Skip to content
Snippets Groups Projects
Select Git revision
  • 926d93a33e59b2729afdbad357233c17184de9d2
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

vrf.c

Blame
  • vrf.c 31.15 KiB
    /*
     * vrf.c: device driver to encapsulate a VRF space
     *
     * Copyright (c) 2015 Cumulus Networks. All rights reserved.
     * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
     * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
     *
     * Based on dummy, team and ipvlan drivers
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/ip.h>
    #include <linux/init.h>
    #include <linux/moduleparam.h>
    #include <linux/netfilter.h>
    #include <linux/rtnetlink.h>
    #include <net/rtnetlink.h>
    #include <linux/u64_stats_sync.h>
    #include <linux/hashtable.h>
    
    #include <linux/inetdevice.h>
    #include <net/arp.h>
    #include <net/ip.h>
    #include <net/ip_fib.h>
    #include <net/ip6_fib.h>
    #include <net/ip6_route.h>
    #include <net/route.h>
    #include <net/addrconf.h>
    #include <net/l3mdev.h>
    #include <net/fib_rules.h>
    
    #define DRV_NAME	"vrf"
    #define DRV_VERSION	"1.0"
    
    #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
    static bool add_fib_rules = true;
    
    struct net_vrf {
    	struct rtable __rcu	*rth;
    	struct rtable __rcu	*rth_local;
    	struct rt6_info	__rcu	*rt6;
    	struct rt6_info	__rcu	*rt6_local;
    	u32                     tb_id;
    };
    
    struct pcpu_dstats {
    	u64			tx_pkts;
    	u64			tx_bytes;
    	u64			tx_drps;
    	u64			rx_pkts;
    	u64			rx_bytes;
    	u64			rx_drps;
    	struct u64_stats_sync	syncp;
    };
    
    static void vrf_rx_stats(struct net_device *dev, int len)
    {
    	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
    
    	u64_stats_update_begin(&dstats->syncp);
    	dstats->rx_pkts++;
    	dstats->rx_bytes += len;
    	u64_stats_update_end(&dstats->syncp);
    }
    
    static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
    {
    	vrf_dev->stats.tx_errors++;
    	kfree_skb(skb);
    }
    
    static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
    						 struct rtnl_link_stats64 *stats)
    {
    	int i;
    
    	for_each_possible_cpu(i) {
    		const struct pcpu_dstats *dstats;
    		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
    		unsigned int start;
    
    		dstats = per_cpu_ptr(dev->dstats, i);
    		do {
    			start = u64_stats_fetch_begin_irq(&dstats->syncp);
    			tbytes = dstats->tx_bytes;
    			tpkts = dstats->tx_pkts;
    			tdrops = dstats->tx_drps;
    			rbytes = dstats->rx_bytes;
    			rpkts = dstats->rx_pkts;
    		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
    		stats->tx_bytes += tbytes;
    		stats->tx_packets += tpkts;
    		stats->tx_dropped += tdrops;
    		stats->rx_bytes += rbytes;
    		stats->rx_packets += rpkts;
    	}
    	return stats;
    }
    
    /* Local traffic destined to local address. Reinsert the packet to rx
     * path, similar to loopback handling.
     */
    static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
    			  struct dst_entry *dst)
    {
    	int len = skb->len;
    
    	skb_orphan(skb);
    
    	skb_dst_set(skb, dst);
    	skb_dst_force(skb);
    
    	/* set pkt_type to avoid skb hitting packet taps twice -
    	 * once on Tx and again in Rx processing
    	 */
    	skb->pkt_type = PACKET_LOOPBACK;
    
    	skb->protocol = eth_type_trans(skb, dev);
    
    	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
    		vrf_rx_stats(dev, len);
    	else
    		this_cpu_inc(dev->dstats->rx_drps);
    
    	return NETDEV_TX_OK;
    }
    
    #if IS_ENABLED(CONFIG_IPV6)
    static int vrf_ip6_local_out(struct net *net, struct sock *sk,
    			     struct sk_buff *skb)
    {
    	int err;
    
    	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
    		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
    
    	if (likely(err == 1))
    		err = dst_output(net, sk, skb);
    
    	return err;
    }
    
    static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
    					   struct net_device *dev)
    {
    	const struct ipv6hdr *iph = ipv6_hdr(skb);
    	struct net *net = dev_net(skb->dev);
    	struct flowi6 fl6 = {
    		/* needed to match OIF rule */
    		.flowi6_oif = dev->ifindex,
    		.flowi6_iif = LOOPBACK_IFINDEX,
    		.daddr = iph->daddr,
    		.saddr = iph->saddr,
    		.flowlabel = ip6_flowinfo(iph),
    		.flowi6_mark = skb->mark,
    		.flowi6_proto = iph->nexthdr,
    		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
    	};
    	int ret = NET_XMIT_DROP;
    	struct dst_entry *dst;
    	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
    
    	dst = ip6_route_output(net, NULL, &fl6);
    	if (dst == dst_null)
    		goto err;
    
    	skb_dst_drop(skb);
    
