections(struct module *mod, struct load_info *info)
    {
    	mod->kp = section_objs(info, "__param",
    			       sizeof(*mod->kp), &mod->num_kp);
    	mod->syms = section_objs(info, "__ksymtab",
    				 sizeof(*mod->syms), &mod->num_syms);
    	mod->crcs = section_addr(info, "__kcrctab");
    	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
    				     sizeof(*mod->gpl_syms),
    				     &mod->num_gpl_syms);
    	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
    	mod->gpl_future_syms = section_objs(info,
    					    "__ksymtab_gpl_future",
    					    sizeof(*mod->gpl_future_syms),
    					    &mod->num_gpl_future_syms);
    	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
    
    #ifdef CONFIG_UNUSED_SYMBOLS
    	mod->unused_syms = section_objs(info, "__ksymtab_unused",
    					sizeof(*mod->unused_syms),
    					&mod->num_unused_syms);
    	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
    	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
    					    sizeof(*mod->unused_gpl_syms),
    					    &mod->num_unused_gpl_syms);
    	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
    #endif
    #ifdef CONFIG_CONSTRUCTORS
    	mod->ctors = section_objs(info, ".ctors",
    				  sizeof(*mod->ctors), &mod->num_ctors);
    	if (!mod->ctors)
    		mod->ctors = section_objs(info, ".init_array",
    				sizeof(*mod->ctors), &mod->num_ctors);
    	else if (find_sec(info, ".init_array")) {
    		/*
    		 * This shouldn't happen with same compiler and binutils
    		 * building all parts of the module.
    		 */
    		printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
    		       mod->name);
    		return -EINVAL;
    	}
    #endif
    
    #ifdef CONFIG_TRACEPOINTS
    	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
    					     sizeof(*mod->tracepoints_ptrs),
    					     &mod->num_tracepoints);
    #endif
    #ifdef HAVE_JUMP_LABEL
    	mod->jump_entries = section_objs(info, "__jump_table",
    					sizeof(*mod->jump_entries),
    					&mod->num_jump_entries);
    #endif
    #ifdef CONFIG_EVENT_TRACING
    	mod->trace_events = section_objs(info, "_ftrace_events",
    					 sizeof(*mod->trace_events),
    					 &mod->num_trace_events);
    #endif
    #ifdef CONFIG_TRACING
    	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
    					 sizeof(*mod->trace_bprintk_fmt_start),
    					 &mod->num_trace_bprintk_fmt);
    #endif
    #ifdef CONFIG_FTRACE_MCOUNT_RECORD
    	/* sechdrs[0].sh_size is always zero */
    	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
    					     sizeof(*mod->ftrace_callsites),
    					     &mod->num_ftrace_callsites);
    #endif
    
    	mod->extable = section_objs(info, "__ex_table",
    				    sizeof(*mod->extable), &mod->num_exentries);
    
    	if (section_addr(info, "__obsparm"))
    		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
    
    	info->debug = section_objs(info, "__verbose",
    				   sizeof(*info->debug), &info->num_debug);
    
    	return 0;
    }
    
    static int move_module(struct module *mod, struct load_info *info)
    {
    	int i;
    	void *ptr;
    
    	/* Do the allocs. */
    	ptr = module_alloc_update_bounds(mod->core_size);
    	/*
    	 * The pointer to this block is stored in the module structure
    	 * which is inside the block. Just mark it as not being a
    	 * leak.
    	 */
    	kmemleak_not_leak(ptr);
    	if (!ptr)
    		return -ENOMEM;
    
    	memset(ptr, 0, mod->core_size);
    	mod->module_core = ptr;
    
    	if (mod->init_size) {
    		ptr = module_alloc_update_bounds(mod->init_size);
    		/*
    		 * The pointer to this block is stored in the module structure
    		 * which is inside the block. This block doesn't need to be
    		 * scanned as it contains data and code that will be freed
    		 * after the module is initialized.
    		 */
    		kmemleak_ignore(ptr);
    		if (!ptr) {
    			module_free(mod, mod->module_core);
    			return -ENOMEM;
    		}
    		memset(ptr, 0, mod->init_size);
    		mod->module_init = ptr;
    	} else
    		mod->module_init = NULL;
    
