Skip to content
Snippets Groups Projects
Select Git revision
  • 62eede62dafb4a6633eae7ffbeb34c60dba5e7b1
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

pgtable.h

Blame
  • user_namespace.c 34.93 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    
    #include <linux/export.h>
    #include <linux/nsproxy.h>
    #include <linux/slab.h>
    #include <linux/sched/signal.h>
    #include <linux/user_namespace.h>
    #include <linux/proc_ns.h>
    #include <linux/highuid.h>
    #include <linux/cred.h>
    #include <linux/securebits.h>
    #include <linux/keyctl.h>
    #include <linux/key-type.h>
    #include <keys/user-type.h>
    #include <linux/seq_file.h>
    #include <linux/fs.h>
    #include <linux/uaccess.h>
    #include <linux/ctype.h>
    #include <linux/projid.h>
    #include <linux/fs_struct.h>
    #include <linux/bsearch.h>
    #include <linux/sort.h>
    
    static struct kmem_cache *user_ns_cachep __read_mostly;
    static DEFINE_MUTEX(userns_state_mutex);
    
    static bool new_idmap_permitted(const struct file *file,
    				struct user_namespace *ns, int cap_setid,
    				struct uid_gid_map *map);
    static void free_user_ns(struct work_struct *work);
    
    static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
    {
    	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
    }
    
    static void dec_user_namespaces(struct ucounts *ucounts)
    {
    	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
    }
    
    static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
    {
    	/* Start with the same capabilities as init but useless for doing
    	 * anything as the capabilities are bound to the new user namespace.
    	 */
    	cred->securebits = SECUREBITS_DEFAULT;
    	cred->cap_inheritable = CAP_EMPTY_SET;
    	cred->cap_permitted = CAP_FULL_SET;
    	cred->cap_effective = CAP_FULL_SET;
    	cred->cap_ambient = CAP_EMPTY_SET;
    	cred->cap_bset = CAP_FULL_SET;
    #ifdef CONFIG_KEYS
    	key_put(cred->request_key_auth);
    	cred->request_key_auth = NULL;
    #endif
    	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
    	cred->user_ns = user_ns;
    }
    
    /*
     * Create a new user namespace, deriving the creator from the user in the
     * passed credentials, and replacing that user with the new root user for the
     * new namespace.
     *
     * This is called by copy_creds(), which will finish setting the target task's
     * credentials.
     */
    int create_user_ns(struct cred *new)
    {
    	struct user_namespace *ns, *parent_ns = new->user_ns;
    	kuid_t owner = new->euid;
    	kgid_t group = new->egid;
    	struct ucounts *ucounts;
    	int ret, i;
    
    	ret = -ENOSPC;
    	if (parent_ns->level > 32)
    		goto fail;
    
    	ucounts = inc_user_namespaces(parent_ns, owner);
    	if (!ucounts)
    		goto fail;
    
    	/*
    	 * Verify that we can not violate the policy of which files
    	 * may be accessed that is specified by the root directory,
    	 * by verifying that the root directory is at the root of the
    	 * mount namespace which allows all files to be accessed.
    	 */
    	ret = -EPERM;
    	if (current_chrooted())
    		goto fail_dec;
    
    	/* The creator needs a mapping in the parent user namespace
    	 * or else we won't be able to reasonably tell userspace who
    	 * created a user_namespace.
    	 */
    	ret = -EPERM;
    	if (!kuid_has_mapping(parent_ns, owner) ||
    	    !kgid_has_mapping(parent_ns, group))
    		goto fail_dec;
    
    	ret = -ENOMEM;
    	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
    	if (!ns)
    		goto fail_dec;
    
    	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
    	ret = ns_alloc_inum(&ns->ns);
    	if (ret)
    		goto fail_free;
    	ns->ns.ops = &userns_operations;
    
    	refcount_set(&ns->ns.count, 1);
    	/* Leave the new->user_ns reference with the new user namespace. */
    	ns->parent = parent_ns;
    	ns->level = parent_ns->level + 1;
    	ns->owner = owner;
    	ns->group = group;
    	INIT_WORK(&ns->work, free_user_ns);
    	for (i = 0; i < UCOUNT_COUNTS; i++) {
    		ns->ucount_max[i] = INT_MAX;
    	}
    	ns->ucounts = ucounts;
    
    	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
    	mutex_lock(&userns_state_mutex);
    	ns->flags = parent_ns->flags;
    	mutex_unlock(&userns_state_mutex);
    