    	/* if dst.dev is loopback or the VRF device again this is locally
    	 * originated traffic destined to a local address. Short circuit
    	 * to Rx path using our local dst
    	 */
    	if (dst->dev == net->loopback_dev || dst->dev == dev) {
    		struct net_vrf *vrf = netdev_priv(dev);
    		struct rt6_info *rt6_local;
    
    		/* release looked up dst and use cached local dst */
    		dst_release(dst);
    
    		rcu_read_lock();
    
    		rt6_local = rcu_dereference(vrf->rt6_local);
    		if (unlikely(!rt6_local)) {
    			rcu_read_unlock();
    			goto err;
    		}
    
    		/* Ordering issue: cached local dst is created on newlink
    		 * before the IPv6 initialization. Using the local dst
    		 * requires rt6i_idev to be set so make sure it is.
    		 */
    		if (unlikely(!rt6_local->rt6i_idev)) {
    			rt6_local->rt6i_idev = in6_dev_get(dev);
    			if (!rt6_local->rt6i_idev) {
    				rcu_read_unlock();
    				goto err;
    			}
    		}
    
    		dst = &rt6_local->dst;
    		dst_hold(dst);
    
    		rcu_read_unlock();
    
    		return vrf_local_xmit(skb, dev, &rt6_local->dst);
    	}
    
    	skb_dst_set(skb, dst);
    
    	/* strip the ethernet header added for pass through VRF device */
    	__skb_pull(skb, skb_network_offset(skb));
    
    	ret = vrf_ip6_local_out(net, skb->sk, skb);
    	if (unlikely(net_xmit_eval(ret)))
    		dev->stats.tx_errors++;
    	else
    		ret = NET_XMIT_SUCCESS;
    
    	return ret;
    err:
    	vrf_tx_error(dev, skb);
    	return NET_XMIT_DROP;
    }
    #else
    static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
    					   struct net_device *dev)
    {
    	vrf_tx_error(dev, skb);
    	return NET_XMIT_DROP;
    }
    #endif
    
    /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
    static int vrf_ip_local_out(struct net *net, struct sock *sk,
    			    struct sk_buff *skb)
    {
    	int err;
    
    	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
    		      skb, NULL, skb_dst(skb)->dev, dst_output);
    	if (likely(err == 1))
    		err = dst_output(net, sk, skb);
    
    	return err;
    }
    
    static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
    					   struct net_device *vrf_dev)
    {
    	struct iphdr *ip4h = ip_hdr(skb);
    	int ret = NET_XMIT_DROP;
    	struct flowi4 fl4 = {
    		/* needed to match OIF rule */
    		.flowi4_oif = vrf_dev->ifindex,
    		.flowi4_iif = LOOPBACK_IFINDEX,
    		.flowi4_tos = RT_TOS(ip4h->tos),
    		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
    		.daddr = ip4h->daddr,
    	};
    	struct net *net = dev_net(vrf_dev);
    	struct rtable *rt;
    
    	rt = ip_route_output_flow(net, &fl4, NULL);
    	if (IS_ERR(rt))
    		goto err;
    
    	skb_dst_drop(skb);
    
    	/* if dst.dev is loopback or the VRF device again this is locally
    	 * originated traffic destined to a local address. Short circuit
    	 * to Rx path using our local dst
    	 */
    	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
    		struct net_vrf *vrf = netdev_priv(vrf_dev);
    		struct rtable *rth_local;
    		struct dst_entry *dst = NULL;
    
    		ip_rt_put(rt);
    
    		rcu_read_lock();
    
    		rth_local = rcu_dereference(vrf->rth_local);
    		if (likely(rth_local)) {
    			dst = &rth_local->dst;
    			dst_hold(dst);
    		}
    
    		rcu_read_unlock();
    
    		if (unlikely(!dst))
    			goto err;
    
    		return vrf_local_xmit(skb, vrf_dev, dst);
    	}
    
    	skb_dst_set(skb, &rt->dst);
    
    	/* strip the ethernet header added for pass through VRF device */
    	__skb_pull(skb, skb_network_offset(skb));
    
    	if (!ip4h->saddr) {
    		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
    					       RT_SCOPE_LINK);
    	}
    
