Skip to content
Snippets Groups Projects
Select Git revision
  • 1bda19eb73d68b304148e67253e47cef049a419d
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

inode.c

Blame
  • inode.c 230.05 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/kernel.h>
    #include <linux/bio.h>
    #include <linux/buffer_head.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/backing-dev.h>
    #include <linux/mpage.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/statfs.h>
    #include <linux/compat.h>
    #include <linux/aio.h>
    #include <linux/bit_spinlock.h>
    #include <linux/xattr.h>
    #include <linux/posix_acl.h>
    #include <linux/falloc.h>
    #include <linux/slab.h>
    #include <linux/ratelimit.h>
    #include <linux/mount.h>
    #include <linux/btrfs.h>
    #include <linux/blkdev.h>
    #include <linux/posix_acl_xattr.h>
    #include "compat.h"
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "print-tree.h"
    #include "ordered-data.h"
    #include "xattr.h"
    #include "tree-log.h"
    #include "volumes.h"
    #include "compression.h"
    #include "locking.h"
    #include "free-space-cache.h"
    #include "inode-map.h"
    #include "backref.h"
    #include "hash.h"
    
    struct btrfs_iget_args {
    	u64 ino;
    	struct btrfs_root *root;
    };
    
    static const struct inode_operations btrfs_dir_inode_operations;
    static const struct inode_operations btrfs_symlink_inode_operations;
    static const struct inode_operations btrfs_dir_ro_inode_operations;
    static const struct inode_operations btrfs_special_inode_operations;
    static const struct inode_operations btrfs_file_inode_operations;
    static const struct address_space_operations btrfs_aops;
    static const struct address_space_operations btrfs_symlink_aops;
    static const struct file_operations btrfs_dir_file_operations;
    static struct extent_io_ops btrfs_extent_io_ops;
    
    static struct kmem_cache *btrfs_inode_cachep;
    static struct kmem_cache *btrfs_delalloc_work_cachep;
    struct kmem_cache *btrfs_trans_handle_cachep;
    struct kmem_cache *btrfs_transaction_cachep;
    struct kmem_cache *btrfs_path_cachep;
    struct kmem_cache *btrfs_free_space_cachep;
    
    #define S_SHIFT 12
    static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
    	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
    	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
    	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
    	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
    	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
    	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
    	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
    };
    
    static int btrfs_setsize(struct inode *inode, struct iattr *attr);
    static int btrfs_truncate(struct inode *inode);
    static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
    static noinline int cow_file_range(struct inode *inode,
    				   struct page *locked_page,
    				   u64 start, u64 end, int *page_started,
    				   unsigned long *nr_written, int unlock);
    static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
    					   u64 len, u64 orig_start,
    					   u64 block_start, u64 block_len,
    					   u64 orig_block_len, u64 ram_bytes,
    					   int type);
    
    static int btrfs_dirty_inode(struct inode *inode);
    
    static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
    				     struct inode *inode,  struct inode *dir,
    				     const struct qstr *qstr)
    {
    	int err;
    
    	err = btrfs_init_acl(trans, inode, dir);
    	if (!err)
    		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
    	return err;
    }
    
    /*
     * this does all the hard work for inserting an inline extent into
     * the btree.  The caller should have done a btrfs_drop_extents so that
     * no overlapping inline items exist in the btree
     */
    static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root, struct inode *inode,
    				u64 start, size_t size, size_t compressed_size,
    				int compress_type,
    				struct page **compressed_pages)
    {
    	struct btrfs_key key;
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct page *page = NULL;
    	char *kaddr;
    	unsigned long ptr;
    	struct btrfs_file_extent_item *ei;
    	int err = 0;
    	int ret;
    	size_t cur_size = size;
    	size_t datasize;
    	unsigned long offset;
    
    	if (compressed_size && compressed_pages)
    		cur_size = compressed_size;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	path->leave_spinning = 1;
    
    	key.objectid = btrfs_ino(inode);
    	key.offset = start;
    	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
    	datasize = btrfs_file_extent_calc_inline_size(cur_size);
    
    	inode_add_bytes(inode, size);
    	ret = btrfs_insert_empty_item(trans, root, path, &key,
    				      datasize);
    	if (ret) {
    		err = ret;
    		goto fail;
    	}
    	leaf = path->nodes[0];
    	ei = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
    	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
    	btrfs_set_file_extent_encryption(leaf, ei, 0);
    	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
    	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
    	ptr = btrfs_file_extent_inline_start(ei);
    
    	if (compress_type != BTRFS_COMPRESS_NONE) {
    		struct page *cpage;
    		int i = 0;
    		while (compressed_size > 0) {
    			cpage = compressed_pages[i];
    			cur_size = min_t(unsigned long, compressed_size,
    				       PAGE_CACHE_SIZE);
    
    			kaddr = kmap_atomic(cpage);
    			write_extent_buffer(leaf, kaddr, ptr, cur_size);
    			kunmap_atomic(kaddr);
    
    			i++;
    			ptr += cur_size;
    			compressed_size -= cur_size;
    		}
    		btrfs_set_file_extent_compression(leaf, ei,
    						  compress_type);
    	} else {
    		page = find_get_page(inode->i_mapping,
    				     start >> PAGE_CACHE_SHIFT);
    		btrfs_set_file_extent_compression(leaf, ei, 0);
    		kaddr = kmap_atomic(page);
    		offset = start & (PAGE_CACHE_SIZE - 1);
    		write_extent_buffer(leaf, kaddr + offset, ptr, size);
    		kunmap_atomic(kaddr);
    		page_cache_release(page);
    	}
    	btrfs_mark_buffer_dirty(leaf);
    	btrfs_free_path(path);
    
    	/*
    	 * we're an inline extent, so nobody can
    	 * extend the file past i_size without locking
    	 * a page we already have locked.
    	 *
    	 * We must do any isize and inode updates
    	 * before we unlock the pages.  Otherwise we
    	 * could end up racing with unlink.
    	 */
    	BTRFS_I(inode)->disk_i_size = inode->i_size;
    	ret = btrfs_update_inode(trans, root, inode);
    
    	return ret;
    fail:
    	btrfs_free_path(path);
    	return err;
    }
    
    
    /*
     * conditionally insert an inline extent into the file.  This
     * does the checks required to make sure the data is small enough
     * to fit as an inline extent.
     */
    static noinline int cow_file_range_inline(struct btrfs_root *root,
    					  struct inode *inode, u64 start,
    					  u64 end, size_t compressed_size,
    					  int compress_type,
    					  struct page **compressed_pages)
    {
    	struct btrfs_trans_handle *trans;
    	u64 isize = i_size_read(inode);
    	u64 actual_end = min(end + 1, isize);
    	u64 inline_len = actual_end - start;
    	u64 aligned_end = ALIGN(end, root->sectorsize);
    	u64 data_len = inline_len;
    	int ret;
    
    	if (compressed_size)
    		data_len = compressed_size;
    
    	if (start > 0 ||
    	    actual_end >= PAGE_CACHE_SIZE ||
    	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
    	    (!compressed_size &&
    	    (actual_end & (root->sectorsize - 1)) == 0) ||
    	    end + 1 < isize ||
    	    data_len > root->fs_info->max_inline) {
    		return 1;
    	}
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
    
    	ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	}
    
    	if (isize > actual_end)
    		inline_len = min_t(u64, isize, actual_end);
    	ret = insert_inline_extent(trans, root, inode, start,
    				   inline_len, compressed_size,
    				   compress_type, compressed_pages);
    	if (ret && ret != -ENOSPC) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	} else if (ret == -ENOSPC) {
    		ret = 1;
    		goto out;
    	}
    
    	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
    	btrfs_delalloc_release_metadata(inode, end + 1 - start);
    	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
    out:
    	btrfs_end_transaction(trans, root);
    	return ret;
    }
    
    struct async_extent {
    	u64 start;
    	u64 ram_size;
    	u64 compressed_size;
    	struct page **pages;
    	unsigned long nr_pages;
    	int compress_type;
    	struct list_head list;
    };
    
    struct async_cow {
    	struct inode *inode;
    	struct btrfs_root *root;
    	struct page *locked_page;
    	u64 start;
    	u64 end;
    	struct list_head extents;
    	struct btrfs_work work;
    };
    
    static noinline int add_async_extent(struct async_cow *cow,
    				     u64 start, u64 ram_size,
    				     u64 compressed_size,
    				     struct page **pages,
    				     unsigned long nr_pages,
    				     int compress_type)
    {
    	struct async_extent *async_extent;
    
    	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
    	BUG_ON(!async_extent); /* -ENOMEM */
    	async_extent->start = start;
    	async_extent->ram_size = ram_size;
    	async_extent->compressed_size = compressed_size;
    	async_extent->pages = pages;
    	async_extent->nr_pages = nr_pages;
    	async_extent->compress_type = compress_type;
    	list_add_tail(&async_extent->list, &cow->extents);
    	return 0;
    }
    
    /*
     * we create compressed extents in two phases.  The first
     * phase compresses a range of pages that have already been
     * locked (both pages and state bits are locked).
     *
     * This is done inside an ordered work queue, and the compression
     * is spread across many cpus.  The actual IO submission is step
     * two, and the ordered work queue takes care of making sure that
     * happens in the same order things were put onto the queue by
     * writepages and friends.
     *
     * If this code finds it can't get good compression, it puts an
     * entry onto the work queue to write the uncompressed bytes.  This
     * makes sure that both compressed inodes and uncompressed inodes
     * are written in the same order that the flusher thread sent them
     * down.
     */
    static noinline int compress_file_range(struct inode *inode,
    					struct page *locked_page,
    					u64 start, u64 end,
    					struct async_cow *async_cow,
    					int *num_added)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	u64 num_bytes;
    	u64 blocksize = root->sectorsize;
    	u64 actual_end;
    	u64 isize = i_size_read(inode);
    	int ret = 0;
    	struct page **pages = NULL;
    	unsigned long nr_pages;
    	unsigned long nr_pages_ret = 0;
    	unsigned long total_compressed = 0;
    	unsigned long total_in = 0;
    	unsigned long max_compressed = 128 * 1024;
    	unsigned long max_uncompressed = 128 * 1024;
    	int i;
    	int will_compress;
    	int compress_type = root->fs_info->compress_type;
    	int redirty = 0;
    
    	/* if this is a small write inside eof, kick off a defrag */
    	if ((end - start + 1) < 16 * 1024 &&
    	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
    		btrfs_add_inode_defrag(NULL, inode);
    
    	actual_end = min_t(u64, isize, end + 1);
    again:
    	will_compress = 0;
    	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
    	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
    
    	/*
    	 * we don't want to send crud past the end of i_size through
    	 * compression, that's just a waste of CPU time.  So, if the
    	 * end of the file is before the start of our current
    	 * requested range of bytes, we bail out to the uncompressed
    	 * cleanup code that can deal with all of this.
    	 *
    	 * It isn't really the fastest way to fix things, but this is a
    	 * very uncommon corner.
    	 */
    	if (actual_end <= start)
    		goto cleanup_and_bail_uncompressed;
    
    	total_compressed = actual_end - start;
    
    	/* we want to make sure that amount of ram required to uncompress
    	 * an extent is reasonable, so we limit the total size in ram
    	 * of a compressed extent to 128k.  This is a crucial number
    	 * because it also controls how easily we can spread reads across
    	 * cpus for decompression.
    	 *
    	 * We also want to make sure the amount of IO required to do
    	 * a random read is reasonably small, so we limit the size of
    	 * a compressed extent to 128k.
    	 */
    	total_compressed = min(total_compressed, max_uncompressed);
    	num_bytes = ALIGN(end - start + 1, blocksize);
    	num_bytes = max(blocksize,  num_bytes);
    	total_in = 0;
    	ret = 0;
    
    	/*
    	 * we do compression for mount -o compress and when the
    	 * inode has not been flagged as nocompress.  This flag can
    	 * change at any time if we discover bad compression ratios.
    	 */
    	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
    	    (btrfs_test_opt(root, COMPRESS) ||
    	     (BTRFS_I(inode)->force_compress) ||
    	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
    		WARN_ON(pages);
    		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
    		if (!pages) {
    			/* just bail out to the uncompressed code */
    			goto cont;
    		}
    
    		if (BTRFS_I(inode)->force_compress)
    			compress_type = BTRFS_I(inode)->force_compress;
    
    		/*
    		 * we need to call clear_page_dirty_for_io on each
    		 * page in the range.  Otherwise applications with the file
    		 * mmap'd can wander in and change the page contents while
    		 * we are compressing them.
    		 *
    		 * If the compression fails for any reason, we set the pages
    		 * dirty again later on.
    		 */
    		extent_range_clear_dirty_for_io(inode, start, end);
    		redirty = 1;
    		ret = btrfs_compress_pages(compress_type,
    					   inode->i_mapping, start,
    					   total_compressed, pages,
    					   nr_pages, &nr_pages_ret,
    					   &total_in,
    					   &total_compressed,
    					   max_compressed);
    
    		if (!ret) {
    			unsigned long offset = total_compressed &
    				(PAGE_CACHE_SIZE - 1);
    			struct page *page = pages[nr_pages_ret - 1];
    			char *kaddr;
    
    			/* zero the tail end of the last page, we might be
    			 * sending it down to disk
    			 */
    			if (offset) {
    				kaddr = kmap_atomic(page);
    				memset(kaddr + offset, 0,
    				       PAGE_CACHE_SIZE - offset);
    				kunmap_atomic(kaddr);
    			}
    			will_compress = 1;
    		}
    	}
    cont:
    	if (start == 0) {
    		/* lets try to make an inline extent */
    		if (ret || total_in < (actual_end - start)) {
    			/* we didn't compress the entire range, try
    			 * to make an uncompressed inline extent.
    			 */
    			ret = cow_file_range_inline(root, inode, start, end,
    						    0, 0, NULL);
    		} else {
    			/* try making a compressed inline extent */
    			ret = cow_file_range_inline(root, inode, start, end,
    						    total_compressed,
    						    compress_type, pages);
    		}
    		if (ret <= 0) {
    			unsigned long clear_flags = EXTENT_DELALLOC |
    				EXTENT_DEFRAG;
    			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
    
    			/*
    			 * inline extent creation worked or returned error,
    			 * we don't need to create any more async work items.
    			 * Unlock and free up our temp pages.
    			 */
    			extent_clear_unlock_delalloc(inode, start, end, NULL,
    						     clear_flags, PAGE_UNLOCK |
    						     PAGE_CLEAR_DIRTY |
    						     PAGE_SET_WRITEBACK |
    						     PAGE_END_WRITEBACK);
    			goto free_pages_out;
    		}
    	}
    
    	if (will_compress) {
    		/*
    		 * we aren't doing an inline extent round the compressed size
    		 * up to a block size boundary so the allocator does sane
    		 * things
    		 */
    		total_compressed = ALIGN(total_compressed, blocksize);
    
    		/*
    		 * one last check to make sure the compression is really a
    		 * win, compare the page count read with the blocks on disk
    		 */
    		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
    		if (total_compressed >= total_in) {
    			will_compress = 0;
    		} else {
    			num_bytes = total_in;
    		}
    	}
    	if (!will_compress && pages) {
    		/*
    		 * the compression code ran but failed to make things smaller,
    		 * free any pages it allocated and our page pointer array
    		 */
    		for (i = 0; i < nr_pages_ret; i++) {
    			WARN_ON(pages[i]->mapping);
    			page_cache_release(pages[i]);
    		}
    		kfree(pages);
    		pages = NULL;
    		total_compressed = 0;
    		nr_pages_ret = 0;
    
    		/* flag the file so we don't compress in the future */
    		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
    		    !(BTRFS_I(inode)->force_compress)) {
    			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
    		}
    	}
    	if (will_compress) {
    		*num_added += 1;
    
    		/* the async work queues will take care of doing actual
    		 * allocation on disk for these compressed pages,
    		 * and will submit them to the elevator.
    		 */
    		add_async_extent(async_cow, start, num_bytes,
    				 total_compressed, pages, nr_pages_ret,
    				 compress_type);
    
    		if (start + num_bytes < end) {
    			start += num_bytes;
    			pages = NULL;
    			cond_resched();
    			goto again;
    		}
    	} else {
    cleanup_and_bail_uncompressed:
    		/*
    		 * No compression, but we still need to write the pages in
    		 * the file we've been given so far.  redirty the locked
    		 * page if it corresponds to our extent and set things up
    		 * for the async work queue to run cow_file_range to do
    		 * the normal delalloc dance
    		 */
    		if (page_offset(locked_page) >= start &&
    		    page_offset(locked_page) <= end) {
    			__set_page_dirty_nobuffers(locked_page);
    			/* unlocked later on in the async handlers */
    		}
    		if (redirty)
    			extent_range_redirty_for_io(inode, start, end);
    		add_async_extent(async_cow, start, end - start + 1,
    				 0, NULL, 0, BTRFS_COMPRESS_NONE);
    		*num_added += 1;
    	}
    
    out:
    	return ret;
    
    free_pages_out:
    	for (i = 0; i < nr_pages_ret; i++) {
    		WARN_ON(pages[i]->mapping);
    		page_cache_release(pages[i]);
    	}
    	kfree(pages);
    
    	goto out;
    }
    
    /*
     * phase two of compressed writeback.  This is the ordered portion
     * of the code, which only gets called in the order the work was
     * queued.  We walk all the async extents created by compress_file_range
     * and send them down to the disk.
     */
    static noinline int submit_compressed_extents(struct inode *inode,
    					      struct async_cow *async_cow)
    {
    	struct async_extent *async_extent;
    	u64 alloc_hint = 0;
    	struct btrfs_key ins;
    	struct extent_map *em;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_io_tree *io_tree;
    	int ret = 0;
    
    	if (list_empty(&async_cow->extents))
    		return 0;
    
    again:
    	while (!list_empty(&async_cow->extents)) {
    		async_extent = list_entry(async_cow->extents.next,
    					  struct async_extent, list);
    		list_del(&async_extent->list);
    
    		io_tree = &BTRFS_I(inode)->io_tree;
    
    retry:
    		/* did the compression code fall back to uncompressed IO? */
    		if (!async_extent->pages) {
    			int page_started = 0;
    			unsigned long nr_written = 0;
    
    			lock_extent(io_tree, async_extent->start,
    					 async_extent->start +
    					 async_extent->ram_size - 1);
    
    			/* allocate blocks */
    			ret = cow_file_range(inode, async_cow->locked_page,
    					     async_extent->start,
    					     async_extent->start +
    					     async_extent->ram_size - 1,
    					     &page_started, &nr_written, 0);
    
    			/* JDM XXX */
    
    			/*
    			 * if page_started, cow_file_range inserted an
    			 * inline extent and took care of all the unlocking
    			 * and IO for us.  Otherwise, we need to submit
    			 * all those pages down to the drive.
    			 */
    			if (!page_started && !ret)
    				extent_write_locked_range(io_tree,
    						  inode, async_extent->start,
    						  async_extent->start +
    						  async_extent->ram_size - 1,
    						  btrfs_get_extent,
    						  WB_SYNC_ALL);
    			else if (ret)
    				unlock_page(async_cow->locked_page);
    			kfree(async_extent);
    			cond_resched();
    			continue;
    		}
    
    		lock_extent(io_tree, async_extent->start,
    			    async_extent->start + async_extent->ram_size - 1);
    
    		ret = btrfs_reserve_extent(root,
    					   async_extent->compressed_size,
    					   async_extent->compressed_size,
    					   0, alloc_hint, &ins, 1);
    		if (ret) {
    			int i;
    
    			for (i = 0; i < async_extent->nr_pages; i++) {
    				WARN_ON(async_extent->pages[i]->mapping);
    				page_cache_release(async_extent->pages[i]);
    			}
    			kfree(async_extent->pages);
    			async_extent->nr_pages = 0;
    			async_extent->pages = NULL;
    
    			if (ret == -ENOSPC) {
    				unlock_extent(io_tree, async_extent->start,
    					      async_extent->start +
    					      async_extent->ram_size - 1);
    				goto retry;
    			}
    			goto out_free;
    		}
    
    		/*
    		 * here we're doing allocation and writeback of the
    		 * compressed pages
    		 */
    		btrfs_drop_extent_cache(inode, async_extent->start,
    					async_extent->start +
    					async_extent->ram_size - 1, 0);
    
    		em = alloc_extent_map();
    		if (!em) {
    			ret = -ENOMEM;
    			goto out_free_reserve;
    		}
    		em->start = async_extent->start;
    		em->len = async_extent->ram_size;
    		em->orig_start = em->start;
    		em->mod_start = em->start;
    		em->mod_len = em->len;
    
    		em->block_start = ins.objectid;
    		em->block_len = ins.offset;
    		em->orig_block_len = ins.offset;
    		em->ram_bytes = async_extent->ram_size;
    		em->bdev = root->fs_info->fs_devices->latest_bdev;
    		em->compress_type = async_extent->compress_type;
    		set_bit(EXTENT_FLAG_PINNED, &em->flags);
    		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
    		em->generation = -1;
    
    		while (1) {
    			write_lock(&em_tree->lock);
    			ret = add_extent_mapping(em_tree, em, 1);
    			write_unlock(&em_tree->lock);
    			if (ret != -EEXIST) {
    				free_extent_map(em);
    				break;
    			}
    			btrfs_drop_extent_cache(inode, async_extent->start,
    						async_extent->start +
    						async_extent->ram_size - 1, 0);
    		}
    
    		if (ret)
    			goto out_free_reserve;
    
    		ret = btrfs_add_ordered_extent_compress(inode,
    						async_extent->start,
    						ins.objectid,
    						async_extent->ram_size,
    						ins.offset,
    						BTRFS_ORDERED_COMPRESSED,
    						async_extent->compress_type);
    		if (ret)
    			goto out_free_reserve;
    
    		/*
    		 * clear dirty, set writeback and unlock the pages.
    		 */
    		extent_clear_unlock_delalloc(inode, async_extent->start,
    				async_extent->start +
    				async_extent->ram_size - 1,
    				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
    				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
    				PAGE_SET_WRITEBACK);
    		ret = btrfs_submit_compressed_write(inode,
    				    async_extent->start,
    				    async_extent->ram_size,
    				    ins.objectid,
    				    ins.offset, async_extent->pages,
    				    async_extent->nr_pages);
    		alloc_hint = ins.objectid + ins.offset;
    		kfree(async_extent);
    		if (ret)
    			goto out;
    		cond_resched();
    	}
    	ret = 0;
    out:
    	return ret;
    out_free_reserve:
    	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
    out_free:
    	extent_clear_unlock_delalloc(inode, async_extent->start,
    				     async_extent->start +
    				     async_extent->ram_size - 1,
    				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
    				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
    				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
    				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
    	kfree(async_extent);
    	goto again;
    }
    
    static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
    				      u64 num_bytes)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_map *em;
    	u64 alloc_hint = 0;
    
    	read_lock(&em_tree->lock);
    	em = search_extent_mapping(em_tree, start, num_bytes);
    	if (em) {
    		/*
    		 * if block start isn't an actual block number then find the
    		 * first block in this inode and use that as a hint.  If that
    		 * block is also bogus then just don't worry about it.
    		 */
    		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
    			free_extent_map(em);
    			em = search_extent_mapping(em_tree, 0, 0);
    			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
    				alloc_hint = em->block_start;
    			if (em)
    				free_extent_map(em);
    		} else {
    			alloc_hint = em->block_start;
    			free_extent_map(em);
    		}
    	}
    	read_unlock(&em_tree->lock);
    
    	return alloc_hint;
    }
    
    /*
     * when extent_io.c finds a delayed allocation range in the file,
     * the call backs end up in this code.  The basic idea is to
     * allocate extents on disk for the range, and create ordered data structs
     * in ram to track those extents.
     *
     * locked_page is the page that writepage had locked already.  We use
     * it to make sure we don't do extra locks or unlocks.
     *
     * *page_started is set to one if we unlock locked_page and do everything
     * required to start IO on it.  It may be clean and already done with
     * IO when we return.
     */
    static noinline int cow_file_range(struct inode *inode,
    				   struct page *locked_page,
    				   u64 start, u64 end, int *page_started,
    				   unsigned long *nr_written,
    				   int unlock)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	u64 alloc_hint = 0;
    	u64 num_bytes;
    	unsigned long ram_size;
    	u64 disk_num_bytes;
    	u64 cur_alloc_size;
    	u64 blocksize = root->sectorsize;
    	struct btrfs_key ins;
    	struct extent_map *em;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	int ret = 0;
    
    	BUG_ON(btrfs_is_free_space_inode(inode));
    
    	num_bytes = ALIGN(end - start + 1, blocksize);
    	num_bytes = max(blocksize,  num_bytes);
    	disk_num_bytes = num_bytes;
    
    	/* if this is a small write inside eof, kick off defrag */
    	if (num_bytes < 64 * 1024 &&
    	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
    		btrfs_add_inode_defrag(NULL, inode);
    
    	if (start == 0) {
    		/* lets try to make an inline extent */
    		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
    					    NULL);
    		if (ret == 0) {
    			extent_clear_unlock_delalloc(inode, start, end, NULL,
    				     EXTENT_LOCKED | EXTENT_DELALLOC |
    				     EXTENT_DEFRAG, PAGE_UNLOCK |
    				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
    				     PAGE_END_WRITEBACK);
    
    			*nr_written = *nr_written +
    			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
    			*page_started = 1;
    			goto out;
    		} else if (ret < 0) {
    			goto out_unlock;
    		}
    	}
    
    	BUG_ON(disk_num_bytes >
    	       btrfs_super_total_bytes(root->fs_info->super_copy));
    
    	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
    	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
    
    	while (disk_num_bytes > 0) {
    		unsigned long op;
    
    		cur_alloc_size = disk_num_bytes;
    		ret = btrfs_reserve_extent(root, cur_alloc_size,
    					   root->sectorsize, 0, alloc_hint,
    					   &ins, 1);
    		if (ret < 0)
    			goto out_unlock;
    
    		em = alloc_extent_map();
    		if (!em) {
    			ret = -ENOMEM;
    			goto out_reserve;
    		}
    		em->start = start;
    		em->orig_start = em->start;
    		ram_size = ins.offset;
    		em->len = ins.offset;
    		em->mod_start = em->start;
    		em->mod_len = em->len;
    
    		em->block_start = ins.objectid;
    		em->block_len = ins.offset;
    		em->orig_block_len = ins.offset;
    		em->ram_bytes = ram_size;
    		em->bdev = root->fs_info->fs_devices->latest_bdev;
    		set_bit(EXTENT_FLAG_PINNED, &em->flags);
    		em->generation = -1;
    
    		while (1) {
    			write_lock(&em_tree->lock);
    			ret = add_extent_mapping(em_tree, em, 1);
    			write_unlock(&em_tree->lock);
    			if (ret != -EEXIST) {
    				free_extent_map(em);
    				break;
    			}
    			btrfs_drop_extent_cache(inode, start,
    						start + ram_size - 1, 0);
    		}
    		if (ret)
    			goto out_reserve;
    
    		cur_alloc_size = ins.offset;
    		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
    					       ram_size, cur_alloc_size, 0);
    		if (ret)
    			goto out_reserve;
    
    		if (root->root_key.objectid ==
    		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
    			ret = btrfs_reloc_clone_csums(inode, start,
    						      cur_alloc_size);
    			if (ret)
    				goto out_reserve;
    		}
    
    		if (disk_num_bytes < cur_alloc_size)
    			break;
    
    		/* we're not doing compressed IO, don't unlock the first
    		 * page (which the caller expects to stay locked), don't
    		 * clear any dirty bits and don't set any writeback bits
    		 *
    		 * Do set the Private2 bit so we know this page was properly
    		 * setup for writepage
    		 */
    		op = unlock ? PAGE_UNLOCK : 0;
    		op |= PAGE_SET_PRIVATE2;
    
    		extent_clear_unlock_delalloc(inode, start,
    					     start + ram_size - 1, locked_page,
    					     EXTENT_LOCKED | EXTENT_DELALLOC,
    					     op);
    		disk_num_bytes -= cur_alloc_size;
    		num_bytes -= cur_alloc_size;
    		alloc_hint = ins.objectid + ins.offset;
    		start += cur_alloc_size;
    	}
    out:
    	return ret;
    
    out_reserve:
    	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
    out_unlock:
    	extent_clear_unlock_delalloc(inode, start, end, locked_page,
    				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
    				     EXTENT_DELALLOC | EXTENT_DEFRAG,
    				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
    				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
    	goto out;
    }
    
    /*
     * work queue call back to started compression on a file and pages
     */
    static noinline void async_cow_start(struct btrfs_work *work)
    {
    	struct async_cow *async_cow;
    	int num_added = 0;
    	async_cow = container_of(work, struct async_cow, work);
    
    	compress_file_range(async_cow->inode, async_cow->locked_page,
    			    async_cow->start, async_cow->end, async_cow,
    			    &num_added);
    	if (num_added == 0) {
    		btrfs_add_delayed_iput(async_cow->inode);
    		async_cow->inode = NULL;
    	}
    }
    
    /*
     * work queue call back to submit previously compressed pages
     */
    static noinline void async_cow_submit(struct btrfs_work *work)
    {
    	struct async_cow *async_cow;
    	struct btrfs_root *root;
    	unsigned long nr_pages;
    
    	async_cow = container_of(work, struct async_cow, work);
    
    	root = async_cow->root;
    	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
    		PAGE_CACHE_SHIFT;
    
    	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
    	    5 * 1024 * 1024 &&
    	    waitqueue_active(&root->fs_info->async_submit_wait))
    		wake_up(&root->fs_info->async_submit_wait);
    
    	if (async_cow->inode)
    		submit_compressed_extents(async_cow->inode, async_cow);
    }
    
    static noinline void async_cow_free(struct btrfs_work *work)
    {
    	struct async_cow *async_cow;
    	async_cow = container_of(work, struct async_cow, work);
    	if (async_cow->inode)
    		btrfs_add_delayed_iput(async_cow->inode);
    	kfree(async_cow);
    }
    
    static int cow_file_range_async(struct inode *inode, struct page *locked_page,
    				u64 start, u64 end, int *page_started,
    				unsigned long *nr_written)
    {
    	struct async_cow *async_cow;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	unsigned long nr_pages;
    	u64 cur_end;
    	int limit = 10 * 1024 * 1024;
    
