Skip to content
Snippets Groups Projects
Select Git revision
  • 48a992727d82cb7db076fa15d372178743b1f4cd
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

mcryptd.c

Blame
  • mcryptd.c 17.47 KiB
    /*
     * Software multibuffer async crypto daemon.
     *
     * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
     *
     * Adapted from crypto daemon.
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License as published by the Free
     * Software Foundation; either version 2 of the License, or (at your option)
     * any later version.
     *
     */
    
    #include <crypto/algapi.h>
    #include <crypto/internal/hash.h>
    #include <crypto/internal/aead.h>
    #include <crypto/mcryptd.h>
    #include <crypto/crypto_wq.h>
    #include <linux/err.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/list.h>
    #include <linux/module.h>
    #include <linux/scatterlist.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/hardirq.h>
    
    #define MCRYPTD_MAX_CPU_QLEN 100
    #define MCRYPTD_BATCH 9
    
    static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
    				   unsigned int tail);
    
    struct mcryptd_flush_list {
    	struct list_head list;
    	struct mutex lock;
    };
    
    static struct mcryptd_flush_list __percpu *mcryptd_flist;
    
    struct hashd_instance_ctx {
    	struct crypto_ahash_spawn spawn;
    	struct mcryptd_queue *queue;
    };
    
    static void mcryptd_queue_worker(struct work_struct *work);
    
    void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
    {
    	struct mcryptd_flush_list *flist;
    
    	if (!cstate->flusher_engaged) {
    		/* put the flusher on the flush list */
    		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
    		mutex_lock(&flist->lock);
    		list_add_tail(&cstate->flush_list, &flist->list);
    		cstate->flusher_engaged = true;
    		cstate->next_flush = jiffies + delay;
    		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
    			&cstate->flush, delay);
    		mutex_unlock(&flist->lock);
    	}
    }
    EXPORT_SYMBOL(mcryptd_arm_flusher);
    
    static int mcryptd_init_queue(struct mcryptd_queue *queue,
    			     unsigned int max_cpu_qlen)
    {
    	int cpu;
    	struct mcryptd_cpu_queue *cpu_queue;
    
    	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
    	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
    	if (!queue->cpu_queue)
    		return -ENOMEM;
    	for_each_possible_cpu(cpu) {
    		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
    		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
    		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
    		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
    	}
    	return 0;
    }
    
    static void mcryptd_fini_queue(struct mcryptd_queue *queue)
    {
    	int cpu;
    	struct mcryptd_cpu_queue *cpu_queue;
    
    	for_each_possible_cpu(cpu) {
    		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
    		BUG_ON(cpu_queue->queue.qlen);
    	}
    	free_percpu(queue->cpu_queue);
    }
    
    static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
    				  struct crypto_async_request *request,
    				  struct mcryptd_hash_request_ctx *rctx)
    {
    	int cpu, err;
    	struct mcryptd_cpu_queue *cpu_queue;
    
    	cpu = get_cpu();
    	cpu_queue = this_cpu_ptr(queue->cpu_queue);
    	rctx->tag.cpu = cpu;
    
    	err = crypto_enqueue_request(&cpu_queue->queue, request);
    	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
    		 cpu, cpu_queue, request);
    	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
    	put_cpu();
    
    	return err;
    }
    
    /*
     * Try to opportunisticlly flush the partially completed jobs if
     * crypto daemon is the only task running.
     */
    static void mcryptd_opportunistic_flush(void)
    {
    	struct mcryptd_flush_list *flist;
    	struct mcryptd_alg_cstate *cstate;
    
    	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
    	while (single_task_running()) {
    		mutex_lock(&flist->lock);
    		cstate = list_first_entry_or_null(&flist->list,
    				struct mcryptd_alg_cstate, flush_list);
    		if (!cstate || !cstate->flusher_engaged) {
    			mutex_unlock(&flist->lock);
    			return;
    		}
    		list_del(&cstate->flush_list);
    		cstate->flusher_engaged = false;
    		mutex_unlock(&flist->lock);
    		cstate->alg_state->flusher(cstate);
    	}
    }
    
    /*
     * Called in workqueue context, do one real cryption work (via
     * req->complete) and reschedule itself if there are more work to
     * do.
     */
    static void mcryptd_queue_worker(struct work_struct *work)
    {
    	struct mcryptd_cpu_queue *cpu_queue;
    	struct crypto_async_request *req, *backlog;
    	int i;
    
    	/*
    	 * Need to loop through more than once for multi-buffer to
    	 * be effective.
    	 */
    