    #ifdef CONFIG_KEYS
    	INIT_LIST_HEAD(&ns->keyring_name_list);
    	init_rwsem(&ns->keyring_sem);
    #endif
    	ret = -ENOMEM;
    	if (!setup_userns_sysctls(ns))
    		goto fail_keyring;
    
    	set_cred_user_ns(new, ns);
    	return 0;
    fail_keyring:
    #ifdef CONFIG_PERSISTENT_KEYRINGS
    	key_put(ns->persistent_keyring_register);
    #endif
    	ns_free_inum(&ns->ns);
    fail_free:
    	kmem_cache_free(user_ns_cachep, ns);
    fail_dec:
    	dec_user_namespaces(ucounts);
    fail:
    	return ret;
    }
    
    int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
    {
    	struct cred *cred;
    	int err = -ENOMEM;
    
    	if (!(unshare_flags & CLONE_NEWUSER))
    		return 0;
    
    	cred = prepare_creds();
    	if (cred) {
    		err = create_user_ns(cred);
    		if (err)
    			put_cred(cred);
    		else
    			*new_cred = cred;
    	}
    
    	return err;
    }
    
    static void free_user_ns(struct work_struct *work)
    {
    	struct user_namespace *parent, *ns =
    		container_of(work, struct user_namespace, work);
    
    	do {
    		struct ucounts *ucounts = ns->ucounts;
    		parent = ns->parent;
    		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
    			kfree(ns->gid_map.forward);
    			kfree(ns->gid_map.reverse);
    		}
    		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
    			kfree(ns->uid_map.forward);
    			kfree(ns->uid_map.reverse);
    		}
    		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
    			kfree(ns->projid_map.forward);
    			kfree(ns->projid_map.reverse);
    		}
    		retire_userns_sysctls(ns);
    		key_free_user_ns(ns);
    		ns_free_inum(&ns->ns);
    		kmem_cache_free(user_ns_cachep, ns);
    		dec_user_namespaces(ucounts);
    		ns = parent;
    	} while (refcount_dec_and_test(&parent->ns.count));
    }
    
    void __put_user_ns(struct user_namespace *ns)
    {
    	schedule_work(&ns->work);
    }
    EXPORT_SYMBOL(__put_user_ns);
    
    /**
     * idmap_key struct holds the information necessary to find an idmapping in a
     * sorted idmap array. It is passed to cmp_map_id() as first argument.
     */
    struct idmap_key {
    	bool map_up; /* true  -> id from kid; false -> kid from id */
    	u32 id; /* id to find */
    	u32 count; /* == 0 unless used with map_id_range_down() */
    };
    
    /**
     * cmp_map_id - Function to be passed to bsearch() to find the requested
     * idmapping. Expects struct idmap_key to be passed via @k.
     */
    static int cmp_map_id(const void *k, const void *e)
    {
    	u32 first, last, id2;
    	const struct idmap_key *key = k;
    	const struct uid_gid_extent *el = e;
    
    	id2 = key->id + key->count - 1;
    
    	/* handle map_id_{down,up}() */
    	if (key->map_up)
    		first = el->lower_first;
    	else
    		first = el->first;
    
    	last = first + el->count - 1;
    
    	if (key->id >= first && key->id <= last &&
    	    (id2 >= first && id2 <= last))
    		return 0;
    
    	if (key->id < first || id2 < first)
    		return -1;
    
    	return 1;
    }
    
    /**
     * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
     * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static struct uid_gid_extent *
    map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
    {
    	struct idmap_key key;
    
    	key.map_up = false;
    	key.count = count;
    	key.id = id;
    
    	return bsearch(&key, map->forward, extents,
    		       sizeof(struct uid_gid_extent), cmp_map_id);
    }
    
    /**
     * map_id_range_down_base - Find idmap via binary search in static extent array.
     * Can only be called if number of mappings is equal or less than
     * UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static struct uid_gid_extent *
    map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
    {
    	unsigned idx;
    	u32 first, last, id2;
    
    	id2 = id + count - 1;
    
    	/* Find the matching extent */
    	for (idx = 0; idx < extents; idx++) {
    		first = map->extent[idx].first;
    		last = first + map->extent[idx].count - 1;
    		if (id >= first && id <= last &&
    		    (id2 >= first && id2 <= last))
    			return &map->extent[idx];
    	}
    	return NULL;
    }
    
    static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
    {
    	struct uid_gid_extent *extent;
    	unsigned extents = map->nr_extents;
    	smp_rmb();
    
    	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    		extent = map_id_range_down_base(extents, map, id, count);
    	else
    		extent = map_id_range_down_max(extents, map, id, count);
    
    	/* Map the id or note failure */
    	if (extent)
    		id = (id - extent->first) + extent->lower_first;
    	else
    		id = (u32) -1;
    
    	return id;
    }
    
    static u32 map_id_down(struct uid_gid_map *map, u32 id)
    {
    	return map_id_range_down(map, id, 1);
    }
    
    /**
     * map_id_up_base - Find idmap via binary search in static extent array.
     * Can only be called if number of mappings is equal or less than
     * UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static struct uid_gid_extent *
    map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
    {
    	unsigned idx;
    	u32 first, last;
    
    	/* Find the matching extent */
    	for (idx = 0; idx < extents; idx++) {
    		first = map->extent[idx].lower_first;
    		last = first + map->extent[idx].count - 1;
    		if (id >= first && id <= last)
    			return &map->extent[idx];
    	}
    	return NULL;
    }
    