    	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
    	if (unlikely(net_xmit_eval(ret)))
    		vrf_dev->stats.tx_errors++;
    	else
    		ret = NET_XMIT_SUCCESS;
    
    out:
    	return ret;
    err:
    	vrf_tx_error(vrf_dev, skb);
    	goto out;
    }
    
    static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
    {
    	switch (skb->protocol) {
    	case htons(ETH_P_IP):
    		return vrf_process_v4_outbound(skb, dev);
    	case htons(ETH_P_IPV6):
    		return vrf_process_v6_outbound(skb, dev);
    	default:
    		vrf_tx_error(dev, skb);
    		return NET_XMIT_DROP;
    	}
    }
    
    static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
    
    	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
    		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
    
    		u64_stats_update_begin(&dstats->syncp);
    		dstats->tx_pkts++;
    		dstats->tx_bytes += skb->len;
    		u64_stats_update_end(&dstats->syncp);
    	} else {
    		this_cpu_inc(dev->dstats->tx_drps);
    	}
    
    	return ret;
    }
    
    #if IS_ENABLED(CONFIG_IPV6)
    /* modelled after ip6_finish_output2 */
    static int vrf_finish_output6(struct net *net, struct sock *sk,
    			      struct sk_buff *skb)
    {
    	struct dst_entry *dst = skb_dst(skb);
    	struct net_device *dev = dst->dev;
    	struct neighbour *neigh;
    	struct in6_addr *nexthop;
    	int ret;
    
    	nf_reset(skb);
    
    	skb->protocol = htons(ETH_P_IPV6);
    	skb->dev = dev;
    
    	rcu_read_lock_bh();
    	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
    	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
    	if (unlikely(!neigh))
    		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
    	if (!IS_ERR(neigh)) {
    		ret = dst_neigh_output(dst, neigh, skb);
    		rcu_read_unlock_bh();
    		return ret;
    	}
    	rcu_read_unlock_bh();
    
    	IP6_INC_STATS(dev_net(dst->dev),
    		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
    	kfree_skb(skb);
    	return -EINVAL;
    }
    
    /* modelled after ip6_output */
    static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
    {
    	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
    			    net, sk, skb, NULL, skb_dst(skb)->dev,
    			    vrf_finish_output6,
    			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
    }
    
    /* set dst on skb to send packet to us via dev_xmit path. Allows
     * packet to go through device based features such as qdisc, netfilter
     * hooks and packet sockets with skb->dev set to vrf device.
     */
    static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
    				   struct sock *sk,
    				   struct sk_buff *skb)
    {
    	struct net_vrf *vrf = netdev_priv(vrf_dev);
    	struct dst_entry *dst = NULL;
    	struct rt6_info *rt6;
    
    	/* don't divert link scope packets */
    	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
    		return skb;
    
    	rcu_read_lock();
    
    	rt6 = rcu_dereference(vrf->rt6);
    	if (likely(rt6)) {
    		dst = &rt6->dst;
    		dst_hold(dst);
    	}
    
    	rcu_read_unlock();
    
    	if (unlikely(!dst)) {
    		vrf_tx_error(vrf_dev, skb);
    		return NULL;
    	}
    
    	skb_dst_drop(skb);
    	skb_dst_set(skb, dst);
    
    	return skb;
    }
    
    /* holding rtnl */
    static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
    {
    	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
    	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
    	struct net *net = dev_net(dev);
    	struct dst_entry *dst;
    
    	RCU_INIT_POINTER(vrf->rt6, NULL);
    	RCU_INIT_POINTER(vrf->rt6_local, NULL);
    	synchronize_rcu();
    
    	/* move dev in dst's to loopback so this VRF device can be deleted
    	 * - based on dst_ifdown
    	 */
    	if (rt6) {
    		dst = &rt6->dst;
    		dev_put(dst->dev);
    		dst->dev = net->loopback_dev;
    		dev_hold(dst->dev);
    		dst_release(dst);
    	}
    
    	if (rt6_local) {
    		if (rt6_local->rt6i_idev)
    			in6_dev_put(rt6_local->rt6i_idev);
    
    		dst = &rt6_local->dst;
    		dev_put(dst->dev);
    		dst->dev = net->loopback_dev;
    		dev_hold(dst->dev);
    		dst_release(dst);
    	}
    }
    
    static int vrf_rt6_create(struct net_device *dev)
    {
    	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
    	struct net_vrf *vrf = netdev_priv(dev);
    	struct net *net = dev_net(dev);
    	struct fib6_table *rt6i_table;
    	struct rt6_info *rt6, *rt6_local;
    	int rc = -ENOMEM;
    
    	/* IPv6 can be CONFIG enabled and then disabled runtime */
    	if (!ipv6_mod_enabled())
    		return 0;
    
    	rt6i_table = fib6_new_table(net, vrf->tb_id);
    	if (!rt6i_table)
    		goto out;
    
