Skip to content
Snippets Groups Projects
Select Git revision
  • a0c2baaf81bd53dc76fccdddc721ba7dbb62be21
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

binder_alloc.c

Blame
  • binder_alloc.c 27.01 KiB
    /* binder_alloc.c
     *
     * Android IPC Subsystem
     *
     * Copyright (C) 2007-2017 Google, Inc.
     *
     * This software is licensed under the terms of the GNU General Public
     * License version 2, as published by the Free Software Foundation, and
     * may be copied, distributed, and modified under those terms.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <asm/cacheflush.h>
    #include <linux/list.h>
    #include <linux/sched/mm.h>
    #include <linux/module.h>
    #include <linux/rtmutex.h>
    #include <linux/rbtree.h>
    #include <linux/seq_file.h>
    #include <linux/vmalloc.h>
    #include <linux/slab.h>
    #include <linux/sched.h>
    #include <linux/list_lru.h>
    #include "binder_alloc.h"
    #include "binder_trace.h"
    
    struct list_lru binder_alloc_lru;
    
    static DEFINE_MUTEX(binder_alloc_mmap_lock);
    
    enum {
    	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
    	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
    	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
    };
    static uint32_t binder_alloc_debug_mask;
    
    module_param_named(debug_mask, binder_alloc_debug_mask,
    		   uint, 0644);
    
    #define binder_alloc_debug(mask, x...) \
    	do { \
    		if (binder_alloc_debug_mask & mask) \
    			pr_info(x); \
    	} while (0)
    
    static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
    {
    	return list_entry(buffer->entry.next, struct binder_buffer, entry);
    }
    
    static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
    {
    	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
    }
    
    static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
    				       struct binder_buffer *buffer)
    {
    	if (list_is_last(&buffer->entry, &alloc->buffers))
    		return (u8 *)alloc->buffer +
    			alloc->buffer_size - (u8 *)buffer->data;
    	return (u8 *)binder_buffer_next(buffer)->data - (u8 *)buffer->data;
    }
    
    static void binder_insert_free_buffer(struct binder_alloc *alloc,
    				      struct binder_buffer *new_buffer)
    {
    	struct rb_node **p = &alloc->free_buffers.rb_node;
    	struct rb_node *parent = NULL;
    	struct binder_buffer *buffer;
    	size_t buffer_size;
    	size_t new_buffer_size;
    
    	BUG_ON(!new_buffer->free);
    
    	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
    
    	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    		     "%d: add free buffer, size %zd, at %pK\n",
    		      alloc->pid, new_buffer_size, new_buffer);
    
    	while (*p) {
    		parent = *p;
    		buffer = rb_entry(parent, struct binder_buffer, rb_node);
    		BUG_ON(!buffer->free);
    
    		buffer_size = binder_alloc_buffer_size(alloc, buffer);
    
    		if (new_buffer_size < buffer_size)
    			p = &parent->rb_left;
    		else
    			p = &parent->rb_right;
    	}
    	rb_link_node(&new_buffer->rb_node, parent, p);
    	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
    }
    
    static void binder_insert_allocated_buffer_locked(
    		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
    {
    	struct rb_node **p = &alloc->allocated_buffers.rb_node;
    	struct rb_node *parent = NULL;
    	struct binder_buffer *buffer;
    
    	BUG_ON(new_buffer->free);
    
    	while (*p) {
    		parent = *p;
    		buffer = rb_entry(parent, struct binder_buffer, rb_node);
    		BUG_ON(buffer->free);
    
    		if (new_buffer->data < buffer->data)
    			p = &parent->rb_left;
    		else if (new_buffer->data > buffer->data)
    			p = &parent->rb_right;
    		else
    			BUG();
    	}
    	rb_link_node(&new_buffer->rb_node, parent, p);
    	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
    }
    
    static struct binder_buffer *binder_alloc_prepare_to_free_locked(
    		struct binder_alloc *alloc,
    		uintptr_t user_ptr)
    {
    	struct rb_node *n = alloc->allocated_buffers.rb_node;
    	struct binder_buffer *buffer;
    	void *kern_ptr;
    