    /**
     * map_id_up_max - Find idmap via binary search in ordered idmap array.
     * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static struct uid_gid_extent *
    map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
    {
    	struct idmap_key key;
    
    	key.map_up = true;
    	key.count = 1;
    	key.id = id;
    
    	return bsearch(&key, map->reverse, extents,
    		       sizeof(struct uid_gid_extent), cmp_map_id);
    }
    
    static u32 map_id_up(struct uid_gid_map *map, u32 id)
    {
    	struct uid_gid_extent *extent;
    	unsigned extents = map->nr_extents;
    	smp_rmb();
    
    	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    		extent = map_id_up_base(extents, map, id);
    	else
    		extent = map_id_up_max(extents, map, id);
    
    	/* Map the id or note failure */
    	if (extent)
    		id = (id - extent->lower_first) + extent->first;
    	else
    		id = (u32) -1;
    
    	return id;
    }
    
    /**
     *	make_kuid - Map a user-namespace uid pair into a kuid.
     *	@ns:  User namespace that the uid is in
     *	@uid: User identifier
     *
     *	Maps a user-namespace uid pair into a kernel internal kuid,
     *	and returns that kuid.
     *
     *	When there is no mapping defined for the user-namespace uid
     *	pair INVALID_UID is returned.  Callers are expected to test
     *	for and handle INVALID_UID being returned.  INVALID_UID
     *	may be tested for using uid_valid().
     */
    kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
    {
    	/* Map the uid to a global kernel uid */
    	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
    }
    EXPORT_SYMBOL(make_kuid);
    
    /**
     *	from_kuid - Create a uid from a kuid user-namespace pair.
     *	@targ: The user namespace we want a uid in.
     *	@kuid: The kernel internal uid to start with.
     *
     *	Map @kuid into the user-namespace specified by @targ and
     *	return the resulting uid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
     */
    uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
    {
    	/* Map the uid from a global kernel uid */
    	return map_id_up(&targ->uid_map, __kuid_val(kuid));
    }
    EXPORT_SYMBOL(from_kuid);
    
    /**
     *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
     *	@targ: The user namespace we want a uid in.
     *	@kuid: The kernel internal uid to start with.
     *
     *	Map @kuid into the user-namespace specified by @targ and
     *	return the resulting uid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	Unlike from_kuid from_kuid_munged never fails and always
     *	returns a valid uid.  This makes from_kuid_munged appropriate
     *	for use in syscalls like stat and getuid where failing the
     *	system call and failing to provide a valid uid are not an
     *	options.
     *
     *	If @kuid has no mapping in @targ overflowuid is returned.
     */
    uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
    {
    	uid_t uid;
    	uid = from_kuid(targ, kuid);
    
    	if (uid == (uid_t) -1)
    		uid = overflowuid;
    	return uid;
    }
    EXPORT_SYMBOL(from_kuid_munged);
    
    /**
     *	make_kgid - Map a user-namespace gid pair into a kgid.
     *	@ns:  User namespace that the gid is in
     *	@gid: group identifier
     *
     *	Maps a user-namespace gid pair into a kernel internal kgid,
     *	and returns that kgid.
     *
     *	When there is no mapping defined for the user-namespace gid
     *	pair INVALID_GID is returned.  Callers are expected to test
     *	for and handle INVALID_GID being returned.  INVALID_GID may be
     *	tested for using gid_valid().
     */
    kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
    {
    	/* Map the gid to a global kernel gid */
    	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
    }
    EXPORT_SYMBOL(make_kgid);
    
    /**
     *	from_kgid - Create a gid from a kgid user-namespace pair.
     *	@targ: The user namespace we want a gid in.
     *	@kgid: The kernel internal gid to start with.
     *
     *	Map @kgid into the user-namespace specified by @targ and
     *	return the resulting gid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
     */
    gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
    {
    	/* Map the gid from a global kernel gid */
    	return map_id_up(&targ->gid_map, __kgid_val(kgid));
    }
    EXPORT_SYMBOL(from_kgid);
    
    /**
     *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
     *	@targ: The user namespace we want a gid in.
     *	@kgid: The kernel internal gid to start with.
     *
     *	Map @kgid into the user-namespace specified by @targ and
     *	return the resulting gid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	Unlike from_kgid from_kgid_munged never fails and always
     *	returns a valid gid.  This makes from_kgid_munged appropriate
     *	for use in syscalls like stat and getgid where failing the
     *	system call and failing to provide a valid gid are not options.
     *
     *	If @kgid has no mapping in @targ overflowgid is returned.
     */
    gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
    {
    	gid_t gid;
    	gid = from_kgid(targ, kgid);
    
    	if (gid == (gid_t) -1)
    		gid = overflowgid;
    	return gid;
    }
    EXPORT_SYMBOL(from_kgid_munged);
    
