Skip to content
Snippets Groups Projects
Select Git revision
  • a08ca5d1089da03724f96fa0870c64968e66765b
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

sched_clock.c

Blame
  • sched_clock.c 4.59 KiB
    /*
     * sched_clock.c: support for extending counters to full 64-bit ns counter
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    #include <linux/clocksource.h>
    #include <linux/init.h>
    #include <linux/jiffies.h>
    #include <linux/ktime.h>
    #include <linux/kernel.h>
    #include <linux/moduleparam.h>
    #include <linux/sched.h>
    #include <linux/syscore_ops.h>
    #include <linux/hrtimer.h>
    #include <linux/sched_clock.h>
    #include <linux/seqlock.h>
    
    struct clock_data {
    	ktime_t wrap_kt;
    	u64 epoch_ns;
    	u32 epoch_cyc;
    	seqcount_t seq;
    	unsigned long rate;
    	u32 mult;
    	u32 shift;
    	bool suspended;
    };
    
    static struct hrtimer sched_clock_timer;
    static int irqtime = -1;
    
    core_param(irqtime, irqtime, int, 0400);
    
    static struct clock_data cd = {
    	.mult	= NSEC_PER_SEC / HZ,
    };
    
    static u32 __read_mostly sched_clock_mask = 0xffffffff;
    
    static u32 notrace jiffy_sched_clock_read(void)
    {
    	return (u32)(jiffies - INITIAL_JIFFIES);
    }
    
    static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
    
    static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
    {
    	return (cyc * mult) >> shift;
    }
    
    static unsigned long long notrace sched_clock_32(void)
    {
    	u64 epoch_ns;
    	u32 epoch_cyc;
    	u32 cyc;
    	unsigned long seq;
    
    	if (cd.suspended)
    		return cd.epoch_ns;
    
    	do {
    		seq = read_seqcount_begin(&cd.seq);
    		epoch_cyc = cd.epoch_cyc;
    		epoch_ns = cd.epoch_ns;
    	} while (read_seqcount_retry(&cd.seq, seq));
    
    	cyc = read_sched_clock();
    	cyc = (cyc - epoch_cyc) & sched_clock_mask;
    	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
    }
    
    /*
     * Atomically update the sched_clock epoch.
     */
    static void notrace update_sched_clock(void)
    {
    	unsigned long flags;
    	u32 cyc;
    	u64 ns;
    
    	cyc = read_sched_clock();
    	ns = cd.epoch_ns +
    		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
    			  cd.mult, cd.shift);
    
    	raw_local_irq_save(flags);
    	write_seqcount_begin(&cd.seq);
    	cd.epoch_ns = ns;
    	cd.epoch_cyc = cyc;
    	write_seqcount_end(&cd.seq);
    	raw_local_irq_restore(flags);
    }
    
    static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
    {
    	update_sched_clock();
    	hrtimer_forward_now(hrt, cd.wrap_kt);
    	return HRTIMER_RESTART;
    }
    
    void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
    {
    	unsigned long r;
    	u64 res, wrap;
    	char r_unit;
    
    	if (cd.rate > rate)
    		return;
    
    	BUG_ON(bits > 32);
    	WARN_ON(!irqs_disabled());
    	read_sched_clock = read;
    	sched_clock_mask = (1 << bits) - 1;
    	cd.rate = rate;
    
    	/* calculate the mult/shift to convert counter ticks to ns. */
    	clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
    
    	r = rate;
    	if (r >= 4000000) {
    		r /= 1000000;
    		r_unit = 'M';
    	} else if (r >= 1000) {
    		r /= 1000;
    		r_unit = 'k';
    	} else
    		r_unit = ' ';
    
    	/* calculate how many ns until we wrap */
    	wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
    	cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
    
    	/* calculate the ns resolution of this counter */
    	res = cyc_to_ns(1ULL, cd.mult, cd.shift);
    	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
    		bits, r, r_unit, res, wrap);
    
    	update_sched_clock();
    
    	/*
    	 * Ensure that sched_clock() starts off at 0ns
    	 */
    	cd.epoch_ns = 0;
    
    	/* Enable IRQ time accounting if we have a fast enough sched_clock */
    	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
    		enable_sched_clock_irqtime();
    
    	pr_debug("Registered %pF as sched_clock source\n", read);
    }
    
    unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32;
    
    unsigned long long notrace sched_clock(void)
    {
    	return sched_clock_func();
    }
    
    void __init sched_clock_postinit(void)
    {
    	/*
    	 * If no sched_clock function has been provided at that point,
    	 * make it the final one one.
    	 */
    	if (read_sched_clock == jiffy_sched_clock_read)
    		setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
    
    	update_sched_clock();
    
    	/*
    	 * Start the timer to keep sched_clock() properly updated and
    	 * sets the initial epoch.
    	 */
    	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    	sched_clock_timer.function = sched_clock_poll;
    	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
    }
    
    static int sched_clock_suspend(void)
    {
    	sched_clock_poll(&sched_clock_timer);
    	cd.suspended = true;
    	return 0;
    }
    
    static void sched_clock_resume(void)
    {
    	cd.epoch_cyc = read_sched_clock();
    	cd.suspended = false;
    }
    
    static struct syscore_ops sched_clock_ops = {
    	.suspend = sched_clock_suspend,
    	.resume = sched_clock_resume,
    };
    
    static int __init sched_clock_syscore_init(void)
    {
    	register_syscore_ops(&sched_clock_ops);
    	return 0;
    }
    device_initcall(sched_clock_syscore_init);