Skip to content
Snippets Groups Projects
Select Git revision
  • 6fd166aae78c0ab738d49bda653cbd9e3b1491cf
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

calling.h

Blame
  • imr.c 16.92 KiB
    /**
     * imr.c
     *
     * Copyright(c) 2013 Intel Corporation.
     * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
     *
     * IMR registers define an isolated region of memory that can
     * be masked to prohibit certain system agents from accessing memory.
     * When a device behind a masked port performs an access - snooped or
     * not, an IMR may optionally prevent that transaction from changing
     * the state of memory or from getting correct data in response to the
     * operation.
     *
     * Write data will be dropped and reads will return 0xFFFFFFFF, the
     * system will reset and system BIOS will print out an error message to
     * inform the user that an IMR has been violated.
     *
     * This code is based on the Linux MTRR code and reference code from
     * Intel's Quark BSP EFI, Linux and grub code.
     *
     * See quark-x1000-datasheet.pdf for register definitions.
     * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <asm-generic/sections.h>
    #include <asm/cpu_device_id.h>
    #include <asm/imr.h>
    #include <asm/iosf_mbi.h>
    #include <linux/debugfs.h>
    #include <linux/init.h>
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/types.h>
    
    struct imr_device {
    	struct dentry	*file;
    	bool		init;
    	struct mutex	lock;
    	int		max_imr;
    	int		reg_base;
    };
    
    static struct imr_device imr_dev;
    
    /*
     * IMR read/write mask control registers.
     * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
     * bit definitions.
     *
     * addr_hi
     * 31		Lock bit
     * 30:24	Reserved
     * 23:2		1 KiB aligned lo address
     * 1:0		Reserved
     *
     * addr_hi
     * 31:24	Reserved
     * 23:2		1 KiB aligned hi address
     * 1:0		Reserved
     */
    #define IMR_LOCK	BIT(31)
    
    struct imr_regs {
    	u32 addr_lo;
    	u32 addr_hi;
    	u32 rmask;
    	u32 wmask;
    };
    
    #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
    #define IMR_SHIFT	8
    #define imr_to_phys(x)	((x) << IMR_SHIFT)
    #define phys_to_imr(x)	((x) >> IMR_SHIFT)
    
    /**
     * imr_is_enabled - true if an IMR is enabled false otherwise.
     *
     * Determines if an IMR is enabled based on address range and read/write
     * mask. An IMR set with an address range set to zero and a read/write
     * access mask set to all is considered to be disabled. An IMR in any
     * other state - for example set to zero but without read/write access
     * all is considered to be enabled. This definition of disabled is how
     * firmware switches off an IMR and is maintained in kernel for
     * consistency.
     *
     * @imr:	pointer to IMR descriptor.
     * @return:	true if IMR enabled false if disabled.
     */
    static inline int imr_is_enabled(struct imr_regs *imr)
    {
    	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
    		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
    		 imr_to_phys(imr->addr_lo) == 0 &&
    		 imr_to_phys(imr->addr_hi) == 0);
    }
    
    /**
     * imr_read - read an IMR at a given index.
     *
     * Requires caller to hold imr mutex.
     *
     * @idev:	pointer to imr_device structure.
     * @imr_id:	IMR entry to read.
     * @imr:	IMR structure representing address and access masks.
     * @return:	0 on success or error code passed from mbi_iosf on failure.
     */
    static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
    {
    	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
    	int ret;
    
    	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
    				reg++, &imr->addr_lo);
    	if (ret)
    		return ret;
    
    	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
    				reg++, &imr->addr_hi);
    	if (ret)
    		return ret;
    
    	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
    				reg++, &imr->rmask);
    	if (ret)
    		return ret;
    
    	return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
    				reg++, &imr->wmask);
    }
    
    /**
     * imr_write - write an IMR at a given index.
     *
     * Requires caller to hold imr mutex.
     * Note lock bits need to be written independently of address bits.
     *
     * @idev:	pointer to imr_device structure.
     * @imr_id:	IMR entry to write.
     * @imr:	IMR structure representing address and access masks.
     * @lock:	indicates if the IMR lock bit should be applied.
     * @return:	0 on success or error code passed from mbi_iosf on failure.
     */
    static int imr_write(struct imr_device *idev, u32 imr_id,
    		     struct imr_regs *imr, bool lock)
    {
    	unsigned long flags;
    	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
    	int ret;
    
    	local_irq_save(flags);
    
    	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++,
    				imr->addr_lo);
    	if (ret)
    		goto failed;
    
    	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
    				reg++, imr->addr_hi);
    	if (ret)
    		goto failed;
    
    	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
    				reg++, imr->rmask);
    	if (ret)
    		goto failed;
    