    	kern_ptr = (void *)(user_ptr - alloc->user_buffer_offset);
    
    	while (n) {
    		buffer = rb_entry(n, struct binder_buffer, rb_node);
    		BUG_ON(buffer->free);
    
    		if (kern_ptr < buffer->data)
    			n = n->rb_left;
    		else if (kern_ptr > buffer->data)
    			n = n->rb_right;
    		else {
    			/*
    			 * Guard against user threads attempting to
    			 * free the buffer twice
    			 */
    			if (buffer->free_in_progress) {
    				pr_err("%d:%d FREE_BUFFER u%016llx user freed buffer twice\n",
    				       alloc->pid, current->pid, (u64)user_ptr);
    				return NULL;
    			}
    			buffer->free_in_progress = 1;
    			return buffer;
    		}
    	}
    	return NULL;
    }
    
    /**
     * binder_alloc_buffer_lookup() - get buffer given user ptr
     * @alloc:	binder_alloc for this proc
     * @user_ptr:	User pointer to buffer data
     *
     * Validate userspace pointer to buffer data and return buffer corresponding to
     * that user pointer. Search the rb tree for buffer that matches user data
     * pointer.
     *
     * Return:	Pointer to buffer or NULL
     */
    struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
    						   uintptr_t user_ptr)
    {
    	struct binder_buffer *buffer;
    
    	mutex_lock(&alloc->mutex);
    	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
    	mutex_unlock(&alloc->mutex);
    	return buffer;
    }
    
    static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
    				    void *start, void *end,
    				    struct vm_area_struct *vma)
    {
    	void *page_addr;
    	unsigned long user_page_addr;
    	struct binder_lru_page *page;
    	struct mm_struct *mm = NULL;
    	bool need_mm = false;
    
    	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    		     "%d: %s pages %pK-%pK\n", alloc->pid,
    		     allocate ? "allocate" : "free", start, end);
    
    	if (end <= start)
    		return 0;
    
    	trace_binder_update_page_range(alloc, allocate, start, end);
    
    	if (allocate == 0)
    		goto free_range;
    
    	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
    		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
    		if (!page->page_ptr) {
    			need_mm = true;
    			break;
    		}
    	}
    
    	if (!vma && need_mm && mmget_not_zero(alloc->vma_vm_mm))
    		mm = alloc->vma_vm_mm;
    
    	if (mm) {
    		down_write(&mm->mmap_sem);
    		vma = alloc->vma;
    	}
    
    	if (!vma && need_mm) {
    		pr_err("%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
    			alloc->pid);
    		goto err_no_vma;
    	}
    
    	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
    		int ret;
    		bool on_lru;
    		size_t index;
    
    		index = (page_addr - alloc->buffer) / PAGE_SIZE;
    		page = &alloc->pages[index];
    
    		if (page->page_ptr) {
    			trace_binder_alloc_lru_start(alloc, index);
    
    			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
    			WARN_ON(!on_lru);
    
    			trace_binder_alloc_lru_end(alloc, index);
    			continue;
    		}
    
    		if (WARN_ON(!vma))
    			goto err_page_ptr_cleared;
    
    		trace_binder_alloc_page_start(alloc, index);
    		page->page_ptr = alloc_page(GFP_KERNEL |
    					    __GFP_HIGHMEM |
    					    __GFP_ZERO);
    		if (!page->page_ptr) {
    			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
    				alloc->pid, page_addr);
    			goto err_alloc_page_failed;
    		}
    		page->alloc = alloc;
    		INIT_LIST_HEAD(&page->lru);
    
    		ret = map_kernel_range_noflush((unsigned long)page_addr,
    					       PAGE_SIZE, PAGE_KERNEL,
    					       &page->page_ptr);
    		flush_cache_vmap((unsigned long)page_addr,
    				(unsigned long)page_addr + PAGE_SIZE);
    		if (ret != 1) {
    			pr_err("%d: binder_alloc_buf failed to map page at %pK in kernel\n",
    			       alloc->pid, page_addr);
    			goto err_map_kernel_failed;
    		}
    		user_page_addr =
    			(uintptr_t)page_addr + alloc->user_buffer_offset;
    		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
    		if (ret) {
    			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
    			       alloc->pid, user_page_addr);
    			goto err_vm_insert_page_failed;
    		}
    
