Skip to content
Snippets Groups Projects
Select Git revision
  • 7ba716698cc53f8d5367766c93c538c7da6c68ce
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

tmem.c

Blame
  • inode.c 65.38 KiB
    /*
     * inode.c
     *
     * PURPOSE
     *  Inode handling routines for the OSTA-UDF(tm) filesystem.
     *
     * COPYRIGHT
     *  This file is distributed under the terms of the GNU General Public
     *  License (GPL). Copies of the GPL can be obtained from:
     *    ftp://prep.ai.mit.edu/pub/gnu/GPL
     *  Each contributing author retains all rights to their own work.
     *
     *  (C) 1998 Dave Boynton
     *  (C) 1998-2004 Ben Fennema
     *  (C) 1999-2000 Stelias Computing Inc
     *
     * HISTORY
     *
     *  10/04/98 dgb  Added rudimentary directory functions
     *  10/07/98      Fully working udf_block_map! It works!
     *  11/25/98      bmap altered to better support extents
     *  12/06/98 blf  partition support in udf_iget, udf_block_map
     *                and udf_read_inode
     *  12/12/98      rewrote udf_block_map to handle next extents and descs across
     *                block boundaries (which is not actually allowed)
     *  12/20/98      added support for strategy 4096
     *  03/07/99      rewrote udf_block_map (again)
     *                New funcs, inode_bmap, udf_next_aext
     *  04/19/99      Support for writing device EA's for major/minor #
     */
    
    #include "udfdecl.h"
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/pagemap.h>
    #include <linux/writeback.h>
    #include <linux/slab.h>
    #include <linux/crc-itu-t.h>
    #include <linux/mpage.h>
    #include <linux/uio.h>
    #include <linux/bio.h>
    
    #include "udf_i.h"
    #include "udf_sb.h"
    
    #define EXTENT_MERGE_SIZE 5
    
    static umode_t udf_convert_permissions(struct fileEntry *);
    static int udf_update_inode(struct inode *, int);
    static int udf_sync_inode(struct inode *inode);
    static int udf_alloc_i_data(struct inode *inode, size_t size);
    static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
    static int8_t udf_insert_aext(struct inode *, struct extent_position,
    			      struct kernel_lb_addr, uint32_t);
    static void udf_split_extents(struct inode *, int *, int, int,
    			      struct kernel_long_ad *, int *);
    static void udf_prealloc_extents(struct inode *, int, int,
    				 struct kernel_long_ad *, int *);
    static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
    static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
    			       int, struct extent_position *);
    static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
    
    static void __udf_clear_extent_cache(struct inode *inode)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	if (iinfo->cached_extent.lstart != -1) {
    		brelse(iinfo->cached_extent.epos.bh);
    		iinfo->cached_extent.lstart = -1;
    	}
    }
    
    /* Invalidate extent cache */
    static void udf_clear_extent_cache(struct inode *inode)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	spin_lock(&iinfo->i_extent_cache_lock);
    	__udf_clear_extent_cache(inode);
    	spin_unlock(&iinfo->i_extent_cache_lock);
    }
    
    /* Return contents of extent cache */
    static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
    				 loff_t *lbcount, struct extent_position *pos)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	int ret = 0;
    
    	spin_lock(&iinfo->i_extent_cache_lock);
    	if ((iinfo->cached_extent.lstart <= bcount) &&
    	    (iinfo->cached_extent.lstart != -1)) {
    		/* Cache hit */
    		*lbcount = iinfo->cached_extent.lstart;
    		memcpy(pos, &iinfo->cached_extent.epos,
    		       sizeof(struct extent_position));
    		if (pos->bh)
    			get_bh(pos->bh);
    		ret = 1;
    	}
    	spin_unlock(&iinfo->i_extent_cache_lock);
    	return ret;
    }
    
    /* Add extent to extent cache */
    static void udf_update_extent_cache(struct inode *inode, loff_t estart,
    				    struct extent_position *pos)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	spin_lock(&iinfo->i_extent_cache_lock);
    	/* Invalidate previously cached extent */
    	__udf_clear_extent_cache(inode);
    	if (pos->bh)
    		get_bh(pos->bh);
    	memcpy(&iinfo->cached_extent.epos, pos, sizeof(struct extent_position));
    	iinfo->cached_extent.lstart = estart;
    	switch (iinfo->i_alloc_type) {
    	case ICBTAG_FLAG_AD_SHORT:
    		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
    		break;
    	case ICBTAG_FLAG_AD_LONG:
    		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
    		break;
    	}
    	spin_unlock(&iinfo->i_extent_cache_lock);
    }
    
    void udf_evict_inode(struct inode *inode)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	int want_delete = 0;
    
    	if (!inode->i_nlink && !is_bad_inode(inode)) {
    		want_delete = 1;
    		udf_setsize(inode, 0);
    		udf_update_inode(inode, IS_SYNC(inode));
    	}
    	truncate_inode_pages_final(&inode->i_data);
    	invalidate_inode_buffers(inode);
    	clear_inode(inode);
    	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
    	    inode->i_size != iinfo->i_lenExtents) {
    		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
    			 inode->i_ino, inode->i_mode,
    			 (unsigned long long)inode->i_size,
    			 (unsigned long long)iinfo->i_lenExtents);
    	}
    	kfree(iinfo->i_ext.i_data);
    	iinfo->i_ext.i_data = NULL;
    	udf_clear_extent_cache(inode);
    	if (want_delete) {
    		udf_free_inode(inode);
    	}
    }
    
    static void udf_write_failed(struct address_space *mapping, loff_t to)
    {
    	struct inode *inode = mapping->host;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	loff_t isize = inode->i_size;
    
    	if (to > isize) {
    		truncate_pagecache(inode, isize);
    		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
    			down_write(&iinfo->i_data_sem);
    			udf_clear_extent_cache(inode);
    			udf_truncate_extents(inode);
    			up_write(&iinfo->i_data_sem);
    		}
    	}
    }
    
    static int udf_writepage(struct page *page, struct writeback_control *wbc)
    {
    	return block_write_full_page(page, udf_get_block, wbc);
    }
    
    static int udf_writepages(struct address_space *mapping,
    			struct writeback_control *wbc)
    {
    	return mpage_writepages(mapping, wbc, udf_get_block);
    }
    
    static int udf_readpage(struct file *file, struct page *page)
    {
    	return mpage_readpage(page, udf_get_block);
    }
    
    static int udf_readpages(struct file *file, struct address_space *mapping,
    			struct list_head *pages, unsigned nr_pages)
    {
    	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
    }
    
    static int udf_write_begin(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned flags,
    			struct page **pagep, void **fsdata)
    {
    	int ret;
    
    	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
    	if (unlikely(ret))
    		udf_write_failed(mapping, pos + len);
    	return ret;
    }
    
    static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
    {
    	struct file *file = iocb->ki_filp;
    	struct address_space *mapping = file->f_mapping;
    	struct inode *inode = mapping->host;
    	size_t count = iov_iter_count(iter);
    	ssize_t ret;
    
    	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
    	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
    		udf_write_failed(mapping, iocb->ki_pos + count);
    	return ret;
    }
    
    static sector_t udf_bmap(struct address_space *mapping, sector_t block)
    {
    	return generic_block_bmap(mapping, block, udf_get_block);
    }
    
    const struct address_space_operations udf_aops = {
    	.readpage	= udf_readpage,
    	.readpages	= udf_readpages,
    	.writepage	= udf_writepage,
    	.writepages	= udf_writepages,
    	.write_begin	= udf_write_begin,
    	.write_end	= generic_write_end,
    	.direct_IO	= udf_direct_IO,
    	.bmap		= udf_bmap,
    };
    
    /*
     * Expand file stored in ICB to a normal one-block-file
     *
     * This function requires i_data_sem for writing and releases it.
     * This function requires i_mutex held
     */
    int udf_expand_file_adinicb(struct inode *inode)
    {
    	struct page *page;
    	char *kaddr;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	int err;
    	struct writeback_control udf_wbc = {
    		.sync_mode = WB_SYNC_NONE,
    		.nr_to_write = 1,
    	};
    
    	WARN_ON_ONCE(!inode_is_locked(inode));
    	if (!iinfo->i_lenAlloc) {
    		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
    			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
    		else
    			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
    		/* from now on we have normal address_space methods */
    		inode->i_data.a_ops = &udf_aops;
    		up_write(&iinfo->i_data_sem);
    		mark_inode_dirty(inode);
    		return 0;
    	}
    	/*
    	 * Release i_data_sem so that we can lock a page - page lock ranks
    	 * above i_data_sem. i_mutex still protects us against file changes.
    	 */
    	up_write(&iinfo->i_data_sem);
    
