Skip to content
Snippets Groups Projects
Select Git revision
  • f1f0f330b1d0ac1bcc38d7c84d439f4fde341a9c
  • master default
  • b4/phy-realtek-clock-fix
  • b4/rk3576-rock4d-phy-timings
  • b4/dw-wdt-fix-initial-timeout
  • radxa-v6.1-vendor-kernel
  • b4/fusb302-race-condition-fix
  • b4/rk3576-rock4d-phy-handling-fixes
  • b4/rk3588-evb1-hdmi-rx
  • b4/rk3576-fix-fspi-pmdomain
  • b4/usbc-for-rock5bp
  • b4/rock5bp-for-upstream
  • rockchip-devel
  • rk3588-test
  • rk3588-test-vendor-cam
  • lf-6.6.y_6.6.23-2.0.0_var01-panfrost
  • rk3588-linked-clk-gate-for-upstream
  • rk3588-gpu-pwr-domain-for-upstream
  • rk3588-rock5b-usbc-for-upstream
  • rk3588-evb1-for-upstream
  • imx95-upstream-with-vendor-display-stack
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
  • v5.17-rc4
  • v5.17-rc3
  • v5.17-rc2
  • v5.17-rc1
  • v5.16
  • v5.16-rc8
  • v5.16-rc7
  • v5.16-rc6
  • v5.16-rc5
  • v5.16-rc4
  • v5.16-rc3
  • v5.16-rc2
  • v5.16-rc1
  • v5.15
  • v5.15-rc7
41 results

rsa-pkcs1pad.c

Blame
  • rsa-pkcs1pad.c 17.31 KiB
    /*
     * RSA padding templates.
     *
     * Copyright (c) 2015  Intel Corporation
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License as published by the Free
     * Software Foundation; either version 2 of the License, or (at your option)
     * any later version.
     */
    
    #include <crypto/algapi.h>
    #include <crypto/akcipher.h>
    #include <crypto/internal/akcipher.h>
    #include <linux/err.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/random.h>
    
    /*
     * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
     */
    static const u8 rsa_digest_info_md5[] = {
    	0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
    	0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
    	0x05, 0x00, 0x04, 0x10
    };
    
    static const u8 rsa_digest_info_sha1[] = {
    	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
    	0x2b, 0x0e, 0x03, 0x02, 0x1a,
    	0x05, 0x00, 0x04, 0x14
    };
    
    static const u8 rsa_digest_info_rmd160[] = {
    	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
    	0x2b, 0x24, 0x03, 0x02, 0x01,
    	0x05, 0x00, 0x04, 0x14
    };
    
    static const u8 rsa_digest_info_sha224[] = {
    	0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
    	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
    	0x05, 0x00, 0x04, 0x1c
    };
    
    static const u8 rsa_digest_info_sha256[] = {
    	0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
    	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
    	0x05, 0x00, 0x04, 0x20
    };
    
    static const u8 rsa_digest_info_sha384[] = {
    	0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
    	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
    	0x05, 0x00, 0x04, 0x30
    };
    
    static const u8 rsa_digest_info_sha512[] = {
    	0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
    	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
    	0x05, 0x00, 0x04, 0x40
    };
    
    static const struct rsa_asn1_template {
    	const char	*name;
    	const u8	*data;
    	size_t		size;
    } rsa_asn1_templates[] = {
    #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
    	_(md5),
    	_(sha1),
    	_(rmd160),
    	_(sha256),
    	_(sha384),
    	_(sha512),
    	_(sha224),
    	{ NULL }
    #undef _
    };
    
    static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
    {
    	const struct rsa_asn1_template *p;
    
    	for (p = rsa_asn1_templates; p->name; p++)
    		if (strcmp(name, p->name) == 0)
    			return p;
    	return NULL;
    }
    
    struct pkcs1pad_ctx {
    	struct crypto_akcipher *child;
    	unsigned int key_size;
    };
    
    struct pkcs1pad_inst_ctx {
    	struct crypto_akcipher_spawn spawn;
    	const struct rsa_asn1_template *digest_info;
    };
    
    struct pkcs1pad_request {
    	struct scatterlist in_sg[2], out_sg[1];
    	uint8_t *in_buf, *out_buf;
    	struct akcipher_request child_req;
    };
    
    static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
    		unsigned int keylen)
    {
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	int err;
    
    	ctx->key_size = 0;
    
    	err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
    	if (err)
    		return err;
    