    	/* Transfer each section which specifies SHF_ALLOC */
    	pr_debug("final section addresses:\n");
    	for (i = 0; i < info->hdr->e_shnum; i++) {
    		void *dest;
    		Elf_Shdr *shdr = &info->sechdrs[i];
    
    		if (!(shdr->sh_flags & SHF_ALLOC))
    			continue;
    
    		if (shdr->sh_entsize & INIT_OFFSET_MASK)
    			dest = mod->module_init
    				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
    		else
    			dest = mod->module_core + shdr->sh_entsize;
    
    		if (shdr->sh_type != SHT_NOBITS)
    			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
    		/* Update sh_addr to point to copy in image. */
    		shdr->sh_addr = (unsigned long)dest;
    		pr_debug("\t0x%lx %s\n",
    			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
    	}
    
    	return 0;
    }
    
    static int check_module_license_and_versions(struct module *mod)
    {
    	/*
    	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
    	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
    	 * using GPL-only symbols it needs.
    	 */
    	if (strcmp(mod->name, "ndiswrapper") == 0)
    		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
    
    	/* driverloader was caught wrongly pretending to be under GPL */
    	if (strcmp(mod->name, "driverloader") == 0)
    		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
    				 LOCKDEP_NOW_UNRELIABLE);
    
    	/* lve claims to be GPL but upstream won't provide source */
    	if (strcmp(mod->name, "lve") == 0)
    		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
    				 LOCKDEP_NOW_UNRELIABLE);
    
    #ifdef CONFIG_MODVERSIONS
    	if ((mod->num_syms && !mod->crcs)
    	    || (mod->num_gpl_syms && !mod->gpl_crcs)
    	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
    #ifdef CONFIG_UNUSED_SYMBOLS
    	    || (mod->num_unused_syms && !mod->unused_crcs)
    	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
    #endif
    		) {
    		return try_to_force_load(mod,
    					 "no versions for exported symbols");
    	}
    #endif
    	return 0;
    }
    
    static void flush_module_icache(const struct module *mod)
    {
    	mm_segment_t old_fs;
    
    	/* flush the icache in correct context */
    	old_fs = get_fs();
    	set_fs(KERNEL_DS);
    
    	/*
    	 * Flush the instruction cache, since we've played with text.
    	 * Do it before processing of module parameters, so the module
    	 * can provide parameter accessor functions of its own.
    	 */
    	if (mod->module_init)
    		flush_icache_range((unsigned long)mod->module_init,
    				   (unsigned long)mod->module_init
    				   + mod->init_size);
    	flush_icache_range((unsigned long)mod->module_core,
    			   (unsigned long)mod->module_core + mod->core_size);
    
    	set_fs(old_fs);
    }
    
    int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
    				     Elf_Shdr *sechdrs,
    				     char *secstrings,
    				     struct module *mod)
    {
    	return 0;
    }
    
    static struct module *layout_and_allocate(struct load_info *info, int flags)
    {
    	/* Module within temporary copy. */
    	struct module *mod;
    	int err;
    
    	mod = setup_load_info(info, flags);
    	if (IS_ERR(mod))
    		return mod;
    
    	err = check_modinfo(mod, info, flags);
    	if (err)
    		return ERR_PTR(err);
    
    	/* Allow arches to frob section contents and sizes.  */
    	err = module_frob_arch_sections(info->hdr, info->sechdrs,
    					info->secstrings, mod);
    	if (err < 0)
    		return ERR_PTR(err);
    
    	/* We will do a special allocation for per-cpu sections later. */
    	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
    
    	/* Determine total sizes, and put offsets in sh_entsize.  For now
    	   this is done generically; there doesn't appear to be any
    	   special cases for the architectures. */
    	layout_sections(mod, info);
    	layout_symtab(mod, info);
    
    	/* Allocate and move to the final place */
    	err = move_module(mod, info);
    	if (err)
    		return ERR_PTR(err);
    
    	/* Module has been copied to its final place now: return it. */
    	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
    	kmemleak_load_module(mod, info);
    	return mod;
    }
    