    	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
    			 1, 0, NULL, GFP_NOFS);
    	while (start < end) {
    		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
    		BUG_ON(!async_cow); /* -ENOMEM */
    		async_cow->inode = igrab(inode);
    		async_cow->root = root;
    		async_cow->locked_page = locked_page;
    		async_cow->start = start;
    
    		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
    			cur_end = end;
    		else
    			cur_end = min(end, start + 512 * 1024 - 1);
    
    		async_cow->end = cur_end;
    		INIT_LIST_HEAD(&async_cow->extents);
    
    		async_cow->work.func = async_cow_start;
    		async_cow->work.ordered_func = async_cow_submit;
    		async_cow->work.ordered_free = async_cow_free;
    		async_cow->work.flags = 0;
    
    		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
    			PAGE_CACHE_SHIFT;
    		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
    
    		btrfs_queue_worker(&root->fs_info->delalloc_workers,
    				   &async_cow->work);
    
    		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
    			wait_event(root->fs_info->async_submit_wait,
    			   (atomic_read(&root->fs_info->async_delalloc_pages) <
    			    limit));
    		}
    
    		while (atomic_read(&root->fs_info->async_submit_draining) &&
    		      atomic_read(&root->fs_info->async_delalloc_pages)) {
    			wait_event(root->fs_info->async_submit_wait,
    			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
    			   0));
    		}
    
    		*nr_written += nr_pages;
    		start = cur_end + 1;
    	}
    	*page_started = 1;
    	return 0;
    }
    
    static noinline int csum_exist_in_range(struct btrfs_root *root,
    					u64 bytenr, u64 num_bytes)
    {
    	int ret;
    	struct btrfs_ordered_sum *sums;
    	LIST_HEAD(list);
    
    	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
    				       bytenr + num_bytes - 1, &list, 0);
    	if (ret == 0 && list_empty(&list))
    		return 0;
    
    	while (!list_empty(&list)) {
    		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
    		list_del(&sums->list);
    		kfree(sums);
    	}
    	return 1;
    }
    
    /*
     * when nowcow writeback call back.  This checks for snapshots or COW copies
     * of the extents that exist in the file, and COWs the file as required.
     *
     * If no cow copies or snapshots exist, we write directly to the existing
     * blocks on disk
     */
    static noinline int run_delalloc_nocow(struct inode *inode,
    				       struct page *locked_page,
    			      u64 start, u64 end, int *page_started, int force,
    			      unsigned long *nr_written)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	struct extent_buffer *leaf;
    	struct btrfs_path *path;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key found_key;
    	u64 cow_start;
    	u64 cur_offset;
    	u64 extent_end;
    	u64 extent_offset;
    	u64 disk_bytenr;
    	u64 num_bytes;
    	u64 disk_num_bytes;
    	u64 ram_bytes;
    	int extent_type;
    	int ret, err;
    	int type;
    	int nocow;
    	int check_prev = 1;
    	bool nolock;
    	u64 ino = btrfs_ino(inode);
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		extent_clear_unlock_delalloc(inode, start, end, locked_page,
    					     EXTENT_LOCKED | EXTENT_DELALLOC |
    					     EXTENT_DO_ACCOUNTING |
    					     EXTENT_DEFRAG, PAGE_UNLOCK |
    					     PAGE_CLEAR_DIRTY |
    					     PAGE_SET_WRITEBACK |
    					     PAGE_END_WRITEBACK);
    		return -ENOMEM;
    	}
    
    	nolock = btrfs_is_free_space_inode(inode);
    
    	if (nolock)
    		trans = btrfs_join_transaction_nolock(root);
    	else
    		trans = btrfs_join_transaction(root);
    
    	if (IS_ERR(trans)) {
    		extent_clear_unlock_delalloc(inode, start, end, locked_page,
    					     EXTENT_LOCKED | EXTENT_DELALLOC |
    					     EXTENT_DO_ACCOUNTING |
    					     EXTENT_DEFRAG, PAGE_UNLOCK |
    					     PAGE_CLEAR_DIRTY |
    					     PAGE_SET_WRITEBACK |
    					     PAGE_END_WRITEBACK);
    		btrfs_free_path(path);
    		return PTR_ERR(trans);
    	}
    
    	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
    
    	cow_start = (u64)-1;
    	cur_offset = start;
    	while (1) {
    		ret = btrfs_lookup_file_extent(trans, root, path, ino,
    					       cur_offset, 0);
    		if (ret < 0) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto error;
    		}
    		if (ret > 0 && path->slots[0] > 0 && check_prev) {
    			leaf = path->nodes[0];
    			btrfs_item_key_to_cpu(leaf, &found_key,
    					      path->slots[0] - 1);
    			if (found_key.objectid == ino &&
    			    found_key.type == BTRFS_EXTENT_DATA_KEY)
    				path->slots[0]--;
    		}
    		check_prev = 0;
    next_slot:
    		leaf = path->nodes[0];
    		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0) {
    				btrfs_abort_transaction(trans, root, ret);
    				goto error;
    			}
    			if (ret > 0)
    				break;
    			leaf = path->nodes[0];
    		}
    
    		nocow = 0;
    		disk_bytenr = 0;
    		num_bytes = 0;
    		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    
    		if (found_key.objectid > ino ||
    		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
    		    found_key.offset > end)
    			break;
    
    		if (found_key.offset > cur_offset) {
    			extent_end = found_key.offset;
    			extent_type = 0;
    			goto out_check;
    		}
    
    		fi = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_file_extent_item);
    		extent_type = btrfs_file_extent_type(leaf, fi);
    
    		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
    		if (extent_type == BTRFS_FILE_EXTENT_REG ||
    		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
    			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
    			extent_offset = btrfs_file_extent_offset(leaf, fi);
    			extent_end = found_key.offset +
    				btrfs_file_extent_num_bytes(leaf, fi);
    			disk_num_bytes =
    				btrfs_file_extent_disk_num_bytes(leaf, fi);
    			if (extent_end <= start) {
    				path->slots[0]++;
    				goto next_slot;
    			}
    			if (disk_bytenr == 0)
    				goto out_check;
    			if (btrfs_file_extent_compression(leaf, fi) ||
    			    btrfs_file_extent_encryption(leaf, fi) ||
    			    btrfs_file_extent_other_encoding(leaf, fi))
    				goto out_check;
    			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
    				goto out_check;
    			if (btrfs_extent_readonly(root, disk_bytenr))
    				goto out_check;
    			if (btrfs_cross_ref_exist(trans, root, ino,
    						  found_key.offset -
    						  extent_offset, disk_bytenr))
    				goto out_check;
    			disk_bytenr += extent_offset;
    			disk_bytenr += cur_offset - found_key.offset;
    			num_bytes = min(end + 1, extent_end) - cur_offset;
    			/*
    			 * force cow if csum exists in the range.
    			 * this ensure that csum for a given extent are
    			 * either valid or do not exist.
    			 */
    			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
    				goto out_check;
    			nocow = 1;
    		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
    			extent_end = found_key.offset +
    				btrfs_file_extent_inline_len(leaf, fi);
    			extent_end = ALIGN(extent_end, root->sectorsize);
    		} else {
    			BUG_ON(1);
    		}
    out_check:
    		if (extent_end <= start) {
    			path->slots[0]++;
    			goto next_slot;
    		}
    		if (!nocow) {
    			if (cow_start == (u64)-1)
    				cow_start = cur_offset;
    			cur_offset = extent_end;
    			if (cur_offset > end)
    				break;
    			path->slots[0]++;
    			goto next_slot;
    		}
    
    		btrfs_release_path(path);
    		if (cow_start != (u64)-1) {
    			ret = cow_file_range(inode, locked_page,
    					     cow_start, found_key.offset - 1,
    					     page_started, nr_written, 1);
    			if (ret) {
    				btrfs_abort_transaction(trans, root, ret);
    				goto error;
    			}
    			cow_start = (u64)-1;
    		}
    
    		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
    			struct extent_map *em;
    			struct extent_map_tree *em_tree;
    			em_tree = &BTRFS_I(inode)->extent_tree;
    			em = alloc_extent_map();
    			BUG_ON(!em); /* -ENOMEM */
    			em->start = cur_offset;
    			em->orig_start = found_key.offset - extent_offset;
    			em->len = num_bytes;
    			em->block_len = num_bytes;
    			em->block_start = disk_bytenr;
    			em->orig_block_len = disk_num_bytes;
    			em->ram_bytes = ram_bytes;
    			em->bdev = root->fs_info->fs_devices->latest_bdev;
    			em->mod_start = em->start;
    			em->mod_len = em->len;
    			set_bit(EXTENT_FLAG_PINNED, &em->flags);
    			set_bit(EXTENT_FLAG_FILLING, &em->flags);
    			em->generation = -1;
    			while (1) {
    				write_lock(&em_tree->lock);
    				ret = add_extent_mapping(em_tree, em, 1);
    				write_unlock(&em_tree->lock);
    				if (ret != -EEXIST) {
    					free_extent_map(em);
    					break;
    				}
    				btrfs_drop_extent_cache(inode, em->start,
    						em->start + em->len - 1, 0);
    			}
    			type = BTRFS_ORDERED_PREALLOC;
    		} else {
    			type = BTRFS_ORDERED_NOCOW;
    		}
    
    		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
    					       num_bytes, num_bytes, type);
    		BUG_ON(ret); /* -ENOMEM */
    
    		if (root->root_key.objectid ==
    		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
    			ret = btrfs_reloc_clone_csums(inode, cur_offset,
    						      num_bytes);
    			if (ret) {
    				btrfs_abort_transaction(trans, root, ret);
    				goto error;
    			}
    		}
    
    		extent_clear_unlock_delalloc(inode, cur_offset,
    					     cur_offset + num_bytes - 1,
    					     locked_page, EXTENT_LOCKED |
    					     EXTENT_DELALLOC, PAGE_UNLOCK |
    					     PAGE_SET_PRIVATE2);
    		cur_offset = extent_end;
    		if (cur_offset > end)
    			break;
    	}
    	btrfs_release_path(path);
    
    	if (cur_offset <= end && cow_start == (u64)-1) {
    		cow_start = cur_offset;
    		cur_offset = end;
    	}
    
    	if (cow_start != (u64)-1) {
    		ret = cow_file_range(inode, locked_page, cow_start, end,
    				     page_started, nr_written, 1);
    		if (ret) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto error;
    		}
    	}
    
    error:
    	err = btrfs_end_transaction(trans, root);
    	if (!ret)
    		ret = err;
    
    	if (ret && cur_offset < end)
    		extent_clear_unlock_delalloc(inode, cur_offset, end,
    					     locked_page, EXTENT_LOCKED |
    					     EXTENT_DELALLOC | EXTENT_DEFRAG |
    					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
    					     PAGE_CLEAR_DIRTY |
    					     PAGE_SET_WRITEBACK |
    					     PAGE_END_WRITEBACK);
    	btrfs_free_path(path);
    	return ret;
    }
    
    /*
     * extent_io.c call back to do delayed allocation processing
     */
    static int run_delalloc_range(struct inode *inode, struct page *locked_page,
    			      u64 start, u64 end, int *page_started,
    			      unsigned long *nr_written)
    {
    	int ret;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    
    	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
    		ret = run_delalloc_nocow(inode, locked_page, start, end,
    					 page_started, 1, nr_written);
    	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
    		ret = run_delalloc_nocow(inode, locked_page, start, end,
    					 page_started, 0, nr_written);
    	} else if (!btrfs_test_opt(root, COMPRESS) &&
    		   !(BTRFS_I(inode)->force_compress) &&
    		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
    		ret = cow_file_range(inode, locked_page, start, end,
    				      page_started, nr_written, 1);
    	} else {
    		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
    			&BTRFS_I(inode)->runtime_flags);
    		ret = cow_file_range_async(inode, locked_page, start, end,
    					   page_started, nr_written);
    	}
    	return ret;
    }
    
    static void btrfs_split_extent_hook(struct inode *inode,
    				    struct extent_state *orig, u64 split)
    {
    	/* not delalloc, ignore it */
    	if (!(orig->state & EXTENT_DELALLOC))
    		return;
    
    	spin_lock(&BTRFS_I(inode)->lock);
    	BTRFS_I(inode)->outstanding_extents++;
    	spin_unlock(&BTRFS_I(inode)->lock);
    }
    
    /*
     * extent_io.c merge_extent_hook, used to track merged delayed allocation
     * extents so we can keep track of new extents that are just merged onto old
     * extents, such as when we are doing sequential writes, so we can properly
     * account for the metadata space we'll need.
     */
    static void btrfs_merge_extent_hook(struct inode *inode,
    				    struct extent_state *new,
    				    struct extent_state *other)
    {
    	/* not delalloc, ignore it */
    	if (!(other->state & EXTENT_DELALLOC))
    		return;
    
    	spin_lock(&BTRFS_I(inode)->lock);
    	BTRFS_I(inode)->outstanding_extents--;
    	spin_unlock(&BTRFS_I(inode)->lock);
    }
    
    static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
    				      struct inode *inode)
    {
    	spin_lock(&root->delalloc_lock);
    	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
    		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
    			      &root->delalloc_inodes);
    		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
    			&BTRFS_I(inode)->runtime_flags);
    		root->nr_delalloc_inodes++;
    		if (root->nr_delalloc_inodes == 1) {
    			spin_lock(&root->fs_info->delalloc_root_lock);
    			BUG_ON(!list_empty(&root->delalloc_root));
    			list_add_tail(&root->delalloc_root,
    				      &root->fs_info->delalloc_roots);
    			spin_unlock(&root->fs_info->delalloc_root_lock);
    		}
    	}
    	spin_unlock(&root->delalloc_lock);
    }
    
    static void btrfs_del_delalloc_inode(struct btrfs_root *root,
    				     struct inode *inode)
    {
    	spin_lock(&root->delalloc_lock);
    	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
    		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
    		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
    			  &BTRFS_I(inode)->runtime_flags);
    		root->nr_delalloc_inodes--;
    		if (!root->nr_delalloc_inodes) {
    			spin_lock(&root->fs_info->delalloc_root_lock);
    			BUG_ON(list_empty(&root->delalloc_root));
    			list_del_init(&root->delalloc_root);
    			spin_unlock(&root->fs_info->delalloc_root_lock);
    		}
    	}
    	spin_unlock(&root->delalloc_lock);
    }
    
    /*
     * extent_io.c set_bit_hook, used to track delayed allocation
     * bytes in this file, and to maintain the list of inodes that
     * have pending delalloc work to be done.
     */
    static void btrfs_set_bit_hook(struct inode *inode,
    			       struct extent_state *state, unsigned long *bits)
    {
    
    	/*
    	 * set_bit and clear bit hooks normally require _irqsave/restore
    	 * but in this case, we are only testing for the DELALLOC
    	 * bit, which is only set or cleared with irqs on
    	 */
    	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
    		struct btrfs_root *root = BTRFS_I(inode)->root;
    		u64 len = state->end + 1 - state->start;
    		bool do_list = !btrfs_is_free_space_inode(inode);
    
    		if (*bits & EXTENT_FIRST_DELALLOC) {
    			*bits &= ~EXTENT_FIRST_DELALLOC;
    		} else {
    			spin_lock(&BTRFS_I(inode)->lock);
    			BTRFS_I(inode)->outstanding_extents++;
    			spin_unlock(&BTRFS_I(inode)->lock);
    		}
    
    		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
    				     root->fs_info->delalloc_batch);
    		spin_lock(&BTRFS_I(inode)->lock);
    		BTRFS_I(inode)->delalloc_bytes += len;
    		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
    					 &BTRFS_I(inode)->runtime_flags))
    			btrfs_add_delalloc_inodes(root, inode);
    		spin_unlock(&BTRFS_I(inode)->lock);
    	}
    }
    
    /*
     * extent_io.c clear_bit_hook, see set_bit_hook for why
     */
    static void btrfs_clear_bit_hook(struct inode *inode,
    				 struct extent_state *state,
    				 unsigned long *bits)
    {
    	/*
    	 * set_bit and clear bit hooks normally require _irqsave/restore
    	 * but in this case, we are only testing for the DELALLOC
    	 * bit, which is only set or cleared with irqs on
    	 */
    	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
    		struct btrfs_root *root = BTRFS_I(inode)->root;
    		u64 len = state->end + 1 - state->start;
    		bool do_list = !btrfs_is_free_space_inode(inode);
    
    		if (*bits & EXTENT_FIRST_DELALLOC) {
    			*bits &= ~EXTENT_FIRST_DELALLOC;
    		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
    			spin_lock(&BTRFS_I(inode)->lock);
    			BTRFS_I(inode)->outstanding_extents--;
    			spin_unlock(&BTRFS_I(inode)->lock);
    		}
    
    		if (*bits & EXTENT_DO_ACCOUNTING)
    			btrfs_delalloc_release_metadata(inode, len);
    
    		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
    		    && do_list && !(state->state & EXTENT_NORESERVE))
    			btrfs_free_reserved_data_space(inode, len);
    
    		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
    				     root->fs_info->delalloc_batch);
    		spin_lock(&BTRFS_I(inode)->lock);
    		BTRFS_I(inode)->delalloc_bytes -= len;
    		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
    		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
    			     &BTRFS_I(inode)->runtime_flags))
    			btrfs_del_delalloc_inode(root, inode);
    		spin_unlock(&BTRFS_I(inode)->lock);
    	}
    }
    
    /*
     * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
     * we don't create bios that span stripes or chunks
     */
    int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
    			 size_t size, struct bio *bio,
    			 unsigned long bio_flags)
    {
    	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
    	u64 logical = (u64)bio->bi_sector << 9;
    	u64 length = 0;
    	u64 map_length;
    	int ret;
    
    	if (bio_flags & EXTENT_BIO_COMPRESSED)
    		return 0;
    
    	length = bio->bi_size;
    	map_length = length;
    	ret = btrfs_map_block(root->fs_info, rw, logical,
    			      &map_length, NULL, 0);
    	/* Will always return 0 with map_multi == NULL */
    	BUG_ON(ret < 0);
    	if (map_length < length + size)
    		return 1;
    	return 0;
    }
    
    /*
     * in order to insert checksums into the metadata in large chunks,
     * we wait until bio submission time.   All the pages in the bio are
     * checksummed and sums are attached onto the ordered extent record.
     *
     * At IO completion time the cums attached on the ordered extent record
     * are inserted into the btree
     */
    static int __btrfs_submit_bio_start(struct inode *inode, int rw,
    				    struct bio *bio, int mirror_num,
    				    unsigned long bio_flags,
    				    u64 bio_offset)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret = 0;
    
    	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
    	BUG_ON(ret); /* -ENOMEM */
    	return 0;
    }
    
    /*
     * in order to insert checksums into the metadata in large chunks,
     * we wait until bio submission time.   All the pages in the bio are
     * checksummed and sums are attached onto the ordered extent record.
     *
     * At IO completion time the cums attached on the ordered extent record
     * are inserted into the btree
     */
    static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
    			  int mirror_num, unsigned long bio_flags,
    			  u64 bio_offset)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret;
    
    	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
    	if (ret)
    		bio_endio(bio, ret);
    	return ret;
    }
    
    /*
     * extent_io.c submission hook. This does the right thing for csum calculation
     * on write, or reading the csums from the tree before a read
     */
    static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
    			  int mirror_num, unsigned long bio_flags,
    			  u64 bio_offset)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret = 0;
    	int skip_sum;
    	int metadata = 0;
    	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
    
    	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
    
    	if (btrfs_is_free_space_inode(inode))
    		metadata = 2;
    
    	if (!(rw & REQ_WRITE)) {
    		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
    		if (ret)
    			goto out;
    
    		if (bio_flags & EXTENT_BIO_COMPRESSED) {
    			ret = btrfs_submit_compressed_read(inode, bio,
    							   mirror_num,
    							   bio_flags);
    			goto out;
    		} else if (!skip_sum) {
    			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
    			if (ret)
    				goto out;
    		}
    		goto mapit;
    	} else if (async && !skip_sum) {
    		/* csum items have already been cloned */
    		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
    			goto mapit;
    		/* we're doing a write, do the async checksumming */
    		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
    				   inode, rw, bio, mirror_num,
    				   bio_flags, bio_offset,
    				   __btrfs_submit_bio_start,
    				   __btrfs_submit_bio_done);
    		goto out;
    	} else if (!skip_sum) {
    		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
    		if (ret)
    			goto out;
    	}
    
    mapit:
    	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
    
    out:
    	if (ret < 0)
    		bio_endio(bio, ret);
    	return ret;
    }
    
    /*
     * given a list of ordered sums record them in the inode.  This happens
     * at IO completion time based on sums calculated at bio submission time.
     */
    static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
    			     struct inode *inode, u64 file_offset,
    			     struct list_head *list)
    {
    	struct btrfs_ordered_sum *sum;
    
    	list_for_each_entry(sum, list, list) {
    		trans->adding_csums = 1;
    		btrfs_csum_file_blocks(trans,
    		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
    		trans->adding_csums = 0;
    	}
    	return 0;
    }
    
    int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
    			      struct extent_state **cached_state)
    {
    	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
    	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
    				   cached_state, GFP_NOFS);
    }
    
    /* see btrfs_writepage_start_hook for details on why this is required */
    struct btrfs_writepage_fixup {
    	struct page *page;
    	struct btrfs_work work;
    };
    
    static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
    {
    	struct btrfs_writepage_fixup *fixup;
    	struct btrfs_ordered_extent *ordered;
    	struct extent_state *cached_state = NULL;
    	struct page *page;
    	struct inode *inode;
    	u64 page_start;
    	u64 page_end;
    	int ret;
    
    	fixup = container_of(work, struct btrfs_writepage_fixup, work);
    	page = fixup->page;
    again:
    	lock_page(page);
    	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
    		ClearPageChecked(page);
    		goto out_page;
    	}
    
    	inode = page->mapping->host;
    	page_start = page_offset(page);
    	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
    
    	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
    			 &cached_state);
    
    	/* already ordered? We're done */
    	if (PagePrivate2(page))
    		goto out;
    
    	ordered = btrfs_lookup_ordered_extent(inode, page_start);
    	if (ordered) {
    		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
    				     page_end, &cached_state, GFP_NOFS);
    		unlock_page(page);
    		btrfs_start_ordered_extent(inode, ordered, 1);
    		btrfs_put_ordered_extent(ordered);
    		goto again;
    	}
    
    	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
    	if (ret) {
    		mapping_set_error(page->mapping, ret);
    		end_extent_writepage(page, ret, page_start, page_end);
    		ClearPageChecked(page);
    		goto out;
    	 }
    
    	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
    	ClearPageChecked(page);
    	set_page_dirty(page);
    out:
    	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
    			     &cached_state, GFP_NOFS);
    out_page:
    	unlock_page(page);
    	page_cache_release(page);
    	kfree(fixup);
    }
    
    /*
     * There are a few paths in the higher layers of the kernel that directly
     * set the page dirty bit without asking the filesystem if it is a
     * good idea.  This causes problems because we want to make sure COW
     * properly happens and the data=ordered rules are followed.
     *
     * In our case any range that doesn't have the ORDERED bit set
     * hasn't been properly setup for IO.  We kick off an async process
     * to fix it up.  The async helper will wait for ordered extents, set
     * the delalloc bit and make it safe to write the page.
     */
    static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
    {
    	struct inode *inode = page->mapping->host;
    	struct btrfs_writepage_fixup *fixup;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    
    	/* this page is properly in the ordered list */
    	if (TestClearPagePrivate2(page))
    		return 0;
    
    	if (PageChecked(page))
    		return -EAGAIN;
    
    	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
    	if (!fixup)
    		return -EAGAIN;
    
    	SetPageChecked(page);
    	page_cache_get(page);
    	fixup->work.func = btrfs_writepage_fixup_worker;
    	fixup->page = page;
    	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
    	return -EBUSY;
    }
    
    static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
    				       struct inode *inode, u64 file_pos,
    				       u64 disk_bytenr, u64 disk_num_bytes,
    				       u64 num_bytes, u64 ram_bytes,
    				       u8 compression, u8 encryption,
    				       u16 other_encoding, int extent_type)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct btrfs_key ins;
    	int ret;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	path->leave_spinning = 1;
    
    	/*
    	 * we may be replacing one extent in the tree with another.
    	 * The new extent is pinned in the extent map, and we don't want
    	 * to drop it from the cache until it is completely in the btree.
    	 *
    	 * So, tell btrfs_drop_extents to leave this extent in the cache.
    	 * the caller is expected to unpin it and allow it to be merged
    	 * with the others.
    	 */
    	ret = btrfs_drop_extents(trans, root, inode, file_pos,
    				 file_pos + num_bytes, 0);
    	if (ret)
    		goto out;
    
    	ins.objectid = btrfs_ino(inode);
    	ins.offset = file_pos;
    	ins.type = BTRFS_EXTENT_DATA_KEY;
    	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
    	if (ret)
    		goto out;
    	leaf = path->nodes[0];
    	fi = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
    	btrfs_set_file_extent_type(leaf, fi, extent_type);
    	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
    	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
    	btrfs_set_file_extent_offset(leaf, fi, 0);
    	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
    	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
    	btrfs_set_file_extent_compression(leaf, fi, compression);
    	btrfs_set_file_extent_encryption(leaf, fi, encryption);
    	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
    
    	btrfs_mark_buffer_dirty(leaf);
    	btrfs_release_path(path);
    
    	inode_add_bytes(inode, num_bytes);
    
    	ins.objectid = disk_bytenr;
    	ins.offset = disk_num_bytes;
    	ins.type = BTRFS_EXTENT_ITEM_KEY;
    	ret = btrfs_alloc_reserved_file_extent(trans, root,
    					root->root_key.objectid,
    					btrfs_ino(inode), file_pos, &ins);
    out:
    	btrfs_free_path(path);
    
    	return ret;
    }
    
    /* snapshot-aware defrag */
    struct sa_defrag_extent_backref {
    	struct rb_node node;
    	struct old_sa_defrag_extent *old;
    	u64 root_id;
    	u64 inum;
    	u64 file_pos;
    	u64 extent_offset;
    	u64 num_bytes;
    	u64 generation;
    };
    
    struct old_sa_defrag_extent {
    	struct list_head list;
    	struct new_sa_defrag_extent *new;
    
    	u64 extent_offset;
    	u64 bytenr;
    	u64 offset;
    	u64 len;
    	int count;
    };
    
    struct new_sa_defrag_extent {
    	struct rb_root root;
    	struct list_head head;
    	struct btrfs_path *path;
    	struct inode *inode;
    	u64 file_pos;
    	u64 len;
    	u64 bytenr;
    	u64 disk_len;
    	u8 compress_type;
    };
    
    static int backref_comp(struct sa_defrag_extent_backref *b1,
    			struct sa_defrag_extent_backref *b2)
    {
    	if (b1->root_id < b2->root_id)
    		return -1;
    	else if (b1->root_id > b2->root_id)
    		return 1;
    
    	if (b1->inum < b2->inum)
    		return -1;
    	else if (b1->inum > b2->inum)
    		return 1;
    
    	if (b1->file_pos < b2->file_pos)
    		return -1;
    	else if (b1->file_pos > b2->file_pos)
    		return 1;
    
    	/*
    	 * [------------------------------] ===> (a range of space)
    	 *     |<--->|   |<---->| =============> (fs/file tree A)
    	 * |<---------------------------->| ===> (fs/file tree B)
    	 *
    	 * A range of space can refer to two file extents in one tree while
    	 * refer to only one file extent in another tree.
    	 *
    	 * So we may process a disk offset more than one time(two extents in A)
    	 * and locate at the same extent(one extent in B), then insert two same
    	 * backrefs(both refer to the extent in B).
    	 */
    	return 0;
    }
    
    static void backref_insert(struct rb_root *root,
    			   struct sa_defrag_extent_backref *backref)
    {
    	struct rb_node **p = &root->rb_node;
    	struct rb_node *parent = NULL;
    	struct sa_defrag_extent_backref *entry;
    	int ret;
    
    	while (*p) {
    		parent = *p;
    		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
    
    		ret = backref_comp(backref, entry);
    		if (ret < 0)
    			p = &(*p)->rb_left;
    		else
    			p = &(*p)->rb_right;
    	}
    
    	rb_link_node(&backref->node, parent, p);
    	rb_insert_color(&backref->node, root);
    }
    
    /*
     * Note the backref might has changed, and in this case we just return 0.
     */
    static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
    				       void *ctx)
    {
    	struct btrfs_file_extent_item *extent;
    	struct btrfs_fs_info *fs_info;
    	struct old_sa_defrag_extent *old = ctx;
    	struct new_sa_defrag_extent *new = old->new;
    	struct btrfs_path *path = new->path;
    	struct btrfs_key key;
    	struct btrfs_root *root;
    	struct sa_defrag_extent_backref *backref;
    	struct extent_buffer *leaf;
    	struct inode *inode = new->inode;
    	int slot;
    	int ret;
    	u64 extent_offset;
    	u64 num_bytes;
    
    	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
    	    inum == btrfs_ino(inode))
    		return 0;
    
    	key.objectid = root_id;
    	key.type = BTRFS_ROOT_ITEM_KEY;
    	key.offset = (u64)-1;
    
    	fs_info = BTRFS_I(inode)->root->fs_info;
    	root = btrfs_read_fs_root_no_name(fs_info, &key);
    	if (IS_ERR(root)) {
    		if (PTR_ERR(root) == -ENOENT)
    			return 0;
    		WARN_ON(1);
    		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
    			 inum, offset, root_id);
    		return PTR_ERR(root);
    	}
    
    	key.objectid = inum;
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	if (offset > (u64)-1 << 32)
    		key.offset = 0;
    	else
    		key.offset = offset;
    
    	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    	if (ret < 0) {
    		WARN_ON(1);
    		return ret;
    	}
    	ret = 0;
    
    	while (1) {
    		cond_resched();
    
    		leaf = path->nodes[0];
    		slot = path->slots[0];
    
    		if (slot >= btrfs_header_nritems(leaf)) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0) {
    				goto out;
    			} else if (ret > 0) {
    				ret = 0;
    				goto out;
    			}
    			continue;
    		}
    
    		path->slots[0]++;
    
    		btrfs_item_key_to_cpu(leaf, &key, slot);
    
    		if (key.objectid > inum)
    			goto out;
    