    	/* Find out new modulus size from rsa implementation */
    	err = crypto_akcipher_maxsize(ctx->child);
    	if (err > PAGE_SIZE)
    		return -ENOTSUPP;
    
    	ctx->key_size = err;
    	return 0;
    }
    
    static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
    		unsigned int keylen)
    {
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	int err;
    
    	ctx->key_size = 0;
    
    	err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
    	if (err)
    		return err;
    
    	/* Find out new modulus size from rsa implementation */
    	err = crypto_akcipher_maxsize(ctx->child);
    	if (err > PAGE_SIZE)
    		return -ENOTSUPP;
    
    	ctx->key_size = err;
    	return 0;
    }
    
    static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
    {
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    
    	/*
    	 * The maximum destination buffer size for the encrypt/sign operations
    	 * will be the same as for RSA, even though it's smaller for
    	 * decrypt/verify.
    	 */
    
    	return ctx->key_size;
    }
    
    static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
    		struct scatterlist *next)
    {
    	int nsegs = next ? 2 : 1;
    
    	sg_init_table(sg, nsegs);
    	sg_set_buf(sg, buf, len);
    
    	if (next)
    		sg_chain(sg, nsegs, next);
    }
    
    static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	unsigned int pad_len;
    	unsigned int len;
    	u8 *out_buf;
    
    	if (err)
    		goto out;
    
    	len = req_ctx->child_req.dst_len;
    	pad_len = ctx->key_size - len;
    
    	/* Four billion to one */
    	if (likely(!pad_len))
    		goto out;
    
    	out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
    	err = -ENOMEM;
    	if (!out_buf)
    		goto out;
    
    	sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
    			  out_buf + pad_len, len);
    	sg_copy_from_buffer(req->dst,
    			    sg_nents_for_len(req->dst, ctx->key_size),
    			    out_buf, ctx->key_size);
    	kzfree(out_buf);
    
    out:
    	req->dst_len = ctx->key_size;
    
    	kfree(req_ctx->in_buf);
    
    	return err;
    }
    
    static void pkcs1pad_encrypt_sign_complete_cb(
    		struct crypto_async_request *child_async_req, int err)
    {
    	struct akcipher_request *req = child_async_req->data;
    	struct crypto_async_request async_req;
    
    	if (err == -EINPROGRESS)
    		return;
    
    	async_req.data = req->base.data;
    	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
    	async_req.flags = child_async_req->flags;
    	req->base.complete(&async_req,
    			pkcs1pad_encrypt_sign_complete(req, err));
    }
    
    static int pkcs1pad_encrypt(struct akcipher_request *req)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	int err;
    	unsigned int i, ps_end;
    
    	if (!ctx->key_size)
    		return -EINVAL;
    
    	if (req->src_len > ctx->key_size - 11)
    		return -EOVERFLOW;
    
    	if (req->dst_len < ctx->key_size) {
    		req->dst_len = ctx->key_size;
    		return -EOVERFLOW;
    	}
    
    	req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
    				  GFP_KERNEL);
    	if (!req_ctx->in_buf)
    		return -ENOMEM;
    
    	ps_end = ctx->key_size - req->src_len - 2;
    	req_ctx->in_buf[0] = 0x02;
    	for (i = 1; i < ps_end; i++)
    		req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
    	req_ctx->in_buf[ps_end] = 0x00;
    
    	pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
    			ctx->key_size - 1 - req->src_len, req->src);
    