    /* mod is no longer valid after this! */
    static void module_deallocate(struct module *mod, struct load_info *info)
    {
    	percpu_modfree(mod);
    	module_free(mod, mod->module_init);
    	module_free(mod, mod->module_core);
    }
    
    int __weak module_finalize(const Elf_Ehdr *hdr,
    			   const Elf_Shdr *sechdrs,
    			   struct module *me)
    {
    	return 0;
    }
    
    static int post_relocation(struct module *mod, const struct load_info *info)
    {
    	/* Sort exception table now relocations are done. */
    	sort_extable(mod->extable, mod->extable + mod->num_exentries);
    
    	/* Copy relocated percpu area over. */
    	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
    		       info->sechdrs[info->index.pcpu].sh_size);
    
    	/* Setup kallsyms-specific fields. */
    	add_kallsyms(mod, info);
    
    	/* Arch-specific module finalizing. */
    	return module_finalize(info->hdr, info->sechdrs, mod);
    }
    
    /* Is this module of this name done loading?  No locks held. */
    static bool finished_loading(const char *name)
    {
    	struct module *mod;
    	bool ret;
    
    	mutex_lock(&module_mutex);
    	mod = find_module_all(name, strlen(name), true);
    	ret = !mod || mod->state == MODULE_STATE_LIVE
    		|| mod->state == MODULE_STATE_GOING;
    	mutex_unlock(&module_mutex);
    
    	return ret;
    }
    
    /* Call module constructors. */
    static void do_mod_ctors(struct module *mod)
    {
    #ifdef CONFIG_CONSTRUCTORS
    	unsigned long i;
    
    	for (i = 0; i < mod->num_ctors; i++)
    		mod->ctors[i]();
    #endif
    }
    
    /* This is where the real work happens */
    static int do_init_module(struct module *mod)
    {
    	int ret = 0;
    
    	/*
    	 * We want to find out whether @mod uses async during init.  Clear
    	 * PF_USED_ASYNC.  async_schedule*() will set it.
    	 */
    	current->flags &= ~PF_USED_ASYNC;
    
    	do_mod_ctors(mod);
    	/* Start the module */
    	if (mod->init != NULL)
    		ret = do_one_initcall(mod->init);
    	if (ret < 0) {
    		/* Init routine failed: abort.  Try to protect us from
                       buggy refcounters. */
    		mod->state = MODULE_STATE_GOING;
    		synchronize_sched();
    		module_put(mod);
    		blocking_notifier_call_chain(&module_notify_list,
    					     MODULE_STATE_GOING, mod);
    		free_module(mod);
    		wake_up_all(&module_wq);
    		return ret;
    	}
    	if (ret > 0) {
    		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
    			"follow 0/-E convention\n"
    			"%s: loading module anyway...\n",
    			__func__, mod->name, ret, __func__);
    		dump_stack();
    	}
    
    	/* Now it's a first class citizen! */
    	mod->state = MODULE_STATE_LIVE;
    	blocking_notifier_call_chain(&module_notify_list,
    				     MODULE_STATE_LIVE, mod);
    
    	/*
    	 * We need to finish all async code before the module init sequence
    	 * is done.  This has potential to deadlock.  For example, a newly
    	 * detected block device can trigger request_module() of the
    	 * default iosched from async probing task.  Once userland helper
    	 * reaches here, async_synchronize_full() will wait on the async
    	 * task waiting on request_module() and deadlock.
    	 *
    	 * This deadlock is avoided by perfomring async_synchronize_full()
    	 * iff module init queued any async jobs.  This isn't a full
    	 * solution as it will deadlock the same if module loading from
    	 * async jobs nests more than once; however, due to the various
    	 * constraints, this hack seems to be the best option for now.
    	 * Please refer to the following thread for details.
    	 *
    	 * http://thread.gmane.org/gmane.linux.kernel/1420814
    	 */
    	if (current->flags & PF_USED_ASYNC)
    		async_synchronize_full();
    