    	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
    	if (!page)
    		return -ENOMEM;
    
    	if (!PageUptodate(page)) {
    		kaddr = kmap_atomic(page);
    		memset(kaddr + iinfo->i_lenAlloc, 0x00,
    		       PAGE_SIZE - iinfo->i_lenAlloc);
    		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
    			iinfo->i_lenAlloc);
    		flush_dcache_page(page);
    		SetPageUptodate(page);
    		kunmap_atomic(kaddr);
    	}
    	down_write(&iinfo->i_data_sem);
    	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
    	       iinfo->i_lenAlloc);
    	iinfo->i_lenAlloc = 0;
    	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
    		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
    	else
    		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
    	/* from now on we have normal address_space methods */
    	inode->i_data.a_ops = &udf_aops;
    	up_write(&iinfo->i_data_sem);
    	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
    	if (err) {
    		/* Restore everything back so that we don't lose data... */
    		lock_page(page);
    		down_write(&iinfo->i_data_sem);
    		kaddr = kmap_atomic(page);
    		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
    		       inode->i_size);
    		kunmap_atomic(kaddr);
    		unlock_page(page);
    		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
    		inode->i_data.a_ops = &udf_adinicb_aops;
    		up_write(&iinfo->i_data_sem);
    	}
    	put_page(page);
    	mark_inode_dirty(inode);
    
    	return err;
    }
    
    struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
    					   int *err)
    {
    	int newblock;
    	struct buffer_head *dbh = NULL;
    	struct kernel_lb_addr eloc;
    	uint8_t alloctype;
    	struct extent_position epos;
    
    	struct udf_fileident_bh sfibh, dfibh;
    	loff_t f_pos = udf_ext0_offset(inode);
    	int size = udf_ext0_offset(inode) + inode->i_size;
    	struct fileIdentDesc cfi, *sfi, *dfi;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
    		alloctype = ICBTAG_FLAG_AD_SHORT;
    	else
    		alloctype = ICBTAG_FLAG_AD_LONG;
    
    	if (!inode->i_size) {
    		iinfo->i_alloc_type = alloctype;
    		mark_inode_dirty(inode);
    		return NULL;
    	}
    
    	/* alloc block, and copy data to it */
    	*block = udf_new_block(inode->i_sb, inode,
    			       iinfo->i_location.partitionReferenceNum,
    			       iinfo->i_location.logicalBlockNum, err);
    	if (!(*block))
    		return NULL;
    	newblock = udf_get_pblock(inode->i_sb, *block,
    				  iinfo->i_location.partitionReferenceNum,
    				0);
    	if (!newblock)
    		return NULL;
    	dbh = udf_tgetblk(inode->i_sb, newblock);
    	if (!dbh)
    		return NULL;
    	lock_buffer(dbh);
    	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
    	set_buffer_uptodate(dbh);
    	unlock_buffer(dbh);
    	mark_buffer_dirty_inode(dbh, inode);
    
    	sfibh.soffset = sfibh.eoffset =
    			f_pos & (inode->i_sb->s_blocksize - 1);
    	sfibh.sbh = sfibh.ebh = NULL;
    	dfibh.soffset = dfibh.eoffset = 0;
    	dfibh.sbh = dfibh.ebh = dbh;
    	while (f_pos < size) {
    		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
    		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
    					 NULL, NULL, NULL);
    		if (!sfi) {
    			brelse(dbh);
    			return NULL;
    		}
    		iinfo->i_alloc_type = alloctype;
    		sfi->descTag.tagLocation = cpu_to_le32(*block);
    		dfibh.soffset = dfibh.eoffset;
    		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
    		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
    		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
    				 sfi->fileIdent +
    					le16_to_cpu(sfi->lengthOfImpUse))) {
    			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
    			brelse(dbh);
    			return NULL;
    		}
    	}
    	mark_buffer_dirty_inode(dbh, inode);
    
    	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
    		iinfo->i_lenAlloc);
    	iinfo->i_lenAlloc = 0;
    	eloc.logicalBlockNum = *block;
    	eloc.partitionReferenceNum =
    				iinfo->i_location.partitionReferenceNum;
    	iinfo->i_lenExtents = inode->i_size;
    	epos.bh = NULL;
    	epos.block = iinfo->i_location;
    	epos.offset = udf_file_entry_alloc_offset(inode);
    	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
    	/* UniqueID stuff */
    
    	brelse(epos.bh);
    	mark_inode_dirty(inode);
    	return dbh;
    }
    
    static int udf_get_block(struct inode *inode, sector_t block,
    			 struct buffer_head *bh_result, int create)
    {
    	int err, new;
    	sector_t phys = 0;
    	struct udf_inode_info *iinfo;
    
    	if (!create) {
    		phys = udf_block_map(inode, block);
    		if (phys)
    			map_bh(bh_result, inode->i_sb, phys);
    		return 0;
    	}
    
    	err = -EIO;
    	new = 0;
    	iinfo = UDF_I(inode);
    
    	down_write(&iinfo->i_data_sem);
    	if (block == iinfo->i_next_alloc_block + 1) {
    		iinfo->i_next_alloc_block++;
    		iinfo->i_next_alloc_goal++;
    	}
    
    	udf_clear_extent_cache(inode);
    	phys = inode_getblk(inode, block, &err, &new);
    	if (!phys)
    		goto abort;
    
    	if (new)
    		set_buffer_new(bh_result);
    	map_bh(bh_result, inode->i_sb, phys);
    
    abort:
    	up_write(&iinfo->i_data_sem);
    	return err;
    }
    
    static struct buffer_head *udf_getblk(struct inode *inode, long block,
    				      int create, int *err)
    {
    	struct buffer_head *bh;
    	struct buffer_head dummy;
    
    	dummy.b_state = 0;
    	dummy.b_blocknr = -1000;
    	*err = udf_get_block(inode, block, &dummy, create);
    	if (!*err && buffer_mapped(&dummy)) {
    		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
    		if (buffer_new(&dummy)) {
    			lock_buffer(bh);
    			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
    			set_buffer_uptodate(bh);
    			unlock_buffer(bh);
    			mark_buffer_dirty_inode(bh, inode);
    		}
    		return bh;
    	}
    
    	return NULL;
    }
    
    /* Extend the file by 'blocks' blocks, return the number of extents added */
    static int udf_do_extend_file(struct inode *inode,
    			      struct extent_position *last_pos,
    			      struct kernel_long_ad *last_ext,
    			      sector_t blocks)
    {
    	sector_t add;
    	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
    	struct super_block *sb = inode->i_sb;
    	struct kernel_lb_addr prealloc_loc = {};
    	int prealloc_len = 0;
    	struct udf_inode_info *iinfo;
    	int err;
    
    	/* The previous extent is fake and we should not extend by anything
    	 * - there's nothing to do... */
    	if (!blocks && fake)
    		return 0;
    
    	iinfo = UDF_I(inode);
    	/* Round the last extent up to a multiple of block size */
    	if (last_ext->extLength & (sb->s_blocksize - 1)) {
    		last_ext->extLength =
    			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
    			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
    			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
    		iinfo->i_lenExtents =
    			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
    			~(sb->s_blocksize - 1);
    	}
    
    	/* Last extent are just preallocated blocks? */
    	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
    						EXT_NOT_RECORDED_ALLOCATED) {
    		/* Save the extent so that we can reattach it to the end */
    		prealloc_loc = last_ext->extLocation;
    		prealloc_len = last_ext->extLength;
    		/* Mark the extent as a hole */
    		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
    			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
    		last_ext->extLocation.logicalBlockNum = 0;
    		last_ext->extLocation.partitionReferenceNum = 0;
    	}
    
    	/* Can we merge with the previous extent? */
    	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
    					EXT_NOT_RECORDED_NOT_ALLOCATED) {
    		add = ((1 << 30) - sb->s_blocksize -
    			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
    			sb->s_blocksize_bits;
    		if (add > blocks)
    			add = blocks;
    		blocks -= add;
    		last_ext->extLength += add << sb->s_blocksize_bits;
    	}
    
    	if (fake) {
    		udf_add_aext(inode, last_pos, &last_ext->extLocation,
    			     last_ext->extLength, 1);
    		count++;
    	} else {
    		struct kernel_lb_addr tmploc;
    		uint32_t tmplen;
    
    		udf_write_aext(inode, last_pos, &last_ext->extLocation,
    				last_ext->extLength, 1);
    		/*
    		 * We've rewritten the last extent but there may be empty
    		 * indirect extent after it - enter it.
    		 */
    		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
    	}
    
    	/* Managed to do everything necessary? */
    	if (!blocks)
    		goto out;
    
    	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
    	last_ext->extLocation.logicalBlockNum = 0;
    	last_ext->extLocation.partitionReferenceNum = 0;
    	add = (1 << (30-sb->s_blocksize_bits)) - 1;
    	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
    				(add << sb->s_blocksize_bits);
    