    	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
    	if (!req_ctx->out_buf) {
    		kfree(req_ctx->in_buf);
    		return -ENOMEM;
    	}
    
    	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
    			ctx->key_size, NULL);
    
    	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
    	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
    			pkcs1pad_encrypt_sign_complete_cb, req);
    
    	/* Reuse output buffer */
    	akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
    				   req->dst, ctx->key_size - 1, req->dst_len);
    
    	err = crypto_akcipher_encrypt(&req_ctx->child_req);
    	if (err != -EINPROGRESS && err != -EBUSY)
    		return pkcs1pad_encrypt_sign_complete(req, err);
    
    	return err;
    }
    
    static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	unsigned int dst_len;
    	unsigned int pos;
    	u8 *out_buf;
    
    	if (err)
    		goto done;
    
    	err = -EINVAL;
    	dst_len = req_ctx->child_req.dst_len;
    	if (dst_len < ctx->key_size - 1)
    		goto done;
    
    	out_buf = req_ctx->out_buf;
    	if (dst_len == ctx->key_size) {
    		if (out_buf[0] != 0x00)
    			/* Decrypted value had no leading 0 byte */
    			goto done;
    
    		dst_len--;
    		out_buf++;
    	}
    
    	if (out_buf[0] != 0x02)
    		goto done;
    
    	for (pos = 1; pos < dst_len; pos++)
    		if (out_buf[pos] == 0x00)
    			break;
    	if (pos < 9 || pos == dst_len)
    		goto done;
    	pos++;
    
    	err = 0;
    
    	if (req->dst_len < dst_len - pos)
    		err = -EOVERFLOW;
    	req->dst_len = dst_len - pos;
    
    	if (!err)
    		sg_copy_from_buffer(req->dst,
    				sg_nents_for_len(req->dst, req->dst_len),
    				out_buf + pos, req->dst_len);
    
    done:
    	kzfree(req_ctx->out_buf);
    
    	return err;
    }
    
    static void pkcs1pad_decrypt_complete_cb(
    		struct crypto_async_request *child_async_req, int err)
    {
    	struct akcipher_request *req = child_async_req->data;
    	struct crypto_async_request async_req;
    
    	if (err == -EINPROGRESS)
    		return;
    
    	async_req.data = req->base.data;
    	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
    	async_req.flags = child_async_req->flags;
    	req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
    }
    
    static int pkcs1pad_decrypt(struct akcipher_request *req)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	int err;
    
    	if (!ctx->key_size || req->src_len != ctx->key_size)
    		return -EINVAL;
    
    	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
    	if (!req_ctx->out_buf)
    		return -ENOMEM;
    
    	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
    			    ctx->key_size, NULL);
    
    	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
    	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
    			pkcs1pad_decrypt_complete_cb, req);
    
    	/* Reuse input buffer, output to a new buffer */
    	akcipher_request_set_crypt(&req_ctx->child_req, req->src,
    				   req_ctx->out_sg, req->src_len,
    				   ctx->key_size);
    
    	err = crypto_akcipher_decrypt(&req_ctx->child_req);
    	if (err != -EINPROGRESS && err != -EBUSY)
    		return pkcs1pad_decrypt_complete(req, err);
    
    	return err;
    }
    
    static int pkcs1pad_sign(struct akcipher_request *req)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
    	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
    	const struct rsa_asn1_template *digest_info = ictx->digest_info;
    	int err;
    	unsigned int ps_end, digest_size = 0;
    
    	if (!ctx->key_size)
    		return -EINVAL;
    
    	digest_size = digest_info->size;
    
    	if (req->src_len + digest_size > ctx->key_size - 11)
    		return -EOVERFLOW;
    
    	if (req->dst_len < ctx->key_size) {
    		req->dst_len = ctx->key_size;
    		return -EOVERFLOW;
    	}
    
    	req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
    				  GFP_KERNEL);
    	if (!req_ctx->in_buf)
    		return -ENOMEM;
    
    	ps_end = ctx->key_size - digest_size - req->src_len - 2;
    	req_ctx->in_buf[0] = 0x01;
    	memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
    	req_ctx->in_buf[ps_end] = 0x00;
    
    	memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
    	       digest_info->size);
    
    	pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
    			ctx->key_size - 1 - req->src_len, req->src);
    