    /**
     *	make_kprojid - Map a user-namespace projid pair into a kprojid.
     *	@ns:  User namespace that the projid is in
     *	@projid: Project identifier
     *
     *	Maps a user-namespace uid pair into a kernel internal kuid,
     *	and returns that kuid.
     *
     *	When there is no mapping defined for the user-namespace projid
     *	pair INVALID_PROJID is returned.  Callers are expected to test
     *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
     *	may be tested for using projid_valid().
     */
    kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
    {
    	/* Map the uid to a global kernel uid */
    	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
    }
    EXPORT_SYMBOL(make_kprojid);
    
    /**
     *	from_kprojid - Create a projid from a kprojid user-namespace pair.
     *	@targ: The user namespace we want a projid in.
     *	@kprojid: The kernel internal project identifier to start with.
     *
     *	Map @kprojid into the user-namespace specified by @targ and
     *	return the resulting projid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
     */
    projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
    {
    	/* Map the uid from a global kernel uid */
    	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
    }
    EXPORT_SYMBOL(from_kprojid);
    
    /**
     *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
     *	@targ: The user namespace we want a projid in.
     *	@kprojid: The kernel internal projid to start with.
     *
     *	Map @kprojid into the user-namespace specified by @targ and
     *	return the resulting projid.
     *
     *	There is always a mapping into the initial user_namespace.
     *
     *	Unlike from_kprojid from_kprojid_munged never fails and always
     *	returns a valid projid.  This makes from_kprojid_munged
     *	appropriate for use in syscalls like stat and where
     *	failing the system call and failing to provide a valid projid are
     *	not an options.
     *
     *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
     */
    projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
    {
    	projid_t projid;
    	projid = from_kprojid(targ, kprojid);
    
    	if (projid == (projid_t) -1)
    		projid = OVERFLOW_PROJID;
    	return projid;
    }
    EXPORT_SYMBOL(from_kprojid_munged);
    
    
    static int uid_m_show(struct seq_file *seq, void *v)
    {
    	struct user_namespace *ns = seq->private;
    	struct uid_gid_extent *extent = v;
    	struct user_namespace *lower_ns;
    	uid_t lower;
    
    	lower_ns = seq_user_ns(seq);
    	if ((lower_ns == ns) && lower_ns->parent)
    		lower_ns = lower_ns->parent;
    
    	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
    
    	seq_printf(seq, "%10u %10u %10u\n",
    		extent->first,
    		lower,
    		extent->count);
    
    	return 0;
    }
    
    static int gid_m_show(struct seq_file *seq, void *v)
    {
    	struct user_namespace *ns = seq->private;
    	struct uid_gid_extent *extent = v;
    	struct user_namespace *lower_ns;
    	gid_t lower;
    
    	lower_ns = seq_user_ns(seq);
    	if ((lower_ns == ns) && lower_ns->parent)
    		lower_ns = lower_ns->parent;
    
    	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
    
    	seq_printf(seq, "%10u %10u %10u\n",
    		extent->first,
    		lower,
    		extent->count);
    
    	return 0;
    }
    
    static int projid_m_show(struct seq_file *seq, void *v)
    {
    	struct user_namespace *ns = seq->private;
    	struct uid_gid_extent *extent = v;
    	struct user_namespace *lower_ns;
    	projid_t lower;
    
    	lower_ns = seq_user_ns(seq);
    	if ((lower_ns == ns) && lower_ns->parent)
    		lower_ns = lower_ns->parent;
    
    	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
    
    	seq_printf(seq, "%10u %10u %10u\n",
    		extent->first,
    		lower,
    		extent->count);
    
    	return 0;
    }
    
    static void *m_start(struct seq_file *seq, loff_t *ppos,
    		     struct uid_gid_map *map)
    {
    	loff_t pos = *ppos;
    	unsigned extents = map->nr_extents;
    	smp_rmb();
    
    	if (pos >= extents)
    		return NULL;
    
    	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    		return &map->extent[pos];
    
    	return &map->forward[pos];
    }
    
    static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
    {
    	struct user_namespace *ns = seq->private;
    
    	return m_start(seq, ppos, &ns->uid_map);
    }
    
    static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
    {
    	struct user_namespace *ns = seq->private;
    
    	return m_start(seq, ppos, &ns->gid_map);
    }
    
    static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
    {
    	struct user_namespace *ns = seq->private;
    
    	return m_start(seq, ppos, &ns->projid_map);
    }
    
    static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
    {
    	(*pos)++;
    	return seq->op->start(seq, pos);
    }
    
    static void m_stop(struct seq_file *seq, void *v)
    {
    	return;
    }
    
    const struct seq_operations proc_uid_seq_operations = {
    	.start = uid_m_start,
    	.stop = m_stop,
    	.next = m_next,
    	.show = uid_m_show,
    };
    
    const struct seq_operations proc_gid_seq_operations = {
    	.start = gid_m_start,
    	.stop = m_stop,
    	.next = m_next,
    	.show = gid_m_show,
    };
    
    const struct seq_operations proc_projid_seq_operations = {
    	.start = projid_m_start,
    	.stop = m_stop,
    	.next = m_next,
    	.show = projid_m_show,
    };
    
    static bool mappings_overlap(struct uid_gid_map *new_map,
    			     struct uid_gid_extent *extent)
    {
    	u32 upper_first, lower_first, upper_last, lower_last;
    	unsigned idx;
    
    	upper_first = extent->first;
    	lower_first = extent->lower_first;
    	upper_last = upper_first + extent->count - 1;
    	lower_last = lower_first + extent->count - 1;
    
    	for (idx = 0; idx < new_map->nr_extents; idx++) {
    		u32 prev_upper_first, prev_lower_first;
    		u32 prev_upper_last, prev_lower_last;
    		struct uid_gid_extent *prev;
    