    	mutex_lock(&module_mutex);
    	/* Drop initial reference. */
    	module_put(mod);
    	trim_init_extable(mod);
    #ifdef CONFIG_KALLSYMS
    	mod->num_symtab = mod->core_num_syms;
    	mod->symtab = mod->core_symtab;
    	mod->strtab = mod->core_strtab;
    #endif
    	unset_module_init_ro_nx(mod);
    	module_free(mod, mod->module_init);
    	mod->module_init = NULL;
    	mod->init_size = 0;
    	mod->init_ro_size = 0;
    	mod->init_text_size = 0;
    	mutex_unlock(&module_mutex);
    	wake_up_all(&module_wq);
    
    	return 0;
    }
    
    static int may_init_module(void)
    {
    	if (!capable(CAP_SYS_MODULE) || modules_disabled)
    		return -EPERM;
    
    	return 0;
    }
    
    /*
     * We try to place it in the list now to make sure it's unique before
     * we dedicate too many resources.  In particular, temporary percpu
     * memory exhaustion.
     */
    static int add_unformed_module(struct module *mod)
    {
    	int err;
    	struct module *old;
    
    	mod->state = MODULE_STATE_UNFORMED;
    
    again:
    	mutex_lock(&module_mutex);
    	old = find_module_all(mod->name, strlen(mod->name), true);
    	if (old != NULL) {
    		if (old->state == MODULE_STATE_COMING
    		    || old->state == MODULE_STATE_UNFORMED) {
    			/* Wait in case it fails to load. */
    			mutex_unlock(&module_mutex);
    			err = wait_event_interruptible(module_wq,
    					       finished_loading(mod->name));
    			if (err)
    				goto out_unlocked;
    			goto again;
    		}
    		err = -EEXIST;
    		goto out;
    	}
    	list_add_rcu(&mod->list, &modules);
    	err = 0;
    
    out:
    	mutex_unlock(&module_mutex);
    out_unlocked:
    	return err;
    }
    
    static int complete_formation(struct module *mod, struct load_info *info)
    {
    	int err;
    
    	mutex_lock(&module_mutex);
    
    	/* Find duplicate symbols (must be called under lock). */
    	err = verify_export_symbols(mod);
    	if (err < 0)
    		goto out;
    
    	/* This relies on module_mutex for list integrity. */
    	module_bug_finalize(info->hdr, info->sechdrs, mod);
    
    	/* Set RO and NX regions for core */
    	set_section_ro_nx(mod->module_core,
    				mod->core_text_size,
    				mod->core_ro_size,
    				mod->core_size);
    
    	/* Set RO and NX regions for init */
    	set_section_ro_nx(mod->module_init,
    				mod->init_text_size,
    				mod->init_ro_size,
    				mod->init_size);
    
    	/* Mark state as coming so strong_try_module_get() ignores us,
    	 * but kallsyms etc. can see us. */
    	mod->state = MODULE_STATE_COMING;
    	mutex_unlock(&module_mutex);
    
    	blocking_notifier_call_chain(&module_notify_list,
    				     MODULE_STATE_COMING, mod);
    	return 0;
    
    out:
    	mutex_unlock(&module_mutex);
    	return err;
    }
    
    static int unknown_module_param_cb(char *param, char *val, const char *modname)
    {
    	/* Check for magic 'dyndbg' arg */ 
    	int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
    	if (ret != 0)
    		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
    	return 0;
    }
    
    /* Allocate and load the module: note that size of section 0 is always
       zero, and we rely on this for optional sections. */
    static int load_module(struct load_info *info, const char __user *uargs,
    		       int flags)
    {
    	struct module *mod;
    	long err;
    	char *after_dashes;
    
    	err = module_sig_check(info);
    	if (err)
    		goto free_copy;
    
    	err = elf_header_check(info);
    	if (err)
    		goto free_copy;
    
    	/* Figure out module layout, and allocate all the memory. */
    	mod = layout_and_allocate(info, flags);
    	if (IS_ERR(mod)) {
    		err = PTR_ERR(mod);
    		goto free_copy;
    	}
    
    	/* Reserve our place in the list. */
    	err = add_unformed_module(mod);
    	if (err)
    		goto free_module;
    
    #ifdef CONFIG_MODULE_SIG
    	mod->sig_ok = info->sig_ok;
    	if (!mod->sig_ok) {
    		pr_notice_once("%s: module verification failed: signature "
    			       "and/or  required key missing - tainting "
    			       "kernel\n", mod->name);
    		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
    	}
    #endif
    