    		trace_binder_alloc_page_end(alloc, index);
    		/* vm_insert_page does not seem to increment the refcount */
    	}
    	if (mm) {
    		up_write(&mm->mmap_sem);
    		mmput(mm);
    	}
    	return 0;
    
    free_range:
    	for (page_addr = end - PAGE_SIZE; page_addr >= start;
    	     page_addr -= PAGE_SIZE) {
    		bool ret;
    		size_t index;
    
    		index = (page_addr - alloc->buffer) / PAGE_SIZE;
    		page = &alloc->pages[index];
    
    		trace_binder_free_lru_start(alloc, index);
    
    		ret = list_lru_add(&binder_alloc_lru, &page->lru);
    		WARN_ON(!ret);
    
    		trace_binder_free_lru_end(alloc, index);
    		continue;
    
    err_vm_insert_page_failed:
    		unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
    err_map_kernel_failed:
    		__free_page(page->page_ptr);
    		page->page_ptr = NULL;
    err_alloc_page_failed:
    err_page_ptr_cleared:
    		;
    	}
    err_no_vma:
    	if (mm) {
    		up_write(&mm->mmap_sem);
    		mmput(mm);
    	}
    	return vma ? -ENOMEM : -ESRCH;
    }
    
    struct binder_buffer *binder_alloc_new_buf_locked(struct binder_alloc *alloc,
    						  size_t data_size,
    						  size_t offsets_size,
    						  size_t extra_buffers_size,
    						  int is_async)
    {
    	struct rb_node *n = alloc->free_buffers.rb_node;
    	struct binder_buffer *buffer;
    	size_t buffer_size;
    	struct rb_node *best_fit = NULL;
    	void *has_page_addr;
    	void *end_page_addr;
    	size_t size, data_offsets_size;
    	int ret;
    
    	if (alloc->vma == NULL) {
    		pr_err("%d: binder_alloc_buf, no vma\n",
    		       alloc->pid);
    		return ERR_PTR(-ESRCH);
    	}
    
    	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
    		ALIGN(offsets_size, sizeof(void *));
    
    	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				"%d: got transaction with invalid size %zd-%zd\n",
    				alloc->pid, data_size, offsets_size);
    		return ERR_PTR(-EINVAL);
    	}
    	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
    	if (size < data_offsets_size || size < extra_buffers_size) {
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				"%d: got transaction with invalid extra_buffers_size %zd\n",
    				alloc->pid, extra_buffers_size);
    		return ERR_PTR(-EINVAL);
    	}
    	if (is_async &&
    	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
    			      alloc->pid, size);
    		return ERR_PTR(-ENOSPC);
    	}
    
    	/* Pad 0-size buffers so they get assigned unique addresses */
    	size = max(size, sizeof(void *));
    
    	while (n) {
    		buffer = rb_entry(n, struct binder_buffer, rb_node);
    		BUG_ON(!buffer->free);
    		buffer_size = binder_alloc_buffer_size(alloc, buffer);
    
    		if (size < buffer_size) {
    			best_fit = n;
    			n = n->rb_left;
    		} else if (size > buffer_size)
    			n = n->rb_right;
    		else {
    			best_fit = n;
    			break;
    		}
    	}
    	if (best_fit == NULL) {
    		size_t allocated_buffers = 0;
    		size_t largest_alloc_size = 0;
    		size_t total_alloc_size = 0;
    		size_t free_buffers = 0;
    		size_t largest_free_size = 0;
    		size_t total_free_size = 0;
    