    	/* create a dst for routing packets out a VRF device */
    	rt6 = ip6_dst_alloc(net, dev, flags);
    	if (!rt6)
    		goto out;
    
    	dst_hold(&rt6->dst);
    
    	rt6->rt6i_table = rt6i_table;
    	rt6->dst.output	= vrf_output6;
    
    	/* create a dst for local routing - packets sent locally
    	 * to local address via the VRF device as a loopback
    	 */
    	rt6_local = ip6_dst_alloc(net, dev, flags);
    	if (!rt6_local) {
    		dst_release(&rt6->dst);
    		goto out;
    	}
    
    	dst_hold(&rt6_local->dst);
    
    	rt6_local->rt6i_idev  = in6_dev_get(dev);
    	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
    	rt6_local->rt6i_table = rt6i_table;
    	rt6_local->dst.input  = ip6_input;
    
    	rcu_assign_pointer(vrf->rt6, rt6);
    	rcu_assign_pointer(vrf->rt6_local, rt6_local);
    
    	rc = 0;
    out:
    	return rc;
    }
    #else
    static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
    				   struct sock *sk,
    				   struct sk_buff *skb)
    {
    	return skb;
    }
    
    static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
    {
    }
    
    static int vrf_rt6_create(struct net_device *dev)
    {
    	return 0;
    }
    #endif
    
    /* modelled after ip_finish_output2 */
    static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
    {
    	struct dst_entry *dst = skb_dst(skb);
    	struct rtable *rt = (struct rtable *)dst;
    	struct net_device *dev = dst->dev;
    	unsigned int hh_len = LL_RESERVED_SPACE(dev);
    	struct neighbour *neigh;
    	u32 nexthop;
    	int ret = -EINVAL;
    
    	nf_reset(skb);
    
    	/* Be paranoid, rather than too clever. */
    	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
    		struct sk_buff *skb2;
    
    		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
    		if (!skb2) {
    			ret = -ENOMEM;
    			goto err;
    		}
    		if (skb->sk)
    			skb_set_owner_w(skb2, skb->sk);
    
    		consume_skb(skb);
    		skb = skb2;
    	}
    
    	rcu_read_lock_bh();
    
    	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
    	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
    	if (unlikely(!neigh))
    		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
    	if (!IS_ERR(neigh))
    		ret = dst_neigh_output(dst, neigh, skb);
    
    	rcu_read_unlock_bh();
    err:
    	if (unlikely(ret < 0))
    		vrf_tx_error(skb->dev, skb);
    	return ret;
    }
    
    static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
    {
    	struct net_device *dev = skb_dst(skb)->dev;
    
    	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
    
    	skb->dev = dev;
    	skb->protocol = htons(ETH_P_IP);
    
    	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
    			    net, sk, skb, NULL, dev,
    			    vrf_finish_output,
    			    !(IPCB(skb)->flags & IPSKB_REROUTED));
    }
    
    /* set dst on skb to send packet to us via dev_xmit path. Allows
     * packet to go through device based features such as qdisc, netfilter
     * hooks and packet sockets with skb->dev set to vrf device.
     */
    static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
    				  struct sock *sk,
    				  struct sk_buff *skb)
    {
    	struct net_vrf *vrf = netdev_priv(vrf_dev);
    	struct dst_entry *dst = NULL;
    	struct rtable *rth;
    
    	/* don't divert multicast */
    	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
    		return skb;
    
    	rcu_read_lock();
    
    	rth = rcu_dereference(vrf->rth);
    	if (likely(rth)) {
    		dst = &rth->dst;
    		dst_hold(dst);
    	}
    
    	rcu_read_unlock();
    
    	if (unlikely(!dst)) {
    		vrf_tx_error(vrf_dev, skb);
    		return NULL;
    	}
    
    	skb_dst_drop(skb);
    	skb_dst_set(skb, dst);
    
    	return skb;
    }
    
    /* called with rcu lock held */
    static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
    				  struct sock *sk,
    				  struct sk_buff *skb,
    				  u16 proto)
    {
    	switch (proto) {
    	case AF_INET:
    		return vrf_ip_out(vrf_dev, sk, skb);
    	case AF_INET6:
    		return vrf_ip6_out(vrf_dev, sk, skb);
    	}
    
    	return skb;
    }
    
    /* holding rtnl */
    static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
    {
    	struct rtable *rth = rtnl_dereference(vrf->rth);
    	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
    	struct net *net = dev_net(dev);
    	struct dst_entry *dst;
    
    	RCU_INIT_POINTER(vrf->rth, NULL);
    	RCU_INIT_POINTER(vrf->rth_local, NULL);
    	synchronize_rcu();
    