    	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
    				reg++, imr->wmask);
    	if (ret)
    		goto failed;
    
    	/* Lock bit must be set separately to addr_lo address bits. */
    	if (lock) {
    		imr->addr_lo |= IMR_LOCK;
    		ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
    					reg - IMR_NUM_REGS, imr->addr_lo);
    		if (ret)
    			goto failed;
    	}
    
    	local_irq_restore(flags);
    	return 0;
    failed:
    	/*
    	 * If writing to the IOSF failed then we're in an unknown state,
    	 * likely a very bad state. An IMR in an invalid state will almost
    	 * certainly lead to a memory access violation.
    	 */
    	local_irq_restore(flags);
    	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
    	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
    
    	return ret;
    }
    
    /**
     * imr_dbgfs_state_show - print state of IMR registers.
     *
     * @s:		pointer to seq_file for output.
     * @unused:	unused parameter.
     * @return:	0 on success or error code passed from mbi_iosf on failure.
     */
    static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
    {
    	phys_addr_t base;
    	phys_addr_t end;
    	int i;
    	struct imr_device *idev = s->private;
    	struct imr_regs imr;
    	size_t size;
    	int ret = -ENODEV;
    
    	mutex_lock(&idev->lock);
    
    	for (i = 0; i < idev->max_imr; i++) {
    
    		ret = imr_read(idev, i, &imr);
    		if (ret)
    			break;
    
    		/*
    		 * Remember to add IMR_ALIGN bytes to size to indicate the
    		 * inherent IMR_ALIGN size bytes contained in the masked away
    		 * lower ten bits.
    		 */
    		if (imr_is_enabled(&imr)) {
    			base = imr_to_phys(imr.addr_lo);
    			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
    		} else {
    			base = 0;
    			end = 0;
    		}
    		size = end - base;
    		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
    			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
    			   &base, &end, size, imr.rmask, imr.wmask,
    			   imr_is_enabled(&imr) ? "enabled " : "disabled",
    			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
    	}
    
    	mutex_unlock(&idev->lock);
    	return ret;
    }
    
    /**
     * imr_state_open - debugfs open callback.
     *
     * @inode:	pointer to struct inode.
     * @file:	pointer to struct file.
     * @return:	result of single open.
     */
    static int imr_state_open(struct inode *inode, struct file *file)
    {
    	return single_open(file, imr_dbgfs_state_show, inode->i_private);
    }
    
    static const struct file_operations imr_state_ops = {
    	.open		= imr_state_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= single_release,
    };
    
    /**
     * imr_debugfs_register - register debugfs hooks.
     *
     * @idev:	pointer to imr_device structure.
     * @return:	0 on success - errno on failure.
     */
    static int imr_debugfs_register(struct imr_device *idev)
    {
    	idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
    					 idev, &imr_state_ops);
    	return PTR_ERR_OR_ZERO(idev->file);
    }
    
    /**
     * imr_debugfs_unregister - unregister debugfs hooks.
     *
     * @idev:	pointer to imr_device structure.
     * @return:
     */
    static void imr_debugfs_unregister(struct imr_device *idev)
    {
    	debugfs_remove(idev->file);
    }
    
    /**
     * imr_check_params - check passed address range IMR alignment and non-zero size
     *
     * @base:	base address of intended IMR.
     * @size:	size of intended IMR.
     * @return:	zero on valid range -EINVAL on unaligned base/size.
     */
    static int imr_check_params(phys_addr_t base, size_t size)
    {
    	if ((base & IMR_MASK) || (size & IMR_MASK)) {
    		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
    			&base, size);
    		return -EINVAL;
    	}
    	if (size == 0)
    		return -EINVAL;
    
    	return 0;
    }
    
    /**
     * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
     *
     * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
     * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
     * as a result.
     *
     * @size:	input size bytes.
     * @return:	reduced size.
     */
    static inline size_t imr_raw_size(size_t size)
    {
    	return size - IMR_ALIGN;
    }
    
    /**
     * imr_address_overlap - detects an address overlap.
     *
     * @addr:	address to check against an existing IMR.
     * @imr:	imr being checked.
     * @return:	true for overlap false for no overlap.
     */
    static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
    {
    	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
    }
    
    /**
     * imr_add_range - add an Isolated Memory Region.
     *
     * @base:	physical base address of region aligned to 1KiB.
     * @size:	physical size of region in bytes must be aligned to 1KiB.
     * @read_mask:	read access mask.
     * @write_mask:	write access mask.
     * @lock:	indicates whether or not to permanently lock this region.
     * @return:	zero on success or negative value indicating error.
     */
    int imr_add_range(phys_addr_t base, size_t size,
    		  unsigned int rmask, unsigned int wmask, bool lock)
    {
    	phys_addr_t end;
    	unsigned int i;
    	struct imr_device *idev = &imr_dev;
    	struct imr_regs imr;
    	size_t raw_size;
    	int reg;
    	int ret;
    
    	if (WARN_ONCE(idev->init == false, "driver not initialized"))
    		return -ENODEV;
    
    	ret = imr_check_params(base, size);
    	if (ret)
    		return ret;
    