    		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
    		     n = rb_next(n)) {
    			buffer = rb_entry(n, struct binder_buffer, rb_node);
    			buffer_size = binder_alloc_buffer_size(alloc, buffer);
    			allocated_buffers++;
    			total_alloc_size += buffer_size;
    			if (buffer_size > largest_alloc_size)
    				largest_alloc_size = buffer_size;
    		}
    		for (n = rb_first(&alloc->free_buffers); n != NULL;
    		     n = rb_next(n)) {
    			buffer = rb_entry(n, struct binder_buffer, rb_node);
    			buffer_size = binder_alloc_buffer_size(alloc, buffer);
    			free_buffers++;
    			total_free_size += buffer_size;
    			if (buffer_size > largest_free_size)
    				largest_free_size = buffer_size;
    		}
    		pr_err("%d: binder_alloc_buf size %zd failed, no address space\n",
    			alloc->pid, size);
    		pr_err("allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
    		       total_alloc_size, allocated_buffers, largest_alloc_size,
    		       total_free_size, free_buffers, largest_free_size);
    		return ERR_PTR(-ENOSPC);
    	}
    	if (n == NULL) {
    		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
    		buffer_size = binder_alloc_buffer_size(alloc, buffer);
    	}
    
    	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
    		      alloc->pid, size, buffer, buffer_size);
    
    	has_page_addr =
    		(void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK);
    	WARN_ON(n && buffer_size != size);
    	end_page_addr =
    		(void *)PAGE_ALIGN((uintptr_t)buffer->data + size);
    	if (end_page_addr > has_page_addr)
    		end_page_addr = has_page_addr;
    	ret = binder_update_page_range(alloc, 1,
    	    (void *)PAGE_ALIGN((uintptr_t)buffer->data), end_page_addr, NULL);
    	if (ret)
    		return ERR_PTR(ret);
    
    	if (buffer_size != size) {
    		struct binder_buffer *new_buffer;
    
    		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
    		if (!new_buffer) {
    			pr_err("%s: %d failed to alloc new buffer struct\n",
    			       __func__, alloc->pid);
    			goto err_alloc_buf_struct_failed;
    		}
    		new_buffer->data = (u8 *)buffer->data + size;
    		list_add(&new_buffer->entry, &buffer->entry);
    		new_buffer->free = 1;
    		binder_insert_free_buffer(alloc, new_buffer);
    	}
    
    	rb_erase(best_fit, &alloc->free_buffers);
    	buffer->free = 0;
    	buffer->free_in_progress = 0;
    	binder_insert_allocated_buffer_locked(alloc, buffer);
    	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    		     "%d: binder_alloc_buf size %zd got %pK\n",
    		      alloc->pid, size, buffer);
    	buffer->data_size = data_size;
    	buffer->offsets_size = offsets_size;
    	buffer->async_transaction = is_async;
    	buffer->extra_buffers_size = extra_buffers_size;
    	if (is_async) {
    		alloc->free_async_space -= size + sizeof(struct binder_buffer);
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
    			     "%d: binder_alloc_buf size %zd async free %zd\n",
    			      alloc->pid, size, alloc->free_async_space);
    	}
    	return buffer;
    
    err_alloc_buf_struct_failed:
    	binder_update_page_range(alloc, 0,
    				 (void *)PAGE_ALIGN((uintptr_t)buffer->data),
    				 end_page_addr, NULL);
    	return ERR_PTR(-ENOMEM);
    }
    
    /**
     * binder_alloc_new_buf() - Allocate a new binder buffer
     * @alloc:              binder_alloc for this proc
     * @data_size:          size of user data buffer
     * @offsets_size:       user specified buffer offset
     * @extra_buffers_size: size of extra space for meta-data (eg, security context)
     * @is_async:           buffer for async transaction
     *
     * Allocate a new buffer given the requested sizes. Returns
     * the kernel version of the buffer pointer. The size allocated
     * is the sum of the three given sizes (each rounded up to
     * pointer-sized boundary)
     *
     * Return:	The allocated buffer or %NULL if error
     */
    struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
    					   size_t data_size,
    					   size_t offsets_size,
    					   size_t extra_buffers_size,
    					   int is_async)
    {
    	struct binder_buffer *buffer;
    