    	/* move dev in dst's to loopback so this VRF device can be deleted
    	 * - based on dst_ifdown
    	 */
    	if (rth) {
    		dst = &rth->dst;
    		dev_put(dst->dev);
    		dst->dev = net->loopback_dev;
    		dev_hold(dst->dev);
    		dst_release(dst);
    	}
    
    	if (rth_local) {
    		dst = &rth_local->dst;
    		dev_put(dst->dev);
    		dst->dev = net->loopback_dev;
    		dev_hold(dst->dev);
    		dst_release(dst);
    	}
    }
    
    static int vrf_rtable_create(struct net_device *dev)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    	struct rtable *rth, *rth_local;
    
    	if (!fib_new_table(dev_net(dev), vrf->tb_id))
    		return -ENOMEM;
    
    	/* create a dst for routing packets out through a VRF device */
    	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
    	if (!rth)
    		return -ENOMEM;
    
    	/* create a dst for local ingress routing - packets sent locally
    	 * to local address via the VRF device as a loopback
    	 */
    	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
    	if (!rth_local) {
    		dst_release(&rth->dst);
    		return -ENOMEM;
    	}
    
    	rth->dst.output	= vrf_output;
    	rth->rt_table_id = vrf->tb_id;
    
    	rth_local->rt_table_id = vrf->tb_id;
    
    	rcu_assign_pointer(vrf->rth, rth);
    	rcu_assign_pointer(vrf->rth_local, rth_local);
    
    	return 0;
    }
    
    /**************************** device handling ********************/
    
    /* cycle interface to flush neighbor cache and move routes across tables */
    static void cycle_netdev(struct net_device *dev)
    {
    	unsigned int flags = dev->flags;
    	int ret;
    
    	if (!netif_running(dev))
    		return;
    
    	ret = dev_change_flags(dev, flags & ~IFF_UP);
    	if (ret >= 0)
    		ret = dev_change_flags(dev, flags);
    
    	if (ret < 0) {
    		netdev_err(dev,
    			   "Failed to cycle device %s; route tables might be wrong!\n",
    			   dev->name);
    	}
    }
    
    static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
    {
    	int ret;
    
    	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
    	if (ret < 0)
    		return ret;
    
    	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
    	cycle_netdev(port_dev);
    
    	return 0;
    }
    
    static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
    {
    	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
    		return -EINVAL;
    
    	return do_vrf_add_slave(dev, port_dev);
    }
    
    /* inverse of do_vrf_add_slave */
    static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
    {
    	netdev_upper_dev_unlink(port_dev, dev);
    	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
    
    	cycle_netdev(port_dev);
    
    	return 0;
    }
    
    static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
    {
    	return do_vrf_del_slave(dev, port_dev);
    }
    
    static void vrf_dev_uninit(struct net_device *dev)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    	struct net_device *port_dev;
    	struct list_head *iter;
    
    	vrf_rtable_release(dev, vrf);
    	vrf_rt6_release(dev, vrf);
    
    	netdev_for_each_lower_dev(dev, port_dev, iter)
    		vrf_del_slave(dev, port_dev);
    
    	free_percpu(dev->dstats);
    	dev->dstats = NULL;
    }
    
    static int vrf_dev_init(struct net_device *dev)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    
    	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
    	if (!dev->dstats)
    		goto out_nomem;
    
    	/* create the default dst which points back to us */
    	if (vrf_rtable_create(dev) != 0)
    		goto out_stats;
    
    	if (vrf_rt6_create(dev) != 0)
    		goto out_rth;
    
    	dev->flags = IFF_MASTER | IFF_NOARP;
    
    	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
    	dev->mtu = 64 * 1024;
    
    	/* similarly, oper state is irrelevant; set to up to avoid confusion */
    	dev->operstate = IF_OPER_UP;
    	netdev_lockdep_set_classes(dev);
    	return 0;
    
    out_rth:
    	vrf_rtable_release(dev, vrf);
    out_stats:
    	free_percpu(dev->dstats);
    	dev->dstats = NULL;
    out_nomem:
    	return -ENOMEM;
    }
    
    static const struct net_device_ops vrf_netdev_ops = {
    	.ndo_init		= vrf_dev_init,
    	.ndo_uninit		= vrf_dev_uninit,
    	.ndo_start_xmit		= vrf_xmit,
    	.ndo_get_stats64	= vrf_get_stats64,
    	.ndo_add_slave		= vrf_add_slave,
    	.ndo_del_slave		= vrf_del_slave,
    };
    
    static u32 vrf_fib_table(const struct net_device *dev)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    
    	return vrf->tb_id;
    }
    
    static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
    {
    	return 0;
    }
    
    static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
    				      struct sk_buff *skb,
    				      struct net_device *dev)
    {
    	struct net *net = dev_net(dev);
    