    	/* Create enough extents to cover the whole hole */
    	while (blocks > add) {
    		blocks -= add;
    		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
    				   last_ext->extLength, 1);
    		if (err)
    			return err;
    		count++;
    	}
    	if (blocks) {
    		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
    			(blocks << sb->s_blocksize_bits);
    		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
    				   last_ext->extLength, 1);
    		if (err)
    			return err;
    		count++;
    	}
    
    out:
    	/* Do we have some preallocated blocks saved? */
    	if (prealloc_len) {
    		err = udf_add_aext(inode, last_pos, &prealloc_loc,
    				   prealloc_len, 1);
    		if (err)
    			return err;
    		last_ext->extLocation = prealloc_loc;
    		last_ext->extLength = prealloc_len;
    		count++;
    	}
    
    	/* last_pos should point to the last written extent... */
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		last_pos->offset -= sizeof(struct short_ad);
    	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		last_pos->offset -= sizeof(struct long_ad);
    	else
    		return -EIO;
    
    	return count;
    }
    
    static int udf_extend_file(struct inode *inode, loff_t newsize)
    {
    
    	struct extent_position epos;
    	struct kernel_lb_addr eloc;
    	uint32_t elen;
    	int8_t etype;
    	struct super_block *sb = inode->i_sb;
    	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
    	int adsize;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	struct kernel_long_ad extent;
    	int err;
    
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		adsize = sizeof(struct short_ad);
    	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		adsize = sizeof(struct long_ad);
    	else
    		BUG();
    
    	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
    
    	/* File has extent covering the new size (could happen when extending
    	 * inside a block)? */
    	if (etype != -1)
    		return 0;
    	if (newsize & (sb->s_blocksize - 1))
    		offset++;
    	/* Extended file just to the boundary of the last file block? */
    	if (offset == 0)
    		return 0;
    
    	/* Truncate is extending the file by 'offset' blocks */
    	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
    	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
    		/* File has no extents at all or has empty last
    		 * indirect extent! Create a fake extent... */
    		extent.extLocation.logicalBlockNum = 0;
    		extent.extLocation.partitionReferenceNum = 0;
    		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
    	} else {
    		epos.offset -= adsize;
    		etype = udf_next_aext(inode, &epos, &extent.extLocation,
    				      &extent.extLength, 0);
    		extent.extLength |= etype << 30;
    	}
    	err = udf_do_extend_file(inode, &epos, &extent, offset);
    	if (err < 0)
    		goto out;
    	err = 0;
    	iinfo->i_lenExtents = newsize;
    out:
    	brelse(epos.bh);
    	return err;
    }
    
    static sector_t inode_getblk(struct inode *inode, sector_t block,
    			     int *err, int *new)
    {
    	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
    	struct extent_position prev_epos, cur_epos, next_epos;
    	int count = 0, startnum = 0, endnum = 0;
    	uint32_t elen = 0, tmpelen;
    	struct kernel_lb_addr eloc, tmpeloc;
    	int c = 1;
    	loff_t lbcount = 0, b_off = 0;
    	uint32_t newblocknum, newblock;
    	sector_t offset = 0;
    	int8_t etype;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
    	int lastblock = 0;
    	bool isBeyondEOF;
    
    	*err = 0;
    	*new = 0;
    	prev_epos.offset = udf_file_entry_alloc_offset(inode);
    	prev_epos.block = iinfo->i_location;
    	prev_epos.bh = NULL;
    	cur_epos = next_epos = prev_epos;
    	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
    
    	/* find the extent which contains the block we are looking for.
    	   alternate between laarr[0] and laarr[1] for locations of the
    	   current extent, and the previous extent */
    	do {
    		if (prev_epos.bh != cur_epos.bh) {
    			brelse(prev_epos.bh);
    			get_bh(cur_epos.bh);
    			prev_epos.bh = cur_epos.bh;
    		}
    		if (cur_epos.bh != next_epos.bh) {
    			brelse(cur_epos.bh);
    			get_bh(next_epos.bh);
    			cur_epos.bh = next_epos.bh;
    		}
    
    		lbcount += elen;
    
    		prev_epos.block = cur_epos.block;
    		cur_epos.block = next_epos.block;
    
    		prev_epos.offset = cur_epos.offset;
    		cur_epos.offset = next_epos.offset;
    
    		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
    		if (etype == -1)
    			break;
    
    		c = !c;
    
    		laarr[c].extLength = (etype << 30) | elen;
    		laarr[c].extLocation = eloc;
    
    		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
    			pgoal = eloc.logicalBlockNum +
    				((elen + inode->i_sb->s_blocksize - 1) >>
    				 inode->i_sb->s_blocksize_bits);
    
    		count++;
    	} while (lbcount + elen <= b_off);
    
    	b_off -= lbcount;
    	offset = b_off >> inode->i_sb->s_blocksize_bits;
    	/*
    	 * Move prev_epos and cur_epos into indirect extent if we are at
    	 * the pointer to it
    	 */
    	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
    	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
    
    	/* if the extent is allocated and recorded, return the block
    	   if the extent is not a multiple of the blocksize, round up */
    
    	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
    		if (elen & (inode->i_sb->s_blocksize - 1)) {
    			elen = EXT_RECORDED_ALLOCATED |
    				((elen + inode->i_sb->s_blocksize - 1) &
    				 ~(inode->i_sb->s_blocksize - 1));
    			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
    		}
    		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
    		goto out_free;
    	}
    
    	/* Are we beyond EOF? */
    	if (etype == -1) {
    		int ret;
    		isBeyondEOF = true;
    		if (count) {
    			if (c)
    				laarr[0] = laarr[1];
    			startnum = 1;
    		} else {
    			/* Create a fake extent when there's not one */
    			memset(&laarr[0].extLocation, 0x00,
    				sizeof(struct kernel_lb_addr));
    			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
    			/* Will udf_do_extend_file() create real extent from
    			   a fake one? */
    			startnum = (offset > 0);
    		}
    		/* Create extents for the hole between EOF and offset */
    		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
    		if (ret < 0) {
    			*err = ret;
    			newblock = 0;
    			goto out_free;
    		}
    		c = 0;
    		offset = 0;
    		count += ret;
    		/* We are not covered by a preallocated extent? */
    		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
    						EXT_NOT_RECORDED_ALLOCATED) {
    			/* Is there any real extent? - otherwise we overwrite
    			 * the fake one... */
    			if (count)
    				c = !c;
    			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
    				inode->i_sb->s_blocksize;
    			memset(&laarr[c].extLocation, 0x00,
    				sizeof(struct kernel_lb_addr));
    			count++;
    		}
    		endnum = c + 1;
    		lastblock = 1;
    	} else {
    		isBeyondEOF = false;
    		endnum = startnum = ((count > 2) ? 2 : count);
    
    		/* if the current extent is in position 0,
    		   swap it with the previous */
    		if (!c && count != 1) {
    			laarr[2] = laarr[0];
    			laarr[0] = laarr[1];
    			laarr[1] = laarr[2];
    			c = 1;
    		}
    
    		/* if the current block is located in an extent,
    		   read the next extent */
    		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
    		if (etype != -1) {
    			laarr[c + 1].extLength = (etype << 30) | elen;
    			laarr[c + 1].extLocation = eloc;
    			count++;
    			startnum++;
    			endnum++;
    		} else
    			lastblock = 1;
    	}
    
    	/* if the current extent is not recorded but allocated, get the
    	 * block in the extent corresponding to the requested block */
    	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
    		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
    	else { /* otherwise, allocate a new block */
    		if (iinfo->i_next_alloc_block == block)
    			goal = iinfo->i_next_alloc_goal;
    
    		if (!goal) {
    			if (!(goal = pgoal)) /* XXX: what was intended here? */
    				goal = iinfo->i_location.logicalBlockNum + 1;
    		}
    
    		newblocknum = udf_new_block(inode->i_sb, inode,
    				iinfo->i_location.partitionReferenceNum,
    				goal, err);
    		if (!newblocknum) {
    			*err = -ENOSPC;
    			newblock = 0;
    			goto out_free;
    		}
    		if (isBeyondEOF)
    			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
    	}
    
    	/* if the extent the requsted block is located in contains multiple
    	 * blocks, split the extent into at most three extents. blocks prior
    	 * to requested block, requested block, and blocks after requested
    	 * block */
    	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
    
    	/* We preallocate blocks only for regular files. It also makes sense
    	 * for directories but there's a problem when to drop the
    	 * preallocation. We might use some delayed work for that but I feel
    	 * it's overengineering for a filesystem like UDF. */
    	if (S_ISREG(inode->i_mode))
    		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
    