    	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
    	i = 0;
    	while (i < MCRYPTD_BATCH || single_task_running()) {
    		/*
    		 * preempt_disable/enable is used to prevent
    		 * being preempted by mcryptd_enqueue_request()
    		 */
    		local_bh_disable();
    		preempt_disable();
    		backlog = crypto_get_backlog(&cpu_queue->queue);
    		req = crypto_dequeue_request(&cpu_queue->queue);
    		preempt_enable();
    		local_bh_enable();
    
    		if (!req) {
    			mcryptd_opportunistic_flush();
    			return;
    		}
    
    		if (backlog)
    			backlog->complete(backlog, -EINPROGRESS);
    		req->complete(req, 0);
    		if (!cpu_queue->queue.qlen)
    			return;
    		++i;
    	}
    	if (cpu_queue->queue.qlen)
    		queue_work(kcrypto_wq, &cpu_queue->work);
    }
    
    void mcryptd_flusher(struct work_struct *__work)
    {
    	struct	mcryptd_alg_cstate	*alg_cpu_state;
    	struct	mcryptd_alg_state	*alg_state;
    	struct	mcryptd_flush_list	*flist;
    	int	cpu;
    
    	cpu = smp_processor_id();
    	alg_cpu_state = container_of(to_delayed_work(__work),
    				     struct mcryptd_alg_cstate, flush);
    	alg_state = alg_cpu_state->alg_state;
    	if (alg_cpu_state->cpu != cpu)
    		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
    				cpu, alg_cpu_state->cpu);
    
    	if (alg_cpu_state->flusher_engaged) {
    		flist = per_cpu_ptr(mcryptd_flist, cpu);
    		mutex_lock(&flist->lock);
    		list_del(&alg_cpu_state->flush_list);
    		alg_cpu_state->flusher_engaged = false;
    		mutex_unlock(&flist->lock);
    		alg_state->flusher(alg_cpu_state);
    	}
    }
    EXPORT_SYMBOL_GPL(mcryptd_flusher);
    
    static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
    {
    	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
    	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
    
    	return ictx->queue;
    }
    
    static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
    				   unsigned int tail)
    {
    	char *p;
    	struct crypto_instance *inst;
    	int err;
    
    	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
    	if (!p)
    		return ERR_PTR(-ENOMEM);
    
    	inst = (void *)(p + head);
    
    	err = -ENAMETOOLONG;
    	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
    		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
    		goto out_free_inst;
    
    	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
    
    	inst->alg.cra_priority = alg->cra_priority + 50;
    	inst->alg.cra_blocksize = alg->cra_blocksize;
    	inst->alg.cra_alignmask = alg->cra_alignmask;
    
    out:
    	return p;
    
    out_free_inst:
    	kfree(p);
    	p = ERR_PTR(err);
    	goto out;
    }
    
    static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
    					  u32 *mask)
    {
    	struct crypto_attr_type *algt;
    
    	algt = crypto_get_attr_type(tb);
    	if (IS_ERR(algt))
    		return false;
    
    	*type |= algt->type & CRYPTO_ALG_INTERNAL;
    	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
    
    	if (*type & *mask & CRYPTO_ALG_INTERNAL)
    		return true;
    	else
    		return false;
    }
    
    static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
    {
    	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
    	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
    	struct crypto_ahash_spawn *spawn = &ictx->spawn;
    	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
    	struct crypto_ahash *hash;
    
    	hash = crypto_spawn_ahash(spawn);
    	if (IS_ERR(hash))
    		return PTR_ERR(hash);
    
    	ctx->child = hash;
    	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
    				 sizeof(struct mcryptd_hash_request_ctx) +
    				 crypto_ahash_reqsize(hash));
    	return 0;
    }
    
    static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
    {
    	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
    
    	crypto_free_ahash(ctx->child);
    }
    
    static int mcryptd_hash_setkey(struct crypto_ahash *parent,
    				   const u8 *key, unsigned int keylen)
    {
    	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
    	struct crypto_ahash *child = ctx->child;
    	int err;
    
    	crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
    	crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
    				      CRYPTO_TFM_REQ_MASK);
    	err = crypto_ahash_setkey(child, key, keylen);
    	crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
    				       CRYPTO_TFM_RES_MASK);
    	return err;
    }
    
    static int mcryptd_hash_enqueue(struct ahash_request *req,
    				crypto_completion_t complete)
    {
    	int ret;
    