    	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
    		skb = NULL;    /* kfree_skb(skb) handled by nf code */
    
    	return skb;
    }
    
    #if IS_ENABLED(CONFIG_IPV6)
    /* neighbor handling is done with actual device; do not want
     * to flip skb->dev for those ndisc packets. This really fails
     * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
     * a start.
     */
    static bool ipv6_ndisc_frame(const struct sk_buff *skb)
    {
    	const struct ipv6hdr *iph = ipv6_hdr(skb);
    	bool rc = false;
    
    	if (iph->nexthdr == NEXTHDR_ICMP) {
    		const struct icmp6hdr *icmph;
    		struct icmp6hdr _icmph;
    
    		icmph = skb_header_pointer(skb, sizeof(*iph),
    					   sizeof(_icmph), &_icmph);
    		if (!icmph)
    			goto out;
    
    		switch (icmph->icmp6_type) {
    		case NDISC_ROUTER_SOLICITATION:
    		case NDISC_ROUTER_ADVERTISEMENT:
    		case NDISC_NEIGHBOUR_SOLICITATION:
    		case NDISC_NEIGHBOUR_ADVERTISEMENT:
    		case NDISC_REDIRECT:
    			rc = true;
    			break;
    		}
    	}
    
    out:
    	return rc;
    }
    
    static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
    					     const struct net_device *dev,
    					     struct flowi6 *fl6,
    					     int ifindex,
    					     int flags)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    	struct fib6_table *table = NULL;
    	struct rt6_info *rt6;
    
    	rcu_read_lock();
    
    	/* fib6_table does not have a refcnt and can not be freed */
    	rt6 = rcu_dereference(vrf->rt6);
    	if (likely(rt6))
    		table = rt6->rt6i_table;
    
    	rcu_read_unlock();
    
    	if (!table)
    		return NULL;
    
    	return ip6_pol_route(net, table, ifindex, fl6, flags);
    }
    
    static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
    			      int ifindex)
    {
    	const struct ipv6hdr *iph = ipv6_hdr(skb);
    	struct flowi6 fl6 = {
    		.daddr          = iph->daddr,
    		.saddr          = iph->saddr,
    		.flowlabel      = ip6_flowinfo(iph),
    		.flowi6_mark    = skb->mark,
    		.flowi6_proto   = iph->nexthdr,
    		.flowi6_iif     = ifindex,
    	};
    	struct net *net = dev_net(vrf_dev);
    	struct rt6_info *rt6;
    
    	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
    				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
    	if (unlikely(!rt6))
    		return;
    
    	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
    		return;
    
    	skb_dst_set(skb, &rt6->dst);
    }
    
    static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
    				   struct sk_buff *skb)
    {
    	int orig_iif = skb->skb_iif;
    	bool need_strict;
    
    	/* loopback traffic; do not push through packet taps again.
    	 * Reset pkt_type for upper layers to process skb
    	 */
    	if (skb->pkt_type == PACKET_LOOPBACK) {
    		skb->dev = vrf_dev;
    		skb->skb_iif = vrf_dev->ifindex;
    		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
    		skb->pkt_type = PACKET_HOST;
    		goto out;
    	}
    
    	/* if packet is NDISC or addressed to multicast or link-local
    	 * then keep the ingress interface
    	 */
    	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
    	if (!ipv6_ndisc_frame(skb) && !need_strict) {
    		vrf_rx_stats(vrf_dev, skb->len);
    		skb->dev = vrf_dev;
    		skb->skb_iif = vrf_dev->ifindex;
    
    		skb_push(skb, skb->mac_len);
    		dev_queue_xmit_nit(skb, vrf_dev);
    		skb_pull(skb, skb->mac_len);
    
    		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
    	}
    
    	if (need_strict)
    		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
    
    	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
    out:
    	return skb;
    }
    
    #else
    static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
    				   struct sk_buff *skb)
    {
    	return skb;
    }
    #endif
    
    static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
    				  struct sk_buff *skb)
    {
    	skb->dev = vrf_dev;
    	skb->skb_iif = vrf_dev->ifindex;
    	IPCB(skb)->flags |= IPSKB_L3SLAVE;
    
    	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
    		goto out;
    
    	/* loopback traffic; do not push through packet taps again.
    	 * Reset pkt_type for upper layers to process skb
    	 */
    	if (skb->pkt_type == PACKET_LOOPBACK) {
    		skb->pkt_type = PACKET_HOST;
    		goto out;
    	}
    
    	vrf_rx_stats(vrf_dev, skb->len);
    
    	skb_push(skb, skb->mac_len);
    	dev_queue_xmit_nit(skb, vrf_dev);
    	skb_pull(skb, skb->mac_len);
    
    	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
    out:
    	return skb;
    }
    