    	/* merge any continuous blocks in laarr */
    	udf_merge_extents(inode, laarr, &endnum);
    
    	/* write back the new extents, inserting new extents if the new number
    	 * of extents is greater than the old number, and deleting extents if
    	 * the new number of extents is less than the old number */
    	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
    
    	newblock = udf_get_pblock(inode->i_sb, newblocknum,
    				iinfo->i_location.partitionReferenceNum, 0);
    	if (!newblock) {
    		*err = -EIO;
    		goto out_free;
    	}
    	*new = 1;
    	iinfo->i_next_alloc_block = block;
    	iinfo->i_next_alloc_goal = newblocknum;
    	inode->i_ctime = current_time(inode);
    
    	if (IS_SYNC(inode))
    		udf_sync_inode(inode);
    	else
    		mark_inode_dirty(inode);
    out_free:
    	brelse(prev_epos.bh);
    	brelse(cur_epos.bh);
    	brelse(next_epos.bh);
    	return newblock;
    }
    
    static void udf_split_extents(struct inode *inode, int *c, int offset,
    			      int newblocknum, struct kernel_long_ad *laarr,
    			      int *endnum)
    {
    	unsigned long blocksize = inode->i_sb->s_blocksize;
    	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
    
    	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
    	    (laarr[*c].extLength >> 30) ==
    				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
    		int curr = *c;
    		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
    			    blocksize - 1) >> blocksize_bits;
    		int8_t etype = (laarr[curr].extLength >> 30);
    
    		if (blen == 1)
    			;
    		else if (!offset || blen == offset + 1) {
    			laarr[curr + 2] = laarr[curr + 1];
    			laarr[curr + 1] = laarr[curr];
    		} else {
    			laarr[curr + 3] = laarr[curr + 1];
    			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
    		}
    
    		if (offset) {
    			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
    				udf_free_blocks(inode->i_sb, inode,
    						&laarr[curr].extLocation,
    						0, offset);
    				laarr[curr].extLength =
    					EXT_NOT_RECORDED_NOT_ALLOCATED |
    					(offset << blocksize_bits);
    				laarr[curr].extLocation.logicalBlockNum = 0;
    				laarr[curr].extLocation.
    						partitionReferenceNum = 0;
    			} else
    				laarr[curr].extLength = (etype << 30) |
    					(offset << blocksize_bits);
    			curr++;
    			(*c)++;
    			(*endnum)++;
    		}
    
    		laarr[curr].extLocation.logicalBlockNum = newblocknum;
    		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
    			laarr[curr].extLocation.partitionReferenceNum =
    				UDF_I(inode)->i_location.partitionReferenceNum;
    		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
    			blocksize;
    		curr++;
    
    		if (blen != offset + 1) {
    			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
    				laarr[curr].extLocation.logicalBlockNum +=
    								offset + 1;
    			laarr[curr].extLength = (etype << 30) |
    				((blen - (offset + 1)) << blocksize_bits);
    			curr++;
    			(*endnum)++;
    		}
    	}
    }
    
    static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
    				 struct kernel_long_ad *laarr,
    				 int *endnum)
    {
    	int start, length = 0, currlength = 0, i;
    
    	if (*endnum >= (c + 1)) {
    		if (!lastblock)
    			return;
    		else
    			start = c;
    	} else {
    		if ((laarr[c + 1].extLength >> 30) ==
    					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
    			start = c + 1;
    			length = currlength =
    				(((laarr[c + 1].extLength &
    					UDF_EXTENT_LENGTH_MASK) +
    				inode->i_sb->s_blocksize - 1) >>
    				inode->i_sb->s_blocksize_bits);
    		} else
    			start = c;
    	}
    
    	for (i = start + 1; i <= *endnum; i++) {
    		if (i == *endnum) {
    			if (lastblock)
    				length += UDF_DEFAULT_PREALLOC_BLOCKS;
    		} else if ((laarr[i].extLength >> 30) ==
    				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
    			length += (((laarr[i].extLength &
    						UDF_EXTENT_LENGTH_MASK) +
    				    inode->i_sb->s_blocksize - 1) >>
    				    inode->i_sb->s_blocksize_bits);
    		} else
    			break;
    	}
    
    	if (length) {
    		int next = laarr[start].extLocation.logicalBlockNum +
    			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
    			  inode->i_sb->s_blocksize - 1) >>
    			  inode->i_sb->s_blocksize_bits);
    		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
    				laarr[start].extLocation.partitionReferenceNum,
    				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
    				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
    				currlength);
    		if (numalloc) 	{
    			if (start == (c + 1))
    				laarr[start].extLength +=
    					(numalloc <<
    					 inode->i_sb->s_blocksize_bits);
    			else {
    				memmove(&laarr[c + 2], &laarr[c + 1],
    					sizeof(struct long_ad) * (*endnum - (c + 1)));
    				(*endnum)++;
    				laarr[c + 1].extLocation.logicalBlockNum = next;
    				laarr[c + 1].extLocation.partitionReferenceNum =
    					laarr[c].extLocation.
    							partitionReferenceNum;
    				laarr[c + 1].extLength =
    					EXT_NOT_RECORDED_ALLOCATED |
    					(numalloc <<
    					 inode->i_sb->s_blocksize_bits);
    				start = c + 1;
    			}
    
    			for (i = start + 1; numalloc && i < *endnum; i++) {
    				int elen = ((laarr[i].extLength &
    						UDF_EXTENT_LENGTH_MASK) +
    					    inode->i_sb->s_blocksize - 1) >>
    					    inode->i_sb->s_blocksize_bits;
    
    				if (elen > numalloc) {
    					laarr[i].extLength -=
    						(numalloc <<
    						 inode->i_sb->s_blocksize_bits);
    					numalloc = 0;
    				} else {
    					numalloc -= elen;
    					if (*endnum > (i + 1))
    						memmove(&laarr[i],
    							&laarr[i + 1],
    							sizeof(struct long_ad) *
    							(*endnum - (i + 1)));
    					i--;
    					(*endnum)--;
    				}
    			}
    			UDF_I(inode)->i_lenExtents +=
    				numalloc << inode->i_sb->s_blocksize_bits;
    		}
    	}
    }
    
    static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
    			      int *endnum)
    {
    	int i;
    	unsigned long blocksize = inode->i_sb->s_blocksize;
    	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
    
    	for (i = 0; i < (*endnum - 1); i++) {
    		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
    		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
    
    		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
    			(((li->extLength >> 30) ==
    				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
    			((lip1->extLocation.logicalBlockNum -
    			  li->extLocation.logicalBlockNum) ==
    			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
    			blocksize - 1) >> blocksize_bits)))) {
    
    			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
    				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
    				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
    				lip1->extLength = (lip1->extLength -
    						  (li->extLength &
    						   UDF_EXTENT_LENGTH_MASK) +
    						   UDF_EXTENT_LENGTH_MASK) &
    							~(blocksize - 1);
    				li->extLength = (li->extLength &
    						 UDF_EXTENT_FLAG_MASK) +
    						(UDF_EXTENT_LENGTH_MASK + 1) -
    						blocksize;
    				lip1->extLocation.logicalBlockNum =
    					li->extLocation.logicalBlockNum +
    					((li->extLength &
    						UDF_EXTENT_LENGTH_MASK) >>
    						blocksize_bits);
    			} else {
    				li->extLength = lip1->extLength +
    					(((li->extLength &
    						UDF_EXTENT_LENGTH_MASK) +
    					 blocksize - 1) & ~(blocksize - 1));
    				if (*endnum > (i + 2))
    					memmove(&laarr[i + 1], &laarr[i + 2],
    						sizeof(struct long_ad) *
    						(*endnum - (i + 2)));
    				i--;
    				(*endnum)--;
    			}
    		} else if (((li->extLength >> 30) ==
    				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
    			   ((lip1->extLength >> 30) ==
    				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
    			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
    					((li->extLength &
    					  UDF_EXTENT_LENGTH_MASK) +
    					 blocksize - 1) >> blocksize_bits);
    			li->extLocation.logicalBlockNum = 0;
    			li->extLocation.partitionReferenceNum = 0;
    