    		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
    			continue;
    
    		extent = btrfs_item_ptr(leaf, slot,
    					struct btrfs_file_extent_item);
    
    		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
    			continue;
    
    		/*
    		 * 'offset' refers to the exact key.offset,
    		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
    		 * (key.offset - extent_offset).
    		 */
    		if (key.offset != offset)
    			continue;
    
    		extent_offset = btrfs_file_extent_offset(leaf, extent);
    		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
    
    		if (extent_offset >= old->extent_offset + old->offset +
    		    old->len || extent_offset + num_bytes <=
    		    old->extent_offset + old->offset)
    			continue;
    		break;
    	}
    
    	backref = kmalloc(sizeof(*backref), GFP_NOFS);
    	if (!backref) {
    		ret = -ENOENT;
    		goto out;
    	}
    
    	backref->root_id = root_id;
    	backref->inum = inum;
    	backref->file_pos = offset;
    	backref->num_bytes = num_bytes;
    	backref->extent_offset = extent_offset;
    	backref->generation = btrfs_file_extent_generation(leaf, extent);
    	backref->old = old;
    	backref_insert(&new->root, backref);
    	old->count++;
    out:
    	btrfs_release_path(path);
    	WARN_ON(ret);
    	return ret;
    }
    
    static noinline bool record_extent_backrefs(struct btrfs_path *path,
    				   struct new_sa_defrag_extent *new)
    {
    	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
    	struct old_sa_defrag_extent *old, *tmp;
    	int ret;
    
    	new->path = path;
    
    	list_for_each_entry_safe(old, tmp, &new->head, list) {
    		ret = iterate_inodes_from_logical(old->bytenr +
    						  old->extent_offset, fs_info,
    						  path, record_one_backref,
    						  old);
    		BUG_ON(ret < 0 && ret != -ENOENT);
    
    		/* no backref to be processed for this extent */
    		if (!old->count) {
    			list_del(&old->list);
    			kfree(old);
    		}
    	}
    
    	if (list_empty(&new->head))
    		return false;
    
    	return true;
    }
    
    static int relink_is_mergable(struct extent_buffer *leaf,
    			      struct btrfs_file_extent_item *fi,
    			      struct new_sa_defrag_extent *new)
    {
    	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
    		return 0;
    
    	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
    		return 0;
    
    	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
    		return 0;
    
    	if (btrfs_file_extent_encryption(leaf, fi) ||
    	    btrfs_file_extent_other_encoding(leaf, fi))
    		return 0;
    
    	return 1;
    }
    
    /*
     * Note the backref might has changed, and in this case we just return 0.
     */
    static noinline int relink_extent_backref(struct btrfs_path *path,
    				 struct sa_defrag_extent_backref *prev,
    				 struct sa_defrag_extent_backref *backref)
    {
    	struct btrfs_file_extent_item *extent;
    	struct btrfs_file_extent_item *item;
    	struct btrfs_ordered_extent *ordered;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_fs_info *fs_info;
    	struct btrfs_root *root;
    	struct btrfs_key key;
    	struct extent_buffer *leaf;
    	struct old_sa_defrag_extent *old = backref->old;
    	struct new_sa_defrag_extent *new = old->new;
    	struct inode *src_inode = new->inode;
    	struct inode *inode;
    	struct extent_state *cached = NULL;
    	int ret = 0;
    	u64 start;
    	u64 len;
    	u64 lock_start;
    	u64 lock_end;
    	bool merge = false;
    	int index;
    
    	if (prev && prev->root_id == backref->root_id &&
    	    prev->inum == backref->inum &&
    	    prev->file_pos + prev->num_bytes == backref->file_pos)
    		merge = true;
    
    	/* step 1: get root */
    	key.objectid = backref->root_id;
    	key.type = BTRFS_ROOT_ITEM_KEY;
    	key.offset = (u64)-1;
    
    	fs_info = BTRFS_I(src_inode)->root->fs_info;
    	index = srcu_read_lock(&fs_info->subvol_srcu);
    
    	root = btrfs_read_fs_root_no_name(fs_info, &key);
    	if (IS_ERR(root)) {
    		srcu_read_unlock(&fs_info->subvol_srcu, index);
    		if (PTR_ERR(root) == -ENOENT)
    			return 0;
    		return PTR_ERR(root);
    	}
    
    	/* step 2: get inode */
    	key.objectid = backref->inum;
    	key.type = BTRFS_INODE_ITEM_KEY;
    	key.offset = 0;
    
    	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
    	if (IS_ERR(inode)) {
    		srcu_read_unlock(&fs_info->subvol_srcu, index);
    		return 0;
    	}
    
    	srcu_read_unlock(&fs_info->subvol_srcu, index);
    
    	/* step 3: relink backref */
    	lock_start = backref->file_pos;
    	lock_end = backref->file_pos + backref->num_bytes - 1;
    	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
    			 0, &cached);
    
    	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
    	if (ordered) {
    		btrfs_put_ordered_extent(ordered);
    		goto out_unlock;
    	}
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out_unlock;
    	}
    
    	key.objectid = backref->inum;
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	key.offset = backref->file_pos;
    
    	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    	if (ret < 0) {
    		goto out_free_path;
    	} else if (ret > 0) {
    		ret = 0;
    		goto out_free_path;
    	}
    
    	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
    				struct btrfs_file_extent_item);
    
    	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
    	    backref->generation)
    		goto out_free_path;
    
    	btrfs_release_path(path);
    
    	start = backref->file_pos;
    	if (backref->extent_offset < old->extent_offset + old->offset)
    		start += old->extent_offset + old->offset -
    			 backref->extent_offset;
    
    	len = min(backref->extent_offset + backref->num_bytes,
    		  old->extent_offset + old->offset + old->len);
    	len -= max(backref->extent_offset, old->extent_offset + old->offset);
    
    	ret = btrfs_drop_extents(trans, root, inode, start,
    				 start + len, 1);
    	if (ret)
    		goto out_free_path;
    again:
    	key.objectid = btrfs_ino(inode);
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	key.offset = start;
    
    	path->leave_spinning = 1;
    	if (merge) {
    		struct btrfs_file_extent_item *fi;
    		u64 extent_len;
    		struct btrfs_key found_key;
    
    		ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
    		if (ret < 0)
    			goto out_free_path;
    
    		path->slots[0]--;
    		leaf = path->nodes[0];
    		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    
    		fi = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_file_extent_item);
    		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
    
    		if (extent_len + found_key.offset == start &&
    		    relink_is_mergable(leaf, fi, new)) {
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							extent_len + len);
    			btrfs_mark_buffer_dirty(leaf);
    			inode_add_bytes(inode, len);
    
    			ret = 1;
    			goto out_free_path;
    		} else {
    			merge = false;
    			btrfs_release_path(path);
    			goto again;
    		}
    	}
    
    	ret = btrfs_insert_empty_item(trans, root, path, &key,
    					sizeof(*extent));
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_free_path;
    	}
    
    	leaf = path->nodes[0];
    	item = btrfs_item_ptr(leaf, path->slots[0],
    				struct btrfs_file_extent_item);
    	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
    	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
    	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
    	btrfs_set_file_extent_num_bytes(leaf, item, len);
    	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
    	btrfs_set_file_extent_generation(leaf, item, trans->transid);
    	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
    	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
    	btrfs_set_file_extent_encryption(leaf, item, 0);
    	btrfs_set_file_extent_other_encoding(leaf, item, 0);
    
    	btrfs_mark_buffer_dirty(leaf);
    	inode_add_bytes(inode, len);
    	btrfs_release_path(path);
    
    	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
    			new->disk_len, 0,
    			backref->root_id, backref->inum,
    			new->file_pos, 0);	/* start - extent_offset */
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_free_path;
    	}
    
    	ret = 1;
    out_free_path:
    	btrfs_release_path(path);
    	path->leave_spinning = 0;
    	btrfs_end_transaction(trans, root);
    out_unlock:
    	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
    			     &cached, GFP_NOFS);
    	iput(inode);
    	return ret;
    }
    
    static void relink_file_extents(struct new_sa_defrag_extent *new)
    {
    	struct btrfs_path *path;
    	struct old_sa_defrag_extent *old, *tmp;
    	struct sa_defrag_extent_backref *backref;
    	struct sa_defrag_extent_backref *prev = NULL;
    	struct inode *inode;
    	struct btrfs_root *root;
    	struct rb_node *node;
    	int ret;
    
    	inode = new->inode;
    	root = BTRFS_I(inode)->root;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return;
    
    	if (!record_extent_backrefs(path, new)) {
    		btrfs_free_path(path);
    		goto out;
    	}
    	btrfs_release_path(path);
    
    	while (1) {
    		node = rb_first(&new->root);
    		if (!node)
    			break;
    		rb_erase(node, &new->root);
    
    		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
    
    		ret = relink_extent_backref(path, prev, backref);
    		WARN_ON(ret < 0);
    
    		kfree(prev);
    
    		if (ret == 1)
    			prev = backref;
    		else
    			prev = NULL;
    		cond_resched();
    	}
    	kfree(prev);
    
    	btrfs_free_path(path);
    
    	list_for_each_entry_safe(old, tmp, &new->head, list) {
    		list_del(&old->list);
    		kfree(old);
    	}
    out:
    	atomic_dec(&root->fs_info->defrag_running);
    	wake_up(&root->fs_info->transaction_wait);
    
    	kfree(new);
    }
    
    static struct new_sa_defrag_extent *
    record_old_file_extents(struct inode *inode,
    			struct btrfs_ordered_extent *ordered)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_path *path;
    	struct btrfs_key key;
    	struct old_sa_defrag_extent *old, *tmp;
    	struct new_sa_defrag_extent *new;
    	int ret;
    
    	new = kmalloc(sizeof(*new), GFP_NOFS);
    	if (!new)
    		return NULL;
    
    	new->inode = inode;
    	new->file_pos = ordered->file_offset;
    	new->len = ordered->len;
    	new->bytenr = ordered->start;
    	new->disk_len = ordered->disk_len;
    	new->compress_type = ordered->compress_type;
    	new->root = RB_ROOT;
    	INIT_LIST_HEAD(&new->head);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		goto out_kfree;
    
    	key.objectid = btrfs_ino(inode);
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	key.offset = new->file_pos;
    
    	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    	if (ret < 0)
    		goto out_free_path;
    	if (ret > 0 && path->slots[0] > 0)
    		path->slots[0]--;
    
    	/* find out all the old extents for the file range */
    	while (1) {
    		struct btrfs_file_extent_item *extent;
    		struct extent_buffer *l;
    		int slot;
    		u64 num_bytes;
    		u64 offset;
    		u64 end;
    		u64 disk_bytenr;
    		u64 extent_offset;
    
    		l = path->nodes[0];
    		slot = path->slots[0];
    
    		if (slot >= btrfs_header_nritems(l)) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0)
    				goto out_free_list;
    			else if (ret > 0)
    				break;
    			continue;
    		}
    
    		btrfs_item_key_to_cpu(l, &key, slot);
    
    		if (key.objectid != btrfs_ino(inode))
    			break;
    		if (key.type != BTRFS_EXTENT_DATA_KEY)
    			break;
    		if (key.offset >= new->file_pos + new->len)
    			break;
    
    		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
    
    		num_bytes = btrfs_file_extent_num_bytes(l, extent);
    		if (key.offset + num_bytes < new->file_pos)
    			goto next;
    
    		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
    		if (!disk_bytenr)
    			goto next;
    
    		extent_offset = btrfs_file_extent_offset(l, extent);
    
    		old = kmalloc(sizeof(*old), GFP_NOFS);
    		if (!old)
    			goto out_free_list;
    
    		offset = max(new->file_pos, key.offset);
    		end = min(new->file_pos + new->len, key.offset + num_bytes);
    
    		old->bytenr = disk_bytenr;
    		old->extent_offset = extent_offset;
    		old->offset = offset - key.offset;
    		old->len = end - offset;
    		old->new = new;
    		old->count = 0;
    		list_add_tail(&old->list, &new->head);
    next:
    		path->slots[0]++;
    		cond_resched();
    	}
    
    	btrfs_free_path(path);
    	atomic_inc(&root->fs_info->defrag_running);
    
    	return new;
    
    out_free_list:
    	list_for_each_entry_safe(old, tmp, &new->head, list) {
    		list_del(&old->list);
    		kfree(old);
    	}
    out_free_path:
    	btrfs_free_path(path);
    out_kfree:
    	kfree(new);
    	return NULL;
    }
    
    /*
     * helper function for btrfs_finish_ordered_io, this
     * just reads in some of the csum leaves to prime them into ram
     * before we start the transaction.  It limits the amount of btree
     * reads required while inside the transaction.
     */
    /* as ordered data IO finishes, this gets called so we can finish
     * an ordered extent if the range of bytes in the file it covers are
     * fully written.
     */
    static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
    {
    	struct inode *inode = ordered_extent->inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans = NULL;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct extent_state *cached_state = NULL;
    	struct new_sa_defrag_extent *new = NULL;
    	int compress_type = 0;
    	int ret = 0;
    	u64 logical_len = ordered_extent->len;
    	bool nolock;
    	bool truncated = false;
    
    	nolock = btrfs_is_free_space_inode(inode);
    
    	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
    		ret = -EIO;
    		goto out;
    	}
    
    	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
    		truncated = true;
    		logical_len = ordered_extent->truncated_len;
    		/* Truncated the entire extent, don't bother adding */
    		if (!logical_len)
    			goto out;
    	}
    
    	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
    		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
    		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
    		if (nolock)
    			trans = btrfs_join_transaction_nolock(root);
    		else
    			trans = btrfs_join_transaction(root);
    		if (IS_ERR(trans)) {
    			ret = PTR_ERR(trans);
    			trans = NULL;
    			goto out;
    		}
    		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
    		ret = btrfs_update_inode_fallback(trans, root, inode);
    		if (ret) /* -ENOMEM or corruption */
    			btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	}
    
    	lock_extent_bits(io_tree, ordered_extent->file_offset,
    			 ordered_extent->file_offset + ordered_extent->len - 1,
    			 0, &cached_state);
    
    	ret = test_range_bit(io_tree, ordered_extent->file_offset,
    			ordered_extent->file_offset + ordered_extent->len - 1,
    			EXTENT_DEFRAG, 1, cached_state);
    	if (ret) {
    		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
    		if (last_snapshot >= BTRFS_I(inode)->generation)
    			/* the inode is shared */
    			new = record_old_file_extents(inode, ordered_extent);
    
    		clear_extent_bit(io_tree, ordered_extent->file_offset,
    			ordered_extent->file_offset + ordered_extent->len - 1,
    			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
    	}
    
    	if (nolock)
    		trans = btrfs_join_transaction_nolock(root);
    	else
    		trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		trans = NULL;
    		goto out_unlock;
    	}
    	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
    
    	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
    		compress_type = ordered_extent->compress_type;
    	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
    		BUG_ON(compress_type);
    		ret = btrfs_mark_extent_written(trans, inode,
    						ordered_extent->file_offset,
    						ordered_extent->file_offset +
    						logical_len);
    	} else {
    		BUG_ON(root == root->fs_info->tree_root);
    		ret = insert_reserved_file_extent(trans, inode,
    						ordered_extent->file_offset,
    						ordered_extent->start,
    						ordered_extent->disk_len,
    						logical_len, logical_len,
    						compress_type, 0, 0,
    						BTRFS_FILE_EXTENT_REG);
    	}
    	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
    			   ordered_extent->file_offset, ordered_extent->len,
    			   trans->transid);
    	if (ret < 0) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_unlock;
    	}
    
    	add_pending_csums(trans, inode, ordered_extent->file_offset,
    			  &ordered_extent->list);
    
    	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
    	ret = btrfs_update_inode_fallback(trans, root, inode);
    	if (ret) { /* -ENOMEM or corruption */
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_unlock;
    	}
    	ret = 0;
    out_unlock:
    	unlock_extent_cached(io_tree, ordered_extent->file_offset,
    			     ordered_extent->file_offset +
    			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
    out:
    	if (root != root->fs_info->tree_root)
    		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
    	if (trans)
    		btrfs_end_transaction(trans, root);
    
    	if (ret || truncated) {
    		u64 start, end;
    
    		if (truncated)
    			start = ordered_extent->file_offset + logical_len;
    		else
    			start = ordered_extent->file_offset;
    		end = ordered_extent->file_offset + ordered_extent->len - 1;
    		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
    
    		/* Drop the cache for the part of the extent we didn't write. */
    		btrfs_drop_extent_cache(inode, start, end, 0);
    
    		/*
    		 * If the ordered extent had an IOERR or something else went
    		 * wrong we need to return the space for this ordered extent
    		 * back to the allocator.  We only free the extent in the
    		 * truncated case if we didn't write out the extent at all.
    		 */
    		if ((ret || !logical_len) &&
    		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
    		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
    			btrfs_free_reserved_extent(root, ordered_extent->start,
    						   ordered_extent->disk_len);
    	}
    
    
    	/*
    	 * This needs to be done to make sure anybody waiting knows we are done
    	 * updating everything for this ordered extent.
    	 */
    	btrfs_remove_ordered_extent(inode, ordered_extent);
    
    	/* for snapshot-aware defrag */
    	if (new)
    		relink_file_extents(new);
    
    	/* once for us */
    	btrfs_put_ordered_extent(ordered_extent);
    	/* once for the tree */
    	btrfs_put_ordered_extent(ordered_extent);
    
    	return ret;
    }
    
    static void finish_ordered_fn(struct btrfs_work *work)
    {
    	struct btrfs_ordered_extent *ordered_extent;
    	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
    	btrfs_finish_ordered_io(ordered_extent);
    }
    
    static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
    				struct extent_state *state, int uptodate)
    {
    	struct inode *inode = page->mapping->host;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_ordered_extent *ordered_extent = NULL;
    	struct btrfs_workers *workers;
    
    	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
    
    	ClearPagePrivate2(page);
    	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
    					    end - start + 1, uptodate))
    		return 0;
    
    	ordered_extent->work.func = finish_ordered_fn;
    	ordered_extent->work.flags = 0;
    
    	if (btrfs_is_free_space_inode(inode))
    		workers = &root->fs_info->endio_freespace_worker;
    	else
    		workers = &root->fs_info->endio_write_workers;
    	btrfs_queue_worker(workers, &ordered_extent->work);
    
    	return 0;
    }
    
    /*
     * when reads are done, we need to check csums to verify the data is correct
     * if there's a match, we allow the bio to finish.  If not, the code in
     * extent_io.c will try to find good copies for us.
     */
    static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
    				      u64 phy_offset, struct page *page,
    				      u64 start, u64 end, int mirror)
    {
    	size_t offset = start - page_offset(page);
    	struct inode *inode = page->mapping->host;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	char *kaddr;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	u32 csum_expected;
    	u32 csum = ~(u32)0;
    	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
    	                              DEFAULT_RATELIMIT_BURST);
    
    	if (PageChecked(page)) {
    		ClearPageChecked(page);
    		goto good;
    	}
    
    	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
    		goto good;
    
    	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
    	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
    		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
    				  GFP_NOFS);
    		return 0;
    	}
    
    	phy_offset >>= inode->i_sb->s_blocksize_bits;
    	csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
    
    	kaddr = kmap_atomic(page);
    	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
    	btrfs_csum_final(csum, (char *)&csum);
    	if (csum != csum_expected)
    		goto zeroit;
    
    	kunmap_atomic(kaddr);
    good:
    	return 0;
    
    zeroit:
    	if (__ratelimit(&_rs))
    		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
    			btrfs_ino(page->mapping->host), start, csum, csum_expected);
    	memset(kaddr + offset, 1, end - start + 1);
    	flush_dcache_page(page);
    	kunmap_atomic(kaddr);
    	if (csum_expected == 0)
    		return 0;
    	return -EIO;
    }
    
    struct delayed_iput {
    	struct list_head list;
    	struct inode *inode;
    };
    
    /* JDM: If this is fs-wide, why can't we add a pointer to
     * btrfs_inode instead and avoid the allocation? */
    void btrfs_add_delayed_iput(struct inode *inode)
    {
    	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
    	struct delayed_iput *delayed;
    
    	if (atomic_add_unless(&inode->i_count, -1, 1))
    		return;
    
    	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
    	delayed->inode = inode;
    
    	spin_lock(&fs_info->delayed_iput_lock);
    	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
    	spin_unlock(&fs_info->delayed_iput_lock);
    }
    
    void btrfs_run_delayed_iputs(struct btrfs_root *root)
    {
    	LIST_HEAD(list);
    	struct btrfs_fs_info *fs_info = root->fs_info;
    	struct delayed_iput *delayed;
    	int empty;
    
    	spin_lock(&fs_info->delayed_iput_lock);
    	empty = list_empty(&fs_info->delayed_iputs);
    	spin_unlock(&fs_info->delayed_iput_lock);
    	if (empty)
    		return;
    
    	spin_lock(&fs_info->delayed_iput_lock);
    	list_splice_init(&fs_info->delayed_iputs, &list);
    	spin_unlock(&fs_info->delayed_iput_lock);
    
    	while (!list_empty(&list)) {
    		delayed = list_entry(list.next, struct delayed_iput, list);
    		list_del(&delayed->list);
    		iput(delayed->inode);
    		kfree(delayed);
    	}
    }
    
    /*
     * This is called in transaction commit time. If there are no orphan
     * files in the subvolume, it removes orphan item and frees block_rsv
     * structure.
     */
    void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
    			      struct btrfs_root *root)
    {
    	struct btrfs_block_rsv *block_rsv;
    	int ret;
    
    	if (atomic_read(&root->orphan_inodes) ||
    	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
    		return;
    
    	spin_lock(&root->orphan_lock);
    	if (atomic_read(&root->orphan_inodes)) {
    		spin_unlock(&root->orphan_lock);
    		return;
    	}
    
    	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
    		spin_unlock(&root->orphan_lock);
    		return;
    	}
    
    	block_rsv = root->orphan_block_rsv;
    	root->orphan_block_rsv = NULL;
    	spin_unlock(&root->orphan_lock);
    
    	if (root->orphan_item_inserted &&
    	    btrfs_root_refs(&root->root_item) > 0) {
    		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
    					    root->root_key.objectid);
    		if (ret)
    			btrfs_abort_transaction(trans, root, ret);
    		else
    			root->orphan_item_inserted = 0;
    	}
    
    	if (block_rsv) {
    		WARN_ON(block_rsv->size > 0);
    		btrfs_free_block_rsv(root, block_rsv);
    	}
    }
    
    /*
     * This creates an orphan entry for the given inode in case something goes
     * wrong in the middle of an unlink/truncate.
     *
     * NOTE: caller of this function should reserve 5 units of metadata for
     *	 this function.
     */
    int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_block_rsv *block_rsv = NULL;
    	int reserve = 0;
    	int insert = 0;
    	int ret;
    
    	if (!root->orphan_block_rsv) {
    		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
    		if (!block_rsv)
    			return -ENOMEM;
    	}
    
    	spin_lock(&root->orphan_lock);
    	if (!root->orphan_block_rsv) {
    		root->orphan_block_rsv = block_rsv;
    	} else if (block_rsv) {
    		btrfs_free_block_rsv(root, block_rsv);
    		block_rsv = NULL;
    	}
    
    	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    			      &BTRFS_I(inode)->runtime_flags)) {
    #if 0
    		/*
    		 * For proper ENOSPC handling, we should do orphan
    		 * cleanup when mounting. But this introduces backward
    		 * compatibility issue.
    		 */
    		if (!xchg(&root->orphan_item_inserted, 1))
    			insert = 2;
    		else
    			insert = 1;
    #endif
    		insert = 1;
    		atomic_inc(&root->orphan_inodes);
    	}
    
    	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
    			      &BTRFS_I(inode)->runtime_flags))
    		reserve = 1;
    	spin_unlock(&root->orphan_lock);
    
    	/* grab metadata reservation from transaction handle */
    	if (reserve) {
    		ret = btrfs_orphan_reserve_metadata(trans, inode);
    		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
    	}
    
    	/* insert an orphan item to track this unlinked/truncated file */
    	if (insert >= 1) {
    		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
    		if (ret) {
    			if (reserve) {
    				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
    					  &BTRFS_I(inode)->runtime_flags);
    				btrfs_orphan_release_metadata(inode);
    			}
    			if (ret != -EEXIST) {
    				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    					  &BTRFS_I(inode)->runtime_flags);
    				btrfs_abort_transaction(trans, root, ret);
    				return ret;
    			}
    		}
    		ret = 0;
    	}
    
    	/* insert an orphan item to track subvolume contains orphan files */
    	if (insert >= 2) {
    		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
    					       root->root_key.objectid);
    		if (ret && ret != -EEXIST) {
    			btrfs_abort_transaction(trans, root, ret);
    			return ret;
    		}
    	}
    	return 0;
    }
    
    /*
     * We have done the truncate/delete so we can go ahead and remove the orphan
     * item for this particular inode.
     */
    static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
    			    struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int delete_item = 0;
    	int release_rsv = 0;
    	int ret = 0;
    
    	spin_lock(&root->orphan_lock);
    	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    			       &BTRFS_I(inode)->runtime_flags))
    		delete_item = 1;
    
    	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
    			       &BTRFS_I(inode)->runtime_flags))
    		release_rsv = 1;
    	spin_unlock(&root->orphan_lock);
    
    	if (trans && delete_item)
    		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
    
    	if (release_rsv) {
    		btrfs_orphan_release_metadata(inode);
    		atomic_dec(&root->orphan_inodes);
    	}
    
    	return ret;
    }
    
    /*
     * this cleans up any orphans that may be left on the list from the last use
     * of this root.
     */
    int btrfs_orphan_cleanup(struct btrfs_root *root)
    {
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct btrfs_key key, found_key;
    	struct btrfs_trans_handle *trans;
    	struct inode *inode;
    	u64 last_objectid = 0;
    	int ret = 0, nr_unlink = 0, nr_truncate = 0;
    
    	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
    		return 0;
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto out;
    	}
    	path->reada = -1;
    
    	key.objectid = BTRFS_ORPHAN_OBJECTID;
    	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
    	key.offset = (u64)-1;
    
    	while (1) {
    		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    		if (ret < 0)
    			goto out;
    
    		/*
    		 * if ret == 0 means we found what we were searching for, which
    		 * is weird, but possible, so only screw with path if we didn't
    		 * find the key and see if we have stuff that matches
    		 */
    		if (ret > 0) {
    			ret = 0;
    			if (path->slots[0] == 0)
    				break;
    			path->slots[0]--;
    		}
    
    		/* pull out the item */
    		leaf = path->nodes[0];
    		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    
    		/* make sure the item matches what we want */
    		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
    			break;
    		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
    			break;
    
    		/* release the path since we're done with it */
    		btrfs_release_path(path);
    
    		/*
    		 * this is where we are basically btrfs_lookup, without the
    		 * crossing root thing.  we store the inode number in the
    		 * offset of the orphan item.
    		 */
    
    		if (found_key.offset == last_objectid) {
    			btrfs_err(root->fs_info,
    				"Error removing orphan entry, stopping orphan cleanup");
    			ret = -EINVAL;
    			goto out;
    		}
    
    		last_objectid = found_key.offset;
    
    		found_key.objectid = found_key.offset;
    		found_key.type = BTRFS_INODE_ITEM_KEY;
    		found_key.offset = 0;
    		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
    		ret = PTR_RET(inode);
    		if (ret && ret != -ESTALE)
    			goto out;
    
    		if (ret == -ESTALE && root == root->fs_info->tree_root) {
    			struct btrfs_root *dead_root;
    			struct btrfs_fs_info *fs_info = root->fs_info;
    			int is_dead_root = 0;
    
    			/*
    			 * this is an orphan in the tree root. Currently these
    			 * could come from 2 sources:
    			 *  a) a snapshot deletion in progress
    			 *  b) a free space cache inode
    			 * We need to distinguish those two, as the snapshot
    			 * orphan must not get deleted.
    			 * find_dead_roots already ran before us, so if this
    			 * is a snapshot deletion, we should find the root
    			 * in the dead_roots list
    			 */
    			spin_lock(&fs_info->trans_lock);
    			list_for_each_entry(dead_root, &fs_info->dead_roots,
    					    root_list) {
    				if (dead_root->root_key.objectid ==
    				    found_key.objectid) {
    					is_dead_root = 1;
    					break;
    				}
    			}
    			spin_unlock(&fs_info->trans_lock);
    			if (is_dead_root) {
    				/* prevent this orphan from being found again */
    				key.offset = found_key.objectid - 1;
    				continue;
    			}
    		}
    		/*
    		 * Inode is already gone but the orphan item is still there,
    		 * kill the orphan item.
    		 */
    		if (ret == -ESTALE) {
    			trans = btrfs_start_transaction(root, 1);
    			if (IS_ERR(trans)) {
    				ret = PTR_ERR(trans);
    				goto out;
    			}
    			btrfs_debug(root->fs_info, "auto deleting %Lu",
    				found_key.objectid);
    			ret = btrfs_del_orphan_item(trans, root,
    						    found_key.objectid);
    			btrfs_end_transaction(trans, root);
    			if (ret)
    				goto out;
    			continue;
    		}
    
    		/*
    		 * add this inode to the orphan list so btrfs_orphan_del does
    		 * the proper thing when we hit it
    		 */
    		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    			&BTRFS_I(inode)->runtime_flags);
    		atomic_inc(&root->orphan_inodes);
    
    		/* if we have links, this was a truncate, lets do that */
    		if (inode->i_nlink) {
    			if (!S_ISREG(inode->i_mode)) {
    				WARN_ON(1);
    				iput(inode);
    				continue;
    			}
    			nr_truncate++;
    
    			/* 1 for the orphan item deletion. */
    			trans = btrfs_start_transaction(root, 1);
    			if (IS_ERR(trans)) {
    				iput(inode);
    				ret = PTR_ERR(trans);
    				goto out;
    			}
    			ret = btrfs_orphan_add(trans, inode);
    			btrfs_end_transaction(trans, root);
    			if (ret) {
    				iput(inode);
    				goto out;
    			}
    
    			ret = btrfs_truncate(inode);
    			if (ret)
    				btrfs_orphan_del(NULL, inode);
    		} else {
    			nr_unlink++;
    		}
    