    		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    			prev = &new_map->extent[idx];
    		else
    			prev = &new_map->forward[idx];
    
    		prev_upper_first = prev->first;
    		prev_lower_first = prev->lower_first;
    		prev_upper_last = prev_upper_first + prev->count - 1;
    		prev_lower_last = prev_lower_first + prev->count - 1;
    
    		/* Does the upper range intersect a previous extent? */
    		if ((prev_upper_first <= upper_last) &&
    		    (prev_upper_last >= upper_first))
    			return true;
    
    		/* Does the lower range intersect a previous extent? */
    		if ((prev_lower_first <= lower_last) &&
    		    (prev_lower_last >= lower_first))
    			return true;
    	}
    	return false;
    }
    
    /**
     * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
     * Takes care to allocate a 4K block of memory if the number of mappings exceeds
     * UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
    {
    	struct uid_gid_extent *dest;
    
    	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
    		struct uid_gid_extent *forward;
    
    		/* Allocate memory for 340 mappings. */
    		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
    					sizeof(struct uid_gid_extent),
    					GFP_KERNEL);
    		if (!forward)
    			return -ENOMEM;
    
    		/* Copy over memory. Only set up memory for the forward pointer.
    		 * Defer the memory setup for the reverse pointer.
    		 */
    		memcpy(forward, map->extent,
    		       map->nr_extents * sizeof(map->extent[0]));
    
    		map->forward = forward;
    		map->reverse = NULL;
    	}
    
    	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
    		dest = &map->extent[map->nr_extents];
    	else
    		dest = &map->forward[map->nr_extents];
    
    	*dest = *extent;
    	map->nr_extents++;
    	return 0;
    }
    
    /* cmp function to sort() forward mappings */
    static int cmp_extents_forward(const void *a, const void *b)
    {
    	const struct uid_gid_extent *e1 = a;
    	const struct uid_gid_extent *e2 = b;
    
    	if (e1->first < e2->first)
    		return -1;
    
    	if (e1->first > e2->first)
    		return 1;
    
    	return 0;
    }
    
    /* cmp function to sort() reverse mappings */
    static int cmp_extents_reverse(const void *a, const void *b)
    {
    	const struct uid_gid_extent *e1 = a;
    	const struct uid_gid_extent *e2 = b;
    
    	if (e1->lower_first < e2->lower_first)
    		return -1;
    
    	if (e1->lower_first > e2->lower_first)
    		return 1;
    
    	return 0;
    }
    
    /**
     * sort_idmaps - Sorts an array of idmap entries.
     * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
     */
    static int sort_idmaps(struct uid_gid_map *map)
    {
    	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    		return 0;
    
    	/* Sort forward array. */
    	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
    	     cmp_extents_forward, NULL);
    
    	/* Only copy the memory from forward we actually need. */
    	map->reverse = kmemdup(map->forward,
    			       map->nr_extents * sizeof(struct uid_gid_extent),
    			       GFP_KERNEL);
    	if (!map->reverse)
    		return -ENOMEM;
    
    	/* Sort reverse array. */
    	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
    	     cmp_extents_reverse, NULL);
    
    	return 0;
    }
    
    /**
     * verify_root_map() - check the uid 0 mapping
     * @file: idmapping file
     * @map_ns: user namespace of the target process
     * @new_map: requested idmap
     *
     * If a process requests mapping parent uid 0 into the new ns, verify that the
     * process writing the map had the CAP_SETFCAP capability as the target process
     * will be able to write fscaps that are valid in ancestor user namespaces.
     *
     * Return: true if the mapping is allowed, false if not.
     */
    static bool verify_root_map(const struct file *file,
    			    struct user_namespace *map_ns,
    			    struct uid_gid_map *new_map)
    {
    	int idx;
    	const struct user_namespace *file_ns = file->f_cred->user_ns;
    	struct uid_gid_extent *extent0 = NULL;
    
    	for (idx = 0; idx < new_map->nr_extents; idx++) {
    		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    			extent0 = &new_map->extent[idx];
    		else
    			extent0 = &new_map->forward[idx];
    		if (extent0->lower_first == 0)
    			break;
    
    		extent0 = NULL;
    	}
    
    	if (!extent0)
    		return true;
    