    	/* To avoid stressing percpu allocator, do this once we're unique. */
    	err = percpu_modalloc(mod, info);
    	if (err)
    		goto unlink_mod;
    
    	/* Now module is in final location, initialize linked lists, etc. */
    	err = module_unload_init(mod);
    	if (err)
    		goto unlink_mod;
    
    	/* Now we've got everything in the final locations, we can
    	 * find optional sections. */
    	err = find_module_sections(mod, info);
    	if (err)
    		goto free_unload;
    
    	err = check_module_license_and_versions(mod);
    	if (err)
    		goto free_unload;
    
    	/* Set up MODINFO_ATTR fields */
    	setup_modinfo(mod, info);
    
    	/* Fix up syms, so that st_value is a pointer to location. */
    	err = simplify_symbols(mod, info);
    	if (err < 0)
    		goto free_modinfo;
    
    	err = apply_relocations(mod, info);
    	if (err < 0)
    		goto free_modinfo;
    
    	err = post_relocation(mod, info);
    	if (err < 0)
    		goto free_modinfo;
    
    	flush_module_icache(mod);
    
    	/* Now copy in args */
    	mod->args = strndup_user(uargs, ~0UL >> 1);
    	if (IS_ERR(mod->args)) {
    		err = PTR_ERR(mod->args);
    		goto free_arch_cleanup;
    	}
    
    	dynamic_debug_setup(info->debug, info->num_debug);
    
    	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
    	ftrace_module_init(mod);
    
    	/* Finally it's fully formed, ready to start executing. */
    	err = complete_formation(mod, info);
    	if (err)
    		goto ddebug_cleanup;
    
    	/* Module is ready to execute: parsing args may do that. */
    	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
    				  -32768, 32767, unknown_module_param_cb);
    	if (IS_ERR(after_dashes)) {
    		err = PTR_ERR(after_dashes);
    		goto bug_cleanup;
    	} else if (after_dashes) {
    		pr_warn("%s: parameters '%s' after `--' ignored\n",
    		       mod->name, after_dashes);
    	}
    
    	/* Link in to syfs. */
    	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
    	if (err < 0)
    		goto bug_cleanup;
    
    	/* Get rid of temporary copy. */
    	free_copy(info);
    
    	/* Done! */
    	trace_module_load(mod);
    
    	return do_init_module(mod);
    
     bug_cleanup:
    	/* module_bug_cleanup needs module_mutex protection */
    	mutex_lock(&module_mutex);
    	module_bug_cleanup(mod);
    	mutex_unlock(&module_mutex);
    
    	/* we can't deallocate the module until we clear memory protection */
    	unset_module_init_ro_nx(mod);
    	unset_module_core_ro_nx(mod);
    
     ddebug_cleanup:
    	dynamic_debug_remove(info->debug);
    	synchronize_sched();
    	kfree(mod->args);
     free_arch_cleanup:
    	module_arch_cleanup(mod);
     free_modinfo:
    	free_modinfo(mod);
     free_unload:
    	module_unload_free(mod);
     unlink_mod:
    	mutex_lock(&module_mutex);
    	/* Unlink carefully: kallsyms could be walking list. */
    	list_del_rcu(&mod->list);
    	wake_up_all(&module_wq);
    	mutex_unlock(&module_mutex);
     free_module:
    	module_deallocate(mod, info);
     free_copy:
    	free_copy(info);
    	return err;
    }
    
    SYSCALL_DEFINE3(init_module, void __user *, umod,
    		unsigned long, len, const char __user *, uargs)
    {
    	int err;
    	struct load_info info = { };
    
    	err = may_init_module();
    	if (err)
    		return err;
    
    	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
    	       umod, len, uargs);
    
    	err = copy_module_from_user(umod, len, &info);
    	if (err)
    		return err;
    
    	return load_module(&info, uargs, 0);
    }
    
    SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
    {
    	int err;
    	struct load_info info = { };
    
    	err = may_init_module();
    	if (err)
    		return err;
    