    		/* this will do delete_inode and everything for us */
    		iput(inode);
    		if (ret)
    			goto out;
    	}
    	/* release the path since we're done with it */
    	btrfs_release_path(path);
    
    	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
    
    	if (root->orphan_block_rsv)
    		btrfs_block_rsv_release(root, root->orphan_block_rsv,
    					(u64)-1);
    
    	if (root->orphan_block_rsv || root->orphan_item_inserted) {
    		trans = btrfs_join_transaction(root);
    		if (!IS_ERR(trans))
    			btrfs_end_transaction(trans, root);
    	}
    
    	if (nr_unlink)
    		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
    	if (nr_truncate)
    		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
    
    out:
    	if (ret)
    		btrfs_crit(root->fs_info,
    			"could not do orphan cleanup %d", ret);
    	btrfs_free_path(path);
    	return ret;
    }
    
    /*
     * very simple check to peek ahead in the leaf looking for xattrs.  If we
     * don't find any xattrs, we know there can't be any acls.
     *
     * slot is the slot the inode is in, objectid is the objectid of the inode
     */
    static noinline int acls_after_inode_item(struct extent_buffer *leaf,
    					  int slot, u64 objectid)
    {
    	u32 nritems = btrfs_header_nritems(leaf);
    	struct btrfs_key found_key;
    	static u64 xattr_access = 0;
    	static u64 xattr_default = 0;
    	int scanned = 0;
    
    	if (!xattr_access) {
    		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
    					strlen(POSIX_ACL_XATTR_ACCESS));
    		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
    					strlen(POSIX_ACL_XATTR_DEFAULT));
    	}
    
    	slot++;
    	while (slot < nritems) {
    		btrfs_item_key_to_cpu(leaf, &found_key, slot);
    
    		/* we found a different objectid, there must not be acls */
    		if (found_key.objectid != objectid)
    			return 0;
    
    		/* we found an xattr, assume we've got an acl */
    		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
    			if (found_key.offset == xattr_access ||
    			    found_key.offset == xattr_default)
    				return 1;
    		}
    
    		/*
    		 * we found a key greater than an xattr key, there can't
    		 * be any acls later on
    		 */
    		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
    			return 0;
    
    		slot++;
    		scanned++;
    
    		/*
    		 * it goes inode, inode backrefs, xattrs, extents,
    		 * so if there are a ton of hard links to an inode there can
    		 * be a lot of backrefs.  Don't waste time searching too hard,
    		 * this is just an optimization
    		 */
    		if (scanned >= 8)
    			break;
    	}
    	/* we hit the end of the leaf before we found an xattr or
    	 * something larger than an xattr.  We have to assume the inode
    	 * has acls
    	 */
    	return 1;
    }
    
    /*
     * read an inode from the btree into the in-memory inode
     */
    static void btrfs_read_locked_inode(struct inode *inode)
    {
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct btrfs_inode_item *inode_item;
    	struct btrfs_timespec *tspec;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_key location;
    	int maybe_acls;
    	u32 rdev;
    	int ret;
    	bool filled = false;
    
    	ret = btrfs_fill_inode(inode, &rdev);
    	if (!ret)
    		filled = true;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		goto make_bad;
    
    	path->leave_spinning = 1;
    	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
    
    	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
    	if (ret)
    		goto make_bad;
    
    	leaf = path->nodes[0];
    
    	if (filled)
    		goto cache_acl;
    
    	inode_item = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_inode_item);
    	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
    	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
    	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
    	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
    	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
    
    	tspec = btrfs_inode_atime(inode_item);
    	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
    	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
    
    	tspec = btrfs_inode_mtime(inode_item);
    	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
    	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
    
    	tspec = btrfs_inode_ctime(inode_item);
    	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
    	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
    
    	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
    	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
    	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
    
    	/*
    	 * If we were modified in the current generation and evicted from memory
    	 * and then re-read we need to do a full sync since we don't have any
    	 * idea about which extents were modified before we were evicted from
    	 * cache.
    	 */
    	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
    		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    			&BTRFS_I(inode)->runtime_flags);
    
    	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
    	inode->i_generation = BTRFS_I(inode)->generation;
    	inode->i_rdev = 0;
    	rdev = btrfs_inode_rdev(leaf, inode_item);
    
    	BTRFS_I(inode)->index_cnt = (u64)-1;
    	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
    cache_acl:
    	/*
    	 * try to precache a NULL acl entry for files that don't have
    	 * any xattrs or acls
    	 */
    	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
    					   btrfs_ino(inode));
    	if (!maybe_acls)
    		cache_no_acl(inode);
    
    	btrfs_free_path(path);
    
    	switch (inode->i_mode & S_IFMT) {
    	case S_IFREG:
    		inode->i_mapping->a_ops = &btrfs_aops;
    		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
    		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
    		inode->i_fop = &btrfs_file_operations;
    		inode->i_op = &btrfs_file_inode_operations;
    		break;
    	case S_IFDIR:
    		inode->i_fop = &btrfs_dir_file_operations;
    		if (root == root->fs_info->tree_root)
    			inode->i_op = &btrfs_dir_ro_inode_operations;
    		else
    			inode->i_op = &btrfs_dir_inode_operations;
    		break;
    	case S_IFLNK:
    		inode->i_op = &btrfs_symlink_inode_operations;
    		inode->i_mapping->a_ops = &btrfs_symlink_aops;
    		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
    		break;
    	default:
    		inode->i_op = &btrfs_special_inode_operations;
    		init_special_inode(inode, inode->i_mode, rdev);
    		break;
    	}
    
    	btrfs_update_iflags(inode);
    	return;
    
    make_bad:
    	btrfs_free_path(path);
    	make_bad_inode(inode);
    }
    
    /*
     * given a leaf and an inode, copy the inode fields into the leaf
     */
    static void fill_inode_item(struct btrfs_trans_handle *trans,
    			    struct extent_buffer *leaf,
    			    struct btrfs_inode_item *item,
    			    struct inode *inode)
    {
    	struct btrfs_map_token token;
    
    	btrfs_init_map_token(&token);
    
    	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
    	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
    	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
    				   &token);
    	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
    	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
    
    	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
    				     inode->i_atime.tv_sec, &token);
    	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
    				      inode->i_atime.tv_nsec, &token);
    
    	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
    				     inode->i_mtime.tv_sec, &token);
    	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
    				      inode->i_mtime.tv_nsec, &token);
    
    	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
    				     inode->i_ctime.tv_sec, &token);
    	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
    				      inode->i_ctime.tv_nsec, &token);
    
    	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
    				     &token);
    	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
    					 &token);
    	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
    	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
    	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
    	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
    	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
    }
    
    /*
     * copy everything in the in-memory inode into the btree.
     */
    static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root, struct inode *inode)
    {
    	struct btrfs_inode_item *inode_item;
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	int ret;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	path->leave_spinning = 1;
    	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
    				 1);
    	if (ret) {
    		if (ret > 0)
    			ret = -ENOENT;
    		goto failed;
    	}
    
    	btrfs_unlock_up_safe(path, 1);
    	leaf = path->nodes[0];
    	inode_item = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_inode_item);
    
    	fill_inode_item(trans, leaf, inode_item, inode);
    	btrfs_mark_buffer_dirty(leaf);
    	btrfs_set_inode_last_trans(trans, inode);
    	ret = 0;
    failed:
    	btrfs_free_path(path);
    	return ret;
    }
    
    /*
     * copy everything in the in-memory inode into the btree.
     */
    noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root, struct inode *inode)
    {
    	int ret;
    
    	/*
    	 * If the inode is a free space inode, we can deadlock during commit
    	 * if we put it into the delayed code.
    	 *
    	 * The data relocation inode should also be directly updated
    	 * without delay
    	 */
    	if (!btrfs_is_free_space_inode(inode)
    	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
    		btrfs_update_root_times(trans, root);
    
    		ret = btrfs_delayed_update_inode(trans, root, inode);
    		if (!ret)
    			btrfs_set_inode_last_trans(trans, inode);
    		return ret;
    	}
    
    	return btrfs_update_inode_item(trans, root, inode);
    }
    
    noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
    					 struct btrfs_root *root,
    					 struct inode *inode)
    {
    	int ret;
    
    	ret = btrfs_update_inode(trans, root, inode);
    	if (ret == -ENOSPC)
    		return btrfs_update_inode_item(trans, root, inode);
    	return ret;
    }
    
    /*
     * unlink helper that gets used here in inode.c and in the tree logging
     * recovery code.  It remove a link in a directory with a given name, and
     * also drops the back refs in the inode to the directory
     */
    static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root,
    				struct inode *dir, struct inode *inode,
    				const char *name, int name_len)
    {
    	struct btrfs_path *path;
    	int ret = 0;
    	struct extent_buffer *leaf;
    	struct btrfs_dir_item *di;
    	struct btrfs_key key;
    	u64 index;
    	u64 ino = btrfs_ino(inode);
    	u64 dir_ino = btrfs_ino(dir);
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	path->leave_spinning = 1;
    	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
    				    name, name_len, -1);
    	if (IS_ERR(di)) {
    		ret = PTR_ERR(di);
    		goto err;
    	}
    	if (!di) {
    		ret = -ENOENT;
    		goto err;
    	}
    	leaf = path->nodes[0];
    	btrfs_dir_item_key_to_cpu(leaf, di, &key);
    	ret = btrfs_delete_one_dir_name(trans, root, path, di);
    	if (ret)
    		goto err;
    	btrfs_release_path(path);
    
    	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
    				  dir_ino, &index);
    	if (ret) {
    		btrfs_info(root->fs_info,
    			"failed to delete reference to %.*s, inode %llu parent %llu",
    			name_len, name, ino, dir_ino);
    		btrfs_abort_transaction(trans, root, ret);
    		goto err;
    	}
    
    	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto err;
    	}
    
    	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
    					 inode, dir_ino);
    	if (ret != 0 && ret != -ENOENT) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto err;
    	}
    
    	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
    					   dir, index);
    	if (ret == -ENOENT)
    		ret = 0;
    	else if (ret)
    		btrfs_abort_transaction(trans, root, ret);
    err:
    	btrfs_free_path(path);
    	if (ret)
    		goto out;
    
    	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
    	inode_inc_iversion(inode);
    	inode_inc_iversion(dir);
    	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
    	ret = btrfs_update_inode(trans, root, dir);
    out:
    	return ret;
    }
    
    int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
    		       struct btrfs_root *root,
    		       struct inode *dir, struct inode *inode,
    		       const char *name, int name_len)
    {
    	int ret;
    	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
    	if (!ret) {
    		btrfs_drop_nlink(inode);
    		ret = btrfs_update_inode(trans, root, inode);
    	}
    	return ret;
    }
    
    /*
     * helper to start transaction for unlink and rmdir.
     *
     * unlink and rmdir are special in btrfs, they do not always free space, so
     * if we cannot make our reservations the normal way try and see if there is
     * plenty of slack room in the global reserve to migrate, otherwise we cannot
     * allow the unlink to occur.
     */
    static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	int ret;
    
    	/*
    	 * 1 for the possible orphan item
    	 * 1 for the dir item
    	 * 1 for the dir index
    	 * 1 for the inode ref
    	 * 1 for the inode
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
    		return trans;
    
    	if (PTR_ERR(trans) == -ENOSPC) {
    		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
    
    		trans = btrfs_start_transaction(root, 0);
    		if (IS_ERR(trans))
    			return trans;
    		ret = btrfs_cond_migrate_bytes(root->fs_info,
    					       &root->fs_info->trans_block_rsv,
    					       num_bytes, 5);
    		if (ret) {
    			btrfs_end_transaction(trans, root);
    			return ERR_PTR(ret);
    		}
    		trans->block_rsv = &root->fs_info->trans_block_rsv;
    		trans->bytes_reserved = num_bytes;
    	}
    	return trans;
    }
    
    static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
    {
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_trans_handle *trans;
    	struct inode *inode = dentry->d_inode;
    	int ret;
    
    	trans = __unlink_start_trans(dir);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
    
    	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
    				 dentry->d_name.name, dentry->d_name.len);
    	if (ret)
    		goto out;
    
    	if (inode->i_nlink == 0) {
    		ret = btrfs_orphan_add(trans, inode);
    		if (ret)
    			goto out;
    	}
    
    out:
    	btrfs_end_transaction(trans, root);
    	btrfs_btree_balance_dirty(root);
    	return ret;
    }
    
    int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
    			struct btrfs_root *root,
    			struct inode *dir, u64 objectid,
    			const char *name, int name_len)
    {
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct btrfs_dir_item *di;
    	struct btrfs_key key;
    	u64 index;
    	int ret;
    	u64 dir_ino = btrfs_ino(dir);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
    				   name, name_len, -1);
    	if (IS_ERR_OR_NULL(di)) {
    		if (!di)
    			ret = -ENOENT;
    		else
    			ret = PTR_ERR(di);
    		goto out;
    	}
    
    	leaf = path->nodes[0];
    	btrfs_dir_item_key_to_cpu(leaf, di, &key);
    	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
    	ret = btrfs_delete_one_dir_name(trans, root, path, di);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	}
    	btrfs_release_path(path);
    
    	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
    				 objectid, root->root_key.objectid,
    				 dir_ino, &index, name, name_len);
    	if (ret < 0) {
    		if (ret != -ENOENT) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto out;
    		}
    		di = btrfs_search_dir_index_item(root, path, dir_ino,
    						 name, name_len);
    		if (IS_ERR_OR_NULL(di)) {
    			if (!di)
    				ret = -ENOENT;
    			else
    				ret = PTR_ERR(di);
    			btrfs_abort_transaction(trans, root, ret);
    			goto out;
    		}
    
    		leaf = path->nodes[0];
    		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    		btrfs_release_path(path);
    		index = key.offset;
    	}
    	btrfs_release_path(path);
    
    	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	}
    
    	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
    	inode_inc_iversion(dir);
    	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
    	ret = btrfs_update_inode_fallback(trans, root, dir);
    	if (ret)
    		btrfs_abort_transaction(trans, root, ret);
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
    {
    	struct inode *inode = dentry->d_inode;
    	int err = 0;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_trans_handle *trans;
    
    	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
    		return -ENOTEMPTY;
    	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
    		return -EPERM;
    
    	trans = __unlink_start_trans(dir);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
    		err = btrfs_unlink_subvol(trans, root, dir,
    					  BTRFS_I(inode)->location.objectid,
    					  dentry->d_name.name,
    					  dentry->d_name.len);
    		goto out;
    	}
    
    	err = btrfs_orphan_add(trans, inode);
    	if (err)
    		goto out;
    
    	/* now the directory is empty */
    	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
    				 dentry->d_name.name, dentry->d_name.len);
    	if (!err)
    		btrfs_i_size_write(inode, 0);
    out:
    	btrfs_end_transaction(trans, root);
    	btrfs_btree_balance_dirty(root);
    
    	return err;
    }
    
    /*
     * this can truncate away extent items, csum items and directory items.
     * It starts at a high offset and removes keys until it can't find
     * any higher than new_size
     *
     * csum items that cross the new i_size are truncated to the new size
     * as well.
     *
     * min_type is the minimum key type to truncate down to.  If set to 0, this
     * will kill all the items on this inode, including the INODE_ITEM_KEY.
     */
    int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
    			       struct btrfs_root *root,
    			       struct inode *inode,
    			       u64 new_size, u32 min_type)
    {
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	struct btrfs_key found_key;
    	u64 extent_start = 0;
    	u64 extent_num_bytes = 0;
    	u64 extent_offset = 0;
    	u64 item_end = 0;
    	u64 last_size = (u64)-1;
    	u32 found_type = (u8)-1;
    	int found_extent;
    	int del_item;
    	int pending_del_nr = 0;
    	int pending_del_slot = 0;
    	int extent_type = -1;
    	int ret;
    	int err = 0;
    	u64 ino = btrfs_ino(inode);
    
    	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    	path->reada = -1;
    
    	/*
    	 * We want to drop from the next block forward in case this new size is
    	 * not block aligned since we will be keeping the last block of the
    	 * extent just the way it is.
    	 */
    	if (root->ref_cows || root == root->fs_info->tree_root)
    		btrfs_drop_extent_cache(inode, ALIGN(new_size,
    					root->sectorsize), (u64)-1, 0);
    
    	/*
    	 * This function is also used to drop the items in the log tree before
    	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
    	 * it is used to drop the loged items. So we shouldn't kill the delayed
    	 * items.
    	 */
    	if (min_type == 0 && root == BTRFS_I(inode)->root)
    		btrfs_kill_delayed_inode_items(inode);
    
    	key.objectid = ino;
    	key.offset = (u64)-1;
    	key.type = (u8)-1;
    
    search_again:
    	path->leave_spinning = 1;
    	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
    	if (ret < 0) {
    		err = ret;
    		goto out;
    	}
    
    	if (ret > 0) {
    		/* there are no items in the tree for us to truncate, we're
    		 * done
    		 */
    		if (path->slots[0] == 0)
    			goto out;
    		path->slots[0]--;
    	}
    
    	while (1) {
    		fi = NULL;
    		leaf = path->nodes[0];
    		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    		found_type = btrfs_key_type(&found_key);
    
    		if (found_key.objectid != ino)
    			break;
    
    		if (found_type < min_type)
    			break;
    
    		item_end = found_key.offset;
    		if (found_type == BTRFS_EXTENT_DATA_KEY) {
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			extent_type = btrfs_file_extent_type(leaf, fi);
    			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
    				item_end +=
    				    btrfs_file_extent_num_bytes(leaf, fi);
    			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
    				item_end += btrfs_file_extent_inline_len(leaf,
    									 fi);
    			}
    			item_end--;
    		}
    		if (found_type > min_type) {
    			del_item = 1;
    		} else {
    			if (item_end < new_size)
    				break;
    			if (found_key.offset >= new_size)
    				del_item = 1;
    			else
    				del_item = 0;
    		}
    		found_extent = 0;
    		/* FIXME, shrink the extent if the ref count is only 1 */
    		if (found_type != BTRFS_EXTENT_DATA_KEY)
    			goto delete;
    
    		if (del_item)
    			last_size = found_key.offset;
    		else
    			last_size = new_size;
    
    		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
    			u64 num_dec;
    			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
    			if (!del_item) {
    				u64 orig_num_bytes =
    					btrfs_file_extent_num_bytes(leaf, fi);
    				extent_num_bytes = ALIGN(new_size -
    						found_key.offset,
    						root->sectorsize);
    				btrfs_set_file_extent_num_bytes(leaf, fi,
    							 extent_num_bytes);
    				num_dec = (orig_num_bytes -
    					   extent_num_bytes);
    				if (root->ref_cows && extent_start != 0)
    					inode_sub_bytes(inode, num_dec);
    				btrfs_mark_buffer_dirty(leaf);
    			} else {
    				extent_num_bytes =
    					btrfs_file_extent_disk_num_bytes(leaf,
    									 fi);
    				extent_offset = found_key.offset -
    					btrfs_file_extent_offset(leaf, fi);
    
    				/* FIXME blocksize != 4096 */
    				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
    				if (extent_start != 0) {
    					found_extent = 1;
    					if (root->ref_cows)
    						inode_sub_bytes(inode, num_dec);
    				}
    			}
    		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
    			/*
    			 * we can't truncate inline items that have had
    			 * special encodings
    			 */
    			if (!del_item &&
    			    btrfs_file_extent_compression(leaf, fi) == 0 &&
    			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
    			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
    				u32 size = new_size - found_key.offset;
    
    				if (root->ref_cows) {
    					inode_sub_bytes(inode, item_end + 1 -
    							new_size);
    				}
    				size =
    				    btrfs_file_extent_calc_inline_size(size);
    				btrfs_truncate_item(root, path, size, 1);
    			} else if (root->ref_cows) {
    				inode_sub_bytes(inode, item_end + 1 -
    						found_key.offset);
    			}
    		}
    delete:
    		if (del_item) {
    			if (!pending_del_nr) {
    				/* no pending yet, add ourselves */
    				pending_del_slot = path->slots[0];
    				pending_del_nr = 1;
    			} else if (pending_del_nr &&
    				   path->slots[0] + 1 == pending_del_slot) {
    				/* hop on the pending chunk */
    				pending_del_nr++;
    				pending_del_slot = path->slots[0];
    			} else {
    				BUG();
    			}
    		} else {
    			break;
    		}
    		if (found_extent && (root->ref_cows ||
    				     root == root->fs_info->tree_root)) {
    			btrfs_set_path_blocking(path);
    			ret = btrfs_free_extent(trans, root, extent_start,
    						extent_num_bytes, 0,
    						btrfs_header_owner(leaf),
    						ino, extent_offset, 0);
    			BUG_ON(ret);
    		}
    
    		if (found_type == BTRFS_INODE_ITEM_KEY)
    			break;
    
    		if (path->slots[0] == 0 ||
    		    path->slots[0] != pending_del_slot) {
    			if (pending_del_nr) {
    				ret = btrfs_del_items(trans, root, path,
    						pending_del_slot,
    						pending_del_nr);
    				if (ret) {
    					btrfs_abort_transaction(trans,
    								root, ret);
    					goto error;
    				}
    				pending_del_nr = 0;
    			}
    			btrfs_release_path(path);
    			goto search_again;
    		} else {
    			path->slots[0]--;
    		}
    	}
    out:
    	if (pending_del_nr) {
    		ret = btrfs_del_items(trans, root, path, pending_del_slot,
    				      pending_del_nr);
    		if (ret)
    			btrfs_abort_transaction(trans, root, ret);
    	}
    error:
    	if (last_size != (u64)-1)
    		btrfs_ordered_update_i_size(inode, last_size, NULL);
    	btrfs_free_path(path);
    	return err;
    }
    
    /*
     * btrfs_truncate_page - read, zero a chunk and write a page
     * @inode - inode that we're zeroing
     * @from - the offset to start zeroing
     * @len - the length to zero, 0 to zero the entire range respective to the
     *	offset
     * @front - zero up to the offset instead of from the offset on
     *
     * This will find the page for the "from" offset and cow the page and zero the
     * part we want to zero.  This is used with truncate and hole punching.
     */
    int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
    			int front)
    {
    	struct address_space *mapping = inode->i_mapping;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct btrfs_ordered_extent *ordered;
    	struct extent_state *cached_state = NULL;
    	char *kaddr;
    	u32 blocksize = root->sectorsize;
    	pgoff_t index = from >> PAGE_CACHE_SHIFT;
    	unsigned offset = from & (PAGE_CACHE_SIZE-1);
    	struct page *page;
    	gfp_t mask = btrfs_alloc_write_mask(mapping);
    	int ret = 0;
    	u64 page_start;
    	u64 page_end;
    
    	if ((offset & (blocksize - 1)) == 0 &&
    	    (!len || ((len & (blocksize - 1)) == 0)))
    		goto out;
    	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
    	if (ret)
    		goto out;
    
    again:
    	page = find_or_create_page(mapping, index, mask);
    	if (!page) {
    		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	page_start = page_offset(page);
    	page_end = page_start + PAGE_CACHE_SIZE - 1;
    
    	if (!PageUptodate(page)) {
    		ret = btrfs_readpage(NULL, page);
    		lock_page(page);
    		if (page->mapping != mapping) {
    			unlock_page(page);
    			page_cache_release(page);
    			goto again;
    		}
    		if (!PageUptodate(page)) {
    			ret = -EIO;
    			goto out_unlock;
    		}
    	}
    	wait_on_page_writeback(page);
    
    	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
    	set_page_extent_mapped(page);
    
    	ordered = btrfs_lookup_ordered_extent(inode, page_start);
    	if (ordered) {
    		unlock_extent_cached(io_tree, page_start, page_end,
    				     &cached_state, GFP_NOFS);
    		unlock_page(page);
    		page_cache_release(page);
    		btrfs_start_ordered_extent(inode, ordered, 1);
    		btrfs_put_ordered_extent(ordered);
    		goto again;
    	}
    
    	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
    			  EXTENT_DIRTY | EXTENT_DELALLOC |
    			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
    			  0, 0, &cached_state, GFP_NOFS);
    
    	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
    					&cached_state);
    	if (ret) {
    		unlock_extent_cached(io_tree, page_start, page_end,
    				     &cached_state, GFP_NOFS);
    		goto out_unlock;
    	}
    
    	if (offset != PAGE_CACHE_SIZE) {
    		if (!len)
    			len = PAGE_CACHE_SIZE - offset;
    		kaddr = kmap(page);
    		if (front)
    			memset(kaddr, 0, offset);
    		else
    			memset(kaddr + offset, 0, len);
    		flush_dcache_page(page);
    		kunmap(page);
    	}
    	ClearPageChecked(page);
    	set_page_dirty(page);
    	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
    			     GFP_NOFS);
    
    out_unlock:
    	if (ret)
    		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
    	unlock_page(page);
    	page_cache_release(page);
    out:
    	return ret;
    }
    
    /*
     * This function puts in dummy file extents for the area we're creating a hole
     * for.  So if we are truncating this file to a larger size we need to insert
     * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
     * the range between oldsize and size
     */
    int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct extent_map *em = NULL;
    	struct extent_state *cached_state = NULL;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	u64 hole_start = ALIGN(oldsize, root->sectorsize);
    	u64 block_end = ALIGN(size, root->sectorsize);
    	u64 last_byte;
    	u64 cur_offset;
    	u64 hole_size;
    	int err = 0;
    
    	/*
    	 * If our size started in the middle of a page we need to zero out the
    	 * rest of the page before we expand the i_size, otherwise we could
    	 * expose stale data.
    	 */
    	err = btrfs_truncate_page(inode, oldsize, 0, 0);
    	if (err)
    		return err;
    
    	if (size <= hole_start)
    		return 0;
    
    	while (1) {
    		struct btrfs_ordered_extent *ordered;
    		btrfs_wait_ordered_range(inode, hole_start,
    					 block_end - hole_start);
    		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
    				 &cached_state);
    		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
    		if (!ordered)
    			break;
    		unlock_extent_cached(io_tree, hole_start, block_end - 1,
    				     &cached_state, GFP_NOFS);
    		btrfs_put_ordered_extent(ordered);
    	}
    
    	cur_offset = hole_start;
    	while (1) {
    		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
    				block_end - cur_offset, 0);
    		if (IS_ERR(em)) {
    			err = PTR_ERR(em);
    			em = NULL;
    			break;
    		}
    		last_byte = min(extent_map_end(em), block_end);
    		last_byte = ALIGN(last_byte , root->sectorsize);
    		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
    			struct extent_map *hole_em;
    			hole_size = last_byte - cur_offset;
    
    			trans = btrfs_start_transaction(root, 3);
    			if (IS_ERR(trans)) {
    				err = PTR_ERR(trans);
    				break;
    			}
    
    			err = btrfs_drop_extents(trans, root, inode,
    						 cur_offset,
    						 cur_offset + hole_size, 1);
    			if (err) {
    				btrfs_abort_transaction(trans, root, err);
    				btrfs_end_transaction(trans, root);
    				break;
    			}
    
    			err = btrfs_insert_file_extent(trans, root,
    					btrfs_ino(inode), cur_offset, 0,
    					0, hole_size, 0, hole_size,
    					0, 0, 0);
    			if (err) {
    				btrfs_abort_transaction(trans, root, err);
    				btrfs_end_transaction(trans, root);
    				break;
    			}
    
    			btrfs_drop_extent_cache(inode, cur_offset,
    						cur_offset + hole_size - 1, 0);
    			hole_em = alloc_extent_map();
    			if (!hole_em) {
    				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    					&BTRFS_I(inode)->runtime_flags);
    				goto next;
    			}
    			hole_em->start = cur_offset;
    			hole_em->len = hole_size;
    			hole_em->orig_start = cur_offset;
    
    			hole_em->block_start = EXTENT_MAP_HOLE;
    			hole_em->block_len = 0;
    			hole_em->orig_block_len = 0;
    			hole_em->ram_bytes = hole_size;
    			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
    			hole_em->compress_type = BTRFS_COMPRESS_NONE;
    			hole_em->generation = trans->transid;
    
    			while (1) {
    				write_lock(&em_tree->lock);
    				err = add_extent_mapping(em_tree, hole_em, 1);
    				write_unlock(&em_tree->lock);
    				if (err != -EEXIST)
    					break;
    				btrfs_drop_extent_cache(inode, cur_offset,
    							cur_offset +
    							hole_size - 1, 0);
    			}
    			free_extent_map(hole_em);
    next:
    			btrfs_update_inode(trans, root, inode);
    			btrfs_end_transaction(trans, root);
    		}
    		free_extent_map(em);
    		em = NULL;
    		cur_offset = last_byte;
    		if (cur_offset >= block_end)
    			break;
    	}
    
    	free_extent_map(em);
    	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
    			     GFP_NOFS);
    	return err;
    }
    
    static int btrfs_setsize(struct inode *inode, struct iattr *attr)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	loff_t oldsize = i_size_read(inode);
    	loff_t newsize = attr->ia_size;
    	int mask = attr->ia_valid;
    	int ret;
    
    	/*
    	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
    	 * special case where we need to update the times despite not having
    	 * these flags set.  For all other operations the VFS set these flags
    	 * explicitly if it wants a timestamp update.
    	 */
    	if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
    		inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
    
    	if (newsize > oldsize) {
    		truncate_pagecache(inode, oldsize, newsize);
    		ret = btrfs_cont_expand(inode, oldsize, newsize);
    		if (ret)
    			return ret;
    
    		trans = btrfs_start_transaction(root, 1);
    		if (IS_ERR(trans))
    			return PTR_ERR(trans);
    
    		i_size_write(inode, newsize);
    		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
    		ret = btrfs_update_inode(trans, root, inode);
    		btrfs_end_transaction(trans, root);
    	} else {
    
    		/*
    		 * We're truncating a file that used to have good data down to
    		 * zero. Make sure it gets into the ordered flush list so that
    		 * any new writes get down to disk quickly.
    		 */
    		if (newsize == 0)
    			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
    				&BTRFS_I(inode)->runtime_flags);
    
    		/*
    		 * 1 for the orphan item we're going to add
    		 * 1 for the orphan item deletion.
    		 */
    		trans = btrfs_start_transaction(root, 2);
    		if (IS_ERR(trans))
    			return PTR_ERR(trans);
    