    			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
    			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
    			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
    				lip1->extLength = (lip1->extLength -
    						   (li->extLength &
    						   UDF_EXTENT_LENGTH_MASK) +
    						   UDF_EXTENT_LENGTH_MASK) &
    						   ~(blocksize - 1);
    				li->extLength = (li->extLength &
    						 UDF_EXTENT_FLAG_MASK) +
    						(UDF_EXTENT_LENGTH_MASK + 1) -
    						blocksize;
    			} else {
    				li->extLength = lip1->extLength +
    					(((li->extLength &
    						UDF_EXTENT_LENGTH_MASK) +
    					  blocksize - 1) & ~(blocksize - 1));
    				if (*endnum > (i + 2))
    					memmove(&laarr[i + 1], &laarr[i + 2],
    						sizeof(struct long_ad) *
    						(*endnum - (i + 2)));
    				i--;
    				(*endnum)--;
    			}
    		} else if ((li->extLength >> 30) ==
    					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
    			udf_free_blocks(inode->i_sb, inode,
    					&li->extLocation, 0,
    					((li->extLength &
    						UDF_EXTENT_LENGTH_MASK) +
    					 blocksize - 1) >> blocksize_bits);
    			li->extLocation.logicalBlockNum = 0;
    			li->extLocation.partitionReferenceNum = 0;
    			li->extLength = (li->extLength &
    						UDF_EXTENT_LENGTH_MASK) |
    						EXT_NOT_RECORDED_NOT_ALLOCATED;
    		}
    	}
    }
    
    static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
    			       int startnum, int endnum,
    			       struct extent_position *epos)
    {
    	int start = 0, i;
    	struct kernel_lb_addr tmploc;
    	uint32_t tmplen;
    
    	if (startnum > endnum) {
    		for (i = 0; i < (startnum - endnum); i++)
    			udf_delete_aext(inode, *epos, laarr[i].extLocation,
    					laarr[i].extLength);
    	} else if (startnum < endnum) {
    		for (i = 0; i < (endnum - startnum); i++) {
    			udf_insert_aext(inode, *epos, laarr[i].extLocation,
    					laarr[i].extLength);
    			udf_next_aext(inode, epos, &laarr[i].extLocation,
    				      &laarr[i].extLength, 1);
    			start++;
    		}
    	}
    
    	for (i = start; i < endnum; i++) {
    		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
    		udf_write_aext(inode, epos, &laarr[i].extLocation,
    			       laarr[i].extLength, 1);
    	}
    }
    
    struct buffer_head *udf_bread(struct inode *inode, int block,
    			      int create, int *err)
    {
    	struct buffer_head *bh = NULL;
    
    	bh = udf_getblk(inode, block, create, err);
    	if (!bh)
    		return NULL;
    
    	if (buffer_uptodate(bh))
    		return bh;
    
    	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    
    	wait_on_buffer(bh);
    	if (buffer_uptodate(bh))
    		return bh;
    
    	brelse(bh);
    	*err = -EIO;
    	return NULL;
    }
    
    int udf_setsize(struct inode *inode, loff_t newsize)
    {
    	int err;
    	struct udf_inode_info *iinfo;
    	int bsize = i_blocksize(inode);
    
    	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
    	      S_ISLNK(inode->i_mode)))
    		return -EINVAL;
    	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
    		return -EPERM;
    
    	iinfo = UDF_I(inode);
    	if (newsize > inode->i_size) {
    		down_write(&iinfo->i_data_sem);
    		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
    			if (bsize <
    			    (udf_file_entry_alloc_offset(inode) + newsize)) {
    				err = udf_expand_file_adinicb(inode);
    				if (err)
    					return err;
    				down_write(&iinfo->i_data_sem);
    			} else {
    				iinfo->i_lenAlloc = newsize;
    				goto set_size;
    			}
    		}
    		err = udf_extend_file(inode, newsize);
    		if (err) {
    			up_write(&iinfo->i_data_sem);
    			return err;
    		}
    set_size:
    		up_write(&iinfo->i_data_sem);
    		truncate_setsize(inode, newsize);
    	} else {
    		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
    			down_write(&iinfo->i_data_sem);
    			udf_clear_extent_cache(inode);
    			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
    			       0x00, bsize - newsize -
    			       udf_file_entry_alloc_offset(inode));
    			iinfo->i_lenAlloc = newsize;
    			truncate_setsize(inode, newsize);
    			up_write(&iinfo->i_data_sem);
    			goto update_time;
    		}
    		err = block_truncate_page(inode->i_mapping, newsize,
    					  udf_get_block);
    		if (err)
    			return err;
    		truncate_setsize(inode, newsize);
    		down_write(&iinfo->i_data_sem);
    		udf_clear_extent_cache(inode);
    		udf_truncate_extents(inode);
    		up_write(&iinfo->i_data_sem);
    	}
    update_time:
    	inode->i_mtime = inode->i_ctime = current_time(inode);
    	if (IS_SYNC(inode))
    		udf_sync_inode(inode);
    	else
    		mark_inode_dirty(inode);
    	return 0;
    }
    
    /*
     * Maximum length of linked list formed by ICB hierarchy. The chosen number is
     * arbitrary - just that we hopefully don't limit any real use of rewritten
     * inode on write-once media but avoid looping for too long on corrupted media.
     */
    #define UDF_MAX_ICB_NESTING 1024
    
    static int udf_read_inode(struct inode *inode, bool hidden_inode)
    {
    	struct buffer_head *bh = NULL;
    	struct fileEntry *fe;
    	struct extendedFileEntry *efe;
    	uint16_t ident;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
    	struct kernel_lb_addr *iloc = &iinfo->i_location;
    	unsigned int link_count;
    	unsigned int indirections = 0;
    	int bs = inode->i_sb->s_blocksize;
    	int ret = -EIO;
    
    reread:
    	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
    		udf_debug("partition reference: %d > logical volume partitions: %d\n",
    			  iloc->partitionReferenceNum, sbi->s_partitions);
    		return -EIO;
    	}
    
    	if (iloc->logicalBlockNum >=
    	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
    		udf_debug("block=%d, partition=%d out of range\n",
    			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
    		return -EIO;
    	}
    
    	/*
    	 * Set defaults, but the inode is still incomplete!
    	 * Note: get_new_inode() sets the following on a new inode:
    	 *      i_sb = sb
    	 *      i_no = ino
    	 *      i_flags = sb->s_flags
    	 *      i_state = 0
    	 * clean_inode(): zero fills and sets
    	 *      i_count = 1
    	 *      i_nlink = 1
    	 *      i_op = NULL;
    	 */
    	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
    	if (!bh) {
    		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
    		return -EIO;
    	}
    
    	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
    	    ident != TAG_IDENT_USE) {
    		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
    			inode->i_ino, ident);
    		goto out;
    	}
    
    	fe = (struct fileEntry *)bh->b_data;
    	efe = (struct extendedFileEntry *)bh->b_data;
    
    	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
    		struct buffer_head *ibh;
    
    		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
    		if (ident == TAG_IDENT_IE && ibh) {
    			struct kernel_lb_addr loc;
    			struct indirectEntry *ie;
    
    			ie = (struct indirectEntry *)ibh->b_data;
    			loc = lelb_to_cpu(ie->indirectICB.extLocation);
    
    			if (ie->indirectICB.extLength) {
    				brelse(ibh);
    				memcpy(&iinfo->i_location, &loc,
    				       sizeof(struct kernel_lb_addr));
    				if (++indirections > UDF_MAX_ICB_NESTING) {
    					udf_err(inode->i_sb,
    						"too many ICBs in ICB hierarchy"
    						" (max %d supported)\n",
    						UDF_MAX_ICB_NESTING);
    					goto out;
    				}
    				brelse(bh);
    				goto reread;
    			}
    		}
    		brelse(ibh);
    	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
    		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
    			le16_to_cpu(fe->icbTag.strategyType));
    		goto out;
    	}
    	if (fe->icbTag.strategyType == cpu_to_le16(4))
    		iinfo->i_strat4096 = 0;
    	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
    		iinfo->i_strat4096 = 1;
    
    	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
    							ICBTAG_FLAG_AD_MASK;
    	iinfo->i_unique = 0;
    	iinfo->i_lenEAttr = 0;
    	iinfo->i_lenExtents = 0;
    	iinfo->i_lenAlloc = 0;
    	iinfo->i_next_alloc_block = 0;
    	iinfo->i_next_alloc_goal = 0;
    	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
    		iinfo->i_efe = 1;
    		iinfo->i_use = 0;
    		ret = udf_alloc_i_data(inode, bs -
    					sizeof(struct extendedFileEntry));
    		if (ret)
    			goto out;
    		memcpy(iinfo->i_ext.i_data,
    		       bh->b_data + sizeof(struct extendedFileEntry),
    		       bs - sizeof(struct extendedFileEntry));
    	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
    		iinfo->i_efe = 0;
    		iinfo->i_use = 0;
    		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
    		if (ret)
    			goto out;
    		memcpy(iinfo->i_ext.i_data,
    		       bh->b_data + sizeof(struct fileEntry),
    		       bs - sizeof(struct fileEntry));
    	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
    		iinfo->i_efe = 0;
    		iinfo->i_use = 1;
    		iinfo->i_lenAlloc = le32_to_cpu(
    				((struct unallocSpaceEntry *)bh->b_data)->
    				 lengthAllocDescs);
    		ret = udf_alloc_i_data(inode, bs -
    					sizeof(struct unallocSpaceEntry));
    		if (ret)
    			goto out;
    		memcpy(iinfo->i_ext.i_data,
    		       bh->b_data + sizeof(struct unallocSpaceEntry),
    		       bs - sizeof(struct unallocSpaceEntry));
    		return 0;
    	}
    
    	ret = -EIO;
    	read_lock(&sbi->s_cred_lock);
    	i_uid_write(inode, le32_to_cpu(fe->uid));
    	if (!uid_valid(inode->i_uid) ||
    	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
    	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
    		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
    
    	i_gid_write(inode, le32_to_cpu(fe->gid));
    	if (!gid_valid(inode->i_gid) ||
    	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
    	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
    		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
    