    	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
    	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
    			pkcs1pad_encrypt_sign_complete_cb, req);
    
    	/* Reuse output buffer */
    	akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
    				   req->dst, ctx->key_size - 1, req->dst_len);
    
    	err = crypto_akcipher_sign(&req_ctx->child_req);
    	if (err != -EINPROGRESS && err != -EBUSY)
    		return pkcs1pad_encrypt_sign_complete(req, err);
    
    	return err;
    }
    
    static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
    	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
    	const struct rsa_asn1_template *digest_info = ictx->digest_info;
    	unsigned int dst_len;
    	unsigned int pos;
    	u8 *out_buf;
    
    	if (err)
    		goto done;
    
    	err = -EINVAL;
    	dst_len = req_ctx->child_req.dst_len;
    	if (dst_len < ctx->key_size - 1)
    		goto done;
    
    	out_buf = req_ctx->out_buf;
    	if (dst_len == ctx->key_size) {
    		if (out_buf[0] != 0x00)
    			/* Decrypted value had no leading 0 byte */
    			goto done;
    
    		dst_len--;
    		out_buf++;
    	}
    
    	err = -EBADMSG;
    	if (out_buf[0] != 0x01)
    		goto done;
    
    	for (pos = 1; pos < dst_len; pos++)
    		if (out_buf[pos] != 0xff)
    			break;
    
    	if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
    		goto done;
    	pos++;
    
    	if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size))
    		goto done;
    
    	pos += digest_info->size;
    
    	err = 0;
    
    	if (req->dst_len < dst_len - pos)
    		err = -EOVERFLOW;
    	req->dst_len = dst_len - pos;
    
    	if (!err)
    		sg_copy_from_buffer(req->dst,
    				sg_nents_for_len(req->dst, req->dst_len),
    				out_buf + pos, req->dst_len);
    done:
    	kzfree(req_ctx->out_buf);
    
    	return err;
    }
    
    static void pkcs1pad_verify_complete_cb(
    		struct crypto_async_request *child_async_req, int err)
    {
    	struct akcipher_request *req = child_async_req->data;
    	struct crypto_async_request async_req;
    
    	if (err == -EINPROGRESS)
    		return;
    
    	async_req.data = req->base.data;
    	async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
    	async_req.flags = child_async_req->flags;
    	req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
    }
    
    /*
     * The verify operation is here for completeness similar to the verification
     * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
     * as in RFC2437.  RFC2437 section 9.2 doesn't define any operation to
     * retrieve the DigestInfo from a signature, instead the user is expected
     * to call the sign operation to generate the expected signature and compare
     * signatures instead of the message-digests.
     */
    static int pkcs1pad_verify(struct akcipher_request *req)
    {
    	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
    	int err;
    
    	if (!ctx->key_size || req->src_len < ctx->key_size)
    		return -EINVAL;
    
    	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
    	if (!req_ctx->out_buf)
    		return -ENOMEM;
    
    	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
    			    ctx->key_size, NULL);
    
    	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
    	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
    			pkcs1pad_verify_complete_cb, req);
    