    	mutex_lock(&alloc->mutex);
    	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
    					     extra_buffers_size, is_async);
    	mutex_unlock(&alloc->mutex);
    	return buffer;
    }
    
    static void *buffer_start_page(struct binder_buffer *buffer)
    {
    	return (void *)((uintptr_t)buffer->data & PAGE_MASK);
    }
    
    static void *prev_buffer_end_page(struct binder_buffer *buffer)
    {
    	return (void *)(((uintptr_t)(buffer->data) - 1) & PAGE_MASK);
    }
    
    static void binder_delete_free_buffer(struct binder_alloc *alloc,
    				      struct binder_buffer *buffer)
    {
    	struct binder_buffer *prev, *next = NULL;
    	bool to_free = true;
    	BUG_ON(alloc->buffers.next == &buffer->entry);
    	prev = binder_buffer_prev(buffer);
    	BUG_ON(!prev->free);
    	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
    		to_free = false;
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				   "%d: merge free, buffer %pK share page with %pK\n",
    				   alloc->pid, buffer->data, prev->data);
    	}
    
    	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
    		next = binder_buffer_next(buffer);
    		if (buffer_start_page(next) == buffer_start_page(buffer)) {
    			to_free = false;
    			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    					   "%d: merge free, buffer %pK share page with %pK\n",
    					   alloc->pid,
    					   buffer->data,
    					   next->data);
    		}
    	}
    
    	if (PAGE_ALIGNED(buffer->data)) {
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				   "%d: merge free, buffer start %pK is page aligned\n",
    				   alloc->pid, buffer->data);
    		to_free = false;
    	}
    
    	if (to_free) {
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
    				   alloc->pid, buffer->data,
    				   prev->data, next->data);
    		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
    					 buffer_start_page(buffer) + PAGE_SIZE,
    					 NULL);
    	}
    	list_del(&buffer->entry);
    	kfree(buffer);
    }
    
    static void binder_free_buf_locked(struct binder_alloc *alloc,
    				   struct binder_buffer *buffer)
    {
    	size_t size, buffer_size;
    
    	buffer_size = binder_alloc_buffer_size(alloc, buffer);
    
    	size = ALIGN(buffer->data_size, sizeof(void *)) +
    		ALIGN(buffer->offsets_size, sizeof(void *)) +
    		ALIGN(buffer->extra_buffers_size, sizeof(void *));
    
    	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
    		      alloc->pid, buffer, size, buffer_size);
    
    	BUG_ON(buffer->free);
    	BUG_ON(size > buffer_size);
    	BUG_ON(buffer->transaction != NULL);
    	BUG_ON(buffer->data < alloc->buffer);
    	BUG_ON(buffer->data > alloc->buffer + alloc->buffer_size);
    
    	if (buffer->async_transaction) {
    		alloc->free_async_space += size + sizeof(struct binder_buffer);
    
    		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
    			     "%d: binder_free_buf size %zd async free %zd\n",
    			      alloc->pid, size, alloc->free_async_space);
    	}
    
    	binder_update_page_range(alloc, 0,
    		(void *)PAGE_ALIGN((uintptr_t)buffer->data),
    		(void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK),
    		NULL);
    
    	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
    	buffer->free = 1;
    	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
    		struct binder_buffer *next = binder_buffer_next(buffer);
    
    		if (next->free) {
    			rb_erase(&next->rb_node, &alloc->free_buffers);
    			binder_delete_free_buffer(alloc, next);
    		}
    	}
    	if (alloc->buffers.next != &buffer->entry) {
    		struct binder_buffer *prev = binder_buffer_prev(buffer);
    
    		if (prev->free) {
    			binder_delete_free_buffer(alloc, buffer);
    			rb_erase(&prev->rb_node, &alloc->free_buffers);
    			buffer = prev;
    		}
    	}
    	binder_insert_free_buffer(alloc, buffer);
    }
    