    	if (map_ns == file_ns) {
    		/* The process unshared its ns and is writing to its own
    		 * /proc/self/uid_map.  User already has full capabilites in
    		 * the new namespace.  Verify that the parent had CAP_SETFCAP
    		 * when it unshared.
    		 * */
    		if (!file_ns->parent_could_setfcap)
    			return false;
    	} else {
    		/* Process p1 is writing to uid_map of p2, who is in a child
    		 * user namespace to p1's.  Verify that the opener of the map
    		 * file has CAP_SETFCAP against the parent of the new map
    		 * namespace */
    		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
    			return false;
    	}
    
    	return true;
    }
    
    static ssize_t map_write(struct file *file, const char __user *buf,
    			 size_t count, loff_t *ppos,
    			 int cap_setid,
    			 struct uid_gid_map *map,
    			 struct uid_gid_map *parent_map)
    {
    	struct seq_file *seq = file->private_data;
    	struct user_namespace *map_ns = seq->private;
    	struct uid_gid_map new_map;
    	unsigned idx;
    	struct uid_gid_extent extent;
    	char *kbuf = NULL, *pos, *next_line;
    	ssize_t ret;
    
    	/* Only allow < page size writes at the beginning of the file */
    	if ((*ppos != 0) || (count >= PAGE_SIZE))
    		return -EINVAL;
    
    	/* Slurp in the user data */
    	kbuf = memdup_user_nul(buf, count);
    	if (IS_ERR(kbuf))
    		return PTR_ERR(kbuf);
    
    	/*
    	 * The userns_state_mutex serializes all writes to any given map.
    	 *
    	 * Any map is only ever written once.
    	 *
    	 * An id map fits within 1 cache line on most architectures.
    	 *
    	 * On read nothing needs to be done unless you are on an
    	 * architecture with a crazy cache coherency model like alpha.
    	 *
    	 * There is a one time data dependency between reading the
    	 * count of the extents and the values of the extents.  The
    	 * desired behavior is to see the values of the extents that
    	 * were written before the count of the extents.
    	 *
    	 * To achieve this smp_wmb() is used on guarantee the write
    	 * order and smp_rmb() is guaranteed that we don't have crazy
    	 * architectures returning stale data.
    	 */
    	mutex_lock(&userns_state_mutex);
    
    	memset(&new_map, 0, sizeof(struct uid_gid_map));
    
    	ret = -EPERM;
    	/* Only allow one successful write to the map */
    	if (map->nr_extents != 0)
    		goto out;
    
    	/*
    	 * Adjusting namespace settings requires capabilities on the target.
    	 */
    	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
    		goto out;
    
    	/* Parse the user data */
    	ret = -EINVAL;
    	pos = kbuf;
    	for (; pos; pos = next_line) {
    
    		/* Find the end of line and ensure I don't look past it */
    		next_line = strchr(pos, '\n');
    		if (next_line) {
    			*next_line = '\0';
    			next_line++;
    			if (*next_line == '\0')
    				next_line = NULL;
    		}
    
    		pos = skip_spaces(pos);
    		extent.first = simple_strtoul(pos, &pos, 10);
    		if (!isspace(*pos))
    			goto out;
    
    		pos = skip_spaces(pos);
    		extent.lower_first = simple_strtoul(pos, &pos, 10);
    		if (!isspace(*pos))
    			goto out;
    
    		pos = skip_spaces(pos);
    		extent.count = simple_strtoul(pos, &pos, 10);
    		if (*pos && !isspace(*pos))
    			goto out;
    
    		/* Verify there is not trailing junk on the line */
    		pos = skip_spaces(pos);
    		if (*pos != '\0')
    			goto out;
    
    		/* Verify we have been given valid starting values */
    		if ((extent.first == (u32) -1) ||
    		    (extent.lower_first == (u32) -1))
    			goto out;
    
    		/* Verify count is not zero and does not cause the
    		 * extent to wrap
    		 */
    		if ((extent.first + extent.count) <= extent.first)
    			goto out;
    		if ((extent.lower_first + extent.count) <=
    		     extent.lower_first)
    			goto out;
    
    		/* Do the ranges in extent overlap any previous extents? */
    		if (mappings_overlap(&new_map, &extent))
    			goto out;
    
    		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
    		    (next_line != NULL))
    			goto out;
    
    		ret = insert_extent(&new_map, &extent);
    		if (ret < 0)
    			goto out;
    		ret = -EINVAL;
    	}
    	/* Be very certain the new map actually exists */
    	if (new_map.nr_extents == 0)
    		goto out;
    
    	ret = -EPERM;
    	/* Validate the user is allowed to use user id's mapped to. */
    	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
    		goto out;
    
    	ret = -EPERM;
    	/* Map the lower ids from the parent user namespace to the
    	 * kernel global id space.
    	 */
    	for (idx = 0; idx < new_map.nr_extents; idx++) {
    		struct uid_gid_extent *e;
    		u32 lower_first;
    
    		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
    			e = &new_map.extent[idx];
    		else
    			e = &new_map.forward[idx];
    
    		lower_first = map_id_range_down(parent_map,
    						e->lower_first,
    						e->count);
    