    	/* Reuse input buffer, output to a new buffer */
    	akcipher_request_set_crypt(&req_ctx->child_req, req->src,
    				   req_ctx->out_sg, req->src_len,
    				   ctx->key_size);
    
    	err = crypto_akcipher_verify(&req_ctx->child_req);
    	if (err != -EINPROGRESS && err != -EBUSY)
    		return pkcs1pad_verify_complete(req, err);
    
    	return err;
    }
    
    static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
    {
    	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
    	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    	struct crypto_akcipher *child_tfm;
    
    	child_tfm = crypto_spawn_akcipher(&ictx->spawn);
    	if (IS_ERR(child_tfm))
    		return PTR_ERR(child_tfm);
    
    	ctx->child = child_tfm;
    	return 0;
    }
    
    static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
    {
    	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
    
    	crypto_free_akcipher(ctx->child);
    }
    
    static void pkcs1pad_free(struct akcipher_instance *inst)
    {
    	struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
    	struct crypto_akcipher_spawn *spawn = &ctx->spawn;
    
    	crypto_drop_akcipher(spawn);
    	kfree(inst);
    }
    
    static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
    {
    	const struct rsa_asn1_template *digest_info;
    	struct crypto_attr_type *algt;
    	struct akcipher_instance *inst;
    	struct pkcs1pad_inst_ctx *ctx;
    	struct crypto_akcipher_spawn *spawn;
    	struct akcipher_alg *rsa_alg;
    	const char *rsa_alg_name;
    	const char *hash_name;
    	int err;
    
    	algt = crypto_get_attr_type(tb);
    	if (IS_ERR(algt))
    		return PTR_ERR(algt);
    
    	if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask)
    		return -EINVAL;
    
    	rsa_alg_name = crypto_attr_alg_name(tb[1]);
    	if (IS_ERR(rsa_alg_name))
    		return PTR_ERR(rsa_alg_name);
    
    	hash_name = crypto_attr_alg_name(tb[2]);
    	if (IS_ERR(hash_name))
    		return PTR_ERR(hash_name);
    
    	digest_info = rsa_lookup_asn1(hash_name);
    	if (!digest_info)
    		return -EINVAL;
    
    	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
    	if (!inst)
    		return -ENOMEM;
    
    	ctx = akcipher_instance_ctx(inst);
    	spawn = &ctx->spawn;
    	ctx->digest_info = digest_info;
    
    	crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst));
    	err = crypto_grab_akcipher(spawn, rsa_alg_name, 0,
    			crypto_requires_sync(algt->type, algt->mask));
    	if (err)
    		goto out_free_inst;
    
    	rsa_alg = crypto_spawn_akcipher_alg(spawn);
    
    	err = -ENAMETOOLONG;
    
    	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
    		     "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >=
    	    CRYPTO_MAX_ALG_NAME ||
    	    snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
    		     "pkcs1pad(%s,%s)",
    		     rsa_alg->base.cra_driver_name, hash_name) >=
    	    CRYPTO_MAX_ALG_NAME)
    		goto out_drop_alg;
    
    	inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC;
    	inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
    	inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
    
    	inst->alg.init = pkcs1pad_init_tfm;
    	inst->alg.exit = pkcs1pad_exit_tfm;
    
    	inst->alg.encrypt = pkcs1pad_encrypt;
    	inst->alg.decrypt = pkcs1pad_decrypt;
    	inst->alg.sign = pkcs1pad_sign;
    	inst->alg.verify = pkcs1pad_verify;
    	inst->alg.set_pub_key = pkcs1pad_set_pub_key;
    	inst->alg.set_priv_key = pkcs1pad_set_priv_key;
    	inst->alg.max_size = pkcs1pad_get_max_size;
    	inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
    
    	inst->free = pkcs1pad_free;
    
    	err = akcipher_register_instance(tmpl, inst);
    	if (err)
    		goto out_drop_alg;
    
    	return 0;
    
    out_drop_alg:
    	crypto_drop_akcipher(spawn);
    out_free_inst:
    	kfree(inst);
    	return err;
    }
    
    struct crypto_template rsa_pkcs1pad_tmpl = {
    	.name = "pkcs1pad",
    	.create = pkcs1pad_create,
    	.module = THIS_MODULE,
    };