    	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
    			sbi->s_fmode != UDF_INVALID_MODE)
    		inode->i_mode = sbi->s_fmode;
    	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
    			sbi->s_dmode != UDF_INVALID_MODE)
    		inode->i_mode = sbi->s_dmode;
    	else
    		inode->i_mode = udf_convert_permissions(fe);
    	inode->i_mode &= ~sbi->s_umask;
    	read_unlock(&sbi->s_cred_lock);
    
    	link_count = le16_to_cpu(fe->fileLinkCount);
    	if (!link_count) {
    		if (!hidden_inode) {
    			ret = -ESTALE;
    			goto out;
    		}
    		link_count = 1;
    	}
    	set_nlink(inode, link_count);
    
    	inode->i_size = le64_to_cpu(fe->informationLength);
    	iinfo->i_lenExtents = inode->i_size;
    
    	if (iinfo->i_efe == 0) {
    		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
    			(inode->i_sb->s_blocksize_bits - 9);
    
    		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
    			inode->i_atime = sbi->s_record_time;
    
    		if (!udf_disk_stamp_to_time(&inode->i_mtime,
    					    fe->modificationTime))
    			inode->i_mtime = sbi->s_record_time;
    
    		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
    			inode->i_ctime = sbi->s_record_time;
    
    		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
    		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
    		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
    		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
    	} else {
    		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
    		    (inode->i_sb->s_blocksize_bits - 9);
    
    		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
    			inode->i_atime = sbi->s_record_time;
    
    		if (!udf_disk_stamp_to_time(&inode->i_mtime,
    					    efe->modificationTime))
    			inode->i_mtime = sbi->s_record_time;
    
    		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
    			iinfo->i_crtime = sbi->s_record_time;
    
    		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
    			inode->i_ctime = sbi->s_record_time;
    
    		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
    		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
    		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
    		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
    	}
    	inode->i_generation = iinfo->i_unique;
    
    	/*
    	 * Sanity check length of allocation descriptors and extended attrs to
    	 * avoid integer overflows
    	 */
    	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
    		goto out;
    	/* Now do exact checks */
    	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
    		goto out;
    	/* Sanity checks for files in ICB so that we don't get confused later */
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
    		/*
    		 * For file in ICB data is stored in allocation descriptor
    		 * so sizes should match
    		 */
    		if (iinfo->i_lenAlloc != inode->i_size)
    			goto out;
    		/* File in ICB has to fit in there... */
    		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
    			goto out;
    	}
    
    	switch (fe->icbTag.fileType) {
    	case ICBTAG_FILE_TYPE_DIRECTORY:
    		inode->i_op = &udf_dir_inode_operations;
    		inode->i_fop = &udf_dir_operations;
    		inode->i_mode |= S_IFDIR;
    		inc_nlink(inode);
    		break;
    	case ICBTAG_FILE_TYPE_REALTIME:
    	case ICBTAG_FILE_TYPE_REGULAR:
    	case ICBTAG_FILE_TYPE_UNDEF:
    	case ICBTAG_FILE_TYPE_VAT20:
    		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
    			inode->i_data.a_ops = &udf_adinicb_aops;
    		else
    			inode->i_data.a_ops = &udf_aops;
    		inode->i_op = &udf_file_inode_operations;
    		inode->i_fop = &udf_file_operations;
    		inode->i_mode |= S_IFREG;
    		break;
    	case ICBTAG_FILE_TYPE_BLOCK:
    		inode->i_mode |= S_IFBLK;
    		break;
    	case ICBTAG_FILE_TYPE_CHAR:
    		inode->i_mode |= S_IFCHR;
    		break;
    	case ICBTAG_FILE_TYPE_FIFO:
    		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
    		break;
    	case ICBTAG_FILE_TYPE_SOCKET:
    		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
    		break;
    	case ICBTAG_FILE_TYPE_SYMLINK:
    		inode->i_data.a_ops = &udf_symlink_aops;
    		inode->i_op = &udf_symlink_inode_operations;
    		inode_nohighmem(inode);
    		inode->i_mode = S_IFLNK | 0777;
    		break;
    	case ICBTAG_FILE_TYPE_MAIN:
    		udf_debug("METADATA FILE-----\n");
    		break;
    	case ICBTAG_FILE_TYPE_MIRROR:
    		udf_debug("METADATA MIRROR FILE-----\n");
    		break;
    	case ICBTAG_FILE_TYPE_BITMAP:
    		udf_debug("METADATA BITMAP FILE-----\n");
    		break;
    	default:
    		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
    			inode->i_ino, fe->icbTag.fileType);
    		goto out;
    	}
    	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
    		struct deviceSpec *dsea =
    			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
    		if (dsea) {
    			init_special_inode(inode, inode->i_mode,
    				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
    				      le32_to_cpu(dsea->minorDeviceIdent)));
    			/* Developer ID ??? */
    		} else
    			goto out;
    	}
    	ret = 0;
    out:
    	brelse(bh);
    	return ret;
    }
    
    static int udf_alloc_i_data(struct inode *inode, size_t size)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
    
    	if (!iinfo->i_ext.i_data) {
    		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
    			inode->i_ino);
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    static umode_t udf_convert_permissions(struct fileEntry *fe)
    {
    	umode_t mode;
    	uint32_t permissions;
    	uint32_t flags;
    
    	permissions = le32_to_cpu(fe->permissions);
    	flags = le16_to_cpu(fe->icbTag.flags);
    
    	mode =	((permissions) & 0007) |
    		((permissions >> 2) & 0070) |
    		((permissions >> 4) & 0700) |
    		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
    		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
    		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
    
    	return mode;
    }
    
    int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
    {
    	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
    }
    
    static int udf_sync_inode(struct inode *inode)
    {
    	return udf_update_inode(inode, 1);
    }
    
    static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
    {
    	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
    	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
    	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
    		iinfo->i_crtime = time;
    }
    
    static int udf_update_inode(struct inode *inode, int do_sync)
    {
    	struct buffer_head *bh = NULL;
    	struct fileEntry *fe;
    	struct extendedFileEntry *efe;
    	uint64_t lb_recorded;
    	uint32_t udfperms;
    	uint16_t icbflags;
    	uint16_t crclen;
    	int err = 0;
    	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
    	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	bh = udf_tgetblk(inode->i_sb,
    			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
    	if (!bh) {
    		udf_debug("getblk failure\n");
    		return -EIO;
    	}
    
    	lock_buffer(bh);
    	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
    	fe = (struct fileEntry *)bh->b_data;
    	efe = (struct extendedFileEntry *)bh->b_data;
    
    	if (iinfo->i_use) {
    		struct unallocSpaceEntry *use =
    			(struct unallocSpaceEntry *)bh->b_data;
    
    		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
    		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
    		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
    					sizeof(struct unallocSpaceEntry));
    		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
    		crclen = sizeof(struct unallocSpaceEntry);
    
    		goto finish;
    	}
    
    	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
    		fe->uid = cpu_to_le32(-1);
    	else
    		fe->uid = cpu_to_le32(i_uid_read(inode));
    
    	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
    		fe->gid = cpu_to_le32(-1);
    	else
    		fe->gid = cpu_to_le32(i_gid_read(inode));
    
    	udfperms = ((inode->i_mode & 0007)) |
    		   ((inode->i_mode & 0070) << 2) |
    		   ((inode->i_mode & 0700) << 4);
    
    	udfperms |= (le32_to_cpu(fe->permissions) &
    		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
    		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
    		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
    	fe->permissions = cpu_to_le32(udfperms);
    
    	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
    		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
    	else
    		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
    
    	fe->informationLength = cpu_to_le64(inode->i_size);
    