    		/* Fail if we can not map the specified extent to
    		 * the kernel global id space.
    		 */
    		if (lower_first == (u32) -1)
    			goto out;
    
    		e->lower_first = lower_first;
    	}
    
    	/*
    	 * If we want to use binary search for lookup, this clones the extent
    	 * array and sorts both copies.
    	 */
    	ret = sort_idmaps(&new_map);
    	if (ret < 0)
    		goto out;
    
    	/* Install the map */
    	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
    		memcpy(map->extent, new_map.extent,
    		       new_map.nr_extents * sizeof(new_map.extent[0]));
    	} else {
    		map->forward = new_map.forward;
    		map->reverse = new_map.reverse;
    	}
    	smp_wmb();
    	map->nr_extents = new_map.nr_extents;
    
    	*ppos = count;
    	ret = count;
    out:
    	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
    		kfree(new_map.forward);
    		kfree(new_map.reverse);
    		map->forward = NULL;
    		map->reverse = NULL;
    		map->nr_extents = 0;
    	}
    
    	mutex_unlock(&userns_state_mutex);
    	kfree(kbuf);
    	return ret;
    }
    
    ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
    			   size_t size, loff_t *ppos)
    {
    	struct seq_file *seq = file->private_data;
    	struct user_namespace *ns = seq->private;
    	struct user_namespace *seq_ns = seq_user_ns(seq);
    
    	if (!ns->parent)
    		return -EPERM;
    
    	if ((seq_ns != ns) && (seq_ns != ns->parent))
    		return -EPERM;
    
    	return map_write(file, buf, size, ppos, CAP_SETUID,
    			 &ns->uid_map, &ns->parent->uid_map);
    }
    
    ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
    			   size_t size, loff_t *ppos)
    {
    	struct seq_file *seq = file->private_data;
    	struct user_namespace *ns = seq->private;
    	struct user_namespace *seq_ns = seq_user_ns(seq);
    
    	if (!ns->parent)
    		return -EPERM;
    
    	if ((seq_ns != ns) && (seq_ns != ns->parent))
    		return -EPERM;
    
    	return map_write(file, buf, size, ppos, CAP_SETGID,
    			 &ns->gid_map, &ns->parent->gid_map);
    }
    
    ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
    			      size_t size, loff_t *ppos)
    {
    	struct seq_file *seq = file->private_data;
    	struct user_namespace *ns = seq->private;
    	struct user_namespace *seq_ns = seq_user_ns(seq);
    
    	if (!ns->parent)
    		return -EPERM;
    
    	if ((seq_ns != ns) && (seq_ns != ns->parent))
    		return -EPERM;
    
    	/* Anyone can set any valid project id no capability needed */
    	return map_write(file, buf, size, ppos, -1,
    			 &ns->projid_map, &ns->parent->projid_map);
    }
    
    static bool new_idmap_permitted(const struct file *file,
    				struct user_namespace *ns, int cap_setid,
    				struct uid_gid_map *new_map)
    {
    	const struct cred *cred = file->f_cred;
    
    	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
    		return false;
    
    	/* Don't allow mappings that would allow anything that wouldn't
    	 * be allowed without the establishment of unprivileged mappings.
    	 */
    	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
    	    uid_eq(ns->owner, cred->euid)) {
    		u32 id = new_map->extent[0].lower_first;
    		if (cap_setid == CAP_SETUID) {
    			kuid_t uid = make_kuid(ns->parent, id);
    			if (uid_eq(uid, cred->euid))
    				return true;
    		} else if (cap_setid == CAP_SETGID) {
    			kgid_t gid = make_kgid(ns->parent, id);
    			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
    			    gid_eq(gid, cred->egid))
    				return true;
    		}
    	}
    
    	/* Allow anyone to set a mapping that doesn't require privilege */
    	if (!cap_valid(cap_setid))
    		return true;
    
    	/* Allow the specified ids if we have the appropriate capability
    	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
    	 * And the opener of the id file also has the appropriate capability.
    	 */
    	if (ns_capable(ns->parent, cap_setid) &&
    	    file_ns_capable(file, ns->parent, cap_setid))
    		return true;
    
    	return false;
    }
    
    int proc_setgroups_show(struct seq_file *seq, void *v)
    {
    	struct user_namespace *ns = seq->private;
    	unsigned long userns_flags = READ_ONCE(ns->flags);
    
    	seq_printf(seq, "%s\n",
    		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
    		   "allow" : "deny");
    	return 0;
    }
    
    ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
    			     size_t count, loff_t *ppos)
    {
    	struct seq_file *seq = file->private_data;
    	struct user_namespace *ns = seq->private;
    	char kbuf[8], *pos;
    	bool setgroups_allowed;
    	ssize_t ret;
    
    	/* Only allow a very narrow range of strings to be written */
    	ret = -EINVAL;
    	if ((*ppos != 0) || (count >= sizeof(kbuf)))
    		goto out;
    