    	/* Tweak the size value. */
    	raw_size = imr_raw_size(size);
    	end = base + raw_size;
    
    	/*
    	 * Check for reserved IMR value common to firmware, kernel and grub
    	 * indicating a disabled IMR.
    	 */
    	imr.addr_lo = phys_to_imr(base);
    	imr.addr_hi = phys_to_imr(end);
    	imr.rmask = rmask;
    	imr.wmask = wmask;
    	if (!imr_is_enabled(&imr))
    		return -ENOTSUPP;
    
    	mutex_lock(&idev->lock);
    
    	/*
    	 * Find a free IMR while checking for an existing overlapping range.
    	 * Note there's no restriction in silicon to prevent IMR overlaps.
    	 * For the sake of simplicity and ease in defining/debugging an IMR
    	 * memory map we exclude IMR overlaps.
    	 */
    	reg = -1;
    	for (i = 0; i < idev->max_imr; i++) {
    		ret = imr_read(idev, i, &imr);
    		if (ret)
    			goto failed;
    
    		/* Find overlap @ base or end of requested range. */
    		ret = -EINVAL;
    		if (imr_is_enabled(&imr)) {
    			if (imr_address_overlap(base, &imr))
    				goto failed;
    			if (imr_address_overlap(end, &imr))
    				goto failed;
    		} else {
    			reg = i;
    		}
    	}
    
    	/* Error out if we have no free IMR entries. */
    	if (reg == -1) {
    		ret = -ENOMEM;
    		goto failed;
    	}
    
    	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
    		 reg, &base, &end, raw_size, rmask, wmask);
    
    	/* Enable IMR at specified range and access mask. */
    	imr.addr_lo = phys_to_imr(base);
    	imr.addr_hi = phys_to_imr(end);
    	imr.rmask = rmask;
    	imr.wmask = wmask;
    
    	ret = imr_write(idev, reg, &imr, lock);
    	if (ret < 0) {
    		/*
    		 * In the highly unlikely event iosf_mbi_write failed
    		 * attempt to rollback the IMR setup skipping the trapping
    		 * of further IOSF write failures.
    		 */
    		imr.addr_lo = 0;
    		imr.addr_hi = 0;
    		imr.rmask = IMR_READ_ACCESS_ALL;
    		imr.wmask = IMR_WRITE_ACCESS_ALL;
    		imr_write(idev, reg, &imr, false);
    	}
    failed:
    	mutex_unlock(&idev->lock);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(imr_add_range);
    
    /**
     * __imr_remove_range - delete an Isolated Memory Region.
     *
     * This function allows you to delete an IMR by its index specified by reg or
     * by address range specified by base and size respectively. If you specify an
     * index on its own the base and size parameters are ignored.
     * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
     * imr_remove_range(-1, base, size); delete IMR from base to base+size.
     *
     * @reg:	imr index to remove.
     * @base:	physical base address of region aligned to 1 KiB.
     * @size:	physical size of region in bytes aligned to 1 KiB.
     * @return:	-EINVAL on invalid range or out or range id
     *		-ENODEV if reg is valid but no IMR exists or is locked
     *		0 on success.
     */
    static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
    {
    	phys_addr_t end;
    	bool found = false;
    	unsigned int i;
    	struct imr_device *idev = &imr_dev;
    	struct imr_regs imr;
    	size_t raw_size;
    	int ret = 0;
    
    	if (WARN_ONCE(idev->init == false, "driver not initialized"))
    		return -ENODEV;
    
    	/*
    	 * Validate address range if deleting by address, else we are
    	 * deleting by index where base and size will be ignored.
    	 */
    	if (reg == -1) {
    		ret = imr_check_params(base, size);
    		if (ret)
    			return ret;
    	}
    
    	/* Tweak the size value. */
    	raw_size = imr_raw_size(size);
    	end = base + raw_size;
    
    	mutex_lock(&idev->lock);
    
    	if (reg >= 0) {
    		/* If a specific IMR is given try to use it. */
    		ret = imr_read(idev, reg, &imr);
    		if (ret)
    			goto failed;
    
    		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
    			ret = -ENODEV;
    			goto failed;
    		}
    		found = true;
    	} else {
    		/* Search for match based on address range. */
    		for (i = 0; i < idev->max_imr; i++) {
    			ret = imr_read(idev, i, &imr);
    			if (ret)
    				goto failed;
    