    		/*
    		 * We need to do this in case we fail at _any_ point during the
    		 * actual truncate.  Once we do the truncate_setsize we could
    		 * invalidate pages which forces any outstanding ordered io to
    		 * be instantly completed which will give us extents that need
    		 * to be truncated.  If we fail to get an orphan inode down we
    		 * could have left over extents that were never meant to live,
    		 * so we need to garuntee from this point on that everything
    		 * will be consistent.
    		 */
    		ret = btrfs_orphan_add(trans, inode);
    		btrfs_end_transaction(trans, root);
    		if (ret)
    			return ret;
    
    		/* we don't support swapfiles, so vmtruncate shouldn't fail */
    		truncate_setsize(inode, newsize);
    
    		/* Disable nonlocked read DIO to avoid the end less truncate */
    		btrfs_inode_block_unlocked_dio(inode);
    		inode_dio_wait(inode);
    		btrfs_inode_resume_unlocked_dio(inode);
    
    		ret = btrfs_truncate(inode);
    		if (ret && inode->i_nlink) {
    			int err;
    
    			/*
    			 * failed to truncate, disk_i_size is only adjusted down
    			 * as we remove extents, so it should represent the true
    			 * size of the inode, so reset the in memory size and
    			 * delete our orphan entry.
    			 */
    			trans = btrfs_join_transaction(root);
    			if (IS_ERR(trans)) {
    				btrfs_orphan_del(NULL, inode);
    				return ret;
    			}
    			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
    			err = btrfs_orphan_del(trans, inode);
    			if (err)
    				btrfs_abort_transaction(trans, root, err);
    			btrfs_end_transaction(trans, root);
    		}
    	}
    
    	return ret;
    }
    
    static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
    {
    	struct inode *inode = dentry->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int err;
    
    	if (btrfs_root_readonly(root))
    		return -EROFS;
    
    	err = inode_change_ok(inode, attr);
    	if (err)
    		return err;
    
    	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
    		err = btrfs_setsize(inode, attr);
    		if (err)
    			return err;
    	}
    
    	if (attr->ia_valid) {
    		setattr_copy(inode, attr);
    		inode_inc_iversion(inode);
    		err = btrfs_dirty_inode(inode);
    
    		if (!err && attr->ia_valid & ATTR_MODE)
    			err = btrfs_acl_chmod(inode);
    	}
    
    	return err;
    }
    
    void btrfs_evict_inode(struct inode *inode)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_block_rsv *rsv, *global_rsv;
    	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
    	int ret;
    
    	trace_btrfs_inode_evict(inode);
    
    	truncate_inode_pages(&inode->i_data, 0);
    	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
    			       btrfs_is_free_space_inode(inode)))
    		goto no_delete;
    
    	if (is_bad_inode(inode)) {
    		btrfs_orphan_del(NULL, inode);
    		goto no_delete;
    	}
    	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
    	btrfs_wait_ordered_range(inode, 0, (u64)-1);
    
    	if (root->fs_info->log_root_recovering) {
    		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    				 &BTRFS_I(inode)->runtime_flags));
    		goto no_delete;
    	}
    
    	if (inode->i_nlink > 0) {
    		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
    		goto no_delete;
    	}
    
    	ret = btrfs_commit_inode_delayed_inode(inode);
    	if (ret) {
    		btrfs_orphan_del(NULL, inode);
    		goto no_delete;
    	}
    
    	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
    	if (!rsv) {
    		btrfs_orphan_del(NULL, inode);
    		goto no_delete;
    	}
    	rsv->size = min_size;
    	rsv->failfast = 1;
    	global_rsv = &root->fs_info->global_block_rsv;
    
    	btrfs_i_size_write(inode, 0);
    
    	/*
    	 * This is a bit simpler than btrfs_truncate since we've already
    	 * reserved our space for our orphan item in the unlink, so we just
    	 * need to reserve some slack space in case we add bytes and update
    	 * inode item when doing the truncate.
    	 */
    	while (1) {
    		ret = btrfs_block_rsv_refill(root, rsv, min_size,
    					     BTRFS_RESERVE_FLUSH_LIMIT);
    
    		/*
    		 * Try and steal from the global reserve since we will
    		 * likely not use this space anyway, we want to try as
    		 * hard as possible to get this to work.
    		 */
    		if (ret)
    			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
    
    		if (ret) {
    			btrfs_warn(root->fs_info,
    				"Could not get space for a delete, will truncate on mount %d",
    				ret);
    			btrfs_orphan_del(NULL, inode);
    			btrfs_free_block_rsv(root, rsv);
    			goto no_delete;
    		}
    
    		trans = btrfs_join_transaction(root);
    		if (IS_ERR(trans)) {
    			btrfs_orphan_del(NULL, inode);
    			btrfs_free_block_rsv(root, rsv);
    			goto no_delete;
    		}
    
    		trans->block_rsv = rsv;
    
    		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
    		if (ret != -ENOSPC)
    			break;
    
    		trans->block_rsv = &root->fs_info->trans_block_rsv;
    		btrfs_end_transaction(trans, root);
    		trans = NULL;
    		btrfs_btree_balance_dirty(root);
    	}
    
    	btrfs_free_block_rsv(root, rsv);
    
    	/*
    	 * Errors here aren't a big deal, it just means we leave orphan items
    	 * in the tree.  They will be cleaned up on the next mount.
    	 */
    	if (ret == 0) {
    		trans->block_rsv = root->orphan_block_rsv;
    		btrfs_orphan_del(trans, inode);
    	} else {
    		btrfs_orphan_del(NULL, inode);
    	}
    
    	trans->block_rsv = &root->fs_info->trans_block_rsv;
    	if (!(root == root->fs_info->tree_root ||
    	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
    		btrfs_return_ino(root, btrfs_ino(inode));
    
    	btrfs_end_transaction(trans, root);
    	btrfs_btree_balance_dirty(root);
    no_delete:
    	btrfs_remove_delayed_node(inode);
    	clear_inode(inode);
    	return;
    }
    
    /*
     * this returns the key found in the dir entry in the location pointer.
     * If no dir entries were found, location->objectid is 0.
     */
    static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
    			       struct btrfs_key *location)
    {
    	const char *name = dentry->d_name.name;
    	int namelen = dentry->d_name.len;
    	struct btrfs_dir_item *di;
    	struct btrfs_path *path;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	int ret = 0;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
    				    namelen, 0);
    	if (IS_ERR(di))
    		ret = PTR_ERR(di);
    
    	if (IS_ERR_OR_NULL(di))
    		goto out_err;
    
    	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
    out:
    	btrfs_free_path(path);
    	return ret;
    out_err:
    	location->objectid = 0;
    	goto out;
    }
    
    /*
     * when we hit a tree root in a directory, the btrfs part of the inode
     * needs to be changed to reflect the root directory of the tree root.  This
     * is kind of like crossing a mount point.
     */
    static int fixup_tree_root_location(struct btrfs_root *root,
    				    struct inode *dir,
    				    struct dentry *dentry,
    				    struct btrfs_key *location,
    				    struct btrfs_root **sub_root)
    {
    	struct btrfs_path *path;
    	struct btrfs_root *new_root;
    	struct btrfs_root_ref *ref;
    	struct extent_buffer *leaf;
    	int ret;
    	int err = 0;
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	err = -ENOENT;
    	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
    				  BTRFS_I(dir)->root->root_key.objectid,
    				  location->objectid);
    	if (ret) {
    		if (ret < 0)
    			err = ret;
    		goto out;
    	}
    
    	leaf = path->nodes[0];
    	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
    	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
    	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
    		goto out;
    
    	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
    				   (unsigned long)(ref + 1),
    				   dentry->d_name.len);
    	if (ret)
    		goto out;
    
    	btrfs_release_path(path);
    
    	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
    	if (IS_ERR(new_root)) {
    		err = PTR_ERR(new_root);
    		goto out;
    	}
    
    	*sub_root = new_root;
    	location->objectid = btrfs_root_dirid(&new_root->root_item);
    	location->type = BTRFS_INODE_ITEM_KEY;
    	location->offset = 0;
    	err = 0;
    out:
    	btrfs_free_path(path);
    	return err;
    }
    
    static void inode_tree_add(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_inode *entry;
    	struct rb_node **p;
    	struct rb_node *parent;
    	struct rb_node *new = &BTRFS_I(inode)->rb_node;
    	u64 ino = btrfs_ino(inode);
    
    	if (inode_unhashed(inode))
    		return;
    	parent = NULL;
    	spin_lock(&root->inode_lock);
    	p = &root->inode_tree.rb_node;
    	while (*p) {
    		parent = *p;
    		entry = rb_entry(parent, struct btrfs_inode, rb_node);
    
    		if (ino < btrfs_ino(&entry->vfs_inode))
    			p = &parent->rb_left;
    		else if (ino > btrfs_ino(&entry->vfs_inode))
    			p = &parent->rb_right;
    		else {
    			WARN_ON(!(entry->vfs_inode.i_state &
    				  (I_WILL_FREE | I_FREEING)));
    			rb_replace_node(parent, new, &root->inode_tree);
    			RB_CLEAR_NODE(parent);
    			spin_unlock(&root->inode_lock);
    			return;
    		}
    	}
    	rb_link_node(new, parent, p);
    	rb_insert_color(new, &root->inode_tree);
    	spin_unlock(&root->inode_lock);
    }
    
    static void inode_tree_del(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int empty = 0;
    
    	spin_lock(&root->inode_lock);
    	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
    		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
    		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
    		empty = RB_EMPTY_ROOT(&root->inode_tree);
    	}
    	spin_unlock(&root->inode_lock);
    
    	/*
    	 * Free space cache has inodes in the tree root, but the tree root has a
    	 * root_refs of 0, so this could end up dropping the tree root as a
    	 * snapshot, so we need the extra !root->fs_info->tree_root check to
    	 * make sure we don't drop it.
    	 */
    	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
    	    root != root->fs_info->tree_root) {
    		synchronize_srcu(&root->fs_info->subvol_srcu);
    		spin_lock(&root->inode_lock);
    		empty = RB_EMPTY_ROOT(&root->inode_tree);
    		spin_unlock(&root->inode_lock);
    		if (empty)
    			btrfs_add_dead_root(root);
    	}
    }
    
    void btrfs_invalidate_inodes(struct btrfs_root *root)
    {
    	struct rb_node *node;
    	struct rb_node *prev;
    	struct btrfs_inode *entry;
    	struct inode *inode;
    	u64 objectid = 0;
    
    	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
    
    	spin_lock(&root->inode_lock);
    again:
    	node = root->inode_tree.rb_node;
    	prev = NULL;
    	while (node) {
    		prev = node;
    		entry = rb_entry(node, struct btrfs_inode, rb_node);
    
    		if (objectid < btrfs_ino(&entry->vfs_inode))
    			node = node->rb_left;
    		else if (objectid > btrfs_ino(&entry->vfs_inode))
    			node = node->rb_right;
    		else
    			break;
    	}
    	if (!node) {
    		while (prev) {
    			entry = rb_entry(prev, struct btrfs_inode, rb_node);
    			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
    				node = prev;
    				break;
    			}
    			prev = rb_next(prev);
    		}
    	}
    	while (node) {
    		entry = rb_entry(node, struct btrfs_inode, rb_node);
    		objectid = btrfs_ino(&entry->vfs_inode) + 1;
    		inode = igrab(&entry->vfs_inode);
    		if (inode) {
    			spin_unlock(&root->inode_lock);
    			if (atomic_read(&inode->i_count) > 1)
    				d_prune_aliases(inode);
    			/*
    			 * btrfs_drop_inode will have it removed from
    			 * the inode cache when its usage count
    			 * hits zero.
    			 */
    			iput(inode);
    			cond_resched();
    			spin_lock(&root->inode_lock);
    			goto again;
    		}
    
    		if (cond_resched_lock(&root->inode_lock))
    			goto again;
    
    		node = rb_next(node);
    	}
    	spin_unlock(&root->inode_lock);
    }
    
    static int btrfs_init_locked_inode(struct inode *inode, void *p)
    {
    	struct btrfs_iget_args *args = p;
    	inode->i_ino = args->ino;
    	BTRFS_I(inode)->root = args->root;
    	return 0;
    }
    
    static int btrfs_find_actor(struct inode *inode, void *opaque)
    {
    	struct btrfs_iget_args *args = opaque;
    	return args->ino == btrfs_ino(inode) &&
    		args->root == BTRFS_I(inode)->root;
    }
    
    static struct inode *btrfs_iget_locked(struct super_block *s,
    				       u64 objectid,
    				       struct btrfs_root *root)
    {
    	struct inode *inode;
    	struct btrfs_iget_args args;
    	args.ino = objectid;
    	args.root = root;
    
    	inode = iget5_locked(s, objectid, btrfs_find_actor,
    			     btrfs_init_locked_inode,
    			     (void *)&args);
    	return inode;
    }
    
    /* Get an inode object given its location and corresponding root.
     * Returns in *is_new if the inode was read from disk
     */
    struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
    			 struct btrfs_root *root, int *new)
    {
    	struct inode *inode;
    
    	inode = btrfs_iget_locked(s, location->objectid, root);
    	if (!inode)
    		return ERR_PTR(-ENOMEM);
    
    	if (inode->i_state & I_NEW) {
    		BTRFS_I(inode)->root = root;
    		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
    		btrfs_read_locked_inode(inode);
    		if (!is_bad_inode(inode)) {
    			inode_tree_add(inode);
    			unlock_new_inode(inode);
    			if (new)
    				*new = 1;
    		} else {
    			unlock_new_inode(inode);
    			iput(inode);
    			inode = ERR_PTR(-ESTALE);
    		}
    	}
    
    	return inode;
    }
    
    static struct inode *new_simple_dir(struct super_block *s,
    				    struct btrfs_key *key,
    				    struct btrfs_root *root)
    {
    	struct inode *inode = new_inode(s);
    
    	if (!inode)
    		return ERR_PTR(-ENOMEM);
    
    	BTRFS_I(inode)->root = root;
    	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
    	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
    
    	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
    	inode->i_op = &btrfs_dir_ro_inode_operations;
    	inode->i_fop = &simple_dir_operations;
    	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
    	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
    
    	return inode;
    }
    
    struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
    {
    	struct inode *inode;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_root *sub_root = root;
    	struct btrfs_key location;
    	int index;
    	int ret = 0;
    
    	if (dentry->d_name.len > BTRFS_NAME_LEN)
    		return ERR_PTR(-ENAMETOOLONG);
    
    	ret = btrfs_inode_by_name(dir, dentry, &location);
    	if (ret < 0)
    		return ERR_PTR(ret);
    
    	if (location.objectid == 0)
    		return NULL;
    
    	if (location.type == BTRFS_INODE_ITEM_KEY) {
    		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
    		return inode;
    	}
    
    	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
    
    	index = srcu_read_lock(&root->fs_info->subvol_srcu);
    	ret = fixup_tree_root_location(root, dir, dentry,
    				       &location, &sub_root);
    	if (ret < 0) {
    		if (ret != -ENOENT)
    			inode = ERR_PTR(ret);
    		else
    			inode = new_simple_dir(dir->i_sb, &location, sub_root);
    	} else {
    		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
    	}
    	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
    
    	if (!IS_ERR(inode) && root != sub_root) {
    		down_read(&root->fs_info->cleanup_work_sem);
    		if (!(inode->i_sb->s_flags & MS_RDONLY))
    			ret = btrfs_orphan_cleanup(sub_root);
    		up_read(&root->fs_info->cleanup_work_sem);
    		if (ret) {
    			iput(inode);
    			inode = ERR_PTR(ret);
    		}
    	}
    
    	return inode;
    }
    
    static int btrfs_dentry_delete(const struct dentry *dentry)
    {
    	struct btrfs_root *root;
    	struct inode *inode = dentry->d_inode;
    
    	if (!inode && !IS_ROOT(dentry))
    		inode = dentry->d_parent->d_inode;
    
    	if (inode) {
    		root = BTRFS_I(inode)->root;
    		if (btrfs_root_refs(&root->root_item) == 0)
    			return 1;
    
    		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
    			return 1;
    	}
    	return 0;
    }
    
    static void btrfs_dentry_release(struct dentry *dentry)
    {
    	if (dentry->d_fsdata)
    		kfree(dentry->d_fsdata);
    }
    
    static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
    				   unsigned int flags)
    {
    	struct dentry *ret;
    
    	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
    	return ret;
    }
    
    unsigned char btrfs_filetype_table[] = {
    	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
    };
    
    static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_item *item;
    	struct btrfs_dir_item *di;
    	struct btrfs_key key;
    	struct btrfs_key found_key;
    	struct btrfs_path *path;
    	struct list_head ins_list;
    	struct list_head del_list;
    	int ret;
    	struct extent_buffer *leaf;
    	int slot;
    	unsigned char d_type;
    	int over = 0;
    	u32 di_cur;
    	u32 di_total;
    	u32 di_len;
    	int key_type = BTRFS_DIR_INDEX_KEY;
    	char tmp_name[32];
    	char *name_ptr;
    	int name_len;
    	int is_curr = 0;	/* ctx->pos points to the current index? */
    
    	/* FIXME, use a real flag for deciding about the key type */
    	if (root->fs_info->tree_root == root)
    		key_type = BTRFS_DIR_ITEM_KEY;
    
    	if (!dir_emit_dots(file, ctx))
    		return 0;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	path->reada = 1;
    
    	if (key_type == BTRFS_DIR_INDEX_KEY) {
    		INIT_LIST_HEAD(&ins_list);
    		INIT_LIST_HEAD(&del_list);
    		btrfs_get_delayed_items(inode, &ins_list, &del_list);
    	}
    
    	btrfs_set_key_type(&key, key_type);
    	key.offset = ctx->pos;
    	key.objectid = btrfs_ino(inode);
    
    	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    	if (ret < 0)
    		goto err;
    
    	while (1) {
    		leaf = path->nodes[0];
    		slot = path->slots[0];
    		if (slot >= btrfs_header_nritems(leaf)) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0)
    				goto err;
    			else if (ret > 0)
    				break;
    			continue;
    		}
    
    		item = btrfs_item_nr(leaf, slot);
    		btrfs_item_key_to_cpu(leaf, &found_key, slot);
    
    		if (found_key.objectid != key.objectid)
    			break;
    		if (btrfs_key_type(&found_key) != key_type)
    			break;
    		if (found_key.offset < ctx->pos)
    			goto next;
    		if (key_type == BTRFS_DIR_INDEX_KEY &&
    		    btrfs_should_delete_dir_index(&del_list,
    						  found_key.offset))
    			goto next;
    
    		ctx->pos = found_key.offset;
    		is_curr = 1;
    
    		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
    		di_cur = 0;
    		di_total = btrfs_item_size(leaf, item);
    
    		while (di_cur < di_total) {
    			struct btrfs_key location;
    
    			if (verify_dir_item(root, leaf, di))
    				break;
    
    			name_len = btrfs_dir_name_len(leaf, di);
    			if (name_len <= sizeof(tmp_name)) {
    				name_ptr = tmp_name;
    			} else {
    				name_ptr = kmalloc(name_len, GFP_NOFS);
    				if (!name_ptr) {
    					ret = -ENOMEM;
    					goto err;
    				}
    			}
    			read_extent_buffer(leaf, name_ptr,
    					   (unsigned long)(di + 1), name_len);
    
    			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
    			btrfs_dir_item_key_to_cpu(leaf, di, &location);
    
    
    			/* is this a reference to our own snapshot? If so
    			 * skip it.
    			 *
    			 * In contrast to old kernels, we insert the snapshot's
    			 * dir item and dir index after it has been created, so
    			 * we won't find a reference to our own snapshot. We
    			 * still keep the following code for backward
    			 * compatibility.
    			 */
    			if (location.type == BTRFS_ROOT_ITEM_KEY &&
    			    location.objectid == root->root_key.objectid) {
    				over = 0;
    				goto skip;
    			}
    			over = !dir_emit(ctx, name_ptr, name_len,
    				       location.objectid, d_type);
    
    skip:
    			if (name_ptr != tmp_name)
    				kfree(name_ptr);
    
    			if (over)
    				goto nopos;
    			di_len = btrfs_dir_name_len(leaf, di) +
    				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
    			di_cur += di_len;
    			di = (struct btrfs_dir_item *)((char *)di + di_len);
    		}
    next:
    		path->slots[0]++;
    	}
    
    	if (key_type == BTRFS_DIR_INDEX_KEY) {
    		if (is_curr)
    			ctx->pos++;
    		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
    		if (ret)
    			goto nopos;
    	}
    
    	/* Reached end of directory/root. Bump pos past the last item. */
    	ctx->pos++;
    
    	/*
    	 * Stop new entries from being returned after we return the last
    	 * entry.
    	 *
    	 * New directory entries are assigned a strictly increasing
    	 * offset.  This means that new entries created during readdir
    	 * are *guaranteed* to be seen in the future by that readdir.
    	 * This has broken buggy programs which operate on names as
    	 * they're returned by readdir.  Until we re-use freed offsets
    	 * we have this hack to stop new entries from being returned
    	 * under the assumption that they'll never reach this huge
    	 * offset.
    	 *
    	 * This is being careful not to overflow 32bit loff_t unless the
    	 * last entry requires it because doing so has broken 32bit apps
    	 * in the past.
    	 */
    	if (key_type == BTRFS_DIR_INDEX_KEY) {
    		if (ctx->pos >= INT_MAX)
    			ctx->pos = LLONG_MAX;
    		else
    			ctx->pos = INT_MAX;
    	}
    nopos:
    	ret = 0;
    err:
    	if (key_type == BTRFS_DIR_INDEX_KEY)
    		btrfs_put_delayed_items(&ins_list, &del_list);
    	btrfs_free_path(path);
    	return ret;
    }
    
    int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	int ret = 0;
    	bool nolock = false;
    
    	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
    		return 0;
    
    	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
    		nolock = true;
    
    	if (wbc->sync_mode == WB_SYNC_ALL) {
    		if (nolock)
    			trans = btrfs_join_transaction_nolock(root);
    		else
    			trans = btrfs_join_transaction(root);
    		if (IS_ERR(trans))
    			return PTR_ERR(trans);
    		ret = btrfs_commit_transaction(trans, root);
    	}
    	return ret;
    }
    
    /*
     * This is somewhat expensive, updating the tree every time the
     * inode changes.  But, it is most likely to find the inode in cache.
     * FIXME, needs more benchmarking...there are no reasons other than performance
     * to keep or drop this code.
     */
    static int btrfs_dirty_inode(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	int ret;
    
    	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
    		return 0;
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	ret = btrfs_update_inode(trans, root, inode);
    	if (ret && ret == -ENOSPC) {
    		/* whoops, lets try again with the full transaction */
    		btrfs_end_transaction(trans, root);
    		trans = btrfs_start_transaction(root, 1);
    		if (IS_ERR(trans))
    			return PTR_ERR(trans);
    
    		ret = btrfs_update_inode(trans, root, inode);
    	}
    	btrfs_end_transaction(trans, root);
    	if (BTRFS_I(inode)->delayed_node)
    		btrfs_balance_delayed_items(root);
    
    	return ret;
    }
    
    /*
     * This is a copy of file_update_time.  We need this so we can return error on
     * ENOSPC for updating the inode in the case of file write and mmap writes.
     */
    static int btrfs_update_time(struct inode *inode, struct timespec *now,
    			     int flags)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    
    	if (btrfs_root_readonly(root))
    		return -EROFS;
    
    	if (flags & S_VERSION)
    		inode_inc_iversion(inode);
    	if (flags & S_CTIME)
    		inode->i_ctime = *now;
    	if (flags & S_MTIME)
    		inode->i_mtime = *now;
    	if (flags & S_ATIME)
    		inode->i_atime = *now;
    	return btrfs_dirty_inode(inode);
    }
    
    /*
     * find the highest existing sequence number in a directory
     * and then set the in-memory index_cnt variable to reflect
     * free sequence numbers
     */
    static int btrfs_set_inode_index_count(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_key key, found_key;
    	struct btrfs_path *path;
    	struct extent_buffer *leaf;
    	int ret;
    
    	key.objectid = btrfs_ino(inode);
    	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
    	key.offset = (u64)-1;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    	if (ret < 0)
    		goto out;
    	/* FIXME: we should be able to handle this */
    	if (ret == 0)
    		goto out;
    	ret = 0;
    
    	/*
    	 * MAGIC NUMBER EXPLANATION:
    	 * since we search a directory based on f_pos we have to start at 2
    	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
    	 * else has to start at 2
    	 */
    	if (path->slots[0] == 0) {
    		BTRFS_I(inode)->index_cnt = 2;
    		goto out;
    	}
    
    	path->slots[0]--;
    
    	leaf = path->nodes[0];
    	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    
    	if (found_key.objectid != btrfs_ino(inode) ||
    	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
    		BTRFS_I(inode)->index_cnt = 2;
    		goto out;
    	}
    
    	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    /*
     * helper to find a free sequence number in a given directory.  This current
     * code is very simple, later versions will do smarter things in the btree
     */
    int btrfs_set_inode_index(struct inode *dir, u64 *index)
    {
    	int ret = 0;
    
    	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
    		ret = btrfs_inode_delayed_dir_index_count(dir);
    		if (ret) {
    			ret = btrfs_set_inode_index_count(dir);
    			if (ret)
    				return ret;
    		}
    	}
    
    	*index = BTRFS_I(dir)->index_cnt;
    	BTRFS_I(dir)->index_cnt++;
    
    	return ret;
    }
    
    static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
    				     struct btrfs_root *root,
    				     struct inode *dir,
    				     const char *name, int name_len,
    				     u64 ref_objectid, u64 objectid,
    				     umode_t mode, u64 *index)
    {
    	struct inode *inode;
    	struct btrfs_inode_item *inode_item;
    	struct btrfs_key *location;
    	struct btrfs_path *path;
    	struct btrfs_inode_ref *ref;
    	struct btrfs_key key[2];
    	u32 sizes[2];
    	unsigned long ptr;
    	int ret;
    	int owner;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return ERR_PTR(-ENOMEM);
    
    	inode = new_inode(root->fs_info->sb);
    	if (!inode) {
    		btrfs_free_path(path);
    		return ERR_PTR(-ENOMEM);
    	}
    
    	/*
    	 * we have to initialize this early, so we can reclaim the inode
    	 * number if we fail afterwards in this function.
    	 */
    	inode->i_ino = objectid;
    
    	if (dir) {
    		trace_btrfs_inode_request(dir);
    
    		ret = btrfs_set_inode_index(dir, index);
    		if (ret) {
    			btrfs_free_path(path);
    			iput(inode);
    			return ERR_PTR(ret);
    		}
    	}
    	/*
    	 * index_cnt is ignored for everything but a dir,
    	 * btrfs_get_inode_index_count has an explanation for the magic
    	 * number
    	 */
    	BTRFS_I(inode)->index_cnt = 2;
    	BTRFS_I(inode)->root = root;
    	BTRFS_I(inode)->generation = trans->transid;
    	inode->i_generation = BTRFS_I(inode)->generation;
    
    	/*
    	 * We could have gotten an inode number from somebody who was fsynced
    	 * and then removed in this same transaction, so let's just set full
    	 * sync since it will be a full sync anyway and this will blow away the
    	 * old info in the log.
    	 */
    	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
    
    	if (S_ISDIR(mode))
    		owner = 0;
    	else
    		owner = 1;
    
    	key[0].objectid = objectid;
    	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
    	key[0].offset = 0;
    
    	/*
    	 * Start new inodes with an inode_ref. This is slightly more
    	 * efficient for small numbers of hard links since they will
    	 * be packed into one item. Extended refs will kick in if we
    	 * add more hard links than can fit in the ref item.
    	 */
    	key[1].objectid = objectid;
    	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
    	key[1].offset = ref_objectid;
    
    	sizes[0] = sizeof(struct btrfs_inode_item);
    	sizes[1] = name_len + sizeof(*ref);
    
    	path->leave_spinning = 1;
    	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
    	if (ret != 0)
    		goto fail;
    
    	inode_init_owner(inode, dir, mode);
    	inode_set_bytes(inode, 0);
    	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
    	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
    				  struct btrfs_inode_item);
    	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
    			     sizeof(*inode_item));
    	fill_inode_item(trans, path->nodes[0], inode_item, inode);
    
    	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
    			     struct btrfs_inode_ref);
    	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
    	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
    	ptr = (unsigned long)(ref + 1);
    	write_extent_buffer(path->nodes[0], name, ptr, name_len);
    
    	btrfs_mark_buffer_dirty(path->nodes[0]);
    	btrfs_free_path(path);
    
    	location = &BTRFS_I(inode)->location;
    	location->objectid = objectid;
    	location->offset = 0;
    	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
    
    	btrfs_inherit_iflags(inode, dir);
    
    	if (S_ISREG(mode)) {
    		if (btrfs_test_opt(root, NODATASUM))
    			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
    		if (btrfs_test_opt(root, NODATACOW))
    			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
    				BTRFS_INODE_NODATASUM;
    	}
    
    	insert_inode_hash(inode);
    	inode_tree_add(inode);
    
    	trace_btrfs_inode_new(inode);
    	btrfs_set_inode_last_trans(trans, inode);
    
    	btrfs_update_root_times(trans, root);
    
    	return inode;
    fail:
    	if (dir)
    		BTRFS_I(dir)->index_cnt--;
    	btrfs_free_path(path);
    	iput(inode);
    	return ERR_PTR(ret);
    }
    
    static inline u8 btrfs_inode_type(struct inode *inode)
    {
    	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
    }
    
    /*
     * utility function to add 'inode' into 'parent_inode' with
     * a give name and a given sequence number.
     * if 'add_backref' is true, also insert a backref from the
     * inode to the parent directory.
     */
    int btrfs_add_link(struct btrfs_trans_handle *trans,
    		   struct inode *parent_inode, struct inode *inode,
    		   const char *name, int name_len, int add_backref, u64 index)
    {
    	int ret = 0;
    	struct btrfs_key key;
    	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
    	u64 ino = btrfs_ino(inode);
    	u64 parent_ino = btrfs_ino(parent_inode);
    
    	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
    		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
    	} else {
    		key.objectid = ino;
    		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
    		key.offset = 0;
    	}
    
    	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
    		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
    					 key.objectid, root->root_key.objectid,
    					 parent_ino, index, name, name_len);
    	} else if (add_backref) {
    		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
    					     parent_ino, index);
    	}
    