    /**
     * binder_alloc_free_buf() - free a binder buffer
     * @alloc:	binder_alloc for this proc
     * @buffer:	kernel pointer to buffer
     *
     * Free the buffer allocated via binder_alloc_new_buffer()
     */
    void binder_alloc_free_buf(struct binder_alloc *alloc,
    			    struct binder_buffer *buffer)
    {
    	mutex_lock(&alloc->mutex);
    	binder_free_buf_locked(alloc, buffer);
    	mutex_unlock(&alloc->mutex);
    }
    
    /**
     * binder_alloc_mmap_handler() - map virtual address space for proc
     * @alloc:	alloc structure for this proc
     * @vma:	vma passed to mmap()
     *
     * Called by binder_mmap() to initialize the space specified in
     * vma for allocating binder buffers
     *
     * Return:
     *      0 = success
     *      -EBUSY = address space already mapped
     *      -ENOMEM = failed to map memory to given address space
     */
    int binder_alloc_mmap_handler(struct binder_alloc *alloc,
    			      struct vm_area_struct *vma)
    {
    	int ret;
    	struct vm_struct *area;
    	const char *failure_string;
    	struct binder_buffer *buffer;
    
    	mutex_lock(&binder_alloc_mmap_lock);
    	if (alloc->buffer) {
    		ret = -EBUSY;
    		failure_string = "already mapped";
    		goto err_already_mapped;
    	}
    
    	area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP);
    	if (area == NULL) {
    		ret = -ENOMEM;
    		failure_string = "get_vm_area";
    		goto err_get_vm_area_failed;
    	}
    	alloc->buffer = area->addr;
    	alloc->user_buffer_offset =
    		vma->vm_start - (uintptr_t)alloc->buffer;
    	mutex_unlock(&binder_alloc_mmap_lock);
    
    #ifdef CONFIG_CPU_CACHE_VIPT
    	if (cache_is_vipt_aliasing()) {
    		while (CACHE_COLOUR(
    				(vma->vm_start ^ (uint32_t)alloc->buffer))) {
    			pr_info("%s: %d %lx-%lx maps %pK bad alignment\n",
    				__func__, alloc->pid, vma->vm_start,
    				vma->vm_end, alloc->buffer);
    			vma->vm_start += PAGE_SIZE;
    		}
    	}
    #endif
    	alloc->pages = kzalloc(sizeof(alloc->pages[0]) *
    				   ((vma->vm_end - vma->vm_start) / PAGE_SIZE),
    			       GFP_KERNEL);
    	if (alloc->pages == NULL) {
    		ret = -ENOMEM;
    		failure_string = "alloc page array";
    		goto err_alloc_pages_failed;
    	}
    	alloc->buffer_size = vma->vm_end - vma->vm_start;
    
    	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
    	if (!buffer) {
    		ret = -ENOMEM;
    		failure_string = "alloc buffer struct";
    		goto err_alloc_buf_struct_failed;
    	}
    
    	buffer->data = alloc->buffer;
    	list_add(&buffer->entry, &alloc->buffers);
    	buffer->free = 1;
    	binder_insert_free_buffer(alloc, buffer);
    	alloc->free_async_space = alloc->buffer_size / 2;
    	barrier();
    	alloc->vma = vma;
    	alloc->vma_vm_mm = vma->vm_mm;
    	mmgrab(alloc->vma_vm_mm);
    
    	return 0;
    
    err_alloc_buf_struct_failed:
    	kfree(alloc->pages);
    	alloc->pages = NULL;
    err_alloc_pages_failed:
    	mutex_lock(&binder_alloc_mmap_lock);
    	vfree(alloc->buffer);
    	alloc->buffer = NULL;
    err_get_vm_area_failed:
    err_already_mapped:
    	mutex_unlock(&binder_alloc_mmap_lock);
    	pr_err("%s: %d %lx-%lx %s failed %d\n", __func__,
    	       alloc->pid, vma->vm_start, vma->vm_end, failure_string, ret);
    	return ret;
    }
    
    
    void binder_alloc_deferred_release(struct binder_alloc *alloc)
    {
    	struct rb_node *n;
    	int buffers, page_count;
    	struct binder_buffer *buffer;
    