    			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
    				continue;
    
    			if ((imr_to_phys(imr.addr_lo) == base) &&
    			    (imr_to_phys(imr.addr_hi) == end)) {
    				found = true;
    				reg = i;
    				break;
    			}
    		}
    	}
    
    	if (!found) {
    		ret = -ENODEV;
    		goto failed;
    	}
    
    	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
    
    	/* Tear down the IMR. */
    	imr.addr_lo = 0;
    	imr.addr_hi = 0;
    	imr.rmask = IMR_READ_ACCESS_ALL;
    	imr.wmask = IMR_WRITE_ACCESS_ALL;
    
    	ret = imr_write(idev, reg, &imr, false);
    
    failed:
    	mutex_unlock(&idev->lock);
    	return ret;
    }
    
    /**
     * imr_remove_range - delete an Isolated Memory Region by address
     *
     * This function allows you to delete an IMR by an address range specified
     * by base and size respectively.
     * imr_remove_range(base, size); delete IMR from base to base+size.
     *
     * @base:	physical base address of region aligned to 1 KiB.
     * @size:	physical size of region in bytes aligned to 1 KiB.
     * @return:	-EINVAL on invalid range or out or range id
     *		-ENODEV if reg is valid but no IMR exists or is locked
     *		0 on success.
     */
    int imr_remove_range(phys_addr_t base, size_t size)
    {
    	return __imr_remove_range(-1, base, size);
    }
    EXPORT_SYMBOL_GPL(imr_remove_range);
    
    /**
     * imr_clear - delete an Isolated Memory Region by index
     *
     * This function allows you to delete an IMR by an address range specified
     * by the index of the IMR. Useful for initial sanitization of the IMR
     * address map.
     * imr_ge(base, size); delete IMR from base to base+size.
     *
     * @reg:	imr index to remove.
     * @return:	-EINVAL on invalid range or out or range id
     *		-ENODEV if reg is valid but no IMR exists or is locked
     *		0 on success.
     */
    static inline int imr_clear(int reg)
    {
    	return __imr_remove_range(reg, 0, 0);
    }
    
    /**
     * imr_fixup_memmap - Tear down IMRs used during bootup.
     *
     * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
     * that need to be removed before the kernel hands out one of the IMR
     * encased addresses to a downstream DMA agent such as the SD or Ethernet.
     * IMRs on Galileo are setup to immediately reset the system on violation.
     * As a result if you're running a root filesystem from SD - you'll need
     * the boot-time IMRs torn down or you'll find seemingly random resets when
     * using your filesystem.
     *
     * @idev:	pointer to imr_device structure.
     * @return:
     */
    static void __init imr_fixup_memmap(struct imr_device *idev)
    {
    	phys_addr_t base = virt_to_phys(&_text);
    	size_t size = virt_to_phys(&__end_rodata) - base;
    	int i;
    	int ret;
    
    	/* Tear down all existing unlocked IMRs. */
    	for (i = 0; i < idev->max_imr; i++)
    		imr_clear(i);
    
    	/*
    	 * Setup a locked IMR around the physical extent of the kernel
    	 * from the beginning of the .text secton to the end of the
    	 * .rodata section as one physically contiguous block.
    	 */
    	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
    	if (ret < 0) {
    		pr_err("unable to setup IMR for kernel: (%p - %p)\n",
    			&_text, &__end_rodata);
    	} else {
    		pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
    			size / 1024, &_text, &__end_rodata);
    	}
    
    }
    
    static const struct x86_cpu_id imr_ids[] __initconst = {
    	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
    	{}
    };
    MODULE_DEVICE_TABLE(x86cpu, imr_ids);
    
    /**
     * imr_init - entry point for IMR driver.
     *
     * return: -ENODEV for no IMR support 0 if good to go.
     */
    static int __init imr_init(void)
    {
    	struct imr_device *idev = &imr_dev;
    	int ret;
    
    	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
    		return -ENODEV;
    
    	idev->max_imr = QUARK_X1000_IMR_MAX;
    	idev->reg_base = QUARK_X1000_IMR_REGBASE;
    	idev->init = true;
    
    	mutex_init(&idev->lock);
    	ret = imr_debugfs_register(idev);
    	if (ret != 0)
    		pr_warn("debugfs register failed!\n");
    	imr_fixup_memmap(idev);
    	return 0;
    }
    
    /**
     * imr_exit - exit point for IMR code.
     *
     * Deregisters debugfs, leave IMR state as-is.
     *
     * return:
     */
    static void __exit imr_exit(void)
    {
    	imr_debugfs_unregister(&imr_dev);
    }
    
    module_init(imr_init);
    module_exit(imr_exit);
    
    MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
    MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
    MODULE_LICENSE("Dual BSD/GPL");