    	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
    
    	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
    		      |MODULE_INIT_IGNORE_VERMAGIC))
    		return -EINVAL;
    
    	err = copy_module_from_fd(fd, &info);
    	if (err)
    		return err;
    
    	return load_module(&info, uargs, flags);
    }
    
    static inline int within(unsigned long addr, void *start, unsigned long size)
    {
    	return ((void *)addr >= start && (void *)addr < start + size);
    }
    
    #ifdef CONFIG_KALLSYMS
    /*
     * This ignores the intensely annoying "mapping symbols" found
     * in ARM ELF files: $a, $t and $d.
     */
    static inline int is_arm_mapping_symbol(const char *str)
    {
    	if (str[0] == '.' && str[1] == 'L')
    		return true;
    	return str[0] == '$' && strchr("atd", str[1])
    	       && (str[2] == '\0' || str[2] == '.');
    }
    
    static const char *get_ksymbol(struct module *mod,
    			       unsigned long addr,
    			       unsigned long *size,
    			       unsigned long *offset)
    {
    	unsigned int i, best = 0;
    	unsigned long nextval;
    
    	/* At worse, next value is at end of module */
    	if (within_module_init(addr, mod))
    		nextval = (unsigned long)mod->module_init+mod->init_text_size;
    	else
    		nextval = (unsigned long)mod->module_core+mod->core_text_size;
    
    	/* Scan for closest preceding symbol, and next symbol. (ELF
    	   starts real symbols at 1). */
    	for (i = 1; i < mod->num_symtab; i++) {
    		if (mod->symtab[i].st_shndx == SHN_UNDEF)
    			continue;
    
    		/* We ignore unnamed symbols: they're uninformative
    		 * and inserted at a whim. */
    		if (mod->symtab[i].st_value <= addr
    		    && mod->symtab[i].st_value > mod->symtab[best].st_value
    		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
    		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
    			best = i;
    		if (mod->symtab[i].st_value > addr
    		    && mod->symtab[i].st_value < nextval
    		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
    		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
    			nextval = mod->symtab[i].st_value;
    	}
    
    	if (!best)
    		return NULL;
    
    	if (size)
    		*size = nextval - mod->symtab[best].st_value;
    	if (offset)
    		*offset = addr - mod->symtab[best].st_value;
    	return mod->strtab + mod->symtab[best].st_name;
    }
    
    /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
     * not to lock to avoid deadlock on oopses, simply disable preemption. */
    const char *module_address_lookup(unsigned long addr,
    			    unsigned long *size,
    			    unsigned long *offset,
    			    char **modname,
    			    char *namebuf)
    {
    	struct module *mod;
    	const char *ret = NULL;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (within_module(addr, mod)) {
    			if (modname)
    				*modname = mod->name;
    			ret = get_ksymbol(mod, addr, size, offset);
    			break;
    		}
    	}
    	/* Make a copy in here where it's safe */
    	if (ret) {
    		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
    		ret = namebuf;
    	}
    	preempt_enable();
    	return ret;
    }
    
    int lookup_module_symbol_name(unsigned long addr, char *symname)
    {
    	struct module *mod;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (within_module(addr, mod)) {
    			const char *sym;
    
    			sym = get_ksymbol(mod, addr, NULL, NULL);
    			if (!sym)
    				goto out;
    			strlcpy(symname, sym, KSYM_NAME_LEN);
    			preempt_enable();
    			return 0;
    		}
    	}
    out:
    	preempt_enable();
    	return -ERANGE;
    }
    
    int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
    			unsigned long *offset, char *modname, char *name)
    {
    	struct module *mod;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (within_module(addr, mod)) {
    			const char *sym;
    
    			sym = get_ksymbol(mod, addr, size, offset);
    			if (!sym)
    				goto out;
    			if (modname)
    				strlcpy(modname, mod->name, MODULE_NAME_LEN);
    			if (name)
    				strlcpy(name, sym, KSYM_NAME_LEN);
    			preempt_enable();
    			return 0;
    		}
    	}
    out:
    	preempt_enable();
    	return -ERANGE;
    }
    
    int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
    			char *name, char *module_name, int *exported)
    {
    	struct module *mod;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (symnum < mod->num_symtab) {
    			*value = mod->symtab[symnum].st_value;
    			*type = mod->symtab[symnum].st_info;
    			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
    				KSYM_NAME_LEN);
    			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
    			*exported = is_exported(name, *value, mod);
    			preempt_enable();
    			return 0;
    		}
    		symnum -= mod->num_symtab;
    	}
    	preempt_enable();
    	return -ERANGE;
    }
    
    static unsigned long mod_find_symname(struct module *mod, const char *name)
    {
    	unsigned int i;
    
    	for (i = 0; i < mod->num_symtab; i++)
    		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
    		    mod->symtab[i].st_info != 'U')
    			return mod->symtab[i].st_value;
    	return 0;
    }
    