    	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
    		struct regid *eid;
    		struct deviceSpec *dsea =
    			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
    		if (!dsea) {
    			dsea = (struct deviceSpec *)
    				udf_add_extendedattr(inode,
    						     sizeof(struct deviceSpec) +
    						     sizeof(struct regid), 12, 0x3);
    			dsea->attrType = cpu_to_le32(12);
    			dsea->attrSubtype = 1;
    			dsea->attrLength = cpu_to_le32(
    						sizeof(struct deviceSpec) +
    						sizeof(struct regid));
    			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
    		}
    		eid = (struct regid *)dsea->impUse;
    		memset(eid, 0, sizeof(struct regid));
    		strcpy(eid->ident, UDF_ID_DEVELOPER);
    		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
    		eid->identSuffix[1] = UDF_OS_ID_LINUX;
    		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
    		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
    	}
    
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
    		lb_recorded = 0; /* No extents => no blocks! */
    	else
    		lb_recorded =
    			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
    			(blocksize_bits - 9);
    
    	if (iinfo->i_efe == 0) {
    		memcpy(bh->b_data + sizeof(struct fileEntry),
    		       iinfo->i_ext.i_data,
    		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
    		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
    
    		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
    		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
    		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
    		memset(&(fe->impIdent), 0, sizeof(struct regid));
    		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
    		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
    		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
    		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
    		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
    		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
    		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
    		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
    		crclen = sizeof(struct fileEntry);
    	} else {
    		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
    		       iinfo->i_ext.i_data,
    		       inode->i_sb->s_blocksize -
    					sizeof(struct extendedFileEntry));
    		efe->objectSize = cpu_to_le64(inode->i_size);
    		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
    
    		udf_adjust_time(iinfo, inode->i_atime);
    		udf_adjust_time(iinfo, inode->i_mtime);
    		udf_adjust_time(iinfo, inode->i_ctime);
    
    		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
    		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
    		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
    		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
    
    		memset(&(efe->impIdent), 0, sizeof(struct regid));
    		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
    		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
    		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
    		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
    		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
    		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
    		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
    		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
    		crclen = sizeof(struct extendedFileEntry);
    	}
    
    finish:
    	if (iinfo->i_strat4096) {
    		fe->icbTag.strategyType = cpu_to_le16(4096);
    		fe->icbTag.strategyParameter = cpu_to_le16(1);
    		fe->icbTag.numEntries = cpu_to_le16(2);
    	} else {
    		fe->icbTag.strategyType = cpu_to_le16(4);
    		fe->icbTag.numEntries = cpu_to_le16(1);
    	}
    
    	if (iinfo->i_use)
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
    	else if (S_ISDIR(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
    	else if (S_ISREG(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
    	else if (S_ISLNK(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
    	else if (S_ISBLK(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
    	else if (S_ISCHR(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
    	else if (S_ISFIFO(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
    	else if (S_ISSOCK(inode->i_mode))
    		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
    
    	icbflags =	iinfo->i_alloc_type |
    			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
    			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
    			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
    			(le16_to_cpu(fe->icbTag.flags) &
    				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
    				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
    
    	fe->icbTag.flags = cpu_to_le16(icbflags);
    	if (sbi->s_udfrev >= 0x0200)
    		fe->descTag.descVersion = cpu_to_le16(3);
    	else
    		fe->descTag.descVersion = cpu_to_le16(2);
    	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
    	fe->descTag.tagLocation = cpu_to_le32(
    					iinfo->i_location.logicalBlockNum);
    	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
    	fe->descTag.descCRCLength = cpu_to_le16(crclen);
    	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
    						  crclen));
    	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
    
    	set_buffer_uptodate(bh);
    	unlock_buffer(bh);
    
    	/* write the data blocks */
    	mark_buffer_dirty(bh);
    	if (do_sync) {
    		sync_dirty_buffer(bh);
    		if (buffer_write_io_error(bh)) {
    			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
    				 inode->i_ino);
    			err = -EIO;
    		}
    	}
    	brelse(bh);
    
    	return err;
    }
    
    struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
    			 bool hidden_inode)
    {
    	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
    	struct inode *inode = iget_locked(sb, block);
    	int err;
    
    	if (!inode)
    		return ERR_PTR(-ENOMEM);
    
    	if (!(inode->i_state & I_NEW))
    		return inode;
    
    	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
    	err = udf_read_inode(inode, hidden_inode);
    	if (err < 0) {
    		iget_failed(inode);
    		return ERR_PTR(err);
    	}
    	unlock_new_inode(inode);
    
    	return inode;
    }
    
    int udf_setup_indirect_aext(struct inode *inode, int block,
    			    struct extent_position *epos)
    {
    	struct super_block *sb = inode->i_sb;
    	struct buffer_head *bh;
    	struct allocExtDesc *aed;
    	struct extent_position nepos;
    	struct kernel_lb_addr neloc;
    	int ver, adsize;
    
    	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		adsize = sizeof(struct short_ad);
    	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		adsize = sizeof(struct long_ad);
    	else
    		return -EIO;
    
    	neloc.logicalBlockNum = block;
    	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
    
    	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
    	if (!bh)
    		return -EIO;
    	lock_buffer(bh);
    	memset(bh->b_data, 0x00, sb->s_blocksize);
    	set_buffer_uptodate(bh);
    	unlock_buffer(bh);
    	mark_buffer_dirty_inode(bh, inode);
    
    	aed = (struct allocExtDesc *)(bh->b_data);
    	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
    		aed->previousAllocExtLocation =
    				cpu_to_le32(epos->block.logicalBlockNum);
    	}
    	aed->lengthAllocDescs = cpu_to_le32(0);
    	if (UDF_SB(sb)->s_udfrev >= 0x0200)
    		ver = 3;
    	else
    		ver = 2;
    	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
    		    sizeof(struct tag));
    
    	nepos.block = neloc;
    	nepos.offset = sizeof(struct allocExtDesc);
    	nepos.bh = bh;
    
    	/*
    	 * Do we have to copy current last extent to make space for indirect
    	 * one?
    	 */
    	if (epos->offset + adsize > sb->s_blocksize) {
    		struct kernel_lb_addr cp_loc;
    		uint32_t cp_len;
    		int cp_type;
    
    		epos->offset -= adsize;
    		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
    		cp_len |= ((uint32_t)cp_type) << 30;
    
    		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
    		udf_write_aext(inode, epos, &nepos.block,
    			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
    	} else {
    		__udf_add_aext(inode, epos, &nepos.block,
    			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
    	}
    
    	brelse(epos->bh);
    	*epos = nepos;
    
    	return 0;
    }
    
    /*
     * Append extent at the given position - should be the first free one in inode
     * / indirect extent. This function assumes there is enough space in the inode
     * or indirect extent. Use udf_add_aext() if you didn't check for this before.
     */
    int __udf_add_aext(struct inode *inode, struct extent_position *epos,
    		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
    {
    	struct udf_inode_info *iinfo = UDF_I(inode);
    	struct allocExtDesc *aed;
    	int adsize;
    
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		adsize = sizeof(struct short_ad);
    	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		adsize = sizeof(struct long_ad);
    	else
    		return -EIO;
    
    	if (!epos->bh) {
    		WARN_ON(iinfo->i_lenAlloc !=
    			epos->offset - udf_file_entry_alloc_offset(inode));
    	} else {
    		aed = (struct allocExtDesc *)epos->bh->b_data;
    		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
    			epos->offset - sizeof(struct allocExtDesc));
    		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
    	}
    
    	udf_write_aext(inode, epos, eloc, elen, inc);
    
    	if (!epos->bh) {
    		iinfo->i_lenAlloc += adsize;
    		mark_inode_dirty(inode);
    	} else {
    		aed = (struct allocExtDesc *)epos->bh->b_data;
    		le32_add_cpu(&aed->lengthAllocDescs, adsize);
    		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
    				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
    			udf_update_tag(epos->bh->b_data,
    					epos->offset + (inc ? 0 : adsize));
    		else
    			udf_update_tag(epos->bh->b_data,
    					sizeof(struct allocExtDesc));
    		mark_buffer_dirty_inode(epos->bh, inode);
    	}
    
    	return 0;
    }
    
    /*
     * Append extent at given position - should be the first free one in inode
     * / indirect extent. Takes care of allocating and linking indirect blocks.
     */
    int udf_add_aext(struct inode *inode, struct extent_position *epos,
    		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
    {
    	int adsize;
    	struct super_block *sb = inode->i_sb;
    
    	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		adsize = sizeof(struct short_ad);
    	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		adsize = sizeof(struct long_ad);
    	else
    		return -EIO;
    