    /* called with rcu lock held */
    static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
    				  struct sk_buff *skb,
    				  u16 proto)
    {
    	switch (proto) {
    	case AF_INET:
    		return vrf_ip_rcv(vrf_dev, skb);
    	case AF_INET6:
    		return vrf_ip6_rcv(vrf_dev, skb);
    	}
    
    	return skb;
    }
    
    #if IS_ENABLED(CONFIG_IPV6)
    /* send to link-local or multicast address via interface enslaved to
     * VRF device. Force lookup to VRF table without changing flow struct
     */
    static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
    					      struct flowi6 *fl6)
    {
    	struct net *net = dev_net(dev);
    	int flags = RT6_LOOKUP_F_IFACE;
    	struct dst_entry *dst = NULL;
    	struct rt6_info *rt;
    
    	/* VRF device does not have a link-local address and
    	 * sending packets to link-local or mcast addresses over
    	 * a VRF device does not make sense
    	 */
    	if (fl6->flowi6_oif == dev->ifindex) {
    		dst = &net->ipv6.ip6_null_entry->dst;
    		dst_hold(dst);
    		return dst;
    	}
    
    	if (!ipv6_addr_any(&fl6->saddr))
    		flags |= RT6_LOOKUP_F_HAS_SADDR;
    
    	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
    	if (rt)
    		dst = &rt->dst;
    
    	return dst;
    }
    #endif
    
    static const struct l3mdev_ops vrf_l3mdev_ops = {
    	.l3mdev_fib_table	= vrf_fib_table,
    	.l3mdev_l3_rcv		= vrf_l3_rcv,
    	.l3mdev_l3_out		= vrf_l3_out,
    #if IS_ENABLED(CONFIG_IPV6)
    	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
    #endif
    };
    
    static void vrf_get_drvinfo(struct net_device *dev,
    			    struct ethtool_drvinfo *info)
    {
    	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
    	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
    }
    
    static const struct ethtool_ops vrf_ethtool_ops = {
    	.get_drvinfo	= vrf_get_drvinfo,
    };
    
    static inline size_t vrf_fib_rule_nl_size(void)
    {
    	size_t sz;
    
    	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
    	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
    	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
    
    	return sz;
    }
    
    static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
    {
    	struct fib_rule_hdr *frh;
    	struct nlmsghdr *nlh;
    	struct sk_buff *skb;
    	int err;
    
    	if (family == AF_INET6 && !ipv6_mod_enabled())
    		return 0;
    
    	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
    	if (!skb)
    		return -ENOMEM;
    
    	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
    	if (!nlh)
    		goto nla_put_failure;
    
    	/* rule only needs to appear once */
    	nlh->nlmsg_flags &= NLM_F_EXCL;
    
    	frh = nlmsg_data(nlh);
    	memset(frh, 0, sizeof(*frh));
    	frh->family = family;
    	frh->action = FR_ACT_TO_TBL;
    
    	if (nla_put_u32(skb, FRA_L3MDEV, 1))
    		goto nla_put_failure;
    
    	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
    		goto nla_put_failure;
    
    	nlmsg_end(skb, nlh);
    
    	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
    	skb->sk = dev_net(dev)->rtnl;
    	if (add_it) {
    		err = fib_nl_newrule(skb, nlh);
    		if (err == -EEXIST)
    			err = 0;
    	} else {
    		err = fib_nl_delrule(skb, nlh);
    		if (err == -ENOENT)
    			err = 0;
    	}
    	nlmsg_free(skb);
    
    	return err;
    
    nla_put_failure:
    	nlmsg_free(skb);
    
    	return -EMSGSIZE;
    }
    
    static int vrf_add_fib_rules(const struct net_device *dev)
    {
    	int err;
    
    	err = vrf_fib_rule(dev, AF_INET,  true);
    	if (err < 0)
    		goto out_err;
    
    	err = vrf_fib_rule(dev, AF_INET6, true);
    	if (err < 0)
    		goto ipv6_err;
    
    #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
    	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
    	if (err < 0)
    		goto ipmr_err;
    #endif
    
    	return 0;
    
    #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
    ipmr_err:
    	vrf_fib_rule(dev, AF_INET6,  false);
    #endif
    
    ipv6_err:
    	vrf_fib_rule(dev, AF_INET,  false);
    
    out_err:
    	netdev_err(dev, "Failed to add FIB rules.\n");
    	return err;
    }
    
    static void vrf_setup(struct net_device *dev)
    {
    	ether_setup(dev);
    
    	/* Initialize the device structure. */
    	dev->netdev_ops = &vrf_netdev_ops;
    	dev->l3mdev_ops = &vrf_l3mdev_ops;
    	dev->ethtool_ops = &vrf_ethtool_ops;
    	dev->destructor = free_netdev;
    