    /* Look for this name: can be of form module:name. */
    unsigned long module_kallsyms_lookup_name(const char *name)
    {
    	struct module *mod;
    	char *colon;
    	unsigned long ret = 0;
    
    	/* Don't lock: we're in enough trouble already. */
    	preempt_disable();
    	if ((colon = strchr(name, ':')) != NULL) {
    		if ((mod = find_module_all(name, colon - name, false)) != NULL)
    			ret = mod_find_symname(mod, colon+1);
    	} else {
    		list_for_each_entry_rcu(mod, &modules, list) {
    			if (mod->state == MODULE_STATE_UNFORMED)
    				continue;
    			if ((ret = mod_find_symname(mod, name)) != 0)
    				break;
    		}
    	}
    	preempt_enable();
    	return ret;
    }
    
    int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
    					     struct module *, unsigned long),
    				   void *data)
    {
    	struct module *mod;
    	unsigned int i;
    	int ret;
    
    	list_for_each_entry(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		for (i = 0; i < mod->num_symtab; i++) {
    			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
    				 mod, mod->symtab[i].st_value);
    			if (ret != 0)
    				return ret;
    		}
    	}
    	return 0;
    }
    #endif /* CONFIG_KALLSYMS */
    
    static char *module_flags(struct module *mod, char *buf)
    {
    	int bx = 0;
    
    	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
    	if (mod->taints ||
    	    mod->state == MODULE_STATE_GOING ||
    	    mod->state == MODULE_STATE_COMING) {
    		buf[bx++] = '(';
    		bx += module_flags_taint(mod, buf + bx);
    		/* Show a - for module-is-being-unloaded */
    		if (mod->state == MODULE_STATE_GOING)
    			buf[bx++] = '-';
    		/* Show a + for module-is-being-loaded */
    		if (mod->state == MODULE_STATE_COMING)
    			buf[bx++] = '+';
    		buf[bx++] = ')';
    	}
    	buf[bx] = '\0';
    
    	return buf;
    }
    
    #ifdef CONFIG_PROC_FS
    /* Called by the /proc file system to return a list of modules. */
    static void *m_start(struct seq_file *m, loff_t *pos)
    {
    	mutex_lock(&module_mutex);
    	return seq_list_start(&modules, *pos);
    }
    
    static void *m_next(struct seq_file *m, void *p, loff_t *pos)
    {
    	return seq_list_next(p, &modules, pos);
    }
    
    static void m_stop(struct seq_file *m, void *p)
    {
    	mutex_unlock(&module_mutex);
    }
    
    static int m_show(struct seq_file *m, void *p)
    {
    	struct module *mod = list_entry(p, struct module, list);
    	char buf[8];
    
    	/* We always ignore unformed modules. */
    	if (mod->state == MODULE_STATE_UNFORMED)
    		return 0;
    
    	seq_printf(m, "%s %u",
    		   mod->name, mod->init_size + mod->core_size);
    	print_unload_info(m, mod);
    
    	/* Informative for users. */
    	seq_printf(m, " %s",
    		   mod->state == MODULE_STATE_GOING ? "Unloading":
    		   mod->state == MODULE_STATE_COMING ? "Loading":
    		   "Live");
    	/* Used by oprofile and other similar tools. */
    	seq_printf(m, " 0x%pK", mod->module_core);
    