    	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
    		int err;
    		int new_block;
    
    		new_block = udf_new_block(sb, NULL,
    					  epos->block.partitionReferenceNum,
    					  epos->block.logicalBlockNum, &err);
    		if (!new_block)
    			return -ENOSPC;
    
    		err = udf_setup_indirect_aext(inode, new_block, epos);
    		if (err)
    			return err;
    	}
    
    	return __udf_add_aext(inode, epos, eloc, elen, inc);
    }
    
    void udf_write_aext(struct inode *inode, struct extent_position *epos,
    		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
    {
    	int adsize;
    	uint8_t *ptr;
    	struct short_ad *sad;
    	struct long_ad *lad;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	if (!epos->bh)
    		ptr = iinfo->i_ext.i_data + epos->offset -
    			udf_file_entry_alloc_offset(inode) +
    			iinfo->i_lenEAttr;
    	else
    		ptr = epos->bh->b_data + epos->offset;
    
    	switch (iinfo->i_alloc_type) {
    	case ICBTAG_FLAG_AD_SHORT:
    		sad = (struct short_ad *)ptr;
    		sad->extLength = cpu_to_le32(elen);
    		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
    		adsize = sizeof(struct short_ad);
    		break;
    	case ICBTAG_FLAG_AD_LONG:
    		lad = (struct long_ad *)ptr;
    		lad->extLength = cpu_to_le32(elen);
    		lad->extLocation = cpu_to_lelb(*eloc);
    		memset(lad->impUse, 0x00, sizeof(lad->impUse));
    		adsize = sizeof(struct long_ad);
    		break;
    	default:
    		return;
    	}
    
    	if (epos->bh) {
    		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
    		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
    			struct allocExtDesc *aed =
    				(struct allocExtDesc *)epos->bh->b_data;
    			udf_update_tag(epos->bh->b_data,
    				       le32_to_cpu(aed->lengthAllocDescs) +
    				       sizeof(struct allocExtDesc));
    		}
    		mark_buffer_dirty_inode(epos->bh, inode);
    	} else {
    		mark_inode_dirty(inode);
    	}
    
    	if (inc)
    		epos->offset += adsize;
    }
    
    /*
     * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
     * someone does some weird stuff.
     */
    #define UDF_MAX_INDIR_EXTS 16
    
    int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
    		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
    {
    	int8_t etype;
    	unsigned int indirections = 0;
    
    	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
    	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
    		int block;
    
    		if (++indirections > UDF_MAX_INDIR_EXTS) {
    			udf_err(inode->i_sb,
    				"too many indirect extents in inode %lu\n",
    				inode->i_ino);
    			return -1;
    		}
    
    		epos->block = *eloc;
    		epos->offset = sizeof(struct allocExtDesc);
    		brelse(epos->bh);
    		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
    		epos->bh = udf_tread(inode->i_sb, block);
    		if (!epos->bh) {
    			udf_debug("reading block %d failed!\n", block);
    			return -1;
    		}
    	}
    
    	return etype;
    }
    
    int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
    			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
    {
    	int alen;
    	int8_t etype;
    	uint8_t *ptr;
    	struct short_ad *sad;
    	struct long_ad *lad;
    	struct udf_inode_info *iinfo = UDF_I(inode);
    
    	if (!epos->bh) {
    		if (!epos->offset)
    			epos->offset = udf_file_entry_alloc_offset(inode);
    		ptr = iinfo->i_ext.i_data + epos->offset -
    			udf_file_entry_alloc_offset(inode) +
    			iinfo->i_lenEAttr;
    		alen = udf_file_entry_alloc_offset(inode) +
    							iinfo->i_lenAlloc;
    	} else {
    		if (!epos->offset)
    			epos->offset = sizeof(struct allocExtDesc);
    		ptr = epos->bh->b_data + epos->offset;
    		alen = sizeof(struct allocExtDesc) +
    			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
    							lengthAllocDescs);
    	}
    
    	switch (iinfo->i_alloc_type) {
    	case ICBTAG_FLAG_AD_SHORT:
    		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
    		if (!sad)
    			return -1;
    		etype = le32_to_cpu(sad->extLength) >> 30;
    		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
    		eloc->partitionReferenceNum =
    				iinfo->i_location.partitionReferenceNum;
    		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
    		break;
    	case ICBTAG_FLAG_AD_LONG:
    		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
    		if (!lad)
    			return -1;
    		etype = le32_to_cpu(lad->extLength) >> 30;
    		*eloc = lelb_to_cpu(lad->extLocation);
    		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
    		break;
    	default:
    		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
    		return -1;
    	}
    
    	return etype;
    }
    
    static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
    			      struct kernel_lb_addr neloc, uint32_t nelen)
    {
    	struct kernel_lb_addr oeloc;
    	uint32_t oelen;
    	int8_t etype;
    
    	if (epos.bh)
    		get_bh(epos.bh);
    
    	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
    		udf_write_aext(inode, &epos, &neloc, nelen, 1);
    		neloc = oeloc;
    		nelen = (etype << 30) | oelen;
    	}
    	udf_add_aext(inode, &epos, &neloc, nelen, 1);
    	brelse(epos.bh);
    
    	return (nelen >> 30);
    }
    
    int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
    		       struct kernel_lb_addr eloc, uint32_t elen)
    {
    	struct extent_position oepos;
    	int adsize;
    	int8_t etype;
    	struct allocExtDesc *aed;
    	struct udf_inode_info *iinfo;
    
    	if (epos.bh) {
    		get_bh(epos.bh);
    		get_bh(epos.bh);
    	}
    
    	iinfo = UDF_I(inode);
    	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
    		adsize = sizeof(struct short_ad);
    	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
    		adsize = sizeof(struct long_ad);
    	else
    		adsize = 0;
    
    	oepos = epos;
    	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
    		return -1;
    
    	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
    		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
    		if (oepos.bh != epos.bh) {
    			oepos.block = epos.block;
    			brelse(oepos.bh);
    			get_bh(epos.bh);
    			oepos.bh = epos.bh;
    			oepos.offset = epos.offset - adsize;
    		}
    	}
    	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
    	elen = 0;
    
    	if (epos.bh != oepos.bh) {
    		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
    		udf_write_aext(inode, &oepos, &eloc, elen, 1);
    		udf_write_aext(inode, &oepos, &eloc, elen, 1);
    		if (!oepos.bh) {
    			iinfo->i_lenAlloc -= (adsize * 2);
    			mark_inode_dirty(inode);
    		} else {
    			aed = (struct allocExtDesc *)oepos.bh->b_data;
    			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
    			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
    			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
    				udf_update_tag(oepos.bh->b_data,
    						oepos.offset - (2 * adsize));
    			else
    				udf_update_tag(oepos.bh->b_data,
    						sizeof(struct allocExtDesc));
    			mark_buffer_dirty_inode(oepos.bh, inode);
    		}
    	} else {
    		udf_write_aext(inode, &oepos, &eloc, elen, 1);
    		if (!oepos.bh) {
    			iinfo->i_lenAlloc -= adsize;
    			mark_inode_dirty(inode);
    		} else {
    			aed = (struct allocExtDesc *)oepos.bh->b_data;
    			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
    			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
    			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
    				udf_update_tag(oepos.bh->b_data,
    						epos.offset - adsize);
    			else
    				udf_update_tag(oepos.bh->b_data,
    						sizeof(struct allocExtDesc));
    			mark_buffer_dirty_inode(oepos.bh, inode);
    		}
    	}
    
    	brelse(epos.bh);
    	brelse(oepos.bh);
    
    	return (elen >> 30);
    }
    
    int8_t inode_bmap(struct inode *inode, sector_t block,
    		  struct extent_position *pos, struct kernel_lb_addr *eloc,
    		  uint32_t *elen, sector_t *offset)
    {
    	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
    	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
    	int8_t etype;
    	struct udf_inode_info *iinfo;
    
    	iinfo = UDF_I(inode);
    	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
    		pos->offset = 0;
    		pos->block = iinfo->i_location;
    		pos->bh = NULL;
    	}
    	*elen = 0;
    	do {
    		etype = udf_next_aext(inode, pos, eloc, elen, 1);
    		if (etype == -1) {
    			*offset = (bcount - lbcount) >> blocksize_bits;
    			iinfo->i_lenExtents = lbcount;
    			return -1;
    		}
    		lbcount += *elen;
    	} while (lbcount <= bcount);
    	/* update extent cache */
    	udf_update_extent_cache(inode, lbcount - *elen, pos);
    	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
    
    	return etype;
    }
    
    long udf_block_map(struct inode *inode, sector_t block)
    {
    	struct kernel_lb_addr eloc;
    	uint32_t elen;
    	sector_t offset;
    	struct extent_position epos = {};
    	int ret;
    
    	down_read(&UDF_I(inode)->i_data_sem);
    
    	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
    						(EXT_RECORDED_ALLOCATED >> 30))
    		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
    	else
    		ret = 0;
    
    	up_read(&UDF_I(inode)->i_data_sem);
    	brelse(epos.bh);
    
    	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
    		return udf_fixed_to_variable(ret);
    	else
    		return ret;
    }