    	/* What was written? */
    	ret = -EFAULT;
    	if (copy_from_user(kbuf, buf, count))
    		goto out;
    	kbuf[count] = '\0';
    	pos = kbuf;
    
    	/* What is being requested? */
    	ret = -EINVAL;
    	if (strncmp(pos, "allow", 5) == 0) {
    		pos += 5;
    		setgroups_allowed = true;
    	}
    	else if (strncmp(pos, "deny", 4) == 0) {
    		pos += 4;
    		setgroups_allowed = false;
    	}
    	else
    		goto out;
    
    	/* Verify there is not trailing junk on the line */
    	pos = skip_spaces(pos);
    	if (*pos != '\0')
    		goto out;
    
    	ret = -EPERM;
    	mutex_lock(&userns_state_mutex);
    	if (setgroups_allowed) {
    		/* Enabling setgroups after setgroups has been disabled
    		 * is not allowed.
    		 */
    		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
    			goto out_unlock;
    	} else {
    		/* Permanently disabling setgroups after setgroups has
    		 * been enabled by writing the gid_map is not allowed.
    		 */
    		if (ns->gid_map.nr_extents != 0)
    			goto out_unlock;
    		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
    	}
    	mutex_unlock(&userns_state_mutex);
    
    	/* Report a successful write */
    	*ppos = count;
    	ret = count;
    out:
    	return ret;
    out_unlock:
    	mutex_unlock(&userns_state_mutex);
    	goto out;
    }
    
    bool userns_may_setgroups(const struct user_namespace *ns)
    {
    	bool allowed;
    
    	mutex_lock(&userns_state_mutex);
    	/* It is not safe to use setgroups until a gid mapping in
    	 * the user namespace has been established.
    	 */
    	allowed = ns->gid_map.nr_extents != 0;
    	/* Is setgroups allowed? */
    	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
    	mutex_unlock(&userns_state_mutex);
    
    	return allowed;
    }
    
    /*
     * Returns true if @child is the same namespace or a descendant of
     * @ancestor.
     */
    bool in_userns(const struct user_namespace *ancestor,
    	       const struct user_namespace *child)
    {
    	const struct user_namespace *ns;
    	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
    		;
    	return (ns == ancestor);
    }
    
    bool current_in_userns(const struct user_namespace *target_ns)
    {
    	return in_userns(target_ns, current_user_ns());
    }
    EXPORT_SYMBOL(current_in_userns);
    
    static inline struct user_namespace *to_user_ns(struct ns_common *ns)
    {
    	return container_of(ns, struct user_namespace, ns);
    }
    
    static struct ns_common *userns_get(struct task_struct *task)
    {
    	struct user_namespace *user_ns;
    
    	rcu_read_lock();
    	user_ns = get_user_ns(__task_cred(task)->user_ns);
    	rcu_read_unlock();
    
    	return user_ns ? &user_ns->ns : NULL;
    }
    
    static void userns_put(struct ns_common *ns)
    {
    	put_user_ns(to_user_ns(ns));
    }
    
    static int userns_install(struct nsset *nsset, struct ns_common *ns)
    {
    	struct user_namespace *user_ns = to_user_ns(ns);
    	struct cred *cred;
    
    	/* Don't allow gaining capabilities by reentering
    	 * the same user namespace.
    	 */
    	if (user_ns == current_user_ns())
    		return -EINVAL;
    
    	/* Tasks that share a thread group must share a user namespace */
    	if (!thread_group_empty(current))
    		return -EINVAL;
    
    	if (current->fs->users != 1)
    		return -EINVAL;
    
    	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    		return -EPERM;
    
    	cred = nsset_cred(nsset);
    	if (!cred)
    		return -EINVAL;
    
    	put_user_ns(cred->user_ns);
    	set_cred_user_ns(cred, get_user_ns(user_ns));
    
    	return 0;
    }
    
    struct ns_common *ns_get_owner(struct ns_common *ns)
    {
    	struct user_namespace *my_user_ns = current_user_ns();
    	struct user_namespace *owner, *p;
    
    	/* See if the owner is in the current user namespace */
    	owner = p = ns->ops->owner(ns);
    	for (;;) {
    		if (!p)
    			return ERR_PTR(-EPERM);
    		if (p == my_user_ns)
    			break;
    		p = p->parent;
    	}
    
    	return &get_user_ns(owner)->ns;
    }
    
    static struct user_namespace *userns_owner(struct ns_common *ns)
    {
    	return to_user_ns(ns)->parent;
    }
    
    const struct proc_ns_operations userns_operations = {
    	.name		= "user",
    	.type		= CLONE_NEWUSER,
    	.get		= userns_get,
    	.put		= userns_put,
    	.install	= userns_install,
    	.owner		= userns_owner,
    	.get_parent	= ns_get_owner,
    };
    
    static __init int user_namespaces_init(void)
    {
    	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC);
    	return 0;
    }
    subsys_initcall(user_namespaces_init);