    	/* Nothing to clean up yet */
    	if (ret)
    		return ret;
    
    	ret = btrfs_insert_dir_item(trans, root, name, name_len,
    				    parent_inode, &key,
    				    btrfs_inode_type(inode), index);
    	if (ret == -EEXIST || ret == -EOVERFLOW)
    		goto fail_dir_item;
    	else if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		return ret;
    	}
    
    	btrfs_i_size_write(parent_inode, parent_inode->i_size +
    			   name_len * 2);
    	inode_inc_iversion(parent_inode);
    	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
    	ret = btrfs_update_inode(trans, root, parent_inode);
    	if (ret)
    		btrfs_abort_transaction(trans, root, ret);
    	return ret;
    
    fail_dir_item:
    	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
    		u64 local_index;
    		int err;
    		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
    				 key.objectid, root->root_key.objectid,
    				 parent_ino, &local_index, name, name_len);
    
    	} else if (add_backref) {
    		u64 local_index;
    		int err;
    
    		err = btrfs_del_inode_ref(trans, root, name, name_len,
    					  ino, parent_ino, &local_index);
    	}
    	return ret;
    }
    
    static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
    			    struct inode *dir, struct dentry *dentry,
    			    struct inode *inode, int backref, u64 index)
    {
    	int err = btrfs_add_link(trans, dir, inode,
    				 dentry->d_name.name, dentry->d_name.len,
    				 backref, index);
    	if (err > 0)
    		err = -EEXIST;
    	return err;
    }
    
    static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
    			umode_t mode, dev_t rdev)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct inode *inode = NULL;
    	int err;
    	int drop_inode = 0;
    	u64 objectid;
    	u64 index = 0;
    
    	if (!new_valid_dev(rdev))
    		return -EINVAL;
    
    	/*
    	 * 2 for inode item and ref
    	 * 2 for dir items
    	 * 1 for xattr if selinux is on
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	err = btrfs_find_free_ino(root, &objectid);
    	if (err)
    		goto out_unlock;
    
    	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
    				dentry->d_name.len, btrfs_ino(dir), objectid,
    				mode, &index);
    	if (IS_ERR(inode)) {
    		err = PTR_ERR(inode);
    		goto out_unlock;
    	}
    
    	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
    	if (err) {
    		drop_inode = 1;
    		goto out_unlock;
    	}
    
    	/*
    	* If the active LSM wants to access the inode during
    	* d_instantiate it needs these. Smack checks to see
    	* if the filesystem supports xattrs by looking at the
    	* ops vector.
    	*/
    
    	inode->i_op = &btrfs_special_inode_operations;
    	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
    	if (err)
    		drop_inode = 1;
    	else {
    		init_special_inode(inode, inode->i_mode, rdev);
    		btrfs_update_inode(trans, root, inode);
    		d_instantiate(dentry, inode);
    	}
    out_unlock:
    	btrfs_end_transaction(trans, root);
    	btrfs_btree_balance_dirty(root);
    	if (drop_inode) {
    		inode_dec_link_count(inode);
    		iput(inode);
    	}
    	return err;
    }
    
    static int btrfs_create(struct inode *dir, struct dentry *dentry,
    			umode_t mode, bool excl)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct inode *inode = NULL;
    	int drop_inode_on_err = 0;
    	int err;
    	u64 objectid;
    	u64 index = 0;
    
    	/*
    	 * 2 for inode item and ref
    	 * 2 for dir items
    	 * 1 for xattr if selinux is on
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	err = btrfs_find_free_ino(root, &objectid);
    	if (err)
    		goto out_unlock;
    
    	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
    				dentry->d_name.len, btrfs_ino(dir), objectid,
    				mode, &index);
    	if (IS_ERR(inode)) {
    		err = PTR_ERR(inode);
    		goto out_unlock;
    	}
    	drop_inode_on_err = 1;
    
    	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
    	if (err)
    		goto out_unlock;
    
    	err = btrfs_update_inode(trans, root, inode);
    	if (err)
    		goto out_unlock;
    
    	/*
    	* If the active LSM wants to access the inode during
    	* d_instantiate it needs these. Smack checks to see
    	* if the filesystem supports xattrs by looking at the
    	* ops vector.
    	*/
    	inode->i_fop = &btrfs_file_operations;
    	inode->i_op = &btrfs_file_inode_operations;
    
    	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
    	if (err)
    		goto out_unlock;
    
    	inode->i_mapping->a_ops = &btrfs_aops;
    	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
    	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
    	d_instantiate(dentry, inode);
    
    out_unlock:
    	btrfs_end_transaction(trans, root);
    	if (err && drop_inode_on_err) {
    		inode_dec_link_count(inode);
    		iput(inode);
    	}
    	btrfs_btree_balance_dirty(root);
    	return err;
    }
    
    static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
    		      struct dentry *dentry)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct inode *inode = old_dentry->d_inode;
    	u64 index;
    	int err;
    	int drop_inode = 0;
    
    	/* do not allow sys_link's with other subvols of the same device */
    	if (root->objectid != BTRFS_I(inode)->root->objectid)
    		return -EXDEV;
    
    	if (inode->i_nlink >= BTRFS_LINK_MAX)
    		return -EMLINK;
    
    	err = btrfs_set_inode_index(dir, &index);
    	if (err)
    		goto fail;
    
    	/*
    	 * 2 items for inode and inode ref
    	 * 2 items for dir items
    	 * 1 item for parent inode
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (IS_ERR(trans)) {
    		err = PTR_ERR(trans);
    		goto fail;
    	}
    
    	btrfs_inc_nlink(inode);
    	inode_inc_iversion(inode);
    	inode->i_ctime = CURRENT_TIME;
    	ihold(inode);
    	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
    
    	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
    
    	if (err) {
    		drop_inode = 1;
    	} else {
    		struct dentry *parent = dentry->d_parent;
    		err = btrfs_update_inode(trans, root, inode);
    		if (err)
    			goto fail;
    		d_instantiate(dentry, inode);
    		btrfs_log_new_name(trans, inode, NULL, parent);
    	}
    
    	btrfs_end_transaction(trans, root);
    fail:
    	if (drop_inode) {
    		inode_dec_link_count(inode);
    		iput(inode);
    	}
    	btrfs_btree_balance_dirty(root);
    	return err;
    }
    
    static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
    {
    	struct inode *inode = NULL;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	int err = 0;
    	int drop_on_err = 0;
    	u64 objectid = 0;
    	u64 index = 0;
    
    	/*
    	 * 2 items for inode and ref
    	 * 2 items for dir items
    	 * 1 for xattr if selinux is on
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	err = btrfs_find_free_ino(root, &objectid);
    	if (err)
    		goto out_fail;
    
    	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
    				dentry->d_name.len, btrfs_ino(dir), objectid,
    				S_IFDIR | mode, &index);
    	if (IS_ERR(inode)) {
    		err = PTR_ERR(inode);
    		goto out_fail;
    	}
    
    	drop_on_err = 1;
    
    	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
    	if (err)
    		goto out_fail;
    
    	inode->i_op = &btrfs_dir_inode_operations;
    	inode->i_fop = &btrfs_dir_file_operations;
    
    	btrfs_i_size_write(inode, 0);
    	err = btrfs_update_inode(trans, root, inode);
    	if (err)
    		goto out_fail;
    
    	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
    			     dentry->d_name.len, 0, index);
    	if (err)
    		goto out_fail;
    
    	d_instantiate(dentry, inode);
    	drop_on_err = 0;
    
    out_fail:
    	btrfs_end_transaction(trans, root);
    	if (drop_on_err)
    		iput(inode);
    	btrfs_btree_balance_dirty(root);
    	return err;
    }
    
    /* helper for btfs_get_extent.  Given an existing extent in the tree,
     * and an extent that you want to insert, deal with overlap and insert
     * the new extent into the tree.
     */
    static int merge_extent_mapping(struct extent_map_tree *em_tree,
    				struct extent_map *existing,
    				struct extent_map *em,
    				u64 map_start, u64 map_len)
    {
    	u64 start_diff;
    
    	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
    	start_diff = map_start - em->start;
    	em->start = map_start;
    	em->len = map_len;
    	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
    	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
    		em->block_start += start_diff;
    		em->block_len -= start_diff;
    	}
    	return add_extent_mapping(em_tree, em, 0);
    }
    
    static noinline int uncompress_inline(struct btrfs_path *path,
    				      struct inode *inode, struct page *page,
    				      size_t pg_offset, u64 extent_offset,
    				      struct btrfs_file_extent_item *item)
    {
    	int ret;
    	struct extent_buffer *leaf = path->nodes[0];
    	char *tmp;
    	size_t max_size;
    	unsigned long inline_size;
    	unsigned long ptr;
    	int compress_type;
    
    	WARN_ON(pg_offset != 0);
    	compress_type = btrfs_file_extent_compression(leaf, item);
    	max_size = btrfs_file_extent_ram_bytes(leaf, item);
    	inline_size = btrfs_file_extent_inline_item_len(leaf,
    					btrfs_item_nr(leaf, path->slots[0]));
    	tmp = kmalloc(inline_size, GFP_NOFS);
    	if (!tmp)
    		return -ENOMEM;
    	ptr = btrfs_file_extent_inline_start(item);
    
    	read_extent_buffer(leaf, tmp, ptr, inline_size);
    
    	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
    	ret = btrfs_decompress(compress_type, tmp, page,
    			       extent_offset, inline_size, max_size);
    	if (ret) {
    		char *kaddr = kmap_atomic(page);
    		unsigned long copy_size = min_t(u64,
    				  PAGE_CACHE_SIZE - pg_offset,
    				  max_size - extent_offset);
    		memset(kaddr + pg_offset, 0, copy_size);
    		kunmap_atomic(kaddr);
    	}
    	kfree(tmp);
    	return 0;
    }
    
    /*
     * a bit scary, this does extent mapping from logical file offset to the disk.
     * the ugly parts come from merging extents from the disk with the in-ram
     * representation.  This gets more complex because of the data=ordered code,
     * where the in-ram extents might be locked pending data=ordered completion.
     *
     * This also copies inline extents directly into the page.
     */
    
    struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
    				    size_t pg_offset, u64 start, u64 len,
    				    int create)
    {
    	int ret;
    	int err = 0;
    	u64 bytenr;
    	u64 extent_start = 0;
    	u64 extent_end = 0;
    	u64 objectid = btrfs_ino(inode);
    	u32 found_type;
    	struct btrfs_path *path = NULL;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_file_extent_item *item;
    	struct extent_buffer *leaf;
    	struct btrfs_key found_key;
    	struct extent_map *em = NULL;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct btrfs_trans_handle *trans = NULL;
    	int compress_type;
    
    again:
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, start, len);
    	if (em)
    		em->bdev = root->fs_info->fs_devices->latest_bdev;
    	read_unlock(&em_tree->lock);
    
    	if (em) {
    		if (em->start > start || em->start + em->len <= start)
    			free_extent_map(em);
    		else if (em->block_start == EXTENT_MAP_INLINE && page)
    			free_extent_map(em);
    		else
    			goto out;
    	}
    	em = alloc_extent_map();
    	if (!em) {
    		err = -ENOMEM;
    		goto out;
    	}
    	em->bdev = root->fs_info->fs_devices->latest_bdev;
    	em->start = EXTENT_MAP_HOLE;
    	em->orig_start = EXTENT_MAP_HOLE;
    	em->len = (u64)-1;
    	em->block_len = (u64)-1;
    
    	if (!path) {
    		path = btrfs_alloc_path();
    		if (!path) {
    			err = -ENOMEM;
    			goto out;
    		}
    		/*
    		 * Chances are we'll be called again, so go ahead and do
    		 * readahead
    		 */
    		path->reada = 1;
    	}
    
    	ret = btrfs_lookup_file_extent(trans, root, path,
    				       objectid, start, trans != NULL);
    	if (ret < 0) {
    		err = ret;
    		goto out;
    	}
    
    	if (ret != 0) {
    		if (path->slots[0] == 0)
    			goto not_found;
    		path->slots[0]--;
    	}
    
    	leaf = path->nodes[0];
    	item = btrfs_item_ptr(leaf, path->slots[0],
    			      struct btrfs_file_extent_item);
    	/* are we inside the extent that was found? */
    	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    	found_type = btrfs_key_type(&found_key);
    	if (found_key.objectid != objectid ||
    	    found_type != BTRFS_EXTENT_DATA_KEY) {
    		goto not_found;
    	}
    
    	found_type = btrfs_file_extent_type(leaf, item);
    	extent_start = found_key.offset;
    	compress_type = btrfs_file_extent_compression(leaf, item);
    	if (found_type == BTRFS_FILE_EXTENT_REG ||
    	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
    		extent_end = extent_start +
    		       btrfs_file_extent_num_bytes(leaf, item);
    	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
    		size_t size;
    		size = btrfs_file_extent_inline_len(leaf, item);
    		extent_end = ALIGN(extent_start + size, root->sectorsize);
    	}
    
    	if (start >= extent_end) {
    		path->slots[0]++;
    		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0) {
    				err = ret;
    				goto out;
    			}
    			if (ret > 0)
    				goto not_found;
    			leaf = path->nodes[0];
    		}
    		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    		if (found_key.objectid != objectid ||
    		    found_key.type != BTRFS_EXTENT_DATA_KEY)
    			goto not_found;
    		if (start + len <= found_key.offset)
    			goto not_found;
    		em->start = start;
    		em->orig_start = start;
    		em->len = found_key.offset - start;
    		goto not_found_em;
    	}
    
    	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
    	if (found_type == BTRFS_FILE_EXTENT_REG ||
    	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
    		em->start = extent_start;
    		em->len = extent_end - extent_start;
    		em->orig_start = extent_start -
    				 btrfs_file_extent_offset(leaf, item);
    		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
    								      item);
    		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
    		if (bytenr == 0) {
    			em->block_start = EXTENT_MAP_HOLE;
    			goto insert;
    		}
    		if (compress_type != BTRFS_COMPRESS_NONE) {
    			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
    			em->compress_type = compress_type;
    			em->block_start = bytenr;
    			em->block_len = em->orig_block_len;
    		} else {
    			bytenr += btrfs_file_extent_offset(leaf, item);
    			em->block_start = bytenr;
    			em->block_len = em->len;
    			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
    				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
    		}
    		goto insert;
    	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
    		unsigned long ptr;
    		char *map;
    		size_t size;
    		size_t extent_offset;
    		size_t copy_size;
    
    		em->block_start = EXTENT_MAP_INLINE;
    		if (!page || create) {
    			em->start = extent_start;
    			em->len = extent_end - extent_start;
    			goto out;
    		}
    
    		size = btrfs_file_extent_inline_len(leaf, item);
    		extent_offset = page_offset(page) + pg_offset - extent_start;
    		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
    				size - extent_offset);
    		em->start = extent_start + extent_offset;
    		em->len = ALIGN(copy_size, root->sectorsize);
    		em->orig_block_len = em->len;
    		em->orig_start = em->start;
    		if (compress_type) {
    			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
    			em->compress_type = compress_type;
    		}
    		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
    		if (create == 0 && !PageUptodate(page)) {
    			if (btrfs_file_extent_compression(leaf, item) !=
    			    BTRFS_COMPRESS_NONE) {
    				ret = uncompress_inline(path, inode, page,
    							pg_offset,
    							extent_offset, item);
    				BUG_ON(ret); /* -ENOMEM */
    			} else {
    				map = kmap(page);
    				read_extent_buffer(leaf, map + pg_offset, ptr,
    						   copy_size);
    				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
    					memset(map + pg_offset + copy_size, 0,
    					       PAGE_CACHE_SIZE - pg_offset -
    					       copy_size);
    				}
    				kunmap(page);
    			}
    			flush_dcache_page(page);
    		} else if (create && PageUptodate(page)) {
    			BUG();
    			if (!trans) {
    				kunmap(page);
    				free_extent_map(em);
    				em = NULL;
    
    				btrfs_release_path(path);
    				trans = btrfs_join_transaction(root);
    
    				if (IS_ERR(trans))
    					return ERR_CAST(trans);
    				goto again;
    			}
    			map = kmap(page);
    			write_extent_buffer(leaf, map + pg_offset, ptr,
    					    copy_size);
    			kunmap(page);
    			btrfs_mark_buffer_dirty(leaf);
    		}
    		set_extent_uptodate(io_tree, em->start,
    				    extent_map_end(em) - 1, NULL, GFP_NOFS);
    		goto insert;
    	} else {
    		WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
    	}
    not_found:
    	em->start = start;
    	em->orig_start = start;
    	em->len = len;
    not_found_em:
    	em->block_start = EXTENT_MAP_HOLE;
    	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
    insert:
    	btrfs_release_path(path);
    	if (em->start > start || extent_map_end(em) <= start) {
    		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
    			em->start, em->len, start, len);
    		err = -EIO;
    		goto out;
    	}
    
    	err = 0;
    	write_lock(&em_tree->lock);
    	ret = add_extent_mapping(em_tree, em, 0);
    	/* it is possible that someone inserted the extent into the tree
    	 * while we had the lock dropped.  It is also possible that
    	 * an overlapping map exists in the tree
    	 */
    	if (ret == -EEXIST) {
    		struct extent_map *existing;
    
    		ret = 0;
    
    		existing = lookup_extent_mapping(em_tree, start, len);
    		if (existing && (existing->start > start ||
    		    existing->start + existing->len <= start)) {
    			free_extent_map(existing);
    			existing = NULL;
    		}
    		if (!existing) {
    			existing = lookup_extent_mapping(em_tree, em->start,
    							 em->len);
    			if (existing) {
    				err = merge_extent_mapping(em_tree, existing,
    							   em, start,
    							   root->sectorsize);
    				free_extent_map(existing);
    				if (err) {
    					free_extent_map(em);
    					em = NULL;
    				}
    			} else {
    				err = -EIO;
    				free_extent_map(em);
    				em = NULL;
    			}
    		} else {
    			free_extent_map(em);
    			em = existing;
    			err = 0;
    		}
    	}
    	write_unlock(&em_tree->lock);
    out:
    
    	if (em)
    		trace_btrfs_get_extent(root, em);
    
    	if (path)
    		btrfs_free_path(path);
    	if (trans) {
    		ret = btrfs_end_transaction(trans, root);
    		if (!err)
    			err = ret;
    	}
    	if (err) {
    		free_extent_map(em);
    		return ERR_PTR(err);
    	}
    	BUG_ON(!em); /* Error is always set */
    	return em;
    }
    
    struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
    					   size_t pg_offset, u64 start, u64 len,
    					   int create)
    {
    	struct extent_map *em;
    	struct extent_map *hole_em = NULL;
    	u64 range_start = start;
    	u64 end;
    	u64 found;
    	u64 found_end;
    	int err = 0;
    
    	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
    	if (IS_ERR(em))
    		return em;
    	if (em) {
    		/*
    		 * if our em maps to
    		 * -  a hole or
    		 * -  a pre-alloc extent,
    		 * there might actually be delalloc bytes behind it.
    		 */
    		if (em->block_start != EXTENT_MAP_HOLE &&
    		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
    			return em;
    		else
    			hole_em = em;
    	}
    
    	/* check to see if we've wrapped (len == -1 or similar) */
    	end = start + len;
    	if (end < start)
    		end = (u64)-1;
    	else
    		end -= 1;
    
    	em = NULL;
    
    	/* ok, we didn't find anything, lets look for delalloc */
    	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
    				 end, len, EXTENT_DELALLOC, 1);
    	found_end = range_start + found;
    	if (found_end < range_start)
    		found_end = (u64)-1;
    
    	/*
    	 * we didn't find anything useful, return
    	 * the original results from get_extent()
    	 */
    	if (range_start > end || found_end <= start) {
    		em = hole_em;
    		hole_em = NULL;
    		goto out;
    	}
    
    	/* adjust the range_start to make sure it doesn't
    	 * go backwards from the start they passed in
    	 */
    	range_start = max(start,range_start);
    	found = found_end - range_start;
    
    	if (found > 0) {
    		u64 hole_start = start;
    		u64 hole_len = len;
    
    		em = alloc_extent_map();
    		if (!em) {
    			err = -ENOMEM;
    			goto out;
    		}
    		/*
    		 * when btrfs_get_extent can't find anything it
    		 * returns one huge hole
    		 *
    		 * make sure what it found really fits our range, and
    		 * adjust to make sure it is based on the start from
    		 * the caller
    		 */
    		if (hole_em) {
    			u64 calc_end = extent_map_end(hole_em);
    
    			if (calc_end <= start || (hole_em->start > end)) {
    				free_extent_map(hole_em);
    				hole_em = NULL;
    			} else {
    				hole_start = max(hole_em->start, start);
    				hole_len = calc_end - hole_start;
    			}
    		}
    		em->bdev = NULL;
    		if (hole_em && range_start > hole_start) {
    			/* our hole starts before our delalloc, so we
    			 * have to return just the parts of the hole
    			 * that go until  the delalloc starts
    			 */
    			em->len = min(hole_len,
    				      range_start - hole_start);
    			em->start = hole_start;
    			em->orig_start = hole_start;
    			/*
    			 * don't adjust block start at all,
    			 * it is fixed at EXTENT_MAP_HOLE
    			 */
    			em->block_start = hole_em->block_start;
    			em->block_len = hole_len;
    			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
    				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
    		} else {
    			em->start = range_start;
    			em->len = found;
    			em->orig_start = range_start;
    			em->block_start = EXTENT_MAP_DELALLOC;
    			em->block_len = found;
    		}
    	} else if (hole_em) {
    		return hole_em;
    	}
    out:
    
    	free_extent_map(hole_em);
    	if (err) {
    		free_extent_map(em);
    		return ERR_PTR(err);
    	}
    	return em;
    }
    
    static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
    						  u64 start, u64 len)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_map *em;
    	struct btrfs_key ins;
    	u64 alloc_hint;
    	int ret;
    
    	alloc_hint = get_extent_allocation_hint(inode, start, len);
    	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
    				   alloc_hint, &ins, 1);
    	if (ret)
    		return ERR_PTR(ret);
    
    	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
    			      ins.offset, ins.offset, ins.offset, 0);
    	if (IS_ERR(em)) {
    		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
    		return em;
    	}
    
    	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
    					   ins.offset, ins.offset, 0);
    	if (ret) {
    		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
    		free_extent_map(em);
    		return ERR_PTR(ret);
    	}
    
    	return em;
    }
    
    /*
     * returns 1 when the nocow is safe, < 1 on error, 0 if the
     * block must be cow'd
     */
    noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
    			      u64 *orig_start, u64 *orig_block_len,
    			      u64 *ram_bytes)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_path *path;
    	int ret;
    	struct extent_buffer *leaf;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	u64 disk_bytenr;
    	u64 backref_offset;
    	u64 extent_end;
    	u64 num_bytes;
    	int slot;
    	int found_type;
    	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
    				       offset, 0);
    	if (ret < 0)
    		goto out;
    
    	slot = path->slots[0];
    	if (ret == 1) {
    		if (slot == 0) {
    			/* can't find the item, must cow */
    			ret = 0;
    			goto out;
    		}
    		slot--;
    	}
    	ret = 0;
    	leaf = path->nodes[0];
    	btrfs_item_key_to_cpu(leaf, &key, slot);
    	if (key.objectid != btrfs_ino(inode) ||
    	    key.type != BTRFS_EXTENT_DATA_KEY) {
    		/* not our file or wrong item type, must cow */
    		goto out;
    	}
    
    	if (key.offset > offset) {
    		/* Wrong offset, must cow */
    		goto out;
    	}
    
    	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
    	found_type = btrfs_file_extent_type(leaf, fi);
    	if (found_type != BTRFS_FILE_EXTENT_REG &&
    	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
    		/* not a regular extent, must cow */
    		goto out;
    	}
    
    	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
    		goto out;
    
    	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
    	if (disk_bytenr == 0)
    		goto out;
    
    	if (btrfs_file_extent_compression(leaf, fi) ||
    	    btrfs_file_extent_encryption(leaf, fi) ||
    	    btrfs_file_extent_other_encoding(leaf, fi))
    		goto out;
    
    	backref_offset = btrfs_file_extent_offset(leaf, fi);
    
    	if (orig_start) {
    		*orig_start = key.offset - backref_offset;
    		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
    		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
    	}
    
    	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
    
    	if (btrfs_extent_readonly(root, disk_bytenr))
    		goto out;
    	btrfs_release_path(path);
    
    	/*
    	 * look for other files referencing this extent, if we
    	 * find any we must cow
    	 */
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = 0;
    		goto out;
    	}
    
    	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
    				    key.offset - backref_offset, disk_bytenr);
    	btrfs_end_transaction(trans, root);
    	if (ret) {
    		ret = 0;
    		goto out;
    	}
    
    	/*
    	 * adjust disk_bytenr and num_bytes to cover just the bytes
    	 * in this extent we are about to write.  If there
    	 * are any csums in that range we have to cow in order
    	 * to keep the csums correct
    	 */
    	disk_bytenr += backref_offset;
    	disk_bytenr += offset - key.offset;
    	num_bytes = min(offset + *len, extent_end) - offset;
    	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
    				goto out;
    	/*
    	 * all of the above have passed, it is safe to overwrite this extent
    	 * without cow
    	 */
    	*len = num_bytes;
    	ret = 1;
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
    			      struct extent_state **cached_state, int writing)
    {
    	struct btrfs_ordered_extent *ordered;
    	int ret = 0;
    
    	while (1) {
    		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
    				 0, cached_state);
    		/*
    		 * We're concerned with the entire range that we're going to be
    		 * doing DIO to, so we need to make sure theres no ordered
    		 * extents in this range.
    		 */
    		ordered = btrfs_lookup_ordered_range(inode, lockstart,
    						     lockend - lockstart + 1);
    
    		/*
    		 * We need to make sure there are no buffered pages in this
    		 * range either, we could have raced between the invalidate in
    		 * generic_file_direct_write and locking the extent.  The
    		 * invalidate needs to happen so that reads after a write do not
    		 * get stale data.
    		 */
    		if (!ordered && (!writing ||
    		    !test_range_bit(&BTRFS_I(inode)->io_tree,
    				    lockstart, lockend, EXTENT_UPTODATE, 0,
    				    *cached_state)))
    			break;
    
    		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
    				     cached_state, GFP_NOFS);
    
    		if (ordered) {
    			btrfs_start_ordered_extent(inode, ordered, 1);
    			btrfs_put_ordered_extent(ordered);
    		} else {
    			/* Screw you mmap */
    			ret = filemap_write_and_wait_range(inode->i_mapping,
    							   lockstart,
    							   lockend);
    			if (ret)
    				break;
    
    			/*
    			 * If we found a page that couldn't be invalidated just
    			 * fall back to buffered.
    			 */
    			ret = invalidate_inode_pages2_range(inode->i_mapping,
    					lockstart >> PAGE_CACHE_SHIFT,
    					lockend >> PAGE_CACHE_SHIFT);
    			if (ret)
    				break;
    		}
    
    		cond_resched();
    	}
    
    	return ret;
    }
    
    static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
    					   u64 len, u64 orig_start,
    					   u64 block_start, u64 block_len,
    					   u64 orig_block_len, u64 ram_bytes,
    					   int type)
    {
    	struct extent_map_tree *em_tree;
    	struct extent_map *em;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret;
    
    	em_tree = &BTRFS_I(inode)->extent_tree;
    	em = alloc_extent_map();
    	if (!em)
    		return ERR_PTR(-ENOMEM);
    
    	em->start = start;
    	em->orig_start = orig_start;
    	em->mod_start = start;
    	em->mod_len = len;
    	em->len = len;
    	em->block_len = block_len;
    	em->block_start = block_start;
    	em->bdev = root->fs_info->fs_devices->latest_bdev;
    	em->orig_block_len = orig_block_len;
    	em->ram_bytes = ram_bytes;
    	em->generation = -1;
    	set_bit(EXTENT_FLAG_PINNED, &em->flags);
    	if (type == BTRFS_ORDERED_PREALLOC)
    		set_bit(EXTENT_FLAG_FILLING, &em->flags);
    
    	do {
    		btrfs_drop_extent_cache(inode, em->start,
    				em->start + em->len - 1, 0);
    		write_lock(&em_tree->lock);
    		ret = add_extent_mapping(em_tree, em, 1);
    		write_unlock(&em_tree->lock);
    	} while (ret == -EEXIST);
    
    	if (ret) {
    		free_extent_map(em);
    		return ERR_PTR(ret);
    	}
    
    	return em;
    }
    
    
    static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
    				   struct buffer_head *bh_result, int create)
    {
    	struct extent_map *em;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_state *cached_state = NULL;
    	u64 start = iblock << inode->i_blkbits;
    	u64 lockstart, lockend;
    	u64 len = bh_result->b_size;
    	int unlock_bits = EXTENT_LOCKED;
    	int ret = 0;
    
    	if (create)
    		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
    	else
    		len = min_t(u64, len, root->sectorsize);
    
    	lockstart = start;
    	lockend = start + len - 1;
    
    	/*
    	 * If this errors out it's because we couldn't invalidate pagecache for
    	 * this range and we need to fallback to buffered.
    	 */
    	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
    		return -ENOTBLK;
    
    	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
    	if (IS_ERR(em)) {
    		ret = PTR_ERR(em);
    		goto unlock_err;
    	}
    
    	/*
    	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
    	 * io.  INLINE is special, and we could probably kludge it in here, but
    	 * it's still buffered so for safety lets just fall back to the generic
    	 * buffered path.
    	 *
    	 * For COMPRESSED we _have_ to read the entire extent in so we can
    	 * decompress it, so there will be buffering required no matter what we
    	 * do, so go ahead and fallback to buffered.
    	 *
    	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
    	 * to buffered IO.  Don't blame me, this is the price we pay for using
    	 * the generic code.
    	 */
    	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
    	    em->block_start == EXTENT_MAP_INLINE) {
    		free_extent_map(em);
    		ret = -ENOTBLK;
    		goto unlock_err;
    	}
    
    	/* Just a good old fashioned hole, return */
    	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
    			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
    		free_extent_map(em);
    		goto unlock_err;
    	}
    