    	BUG_ON(alloc->vma);
    
    	buffers = 0;
    	mutex_lock(&alloc->mutex);
    	while ((n = rb_first(&alloc->allocated_buffers))) {
    		buffer = rb_entry(n, struct binder_buffer, rb_node);
    
    		/* Transaction should already have been freed */
    		BUG_ON(buffer->transaction);
    
    		binder_free_buf_locked(alloc, buffer);
    		buffers++;
    	}
    
    	while (!list_empty(&alloc->buffers)) {
    		buffer = list_first_entry(&alloc->buffers,
    					  struct binder_buffer, entry);
    		WARN_ON(!buffer->free);
    
    		list_del(&buffer->entry);
    		WARN_ON_ONCE(!list_empty(&alloc->buffers));
    		kfree(buffer);
    	}
    
    	page_count = 0;
    	if (alloc->pages) {
    		int i;
    
    		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
    			void *page_addr;
    			bool on_lru;
    
    			if (!alloc->pages[i].page_ptr)
    				continue;
    
    			on_lru = list_lru_del(&binder_alloc_lru,
    					      &alloc->pages[i].lru);
    			page_addr = alloc->buffer + i * PAGE_SIZE;
    			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
    				     "%s: %d: page %d at %pK %s\n",
    				     __func__, alloc->pid, i, page_addr,
    				     on_lru ? "on lru" : "active");
    			unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
    			__free_page(alloc->pages[i].page_ptr);
    			page_count++;
    		}
    		kfree(alloc->pages);
    		vfree(alloc->buffer);
    	}
    	mutex_unlock(&alloc->mutex);
    	if (alloc->vma_vm_mm)
    		mmdrop(alloc->vma_vm_mm);
    
    	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
    		     "%s: %d buffers %d, pages %d\n",
    		     __func__, alloc->pid, buffers, page_count);
    }
    
    static void print_binder_buffer(struct seq_file *m, const char *prefix,
    				struct binder_buffer *buffer)
    {
    	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
    		   prefix, buffer->debug_id, buffer->data,
    		   buffer->data_size, buffer->offsets_size,
    		   buffer->extra_buffers_size,
    		   buffer->transaction ? "active" : "delivered");
    }
    
    /**
     * binder_alloc_print_allocated() - print buffer info
     * @m:     seq_file for output via seq_printf()
     * @alloc: binder_alloc for this proc
     *
     * Prints information about every buffer associated with
     * the binder_alloc state to the given seq_file
     */
    void binder_alloc_print_allocated(struct seq_file *m,
    				  struct binder_alloc *alloc)
    {
    	struct rb_node *n;
    
    	mutex_lock(&alloc->mutex);
    	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
    		print_binder_buffer(m, "  buffer",
    				    rb_entry(n, struct binder_buffer, rb_node));
    	mutex_unlock(&alloc->mutex);
    }
    
    /**
     * binder_alloc_print_pages() - print page usage
     * @m:     seq_file for output via seq_printf()
     * @alloc: binder_alloc for this proc
     */
    void binder_alloc_print_pages(struct seq_file *m,
    			      struct binder_alloc *alloc)
    {
    	struct binder_lru_page *page;
    	int i;
    	int active = 0;
    	int lru = 0;
    	int free = 0;
    
    	mutex_lock(&alloc->mutex);
    	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
    		page = &alloc->pages[i];
    		if (!page->page_ptr)
    			free++;
    		else if (list_empty(&page->lru))
    			active++;
    		else
    			lru++;
    	}
    	mutex_unlock(&alloc->mutex);
    	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
    }
    
    /**
     * binder_alloc_get_allocated_count() - return count of buffers
     * @alloc: binder_alloc for this proc
     *
     * Return: count of allocated buffers
     */
    int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
    {
    	struct rb_node *n;
    	int count = 0;
    
    	mutex_lock(&alloc->mutex);
    	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
    		count++;
    	mutex_unlock(&alloc->mutex);
    	return count;
    }
    