    	/* Taints info */
    	if (mod->taints)
    		seq_printf(m, " %s", module_flags(mod, buf));
    
    	seq_printf(m, "\n");
    	return 0;
    }
    
    /* Format: modulename size refcount deps address
    
       Where refcount is a number or -, and deps is a comma-separated list
       of depends or -.
    */
    static const struct seq_operations modules_op = {
    	.start	= m_start,
    	.next	= m_next,
    	.stop	= m_stop,
    	.show	= m_show
    };
    
    static int modules_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &modules_op);
    }
    
    static const struct file_operations proc_modules_operations = {
    	.open		= modules_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static int __init proc_modules_init(void)
    {
    	proc_create("modules", 0, NULL, &proc_modules_operations);
    	return 0;
    }
    module_init(proc_modules_init);
    #endif
    
    /* Given an address, look for it in the module exception tables. */
    const struct exception_table_entry *search_module_extables(unsigned long addr)
    {
    	const struct exception_table_entry *e = NULL;
    	struct module *mod;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (mod->num_exentries == 0)
    			continue;
    
    		e = search_extable(mod->extable,
    				   mod->extable + mod->num_exentries - 1,
    				   addr);
    		if (e)
    			break;
    	}
    	preempt_enable();
    
    	/* Now, if we found one, we are running inside it now, hence
    	   we cannot unload the module, hence no refcnt needed. */
    	return e;
    }
    
    /*
     * is_module_address - is this address inside a module?
     * @addr: the address to check.
     *
     * See is_module_text_address() if you simply want to see if the address
     * is code (not data).
     */
    bool is_module_address(unsigned long addr)
    {
    	bool ret;
    
    	preempt_disable();
    	ret = __module_address(addr) != NULL;
    	preempt_enable();
    
    	return ret;
    }
    
    /*
     * __module_address - get the module which contains an address.
     * @addr: the address.
     *
     * Must be called with preempt disabled or module mutex held so that
     * module doesn't get freed during this.
     */
    struct module *__module_address(unsigned long addr)
    {
    	struct module *mod;
    
    	if (addr < module_addr_min || addr > module_addr_max)
    		return NULL;
    
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		if (within_module(addr, mod))
    			return mod;
    	}
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(__module_address);
    
    /*
     * is_module_text_address - is this address inside module code?
     * @addr: the address to check.
     *
     * See is_module_address() if you simply want to see if the address is
     * anywhere in a module.  See kernel_text_address() for testing if an
     * address corresponds to kernel or module code.
     */
    bool is_module_text_address(unsigned long addr)
    {
    	bool ret;
    
    	preempt_disable();
    	ret = __module_text_address(addr) != NULL;
    	preempt_enable();
    
    	return ret;
    }
    
    /*
     * __module_text_address - get the module whose code contains an address.
     * @addr: the address.
     *
     * Must be called with preempt disabled or module mutex held so that
     * module doesn't get freed during this.
     */
    struct module *__module_text_address(unsigned long addr)
    {
    	struct module *mod = __module_address(addr);
    	if (mod) {
    		/* Make sure it's within the text section. */
    		if (!within(addr, mod->module_init, mod->init_text_size)
    		    && !within(addr, mod->module_core, mod->core_text_size))
    			mod = NULL;
    	}
    	return mod;
    }
    EXPORT_SYMBOL_GPL(__module_text_address);
    
    /* Don't grab lock, we're oopsing. */
    void print_modules(void)
    {
    	struct module *mod;
    	char buf[8];
    
    	printk(KERN_DEFAULT "Modules linked in:");
    	/* Most callers should already have preempt disabled, but make sure */
    	preempt_disable();
    	list_for_each_entry_rcu(mod, &modules, list) {
    		if (mod->state == MODULE_STATE_UNFORMED)
    			continue;
    		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
    	}
    	preempt_enable();
    	if (last_unloaded_module[0])
    		pr_cont(" [last unloaded: %s]", last_unloaded_module);
    	pr_cont("\n");
    }
    
    #ifdef CONFIG_MODVERSIONS
    /* Generate the signature for all relevant module structures here.
     * If these change, we don't want to try to parse the module. */
    void module_layout(struct module *mod,
    		   struct modversion_info *ver,
    		   struct kernel_param *kp,
    		   struct kernel_symbol *ks,
    		   struct tracepoint * const *tp)
    {
    }
    EXPORT_SYMBOL(module_layout);
    #endif