    	/*
    	 * We don't allocate a new extent in the following cases
    	 *
    	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
    	 * existing extent.
    	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
    	 * just use the extent.
    	 *
    	 */
    	if (!create) {
    		len = min(len, em->len - (start - em->start));
    		lockstart = start + len;
    		goto unlock;
    	}
    
    	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
    	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
    	     em->block_start != EXTENT_MAP_HOLE)) {
    		int type;
    		int ret;
    		u64 block_start, orig_start, orig_block_len, ram_bytes;
    
    		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
    			type = BTRFS_ORDERED_PREALLOC;
    		else
    			type = BTRFS_ORDERED_NOCOW;
    		len = min(len, em->len - (start - em->start));
    		block_start = em->block_start + (start - em->start);
    
    		if (can_nocow_extent(inode, start, &len, &orig_start,
    				     &orig_block_len, &ram_bytes) == 1) {
    			if (type == BTRFS_ORDERED_PREALLOC) {
    				free_extent_map(em);
    				em = create_pinned_em(inode, start, len,
    						       orig_start,
    						       block_start, len,
    						       orig_block_len,
    						       ram_bytes, type);
    				if (IS_ERR(em))
    					goto unlock_err;
    			}
    
    			ret = btrfs_add_ordered_extent_dio(inode, start,
    					   block_start, len, len, type);
    			if (ret) {
    				free_extent_map(em);
    				goto unlock_err;
    			}
    			goto unlock;
    		}
    	}
    
    	/*
    	 * this will cow the extent, reset the len in case we changed
    	 * it above
    	 */
    	len = bh_result->b_size;
    	free_extent_map(em);
    	em = btrfs_new_extent_direct(inode, start, len);
    	if (IS_ERR(em)) {
    		ret = PTR_ERR(em);
    		goto unlock_err;
    	}
    	len = min(len, em->len - (start - em->start));
    unlock:
    	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
    		inode->i_blkbits;
    	bh_result->b_size = len;
    	bh_result->b_bdev = em->bdev;
    	set_buffer_mapped(bh_result);
    	if (create) {
    		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
    			set_buffer_new(bh_result);
    
    		/*
    		 * Need to update the i_size under the extent lock so buffered
    		 * readers will get the updated i_size when we unlock.
    		 */
    		if (start + len > i_size_read(inode))
    			i_size_write(inode, start + len);
    
    		spin_lock(&BTRFS_I(inode)->lock);
    		BTRFS_I(inode)->outstanding_extents++;
    		spin_unlock(&BTRFS_I(inode)->lock);
    
    		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
    				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
    				     &cached_state, GFP_NOFS);
    		BUG_ON(ret);
    	}
    
    	/*
    	 * In the case of write we need to clear and unlock the entire range,
    	 * in the case of read we need to unlock only the end area that we
    	 * aren't using if there is any left over space.
    	 */
    	if (lockstart < lockend) {
    		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
    				 lockend, unlock_bits, 1, 0,
    				 &cached_state, GFP_NOFS);
    	} else {
    		free_extent_state(cached_state);
    	}
    
    	free_extent_map(em);
    
    	return 0;
    
    unlock_err:
    	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
    			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
    	return ret;
    }
    
    static void btrfs_endio_direct_read(struct bio *bio, int err)
    {
    	struct btrfs_dio_private *dip = bio->bi_private;
    	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
    	struct bio_vec *bvec = bio->bi_io_vec;
    	struct inode *inode = dip->inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct bio *dio_bio;
    	u32 *csums = (u32 *)dip->csum;
    	int index = 0;
    	u64 start;
    
    	start = dip->logical_offset;
    	do {
    		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
    			struct page *page = bvec->bv_page;
    			char *kaddr;
    			u32 csum = ~(u32)0;
    			unsigned long flags;
    
    			local_irq_save(flags);
    			kaddr = kmap_atomic(page);
    			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
    					       csum, bvec->bv_len);
    			btrfs_csum_final(csum, (char *)&csum);
    			kunmap_atomic(kaddr);
    			local_irq_restore(flags);
    
    			flush_dcache_page(bvec->bv_page);
    			if (csum != csums[index]) {
    				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
    					  btrfs_ino(inode), start, csum,
    					  csums[index]);
    				err = -EIO;
    			}
    		}
    
    		start += bvec->bv_len;
    		bvec++;
    		index++;
    	} while (bvec <= bvec_end);
    
    	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
    		      dip->logical_offset + dip->bytes - 1);
    	dio_bio = dip->dio_bio;
    
    	kfree(dip);
    
    	/* If we had a csum failure make sure to clear the uptodate flag */
    	if (err)
    		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
    	dio_end_io(dio_bio, err);
    	bio_put(bio);
    }
    
    static void btrfs_endio_direct_write(struct bio *bio, int err)
    {
    	struct btrfs_dio_private *dip = bio->bi_private;
    	struct inode *inode = dip->inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_ordered_extent *ordered = NULL;
    	u64 ordered_offset = dip->logical_offset;
    	u64 ordered_bytes = dip->bytes;
    	struct bio *dio_bio;
    	int ret;
    
    	if (err)
    		goto out_done;
    again:
    	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
    						   &ordered_offset,
    						   ordered_bytes, !err);
    	if (!ret)
    		goto out_test;
    
    	ordered->work.func = finish_ordered_fn;
    	ordered->work.flags = 0;
    	btrfs_queue_worker(&root->fs_info->endio_write_workers,
    			   &ordered->work);
    out_test:
    	/*
    	 * our bio might span multiple ordered extents.  If we haven't
    	 * completed the accounting for the whole dio, go back and try again
    	 */
    	if (ordered_offset < dip->logical_offset + dip->bytes) {
    		ordered_bytes = dip->logical_offset + dip->bytes -
    			ordered_offset;
    		ordered = NULL;
    		goto again;
    	}
    out_done:
    	dio_bio = dip->dio_bio;
    
    	kfree(dip);
    
    	/* If we had an error make sure to clear the uptodate flag */
    	if (err)
    		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
    	dio_end_io(dio_bio, err);
    	bio_put(bio);
    }
    
    static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
    				    struct bio *bio, int mirror_num,
    				    unsigned long bio_flags, u64 offset)
    {
    	int ret;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
    	BUG_ON(ret); /* -ENOMEM */
    	return 0;
    }
    
    static void btrfs_end_dio_bio(struct bio *bio, int err)
    {
    	struct btrfs_dio_private *dip = bio->bi_private;
    
    	if (err) {
    		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
    		      "sector %#Lx len %u err no %d\n",
    		      btrfs_ino(dip->inode), bio->bi_rw,
    		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
    		dip->errors = 1;
    
    		/*
    		 * before atomic variable goto zero, we must make sure
    		 * dip->errors is perceived to be set.
    		 */
    		smp_mb__before_atomic_dec();
    	}
    
    	/* if there are more bios still pending for this dio, just exit */
    	if (!atomic_dec_and_test(&dip->pending_bios))
    		goto out;
    
    	if (dip->errors) {
    		bio_io_error(dip->orig_bio);
    	} else {
    		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
    		bio_endio(dip->orig_bio, 0);
    	}
    out:
    	bio_put(bio);
    }
    
    static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
    				       u64 first_sector, gfp_t gfp_flags)
    {
    	int nr_vecs = bio_get_nr_vecs(bdev);
    	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
    }
    
    static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
    					 int rw, u64 file_offset, int skip_sum,
    					 int async_submit)
    {
    	struct btrfs_dio_private *dip = bio->bi_private;
    	int write = rw & REQ_WRITE;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret;
    
    	if (async_submit)
    		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
    
    	bio_get(bio);
    
    	if (!write) {
    		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
    		if (ret)
    			goto err;
    	}
    
    	if (skip_sum)
    		goto map;
    
    	if (write && async_submit) {
    		ret = btrfs_wq_submit_bio(root->fs_info,
    				   inode, rw, bio, 0, 0,
    				   file_offset,
    				   __btrfs_submit_bio_start_direct_io,
    				   __btrfs_submit_bio_done);
    		goto err;
    	} else if (write) {
    		/*
    		 * If we aren't doing async submit, calculate the csum of the
    		 * bio now.
    		 */
    		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
    		if (ret)
    			goto err;
    	} else if (!skip_sum) {
    		ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
    						file_offset);
    		if (ret)
    			goto err;
    	}
    
    map:
    	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
    err:
    	bio_put(bio);
    	return ret;
    }
    
    static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
    				    int skip_sum)
    {
    	struct inode *inode = dip->inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct bio *bio;
    	struct bio *orig_bio = dip->orig_bio;
    	struct bio_vec *bvec = orig_bio->bi_io_vec;
    	u64 start_sector = orig_bio->bi_sector;
    	u64 file_offset = dip->logical_offset;
    	u64 submit_len = 0;
    	u64 map_length;
    	int nr_pages = 0;
    	int ret = 0;
    	int async_submit = 0;
    
    	map_length = orig_bio->bi_size;
    	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
    			      &map_length, NULL, 0);
    	if (ret) {
    		bio_put(orig_bio);
    		return -EIO;
    	}
    
    	if (map_length >= orig_bio->bi_size) {
    		bio = orig_bio;
    		goto submit;
    	}
    
    	/* async crcs make it difficult to collect full stripe writes. */
    	if (btrfs_get_alloc_profile(root, 1) &
    	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
    		async_submit = 0;
    	else
    		async_submit = 1;
    
    	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
    	if (!bio)
    		return -ENOMEM;
    	bio->bi_private = dip;
    	bio->bi_end_io = btrfs_end_dio_bio;
    	atomic_inc(&dip->pending_bios);
    
    	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
    		if (unlikely(map_length < submit_len + bvec->bv_len ||
    		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
    				 bvec->bv_offset) < bvec->bv_len)) {
    			/*
    			 * inc the count before we submit the bio so
    			 * we know the end IO handler won't happen before
    			 * we inc the count. Otherwise, the dip might get freed
    			 * before we're done setting it up
    			 */
    			atomic_inc(&dip->pending_bios);
    			ret = __btrfs_submit_dio_bio(bio, inode, rw,
    						     file_offset, skip_sum,
    						     async_submit);
    			if (ret) {
    				bio_put(bio);
    				atomic_dec(&dip->pending_bios);
    				goto out_err;
    			}
    
    			start_sector += submit_len >> 9;
    			file_offset += submit_len;
    
    			submit_len = 0;
    			nr_pages = 0;
    
    			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
    						  start_sector, GFP_NOFS);
    			if (!bio)
    				goto out_err;
    			bio->bi_private = dip;
    			bio->bi_end_io = btrfs_end_dio_bio;
    
    			map_length = orig_bio->bi_size;
    			ret = btrfs_map_block(root->fs_info, rw,
    					      start_sector << 9,
    					      &map_length, NULL, 0);
    			if (ret) {
    				bio_put(bio);
    				goto out_err;
    			}
    		} else {
    			submit_len += bvec->bv_len;
    			nr_pages ++;
    			bvec++;
    		}
    	}
    
    submit:
    	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
    				     async_submit);
    	if (!ret)
    		return 0;
    
    	bio_put(bio);
    out_err:
    	dip->errors = 1;
    	/*
    	 * before atomic variable goto zero, we must
    	 * make sure dip->errors is perceived to be set.
    	 */
    	smp_mb__before_atomic_dec();
    	if (atomic_dec_and_test(&dip->pending_bios))
    		bio_io_error(dip->orig_bio);
    
    	/* bio_end_io() will handle error, so we needn't return it */
    	return 0;
    }
    
    static void btrfs_submit_direct(int rw, struct bio *dio_bio,
    				struct inode *inode, loff_t file_offset)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_dio_private *dip;
    	struct bio *io_bio;
    	int skip_sum;
    	int sum_len;
    	int write = rw & REQ_WRITE;
    	int ret = 0;
    	u16 csum_size;
    
    	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
    
    	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
    	if (!io_bio) {
    		ret = -ENOMEM;
    		goto free_ordered;
    	}
    
    	if (!skip_sum && !write) {
    		csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
    		sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
    		sum_len *= csum_size;
    	} else {
    		sum_len = 0;
    	}
    
    	dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
    	if (!dip) {
    		ret = -ENOMEM;
    		goto free_io_bio;
    	}
    
    	dip->private = dio_bio->bi_private;
    	dip->inode = inode;
    	dip->logical_offset = file_offset;
    	dip->bytes = dio_bio->bi_size;
    	dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
    	io_bio->bi_private = dip;
    	dip->errors = 0;
    	dip->orig_bio = io_bio;
    	dip->dio_bio = dio_bio;
    	atomic_set(&dip->pending_bios, 0);
    
    	if (write)
    		io_bio->bi_end_io = btrfs_endio_direct_write;
    	else
    		io_bio->bi_end_io = btrfs_endio_direct_read;
    
    	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
    	if (!ret)
    		return;
    
    free_io_bio:
    	bio_put(io_bio);
    
    free_ordered:
    	/*
    	 * If this is a write, we need to clean up the reserved space and kill
    	 * the ordered extent.
    	 */
    	if (write) {
    		struct btrfs_ordered_extent *ordered;
    		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
    		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
    		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
    			btrfs_free_reserved_extent(root, ordered->start,
    						   ordered->disk_len);
    		btrfs_put_ordered_extent(ordered);
    		btrfs_put_ordered_extent(ordered);
    	}
    	bio_endio(dio_bio, ret);
    }
    
    static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
    			const struct iovec *iov, loff_t offset,
    			unsigned long nr_segs)
    {
    	int seg;
    	int i;
    	size_t size;
    	unsigned long addr;
    	unsigned blocksize_mask = root->sectorsize - 1;
    	ssize_t retval = -EINVAL;
    	loff_t end = offset;
    
    	if (offset & blocksize_mask)
    		goto out;
    
    	/* Check the memory alignment.  Blocks cannot straddle pages */
    	for (seg = 0; seg < nr_segs; seg++) {
    		addr = (unsigned long)iov[seg].iov_base;
    		size = iov[seg].iov_len;
    		end += size;
    		if ((addr & blocksize_mask) || (size & blocksize_mask))
    			goto out;
    
    		/* If this is a write we don't need to check anymore */
    		if (rw & WRITE)
    			continue;
    
    		/*
    		 * Check to make sure we don't have duplicate iov_base's in this
    		 * iovec, if so return EINVAL, otherwise we'll get csum errors
    		 * when reading back.
    		 */
    		for (i = seg + 1; i < nr_segs; i++) {
    			if (iov[seg].iov_base == iov[i].iov_base)
    				goto out;
    		}
    	}
    	retval = 0;
    out:
    	return retval;
    }
    
    static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
    			const struct iovec *iov, loff_t offset,
    			unsigned long nr_segs)
    {
    	struct file *file = iocb->ki_filp;
    	struct inode *inode = file->f_mapping->host;
    	size_t count = 0;
    	int flags = 0;
    	bool wakeup = true;
    	bool relock = false;
    	ssize_t ret;
    
    	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
    			    offset, nr_segs))
    		return 0;
    
    	atomic_inc(&inode->i_dio_count);
    	smp_mb__after_atomic_inc();
    
    	/*
    	 * The generic stuff only does filemap_write_and_wait_range, which isn't
    	 * enough if we've written compressed pages to this area, so we need to
    	 * call btrfs_wait_ordered_range to make absolutely sure that any
    	 * outstanding dirty pages are on disk.
    	 */
    	count = iov_length(iov, nr_segs);
    	btrfs_wait_ordered_range(inode, offset, count);
    
    	if (rw & WRITE) {
    		/*
    		 * If the write DIO is beyond the EOF, we need update
    		 * the isize, but it is protected by i_mutex. So we can
    		 * not unlock the i_mutex at this case.
    		 */
    		if (offset + count <= inode->i_size) {
    			mutex_unlock(&inode->i_mutex);
    			relock = true;
    		}
    		ret = btrfs_delalloc_reserve_space(inode, count);
    		if (ret)
    			goto out;
    	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
    				     &BTRFS_I(inode)->runtime_flags))) {
    		inode_dio_done(inode);
    		flags = DIO_LOCKING | DIO_SKIP_HOLES;
    		wakeup = false;
    	}
    
    	ret = __blockdev_direct_IO(rw, iocb, inode,
    			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
    			iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
    			btrfs_submit_direct, flags);
    	if (rw & WRITE) {
    		if (ret < 0 && ret != -EIOCBQUEUED)
    			btrfs_delalloc_release_space(inode, count);
    		else if (ret >= 0 && (size_t)ret < count)
    			btrfs_delalloc_release_space(inode,
    						     count - (size_t)ret);
    		else
    			btrfs_delalloc_release_metadata(inode, 0);
    	}
    out:
    	if (wakeup)
    		inode_dio_done(inode);
    	if (relock)
    		mutex_lock(&inode->i_mutex);
    
    	return ret;
    }
    
    #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
    
    static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
    		__u64 start, __u64 len)
    {
    	int	ret;
    
    	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
    	if (ret)
    		return ret;
    
    	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
    }
    
    int btrfs_readpage(struct file *file, struct page *page)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
    }
    
    static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
    {
    	struct extent_io_tree *tree;
    
    
    	if (current->flags & PF_MEMALLOC) {
    		redirty_page_for_writepage(wbc, page);
    		unlock_page(page);
    		return 0;
    	}
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
    }
    
    static int btrfs_writepages(struct address_space *mapping,
    			    struct writeback_control *wbc)
    {
    	struct extent_io_tree *tree;
    
    	tree = &BTRFS_I(mapping->host)->io_tree;
    	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
    }
    
    static int
    btrfs_readpages(struct file *file, struct address_space *mapping,
    		struct list_head *pages, unsigned nr_pages)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(mapping->host)->io_tree;
    	return extent_readpages(tree, mapping, pages, nr_pages,
    				btrfs_get_extent);
    }
    static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
    {
    	struct extent_io_tree *tree;
    	struct extent_map_tree *map;
    	int ret;
    
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	map = &BTRFS_I(page->mapping->host)->extent_tree;
    	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
    	if (ret == 1) {
    		ClearPagePrivate(page);
    		set_page_private(page, 0);
    		page_cache_release(page);
    	}
    	return ret;
    }
    
    static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
    {
    	if (PageWriteback(page) || PageDirty(page))
    		return 0;
    	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
    }
    
    static void btrfs_invalidatepage(struct page *page, unsigned int offset,
    				 unsigned int length)
    {
    	struct inode *inode = page->mapping->host;
    	struct extent_io_tree *tree;
    	struct btrfs_ordered_extent *ordered;
    	struct extent_state *cached_state = NULL;
    	u64 page_start = page_offset(page);
    	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
    
    	/*
    	 * we have the page locked, so new writeback can't start,
    	 * and the dirty bit won't be cleared while we are here.
    	 *
    	 * Wait for IO on this page so that we can safely clear
    	 * the PagePrivate2 bit and do ordered accounting
    	 */
    	wait_on_page_writeback(page);
    
    	tree = &BTRFS_I(inode)->io_tree;
    	if (offset) {
    		btrfs_releasepage(page, GFP_NOFS);
    		return;
    	}
    	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
    	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
    	if (ordered) {
    		/*
    		 * IO on this page will never be started, so we need
    		 * to account for any ordered extents now
    		 */
    		clear_extent_bit(tree, page_start, page_end,
    				 EXTENT_DIRTY | EXTENT_DELALLOC |
    				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
    				 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
    		/*
    		 * whoever cleared the private bit is responsible
    		 * for the finish_ordered_io
    		 */
    		if (TestClearPagePrivate2(page)) {
    			struct btrfs_ordered_inode_tree *tree;
    			u64 new_len;
    
    			tree = &BTRFS_I(inode)->ordered_tree;
    
    			spin_lock_irq(&tree->lock);
    			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
    			new_len = page_start - ordered->file_offset;
    			if (new_len < ordered->truncated_len)
    				ordered->truncated_len = new_len;
    			spin_unlock_irq(&tree->lock);
    
    			if (btrfs_dec_test_ordered_pending(inode, &ordered,
    							   page_start,
    							   PAGE_CACHE_SIZE, 1))
    				btrfs_finish_ordered_io(ordered);
    		}
    		btrfs_put_ordered_extent(ordered);
    		cached_state = NULL;
    		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
    	}
    	clear_extent_bit(tree, page_start, page_end,
    		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
    		 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
    		 &cached_state, GFP_NOFS);
    	__btrfs_releasepage(page, GFP_NOFS);
    
    	ClearPageChecked(page);
    	if (PagePrivate(page)) {
    		ClearPagePrivate(page);
    		set_page_private(page, 0);
    		page_cache_release(page);
    	}
    }
    
    /*
     * btrfs_page_mkwrite() is not allowed to change the file size as it gets
     * called from a page fault handler when a page is first dirtied. Hence we must
     * be careful to check for EOF conditions here. We set the page up correctly
     * for a written page which means we get ENOSPC checking when writing into
     * holes and correct delalloc and unwritten extent mapping on filesystems that
     * support these features.
     *
     * We are not allowed to take the i_mutex here so we have to play games to
     * protect against truncate races as the page could now be beyond EOF.  Because
     * vmtruncate() writes the inode size before removing pages, once we have the
     * page lock we can determine safely if the page is beyond EOF. If it is not
     * beyond EOF, then the page is guaranteed safe against truncation until we
     * unlock the page.
     */
    int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
    {
    	struct page *page = vmf->page;
    	struct inode *inode = file_inode(vma->vm_file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct btrfs_ordered_extent *ordered;
    	struct extent_state *cached_state = NULL;
    	char *kaddr;
    	unsigned long zero_start;
    	loff_t size;
    	int ret;
    	int reserved = 0;
    	u64 page_start;
    	u64 page_end;
    
    	sb_start_pagefault(inode->i_sb);
    	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
    	if (!ret) {
    		ret = file_update_time(vma->vm_file);
    		reserved = 1;
    	}
    	if (ret) {
    		if (ret == -ENOMEM)
    			ret = VM_FAULT_OOM;
    		else /* -ENOSPC, -EIO, etc */
    			ret = VM_FAULT_SIGBUS;
    		if (reserved)
    			goto out;
    		goto out_noreserve;
    	}
    
    	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
    again:
    	lock_page(page);
    	size = i_size_read(inode);
    	page_start = page_offset(page);
    	page_end = page_start + PAGE_CACHE_SIZE - 1;
    
    	if ((page->mapping != inode->i_mapping) ||
    	    (page_start >= size)) {
    		/* page got truncated out from underneath us */
    		goto out_unlock;
    	}
    	wait_on_page_writeback(page);
    
    	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
    	set_page_extent_mapped(page);
    
    	/*
    	 * we can't set the delalloc bits if there are pending ordered
    	 * extents.  Drop our locks and wait for them to finish
    	 */
    	ordered = btrfs_lookup_ordered_extent(inode, page_start);
    	if (ordered) {
    		unlock_extent_cached(io_tree, page_start, page_end,
    				     &cached_state, GFP_NOFS);
    		unlock_page(page);
    		btrfs_start_ordered_extent(inode, ordered, 1);
    		btrfs_put_ordered_extent(ordered);
    		goto again;
    	}
    
    	/*
    	 * XXX - page_mkwrite gets called every time the page is dirtied, even
    	 * if it was already dirty, so for space accounting reasons we need to
    	 * clear any delalloc bits for the range we are fixing to save.  There
    	 * is probably a better way to do this, but for now keep consistent with
    	 * prepare_pages in the normal write path.
    	 */
    	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
    			  EXTENT_DIRTY | EXTENT_DELALLOC |
    			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
    			  0, 0, &cached_state, GFP_NOFS);
    
    	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
    					&cached_state);
    	if (ret) {
    		unlock_extent_cached(io_tree, page_start, page_end,
    				     &cached_state, GFP_NOFS);
    		ret = VM_FAULT_SIGBUS;
    		goto out_unlock;
    	}
    	ret = 0;
    
    	/* page is wholly or partially inside EOF */
    	if (page_start + PAGE_CACHE_SIZE > size)
    		zero_start = size & ~PAGE_CACHE_MASK;
    	else
    		zero_start = PAGE_CACHE_SIZE;
    
    	if (zero_start != PAGE_CACHE_SIZE) {
    		kaddr = kmap(page);
    		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
    		flush_dcache_page(page);
    		kunmap(page);
    	}
    	ClearPageChecked(page);
    	set_page_dirty(page);
    	SetPageUptodate(page);
    
    	BTRFS_I(inode)->last_trans = root->fs_info->generation;
    	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
    	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
    
    	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
    
    out_unlock:
    	if (!ret) {
    		sb_end_pagefault(inode->i_sb);
    		return VM_FAULT_LOCKED;
    	}
    	unlock_page(page);
    out:
    	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
    out_noreserve:
    	sb_end_pagefault(inode->i_sb);
    	return ret;
    }
    
    static int btrfs_truncate(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_block_rsv *rsv;
    	int ret = 0;
    	int err = 0;
    	struct btrfs_trans_handle *trans;
    	u64 mask = root->sectorsize - 1;
    	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
    
    	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
    
    	/*
    	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
    	 * 3 things going on here
    	 *
    	 * 1) We need to reserve space for our orphan item and the space to
    	 * delete our orphan item.  Lord knows we don't want to have a dangling
    	 * orphan item because we didn't reserve space to remove it.
    	 *
    	 * 2) We need to reserve space to update our inode.
    	 *
    	 * 3) We need to have something to cache all the space that is going to
    	 * be free'd up by the truncate operation, but also have some slack
    	 * space reserved in case it uses space during the truncate (thank you
    	 * very much snapshotting).
    	 *
    	 * And we need these to all be seperate.  The fact is we can use alot of
    	 * space doing the truncate, and we have no earthly idea how much space
    	 * we will use, so we need the truncate reservation to be seperate so it
    	 * doesn't end up using space reserved for updating the inode or
    	 * removing the orphan item.  We also need to be able to stop the
    	 * transaction and start a new one, which means we need to be able to
    	 * update the inode several times, and we have no idea of knowing how
    	 * many times that will be, so we can't just reserve 1 item for the
    	 * entirety of the opration, so that has to be done seperately as well.
    	 * Then there is the orphan item, which does indeed need to be held on
    	 * to for the whole operation, and we need nobody to touch this reserved
    	 * space except the orphan code.
    	 *
    	 * So that leaves us with
    	 *
    	 * 1) root->orphan_block_rsv - for the orphan deletion.
    	 * 2) rsv - for the truncate reservation, which we will steal from the
    	 * transaction reservation.
    	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
    	 * updating the inode.
    	 */
    	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
    	if (!rsv)
    		return -ENOMEM;
    	rsv->size = min_size;
    	rsv->failfast = 1;
    
    	/*
    	 * 1 for the truncate slack space
    	 * 1 for updating the inode.
    	 */
    	trans = btrfs_start_transaction(root, 2);
    	if (IS_ERR(trans)) {
    		err = PTR_ERR(trans);
    		goto out;
    	}
    
    	/* Migrate the slack space for the truncate to our reserve */
    	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
    				      min_size);
    	BUG_ON(ret);
    
    	/*
    	 * setattr is responsible for setting the ordered_data_close flag,
    	 * but that is only tested during the last file release.  That
    	 * could happen well after the next commit, leaving a great big
    	 * window where new writes may get lost if someone chooses to write
    	 * to this file after truncating to zero
    	 *
    	 * The inode doesn't have any dirty data here, and so if we commit
    	 * this is a noop.  If someone immediately starts writing to the inode
    	 * it is very likely we'll catch some of their writes in this
    	 * transaction, and the commit will find this file on the ordered
    	 * data list with good things to send down.
    	 *
    	 * This is a best effort solution, there is still a window where
    	 * using truncate to replace the contents of the file will
    	 * end up with a zero length file after a crash.
    	 */
    	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
    					   &BTRFS_I(inode)->runtime_flags))
    		btrfs_add_ordered_operation(trans, root, inode);
    
    	/*
    	 * So if we truncate and then write and fsync we normally would just
    	 * write the extents that changed, which is a problem if we need to
    	 * first truncate that entire inode.  So set this flag so we write out
    	 * all of the extents in the inode to the sync log so we're completely
    	 * safe.
    	 */
    	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
    	trans->block_rsv = rsv;
    
    	while (1) {
    		ret = btrfs_truncate_inode_items(trans, root, inode,
    						 inode->i_size,
    						 BTRFS_EXTENT_DATA_KEY);
    		if (ret != -ENOSPC) {
    			err = ret;
    			break;
    		}
    
    		trans->block_rsv = &root->fs_info->trans_block_rsv;
    		ret = btrfs_update_inode(trans, root, inode);
    		if (ret) {
    			err = ret;
    			break;
    		}
    
    		btrfs_end_transaction(trans, root);
    		btrfs_btree_balance_dirty(root);
    
    		trans = btrfs_start_transaction(root, 2);
    		if (IS_ERR(trans)) {
    			ret = err = PTR_ERR(trans);
    			trans = NULL;
    			break;
    		}
    
    		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
    					      rsv, min_size);
    		BUG_ON(ret);	/* shouldn't happen */
    		trans->block_rsv = rsv;
    	}
    
    	if (ret == 0 && inode->i_nlink > 0) {
    		trans->block_rsv = root->orphan_block_rsv;
    		ret = btrfs_orphan_del(trans, inode);
    		if (ret)
    			err = ret;
    	}
    
    	if (trans) {
    		trans->block_rsv = &root->fs_info->trans_block_rsv;
    		ret = btrfs_update_inode(trans, root, inode);
    		if (ret && !err)
    			err = ret;
    
    		ret = btrfs_end_transaction(trans, root);
    		btrfs_btree_balance_dirty(root);
    	}
    
    out:
    	btrfs_free_block_rsv(root, rsv);
    
    	if (ret && !err)
    		err = ret;
    
    	return err;
    }
    
    /*
     * create a new subvolume directory/inode (helper for the ioctl).
     */
    int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
    			     struct btrfs_root *new_root, u64 new_dirid)
    {
    	struct inode *inode;
    	int err;
    	u64 index = 0;
    
    	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
    				new_dirid, new_dirid,
    				S_IFDIR | (~current_umask() & S_IRWXUGO),
    				&index);
    	if (IS_ERR(inode))
    		return PTR_ERR(inode);
    	inode->i_op = &btrfs_dir_inode_operations;
    	inode->i_fop = &btrfs_dir_file_operations;
    
    	set_nlink(inode, 1);
    	btrfs_i_size_write(inode, 0);
    
    	err = btrfs_update_inode(trans, new_root, inode);
    
    	iput(inode);
    	return err;
    }
    
    struct inode *btrfs_alloc_inode(struct super_block *sb)
    {
    	struct btrfs_inode *ei;
    	struct inode *inode;
    