    	/* Fill in device structure with ethernet-generic values. */
    	eth_hw_addr_random(dev);
    
    	/* don't acquire vrf device's netif_tx_lock when transmitting */
    	dev->features |= NETIF_F_LLTX;
    
    	/* don't allow vrf devices to change network namespaces. */
    	dev->features |= NETIF_F_NETNS_LOCAL;
    
    	/* does not make sense for a VLAN to be added to a vrf device */
    	dev->features   |= NETIF_F_VLAN_CHALLENGED;
    
    	/* enable offload features */
    	dev->features   |= NETIF_F_GSO_SOFTWARE;
    	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
    	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
    
    	dev->hw_features = dev->features;
    	dev->hw_enc_features = dev->features;
    
    	/* default to no qdisc; user can add if desired */
    	dev->priv_flags |= IFF_NO_QUEUE;
    }
    
    static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
    {
    	if (tb[IFLA_ADDRESS]) {
    		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
    			return -EINVAL;
    		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
    			return -EADDRNOTAVAIL;
    	}
    	return 0;
    }
    
    static void vrf_dellink(struct net_device *dev, struct list_head *head)
    {
    	unregister_netdevice_queue(dev, head);
    }
    
    static int vrf_newlink(struct net *src_net, struct net_device *dev,
    		       struct nlattr *tb[], struct nlattr *data[])
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    	int err;
    
    	if (!data || !data[IFLA_VRF_TABLE])
    		return -EINVAL;
    
    	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
    
    	dev->priv_flags |= IFF_L3MDEV_MASTER;
    
    	err = register_netdevice(dev);
    	if (err)
    		goto out;
    
    	if (add_fib_rules) {
    		err = vrf_add_fib_rules(dev);
    		if (err) {
    			unregister_netdevice(dev);
    			goto out;
    		}
    		add_fib_rules = false;
    	}
    
    out:
    	return err;
    }
    
    static size_t vrf_nl_getsize(const struct net_device *dev)
    {
    	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
    }
    
    static int vrf_fillinfo(struct sk_buff *skb,
    			const struct net_device *dev)
    {
    	struct net_vrf *vrf = netdev_priv(dev);
    
    	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
    }
    
    static size_t vrf_get_slave_size(const struct net_device *bond_dev,
    				 const struct net_device *slave_dev)
    {
    	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
    }
    
    static int vrf_fill_slave_info(struct sk_buff *skb,
    			       const struct net_device *vrf_dev,
    			       const struct net_device *slave_dev)
    {
    	struct net_vrf *vrf = netdev_priv(vrf_dev);
    
    	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
    		return -EMSGSIZE;
    
    	return 0;
    }
    
    static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
    	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
    };
    
    static struct rtnl_link_ops vrf_link_ops __read_mostly = {
    	.kind		= DRV_NAME,
    	.priv_size	= sizeof(struct net_vrf),
    
    	.get_size	= vrf_nl_getsize,
    	.policy		= vrf_nl_policy,
    	.validate	= vrf_validate,
    	.fill_info	= vrf_fillinfo,
    
    	.get_slave_size  = vrf_get_slave_size,
    	.fill_slave_info = vrf_fill_slave_info,
    
    	.newlink	= vrf_newlink,
    	.dellink	= vrf_dellink,
    	.setup		= vrf_setup,
    	.maxtype	= IFLA_VRF_MAX,
    };
    
    static int vrf_device_event(struct notifier_block *unused,
    			    unsigned long event, void *ptr)
    {
    	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
    
    	/* only care about unregister events to drop slave references */
    	if (event == NETDEV_UNREGISTER) {
    		struct net_device *vrf_dev;
    
    		if (!netif_is_l3_slave(dev))
    			goto out;
    
    		vrf_dev = netdev_master_upper_dev_get(dev);
    		vrf_del_slave(vrf_dev, dev);
    	}
    out:
    	return NOTIFY_DONE;
    }
    
    static struct notifier_block vrf_notifier_block __read_mostly = {
    	.notifier_call = vrf_device_event,
    };
    
    static int __init vrf_init_module(void)
    {
    	int rc;
    
    	register_netdevice_notifier(&vrf_notifier_block);
    
    	rc = rtnl_link_register(&vrf_link_ops);
    	if (rc < 0)
    		goto error;
    
    	return 0;
    
    error:
    	unregister_netdevice_notifier(&vrf_notifier_block);
    	return rc;
    }
    
    module_init(vrf_init_module);
    MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
    MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
    MODULE_LICENSE("GPL");
    MODULE_ALIAS_RTNL_LINK(DRV_NAME);
    MODULE_VERSION(DRV_VERSION);