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct mcryptd_queue *queue =
    		mcryptd_get_queue(crypto_ahash_tfm(tfm));
    
    	rctx->complete = req->base.complete;
    	req->base.complete = complete;
    
    	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
    
    	return ret;
    }
    
    static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
    {
    	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
    	struct crypto_ahash *child = ctx->child;
    	struct ahash_request *req = ahash_request_cast(req_async);
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	struct ahash_request *desc = &rctx->areq;
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    
    	ahash_request_set_tfm(desc, child);
    	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
    						rctx->complete, req_async);
    
    	rctx->out = req->result;
    	err = crypto_ahash_init(desc);
    
    out:
    	local_bh_disable();
    	rctx->complete(&req->base, err);
    	local_bh_enable();
    }
    
    static int mcryptd_hash_init_enqueue(struct ahash_request *req)
    {
    	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
    }
    
    static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
    {
    	struct ahash_request *req = ahash_request_cast(req_async);
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    
    	rctx->out = req->result;
    	err = ahash_mcryptd_update(&rctx->areq);
    	if (err) {
    		req->base.complete = rctx->complete;
    		goto out;
    	}
    
    	return;
    out:
    	local_bh_disable();
    	rctx->complete(&req->base, err);
    	local_bh_enable();
    }
    
    static int mcryptd_hash_update_enqueue(struct ahash_request *req)
    {
    	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
    }
    
    static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
    {
    	struct ahash_request *req = ahash_request_cast(req_async);
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    
    	rctx->out = req->result;
    	err = ahash_mcryptd_final(&rctx->areq);
    	if (err) {
    		req->base.complete = rctx->complete;
    		goto out;
    	}
    
    	return;
    out:
    	local_bh_disable();
    	rctx->complete(&req->base, err);
    	local_bh_enable();
    }
    
    static int mcryptd_hash_final_enqueue(struct ahash_request *req)
    {
    	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
    }
    
    static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
    {
    	struct ahash_request *req = ahash_request_cast(req_async);
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    	rctx->out = req->result;
    	err = ahash_mcryptd_finup(&rctx->areq);
    
    	if (err) {
    		req->base.complete = rctx->complete;
    		goto out;
    	}
    
    	return;
    out:
    	local_bh_disable();
    	rctx->complete(&req->base, err);
    	local_bh_enable();
    }
    
    static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
    {
    	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
    }
    
    static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
    {
    	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
    	struct crypto_ahash *child = ctx->child;
    	struct ahash_request *req = ahash_request_cast(req_async);
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	struct ahash_request *desc = &rctx->areq;
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    
    	ahash_request_set_tfm(desc, child);
    	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
    						rctx->complete, req_async);
    
    	rctx->out = req->result;
    	err = ahash_mcryptd_digest(desc);
    
    out:
    	local_bh_disable();
    	rctx->complete(&req->base, err);
    	local_bh_enable();
    }
    
    static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
    {
    	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
    }
    
    static int mcryptd_hash_export(struct ahash_request *req, void *out)
    {
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	return crypto_ahash_export(&rctx->areq, out);
    }
    
    static int mcryptd_hash_import(struct ahash_request *req, const void *in)
    {
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	return crypto_ahash_import(&rctx->areq, in);
    }
    
    static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
    			      struct mcryptd_queue *queue)
    {
    	struct hashd_instance_ctx *ctx;
    	struct ahash_instance *inst;
    	struct hash_alg_common *halg;
    	struct crypto_alg *alg;
    	u32 type = 0;
    	u32 mask = 0;
    	int err;
    
    	if (!mcryptd_check_internal(tb, &type, &mask))
    		return -EINVAL;
    
    	halg = ahash_attr_alg(tb[1], type, mask);
    	if (IS_ERR(halg))
    		return PTR_ERR(halg);
    
    	alg = &halg->base;
    	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
    	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
    					sizeof(*ctx));
    	err = PTR_ERR(inst);
    	if (IS_ERR(inst))
    		goto out_put_alg;
    
    	ctx = ahash_instance_ctx(inst);
    	ctx->queue = queue;
    
    	err = crypto_init_ahash_spawn(&ctx->spawn, halg,
    				      ahash_crypto_instance(inst));
    	if (err)
    		goto out_free_inst;
    
    	type = CRYPTO_ALG_ASYNC;
    	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
    		type |= CRYPTO_ALG_INTERNAL;
    	inst->alg.halg.base.cra_flags = type;
    
    	inst->alg.halg.digestsize = halg->digestsize;
    	inst->alg.halg.statesize = halg->statesize;
    	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
    