    
    /**
     * binder_alloc_vma_close() - invalidate address space
     * @alloc: binder_alloc for this proc
     *
     * Called from binder_vma_close() when releasing address space.
     * Clears alloc->vma to prevent new incoming transactions from
     * allocating more buffers.
     */
    void binder_alloc_vma_close(struct binder_alloc *alloc)
    {
    	WRITE_ONCE(alloc->vma, NULL);
    }
    
    /**
     * binder_alloc_free_page() - shrinker callback to free pages
     * @item:   item to free
     * @lock:   lock protecting the item
     * @cb_arg: callback argument
     *
     * Called from list_lru_walk() in binder_shrink_scan() to free
     * up pages when the system is under memory pressure.
     */
    enum lru_status binder_alloc_free_page(struct list_head *item,
    				       struct list_lru_one *lru,
    				       spinlock_t *lock,
    				       void *cb_arg)
    {
    	struct mm_struct *mm = NULL;
    	struct binder_lru_page *page = container_of(item,
    						    struct binder_lru_page,
    						    lru);
    	struct binder_alloc *alloc;
    	uintptr_t page_addr;
    	size_t index;
    	struct vm_area_struct *vma;
    
    	alloc = page->alloc;
    	if (!mutex_trylock(&alloc->mutex))
    		goto err_get_alloc_mutex_failed;
    
    	if (!page->page_ptr)
    		goto err_page_already_freed;
    
    	index = page - alloc->pages;
    	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
    	vma = alloc->vma;
    	if (vma) {
    		if (!mmget_not_zero(alloc->vma_vm_mm))
    			goto err_mmget;
    		mm = alloc->vma_vm_mm;
    		if (!down_write_trylock(&mm->mmap_sem))
    			goto err_down_write_mmap_sem_failed;
    	}
    
    	list_lru_isolate(lru, item);
    	spin_unlock(lock);
    
    	if (vma) {
    		trace_binder_unmap_user_start(alloc, index);
    
    		zap_page_range(vma,
    			       page_addr + alloc->user_buffer_offset,
    			       PAGE_SIZE);
    
    		trace_binder_unmap_user_end(alloc, index);
    
    		up_write(&mm->mmap_sem);
    		mmput(mm);
    	}
    
    	trace_binder_unmap_kernel_start(alloc, index);
    
    	unmap_kernel_range(page_addr, PAGE_SIZE);
    	__free_page(page->page_ptr);
    	page->page_ptr = NULL;
    
    	trace_binder_unmap_kernel_end(alloc, index);
    
    	spin_lock(lock);
    	mutex_unlock(&alloc->mutex);
    	return LRU_REMOVED_RETRY;
    
    err_down_write_mmap_sem_failed:
    	mmput_async(mm);
    err_mmget:
    err_page_already_freed:
    	mutex_unlock(&alloc->mutex);
    err_get_alloc_mutex_failed:
    	return LRU_SKIP;
    }
    
    static unsigned long
    binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
    {
    	unsigned long ret = list_lru_count(&binder_alloc_lru);
    	return ret;
    }
    
    static unsigned long
    binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
    {
    	unsigned long ret;
    
    	ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
    			    NULL, sc->nr_to_scan);
    	return ret;
    }
    
    struct shrinker binder_shrinker = {
    	.count_objects = binder_shrink_count,
    	.scan_objects = binder_shrink_scan,
    	.seeks = DEFAULT_SEEKS,
    };
    
    /**
     * binder_alloc_init() - called by binder_open() for per-proc initialization
     * @alloc: binder_alloc for this proc
     *
     * Called from binder_open() to initialize binder_alloc fields for
     * new binder proc
     */
    void binder_alloc_init(struct binder_alloc *alloc)
    {
    	alloc->pid = current->group_leader->pid;
    	mutex_init(&alloc->mutex);
    	INIT_LIST_HEAD(&alloc->buffers);
    }
    
    void binder_alloc_shrinker_init(void)
    {
    	list_lru_init(&binder_alloc_lru);
    	register_shrinker(&binder_shrinker);
    }