    	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
    	if (!ei)
    		return NULL;
    
    	ei->root = NULL;
    	ei->generation = 0;
    	ei->last_trans = 0;
    	ei->last_sub_trans = 0;
    	ei->logged_trans = 0;
    	ei->delalloc_bytes = 0;
    	ei->disk_i_size = 0;
    	ei->flags = 0;
    	ei->csum_bytes = 0;
    	ei->index_cnt = (u64)-1;
    	ei->last_unlink_trans = 0;
    	ei->last_log_commit = 0;
    
    	spin_lock_init(&ei->lock);
    	ei->outstanding_extents = 0;
    	ei->reserved_extents = 0;
    
    	ei->runtime_flags = 0;
    	ei->force_compress = BTRFS_COMPRESS_NONE;
    
    	ei->delayed_node = NULL;
    
    	inode = &ei->vfs_inode;
    	extent_map_tree_init(&ei->extent_tree);
    	extent_io_tree_init(&ei->io_tree, &inode->i_data);
    	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
    	ei->io_tree.track_uptodate = 1;
    	ei->io_failure_tree.track_uptodate = 1;
    	atomic_set(&ei->sync_writers, 0);
    	mutex_init(&ei->log_mutex);
    	mutex_init(&ei->delalloc_mutex);
    	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
    	INIT_LIST_HEAD(&ei->delalloc_inodes);
    	INIT_LIST_HEAD(&ei->ordered_operations);
    	RB_CLEAR_NODE(&ei->rb_node);
    
    	return inode;
    }
    
    static void btrfs_i_callback(struct rcu_head *head)
    {
    	struct inode *inode = container_of(head, struct inode, i_rcu);
    	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
    }
    
    void btrfs_destroy_inode(struct inode *inode)
    {
    	struct btrfs_ordered_extent *ordered;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    
    	WARN_ON(!hlist_empty(&inode->i_dentry));
    	WARN_ON(inode->i_data.nrpages);
    	WARN_ON(BTRFS_I(inode)->outstanding_extents);
    	WARN_ON(BTRFS_I(inode)->reserved_extents);
    	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
    	WARN_ON(BTRFS_I(inode)->csum_bytes);
    
    	/*
    	 * This can happen where we create an inode, but somebody else also
    	 * created the same inode and we need to destroy the one we already
    	 * created.
    	 */
    	if (!root)
    		goto free;
    
    	/*
    	 * Make sure we're properly removed from the ordered operation
    	 * lists.
    	 */
    	smp_mb();
    	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
    		spin_lock(&root->fs_info->ordered_root_lock);
    		list_del_init(&BTRFS_I(inode)->ordered_operations);
    		spin_unlock(&root->fs_info->ordered_root_lock);
    	}
    
    	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
    		     &BTRFS_I(inode)->runtime_flags)) {
    		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
    			btrfs_ino(inode));
    		atomic_dec(&root->orphan_inodes);
    	}
    
    	while (1) {
    		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
    		if (!ordered)
    			break;
    		else {
    			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
    				ordered->file_offset, ordered->len);
    			btrfs_remove_ordered_extent(inode, ordered);
    			btrfs_put_ordered_extent(ordered);
    			btrfs_put_ordered_extent(ordered);
    		}
    	}
    	inode_tree_del(inode);
    	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
    free:
    	call_rcu(&inode->i_rcu, btrfs_i_callback);
    }
    
    int btrfs_drop_inode(struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    
    	if (root == NULL)
    		return 1;
    
    	/* the snap/subvol tree is on deleting */
    	if (btrfs_root_refs(&root->root_item) == 0 &&
    	    root != root->fs_info->tree_root)
    		return 1;
    	else
    		return generic_drop_inode(inode);
    }
    
    static void init_once(void *foo)
    {
    	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
    
    	inode_init_once(&ei->vfs_inode);
    }
    
    void btrfs_destroy_cachep(void)
    {
    	/*
    	 * Make sure all delayed rcu free inodes are flushed before we
    	 * destroy cache.
    	 */
    	rcu_barrier();
    	if (btrfs_inode_cachep)
    		kmem_cache_destroy(btrfs_inode_cachep);
    	if (btrfs_trans_handle_cachep)
    		kmem_cache_destroy(btrfs_trans_handle_cachep);
    	if (btrfs_transaction_cachep)
    		kmem_cache_destroy(btrfs_transaction_cachep);
    	if (btrfs_path_cachep)
    		kmem_cache_destroy(btrfs_path_cachep);
    	if (btrfs_free_space_cachep)
    		kmem_cache_destroy(btrfs_free_space_cachep);
    	if (btrfs_delalloc_work_cachep)
    		kmem_cache_destroy(btrfs_delalloc_work_cachep);
    }
    
    int btrfs_init_cachep(void)
    {
    	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
    			sizeof(struct btrfs_inode), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
    	if (!btrfs_inode_cachep)
    		goto fail;
    
    	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
    			sizeof(struct btrfs_trans_handle), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
    	if (!btrfs_trans_handle_cachep)
    		goto fail;
    
    	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
    			sizeof(struct btrfs_transaction), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
    	if (!btrfs_transaction_cachep)
    		goto fail;
    
    	btrfs_path_cachep = kmem_cache_create("btrfs_path",
    			sizeof(struct btrfs_path), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
    	if (!btrfs_path_cachep)
    		goto fail;
    
    	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
    			sizeof(struct btrfs_free_space), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
    	if (!btrfs_free_space_cachep)
    		goto fail;
    
    	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
    			sizeof(struct btrfs_delalloc_work), 0,
    			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
    			NULL);
    	if (!btrfs_delalloc_work_cachep)
    		goto fail;
    
    	return 0;
    fail:
    	btrfs_destroy_cachep();
    	return -ENOMEM;
    }
    
    static int btrfs_getattr(struct vfsmount *mnt,
    			 struct dentry *dentry, struct kstat *stat)
    {
    	u64 delalloc_bytes;
    	struct inode *inode = dentry->d_inode;
    	u32 blocksize = inode->i_sb->s_blocksize;
    
    	generic_fillattr(inode, stat);
    	stat->dev = BTRFS_I(inode)->root->anon_dev;
    	stat->blksize = PAGE_CACHE_SIZE;
    
    	spin_lock(&BTRFS_I(inode)->lock);
    	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
    	spin_unlock(&BTRFS_I(inode)->lock);
    	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
    			ALIGN(delalloc_bytes, blocksize)) >> 9;
    	return 0;
    }
    
    static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
    			   struct inode *new_dir, struct dentry *new_dentry)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(old_dir)->root;
    	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
    	struct inode *new_inode = new_dentry->d_inode;
    	struct inode *old_inode = old_dentry->d_inode;
    	struct timespec ctime = CURRENT_TIME;
    	u64 index = 0;
    	u64 root_objectid;
    	int ret;
    	u64 old_ino = btrfs_ino(old_inode);
    
    	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
    		return -EPERM;
    
    	/* we only allow rename subvolume link between subvolumes */
    	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
    		return -EXDEV;
    
    	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
    	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
    		return -ENOTEMPTY;
    
    	if (S_ISDIR(old_inode->i_mode) && new_inode &&
    	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
    		return -ENOTEMPTY;
    
    
    	/* check for collisions, even if the  name isn't there */
    	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
    			     new_dentry->d_name.name,
    			     new_dentry->d_name.len);
    
    	if (ret) {
    		if (ret == -EEXIST) {
    			/* we shouldn't get
    			 * eexist without a new_inode */
    			if (!new_inode) {
    				WARN_ON(1);
    				return ret;
    			}
    		} else {
    			/* maybe -EOVERFLOW */
    			return ret;
    		}
    	}
    	ret = 0;
    
    	/*
    	 * we're using rename to replace one file with another.
    	 * and the replacement file is large.  Start IO on it now so
    	 * we don't add too much work to the end of the transaction
    	 */
    	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
    	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
    		filemap_flush(old_inode->i_mapping);
    
    	/* close the racy window with snapshot create/destroy ioctl */
    	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
    		down_read(&root->fs_info->subvol_sem);
    	/*
    	 * We want to reserve the absolute worst case amount of items.  So if
    	 * both inodes are subvols and we need to unlink them then that would
    	 * require 4 item modifications, but if they are both normal inodes it
    	 * would require 5 item modifications, so we'll assume their normal
    	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
    	 * should cover the worst case number of items we'll modify.
    	 */
    	trans = btrfs_start_transaction(root, 11);
    	if (IS_ERR(trans)) {
                    ret = PTR_ERR(trans);
                    goto out_notrans;
            }
    
    	if (dest != root)
    		btrfs_record_root_in_trans(trans, dest);
    
    	ret = btrfs_set_inode_index(new_dir, &index);
    	if (ret)
    		goto out_fail;
    
    	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
    		/* force full log commit if subvolume involved. */
    		root->fs_info->last_trans_log_full_commit = trans->transid;
    	} else {
    		ret = btrfs_insert_inode_ref(trans, dest,
    					     new_dentry->d_name.name,
    					     new_dentry->d_name.len,
    					     old_ino,
    					     btrfs_ino(new_dir), index);
    		if (ret)
    			goto out_fail;
    		/*
    		 * this is an ugly little race, but the rename is required
    		 * to make sure that if we crash, the inode is either at the
    		 * old name or the new one.  pinning the log transaction lets
    		 * us make sure we don't allow a log commit to come in after
    		 * we unlink the name but before we add the new name back in.
    		 */
    		btrfs_pin_log_trans(root);
    	}
    	/*
    	 * make sure the inode gets flushed if it is replacing
    	 * something.
    	 */
    	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
    		btrfs_add_ordered_operation(trans, root, old_inode);
    
    	inode_inc_iversion(old_dir);
    	inode_inc_iversion(new_dir);
    	inode_inc_iversion(old_inode);
    	old_dir->i_ctime = old_dir->i_mtime = ctime;
    	new_dir->i_ctime = new_dir->i_mtime = ctime;
    	old_inode->i_ctime = ctime;
    
    	if (old_dentry->d_parent != new_dentry->d_parent)
    		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
    
    	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
    		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
    		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
    					old_dentry->d_name.name,
    					old_dentry->d_name.len);
    	} else {
    		ret = __btrfs_unlink_inode(trans, root, old_dir,
    					old_dentry->d_inode,
    					old_dentry->d_name.name,
    					old_dentry->d_name.len);
    		if (!ret)
    			ret = btrfs_update_inode(trans, root, old_inode);
    	}
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_fail;
    	}
    
    	if (new_inode) {
    		inode_inc_iversion(new_inode);
    		new_inode->i_ctime = CURRENT_TIME;
    		if (unlikely(btrfs_ino(new_inode) ==
    			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
    			root_objectid = BTRFS_I(new_inode)->location.objectid;
    			ret = btrfs_unlink_subvol(trans, dest, new_dir,
    						root_objectid,
    						new_dentry->d_name.name,
    						new_dentry->d_name.len);
    			BUG_ON(new_inode->i_nlink == 0);
    		} else {
    			ret = btrfs_unlink_inode(trans, dest, new_dir,
    						 new_dentry->d_inode,
    						 new_dentry->d_name.name,
    						 new_dentry->d_name.len);
    		}
    		if (!ret && new_inode->i_nlink == 0)
    			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
    		if (ret) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto out_fail;
    		}
    	}
    
    	ret = btrfs_add_link(trans, new_dir, old_inode,
    			     new_dentry->d_name.name,
    			     new_dentry->d_name.len, 0, index);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_fail;
    	}
    
    	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
    		struct dentry *parent = new_dentry->d_parent;
    		btrfs_log_new_name(trans, old_inode, old_dir, parent);
    		btrfs_end_log_trans(root);
    	}
    out_fail:
    	btrfs_end_transaction(trans, root);
    out_notrans:
    	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
    		up_read(&root->fs_info->subvol_sem);
    
    	return ret;
    }
    
    static void btrfs_run_delalloc_work(struct btrfs_work *work)
    {
    	struct btrfs_delalloc_work *delalloc_work;
    
    	delalloc_work = container_of(work, struct btrfs_delalloc_work,
    				     work);
    	if (delalloc_work->wait)
    		btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
    	else
    		filemap_flush(delalloc_work->inode->i_mapping);
    
    	if (delalloc_work->delay_iput)
    		btrfs_add_delayed_iput(delalloc_work->inode);
    	else
    		iput(delalloc_work->inode);
    	complete(&delalloc_work->completion);
    }
    
    struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
    						    int wait, int delay_iput)
    {
    	struct btrfs_delalloc_work *work;
    
    	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
    	if (!work)
    		return NULL;
    
    	init_completion(&work->completion);
    	INIT_LIST_HEAD(&work->list);
    	work->inode = inode;
    	work->wait = wait;
    	work->delay_iput = delay_iput;
    	work->work.func = btrfs_run_delalloc_work;
    
    	return work;
    }
    
    void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
    {
    	wait_for_completion(&work->completion);
    	kmem_cache_free(btrfs_delalloc_work_cachep, work);
    }
    
    /*
     * some fairly slow code that needs optimization. This walks the list
     * of all the inodes with pending delalloc and forces them to disk.
     */
    static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
    {
    	struct btrfs_inode *binode;
    	struct inode *inode;
    	struct btrfs_delalloc_work *work, *next;
    	struct list_head works;
    	struct list_head splice;
    	int ret = 0;
    
    	INIT_LIST_HEAD(&works);
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&root->delalloc_lock);
    	list_splice_init(&root->delalloc_inodes, &splice);
    	while (!list_empty(&splice)) {
    		binode = list_entry(splice.next, struct btrfs_inode,
    				    delalloc_inodes);
    
    		list_move_tail(&binode->delalloc_inodes,
    			       &root->delalloc_inodes);
    		inode = igrab(&binode->vfs_inode);
    		if (!inode) {
    			cond_resched_lock(&root->delalloc_lock);
    			continue;
    		}
    		spin_unlock(&root->delalloc_lock);
    
    		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
    		if (unlikely(!work)) {
    			if (delay_iput)
    				btrfs_add_delayed_iput(inode);
    			else
    				iput(inode);
    			ret = -ENOMEM;
    			goto out;
    		}
    		list_add_tail(&work->list, &works);
    		btrfs_queue_worker(&root->fs_info->flush_workers,
    				   &work->work);
    
    		cond_resched();
    		spin_lock(&root->delalloc_lock);
    	}
    	spin_unlock(&root->delalloc_lock);
    
    	list_for_each_entry_safe(work, next, &works, list) {
    		list_del_init(&work->list);
    		btrfs_wait_and_free_delalloc_work(work);
    	}
    	return 0;
    out:
    	list_for_each_entry_safe(work, next, &works, list) {
    		list_del_init(&work->list);
    		btrfs_wait_and_free_delalloc_work(work);
    	}
    
    	if (!list_empty_careful(&splice)) {
    		spin_lock(&root->delalloc_lock);
    		list_splice_tail(&splice, &root->delalloc_inodes);
    		spin_unlock(&root->delalloc_lock);
    	}
    	return ret;
    }
    
    int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
    {
    	int ret;
    
    	if (root->fs_info->sb->s_flags & MS_RDONLY)
    		return -EROFS;
    
    	ret = __start_delalloc_inodes(root, delay_iput);
    	/*
    	 * the filemap_flush will queue IO into the worker threads, but
    	 * we have to make sure the IO is actually started and that
    	 * ordered extents get created before we return
    	 */
    	atomic_inc(&root->fs_info->async_submit_draining);
    	while (atomic_read(&root->fs_info->nr_async_submits) ||
    	      atomic_read(&root->fs_info->async_delalloc_pages)) {
    		wait_event(root->fs_info->async_submit_wait,
    		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
    		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
    	}
    	atomic_dec(&root->fs_info->async_submit_draining);
    	return ret;
    }
    
    int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
    				    int delay_iput)
    {
    	struct btrfs_root *root;
    	struct list_head splice;
    	int ret;
    
    	if (fs_info->sb->s_flags & MS_RDONLY)
    		return -EROFS;
    
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&fs_info->delalloc_root_lock);
    	list_splice_init(&fs_info->delalloc_roots, &splice);
    	while (!list_empty(&splice)) {
    		root = list_first_entry(&splice, struct btrfs_root,
    					delalloc_root);
    		root = btrfs_grab_fs_root(root);
    		BUG_ON(!root);
    		list_move_tail(&root->delalloc_root,
    			       &fs_info->delalloc_roots);
    		spin_unlock(&fs_info->delalloc_root_lock);
    
    		ret = __start_delalloc_inodes(root, delay_iput);
    		btrfs_put_fs_root(root);
    		if (ret)
    			goto out;
    
    		spin_lock(&fs_info->delalloc_root_lock);
    	}
    	spin_unlock(&fs_info->delalloc_root_lock);
    
    	atomic_inc(&fs_info->async_submit_draining);
    	while (atomic_read(&fs_info->nr_async_submits) ||
    	      atomic_read(&fs_info->async_delalloc_pages)) {
    		wait_event(fs_info->async_submit_wait,
    		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
    		    atomic_read(&fs_info->async_delalloc_pages) == 0));
    	}
    	atomic_dec(&fs_info->async_submit_draining);
    	return 0;
    out:
    	if (!list_empty_careful(&splice)) {
    		spin_lock(&fs_info->delalloc_root_lock);
    		list_splice_tail(&splice, &fs_info->delalloc_roots);
    		spin_unlock(&fs_info->delalloc_root_lock);
    	}
    	return ret;
    }
    
    static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
    			 const char *symname)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_path *path;
    	struct btrfs_key key;
    	struct inode *inode = NULL;
    	int err;
    	int drop_inode = 0;
    	u64 objectid;
    	u64 index = 0 ;
    	int name_len;
    	int datasize;
    	unsigned long ptr;
    	struct btrfs_file_extent_item *ei;
    	struct extent_buffer *leaf;
    
    	name_len = strlen(symname) + 1;
    	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
    		return -ENAMETOOLONG;
    
    	/*
    	 * 2 items for inode item and ref
    	 * 2 items for dir items
    	 * 1 item for xattr if selinux is on
    	 */
    	trans = btrfs_start_transaction(root, 5);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	err = btrfs_find_free_ino(root, &objectid);
    	if (err)
    		goto out_unlock;
    
    	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
    				dentry->d_name.len, btrfs_ino(dir), objectid,
    				S_IFLNK|S_IRWXUGO, &index);
    	if (IS_ERR(inode)) {
    		err = PTR_ERR(inode);
    		goto out_unlock;
    	}
    
    	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
    	if (err) {
    		drop_inode = 1;
    		goto out_unlock;
    	}
    
    	/*
    	* If the active LSM wants to access the inode during
    	* d_instantiate it needs these. Smack checks to see
    	* if the filesystem supports xattrs by looking at the
    	* ops vector.
    	*/
    	inode->i_fop = &btrfs_file_operations;
    	inode->i_op = &btrfs_file_inode_operations;
    
    	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
    	if (err)
    		drop_inode = 1;
    	else {
    		inode->i_mapping->a_ops = &btrfs_aops;
    		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
    		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
    	}
    	if (drop_inode)
    		goto out_unlock;
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		err = -ENOMEM;
    		drop_inode = 1;
    		goto out_unlock;
    	}
    	key.objectid = btrfs_ino(inode);
    	key.offset = 0;
    	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
    	datasize = btrfs_file_extent_calc_inline_size(name_len);
    	err = btrfs_insert_empty_item(trans, root, path, &key,
    				      datasize);
    	if (err) {
    		drop_inode = 1;
    		btrfs_free_path(path);
    		goto out_unlock;
    	}
    	leaf = path->nodes[0];
    	ei = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
    	btrfs_set_file_extent_type(leaf, ei,
    				   BTRFS_FILE_EXTENT_INLINE);
    	btrfs_set_file_extent_encryption(leaf, ei, 0);
    	btrfs_set_file_extent_compression(leaf, ei, 0);
    	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
    	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
    
    	ptr = btrfs_file_extent_inline_start(ei);
    	write_extent_buffer(leaf, symname, ptr, name_len);
    	btrfs_mark_buffer_dirty(leaf);
    	btrfs_free_path(path);
    
    	inode->i_op = &btrfs_symlink_inode_operations;
    	inode->i_mapping->a_ops = &btrfs_symlink_aops;
    	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
    	inode_set_bytes(inode, name_len);
    	btrfs_i_size_write(inode, name_len - 1);
    	err = btrfs_update_inode(trans, root, inode);
    	if (err)
    		drop_inode = 1;
    
    out_unlock:
    	if (!err)
    		d_instantiate(dentry, inode);
    	btrfs_end_transaction(trans, root);
    	if (drop_inode) {
    		inode_dec_link_count(inode);
    		iput(inode);
    	}
    	btrfs_btree_balance_dirty(root);
    	return err;
    }
    
    static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
    				       u64 start, u64 num_bytes, u64 min_size,
    				       loff_t actual_len, u64 *alloc_hint,
    				       struct btrfs_trans_handle *trans)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_map *em;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_key ins;
    	u64 cur_offset = start;
    	u64 i_size;
    	u64 cur_bytes;
    	int ret = 0;
    	bool own_trans = true;
    
    	if (trans)
    		own_trans = false;
    	while (num_bytes > 0) {
    		if (own_trans) {
    			trans = btrfs_start_transaction(root, 3);
    			if (IS_ERR(trans)) {
    				ret = PTR_ERR(trans);
    				break;
    			}
    		}
    
    		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
    		cur_bytes = max(cur_bytes, min_size);
    		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
    					   *alloc_hint, &ins, 1);
    		if (ret) {
    			if (own_trans)
    				btrfs_end_transaction(trans, root);
    			break;
    		}
    
    		ret = insert_reserved_file_extent(trans, inode,
    						  cur_offset, ins.objectid,
    						  ins.offset, ins.offset,
    						  ins.offset, 0, 0, 0,
    						  BTRFS_FILE_EXTENT_PREALLOC);
    		if (ret) {
    			btrfs_abort_transaction(trans, root, ret);
    			if (own_trans)
    				btrfs_end_transaction(trans, root);
    			break;
    		}
    		btrfs_drop_extent_cache(inode, cur_offset,
    					cur_offset + ins.offset -1, 0);
    
    		em = alloc_extent_map();
    		if (!em) {
    			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    				&BTRFS_I(inode)->runtime_flags);
    			goto next;
    		}
    
    		em->start = cur_offset;
    		em->orig_start = cur_offset;
    		em->len = ins.offset;
    		em->block_start = ins.objectid;
    		em->block_len = ins.offset;
    		em->orig_block_len = ins.offset;
    		em->ram_bytes = ins.offset;
    		em->bdev = root->fs_info->fs_devices->latest_bdev;
    		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
    		em->generation = trans->transid;
    
    		while (1) {
    			write_lock(&em_tree->lock);
    			ret = add_extent_mapping(em_tree, em, 1);
    			write_unlock(&em_tree->lock);
    			if (ret != -EEXIST)
    				break;
    			btrfs_drop_extent_cache(inode, cur_offset,
    						cur_offset + ins.offset - 1,
    						0);
    		}
    		free_extent_map(em);
    next:
    		num_bytes -= ins.offset;
    		cur_offset += ins.offset;
    		*alloc_hint = ins.objectid + ins.offset;
    
    		inode_inc_iversion(inode);
    		inode->i_ctime = CURRENT_TIME;
    		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
    		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
    		    (actual_len > inode->i_size) &&
    		    (cur_offset > inode->i_size)) {
    			if (cur_offset > actual_len)
    				i_size = actual_len;
    			else
    				i_size = cur_offset;
    			i_size_write(inode, i_size);
    			btrfs_ordered_update_i_size(inode, i_size, NULL);
    		}
    
    		ret = btrfs_update_inode(trans, root, inode);
    
    		if (ret) {
    			btrfs_abort_transaction(trans, root, ret);
    			if (own_trans)
    				btrfs_end_transaction(trans, root);
    			break;
    		}
    
    		if (own_trans)
    			btrfs_end_transaction(trans, root);
    	}
    	return ret;
    }
    
    int btrfs_prealloc_file_range(struct inode *inode, int mode,
    			      u64 start, u64 num_bytes, u64 min_size,
    			      loff_t actual_len, u64 *alloc_hint)
    {
    	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
    					   min_size, actual_len, alloc_hint,
    					   NULL);
    }
    
    int btrfs_prealloc_file_range_trans(struct inode *inode,
    				    struct btrfs_trans_handle *trans, int mode,
    				    u64 start, u64 num_bytes, u64 min_size,
    				    loff_t actual_len, u64 *alloc_hint)
    {
    	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
    					   min_size, actual_len, alloc_hint, trans);
    }
    
    static int btrfs_set_page_dirty(struct page *page)
    {
    	return __set_page_dirty_nobuffers(page);
    }
    
    static int btrfs_permission(struct inode *inode, int mask)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	umode_t mode = inode->i_mode;
    
    	if (mask & MAY_WRITE &&
    	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
    		if (btrfs_root_readonly(root))
    			return -EROFS;
    		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
    			return -EACCES;
    	}
    	return generic_permission(inode, mask);
    }
    
    static const struct inode_operations btrfs_dir_inode_operations = {
    	.getattr	= btrfs_getattr,
    	.lookup		= btrfs_lookup,
    	.create		= btrfs_create,
    	.unlink		= btrfs_unlink,
    	.link		= btrfs_link,
    	.mkdir		= btrfs_mkdir,
    	.rmdir		= btrfs_rmdir,
    	.rename		= btrfs_rename,
    	.symlink	= btrfs_symlink,
    	.setattr	= btrfs_setattr,
    	.mknod		= btrfs_mknod,
    	.setxattr	= btrfs_setxattr,
    	.getxattr	= btrfs_getxattr,
    	.listxattr	= btrfs_listxattr,
    	.removexattr	= btrfs_removexattr,
    	.permission	= btrfs_permission,
    	.get_acl	= btrfs_get_acl,
    	.update_time	= btrfs_update_time,
    };
    static const struct inode_operations btrfs_dir_ro_inode_operations = {
    	.lookup		= btrfs_lookup,
    	.permission	= btrfs_permission,
    	.get_acl	= btrfs_get_acl,
    	.update_time	= btrfs_update_time,
    };
    
    static const struct file_operations btrfs_dir_file_operations = {
    	.llseek		= generic_file_llseek,
    	.read		= generic_read_dir,
    	.iterate	= btrfs_real_readdir,
    	.unlocked_ioctl	= btrfs_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl	= btrfs_ioctl,
    #endif
    	.release        = btrfs_release_file,
    	.fsync		= btrfs_sync_file,
    };
    
    static struct extent_io_ops btrfs_extent_io_ops = {
    	.fill_delalloc = run_delalloc_range,
    	.submit_bio_hook = btrfs_submit_bio_hook,
    	.merge_bio_hook = btrfs_merge_bio_hook,
    	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
    	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
    	.writepage_start_hook = btrfs_writepage_start_hook,
    	.set_bit_hook = btrfs_set_bit_hook,
    	.clear_bit_hook = btrfs_clear_bit_hook,
    	.merge_extent_hook = btrfs_merge_extent_hook,
    	.split_extent_hook = btrfs_split_extent_hook,
    };
    
    /*
     * btrfs doesn't support the bmap operation because swapfiles
     * use bmap to make a mapping of extents in the file.  They assume
     * these extents won't change over the life of the file and they
     * use the bmap result to do IO directly to the drive.
     *
     * the btrfs bmap call would return logical addresses that aren't
     * suitable for IO and they also will change frequently as COW
     * operations happen.  So, swapfile + btrfs == corruption.
     *
     * For now we're avoiding this by dropping bmap.
     */
    static const struct address_space_operations btrfs_aops = {
    	.readpage	= btrfs_readpage,
    	.writepage	= btrfs_writepage,
    	.writepages	= btrfs_writepages,
    	.readpages	= btrfs_readpages,
    	.direct_IO	= btrfs_direct_IO,
    	.invalidatepage = btrfs_invalidatepage,
    	.releasepage	= btrfs_releasepage,
    	.set_page_dirty	= btrfs_set_page_dirty,
    	.error_remove_page = generic_error_remove_page,
    };
    
    static const struct address_space_operations btrfs_symlink_aops = {
    	.readpage	= btrfs_readpage,
    	.writepage	= btrfs_writepage,
    	.invalidatepage = btrfs_invalidatepage,
    	.releasepage	= btrfs_releasepage,
    };
    
    static const struct inode_operations btrfs_file_inode_operations = {
    	.getattr	= btrfs_getattr,
    	.setattr	= btrfs_setattr,
    	.setxattr	= btrfs_setxattr,
    	.getxattr	= btrfs_getxattr,
    	.listxattr      = btrfs_listxattr,
    	.removexattr	= btrfs_removexattr,
    	.permission	= btrfs_permission,
    	.fiemap		= btrfs_fiemap,
    	.get_acl	= btrfs_get_acl,
    	.update_time	= btrfs_update_time,
    };
    static const struct inode_operations btrfs_special_inode_operations = {
    	.getattr	= btrfs_getattr,
    	.setattr	= btrfs_setattr,
    	.permission	= btrfs_permission,
    	.setxattr	= btrfs_setxattr,
    	.getxattr	= btrfs_getxattr,
    	.listxattr	= btrfs_listxattr,
    	.removexattr	= btrfs_removexattr,
    	.get_acl	= btrfs_get_acl,
    	.update_time	= btrfs_update_time,
    };
    static const struct inode_operations btrfs_symlink_inode_operations = {
    	.readlink	= generic_readlink,
    	.follow_link	= page_follow_link_light,
    	.put_link	= page_put_link,
    	.getattr	= btrfs_getattr,
    	.setattr	= btrfs_setattr,
    	.permission	= btrfs_permission,
    	.setxattr	= btrfs_setxattr,
    	.getxattr	= btrfs_getxattr,
    	.listxattr	= btrfs_listxattr,
    	.removexattr	= btrfs_removexattr,
    	.get_acl	= btrfs_get_acl,
    	.update_time	= btrfs_update_time,
    };
    
    const struct dentry_operations btrfs_dentry_operations = {
    	.d_delete	= btrfs_dentry_delete,
    	.d_release	= btrfs_dentry_release,
    };