    	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
    	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
    
    	inst->alg.init   = mcryptd_hash_init_enqueue;
    	inst->alg.update = mcryptd_hash_update_enqueue;
    	inst->alg.final  = mcryptd_hash_final_enqueue;
    	inst->alg.finup  = mcryptd_hash_finup_enqueue;
    	inst->alg.export = mcryptd_hash_export;
    	inst->alg.import = mcryptd_hash_import;
    	inst->alg.setkey = mcryptd_hash_setkey;
    	inst->alg.digest = mcryptd_hash_digest_enqueue;
    
    	err = ahash_register_instance(tmpl, inst);
    	if (err) {
    		crypto_drop_ahash(&ctx->spawn);
    out_free_inst:
    		kfree(inst);
    	}
    
    out_put_alg:
    	crypto_mod_put(alg);
    	return err;
    }
    
    static struct mcryptd_queue mqueue;
    
    static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
    {
    	struct crypto_attr_type *algt;
    
    	algt = crypto_get_attr_type(tb);
    	if (IS_ERR(algt))
    		return PTR_ERR(algt);
    
    	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
    	case CRYPTO_ALG_TYPE_DIGEST:
    		return mcryptd_create_hash(tmpl, tb, &mqueue);
    	break;
    	}
    
    	return -EINVAL;
    }
    
    static void mcryptd_free(struct crypto_instance *inst)
    {
    	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
    	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
    
    	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
    	case CRYPTO_ALG_TYPE_AHASH:
    		crypto_drop_ahash(&hctx->spawn);
    		kfree(ahash_instance(inst));
    		return;
    	default:
    		crypto_drop_spawn(&ctx->spawn);
    		kfree(inst);
    	}
    }
    
    static struct crypto_template mcryptd_tmpl = {
    	.name = "mcryptd",
    	.create = mcryptd_create,
    	.free = mcryptd_free,
    	.module = THIS_MODULE,
    };
    
    struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
    					u32 type, u32 mask)
    {
    	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
    	struct crypto_ahash *tfm;
    
    	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
    		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
    		return ERR_PTR(-EINVAL);
    	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
    	if (IS_ERR(tfm))
    		return ERR_CAST(tfm);
    	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
    		crypto_free_ahash(tfm);
    		return ERR_PTR(-EINVAL);
    	}
    
    	return __mcryptd_ahash_cast(tfm);
    }
    EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
    
    int ahash_mcryptd_digest(struct ahash_request *desc)
    {
    	return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
    }
    
    int ahash_mcryptd_update(struct ahash_request *desc)
    {
    	/* alignment is to be done by multi-buffer crypto algorithm if needed */
    
    	return crypto_ahash_update(desc);
    }
    
    int ahash_mcryptd_finup(struct ahash_request *desc)
    {
    	/* alignment is to be done by multi-buffer crypto algorithm if needed */
    
    	return crypto_ahash_finup(desc);
    }
    
    int ahash_mcryptd_final(struct ahash_request *desc)
    {
    	/* alignment is to be done by multi-buffer crypto algorithm if needed */
    
    	return crypto_ahash_final(desc);
    }
    
    struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
    {
    	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
    
    	return ctx->child;
    }
    EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
    
    struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
    {
    	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	return &rctx->areq;
    }
    EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
    
    void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
    {
    	crypto_free_ahash(&tfm->base);
    }
    EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
    
    static int __init mcryptd_init(void)
    {
    	int err, cpu;
    	struct mcryptd_flush_list *flist;
    
    	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
    	for_each_possible_cpu(cpu) {
    		flist = per_cpu_ptr(mcryptd_flist, cpu);
    		INIT_LIST_HEAD(&flist->list);
    		mutex_init(&flist->lock);
    	}
    
    	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
    	if (err) {
    		free_percpu(mcryptd_flist);
    		return err;
    	}
    
    	err = crypto_register_template(&mcryptd_tmpl);
    	if (err) {
    		mcryptd_fini_queue(&mqueue);
    		free_percpu(mcryptd_flist);
    	}
    
    	return err;
    }
    
    static void __exit mcryptd_exit(void)
    {
    	mcryptd_fini_queue(&mqueue);
    	crypto_unregister_template(&mcryptd_tmpl);
    	free_percpu(mcryptd_flist);
    }
    
    subsys_initcall(mcryptd_init);
    module_exit(mcryptd_exit);
    
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
    MODULE_ALIAS_CRYPTO("mcryptd");