Skip to content
Snippets Groups Projects
Select Git revision
  • ae4806a38bc8db0b48e746445c41afd249568d68
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

at24.c

Blame
  • at24.c 25.80 KiB
    /*
     * at24.c - handle most I2C EEPROMs
     *
     * Copyright (C) 2005-2007 David Brownell
     * Copyright (C) 2008 Wolfram Sang, Pengutronix
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     */
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/of_device.h>
    #include <linux/slab.h>
    #include <linux/delay.h>
    #include <linux/mutex.h>
    #include <linux/mod_devicetable.h>
    #include <linux/log2.h>
    #include <linux/bitops.h>
    #include <linux/jiffies.h>
    #include <linux/property.h>
    #include <linux/acpi.h>
    #include <linux/i2c.h>
    #include <linux/nvmem-provider.h>
    #include <linux/platform_data/at24.h>
    #include <linux/pm_runtime.h>
    
    /*
     * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
     * Differences between different vendor product lines (like Atmel AT24C or
     * MicroChip 24LC, etc) won't much matter for typical read/write access.
     * There are also I2C RAM chips, likewise interchangeable. One example
     * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
     *
     * However, misconfiguration can lose data. "Set 16-bit memory address"
     * to a part with 8-bit addressing will overwrite data. Writing with too
     * big a page size also loses data. And it's not safe to assume that the
     * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
     * uses 0x51, for just one example.
     *
     * Accordingly, explicit board-specific configuration data should be used
     * in almost all cases. (One partial exception is an SMBus used to access
     * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
     *
     * So this driver uses "new style" I2C driver binding, expecting to be
     * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
     * similar kernel-resident tables; or, configuration data coming from
     * a bootloader.
     *
     * Other than binding model, current differences from "eeprom" driver are
     * that this one handles write access and isn't restricted to 24c02 devices.
     * It also handles larger devices (32 kbit and up) with two-byte addresses,
     * which won't work on pure SMBus systems.
     */
    
    struct at24_data {
    	struct at24_platform_data chip;
    	int use_smbus;
    	int use_smbus_write;
    
    	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
    	ssize_t (*write_func)(struct at24_data *,
    			      const char *, unsigned int, size_t);
    
    	/*
    	 * Lock protects against activities from other Linux tasks,
    	 * but not from changes by other I2C masters.
    	 */
    	struct mutex lock;
    
    	u8 *writebuf;
    	unsigned write_max;
    	unsigned num_addresses;
    
    	struct nvmem_config nvmem_config;
    	struct nvmem_device *nvmem;
    
    	/*
    	 * Some chips tie up multiple I2C addresses; dummy devices reserve
    	 * them for us, and we'll use them with SMBus calls.
    	 */
    	struct i2c_client *client[];
    };
    
    /*
     * This parameter is to help this driver avoid blocking other drivers out
     * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
     * clock, one 256 byte read takes about 1/43 second which is excessive;
     * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
     * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
     *
     * This value is forced to be a power of two so that writes align on pages.
     */
    static unsigned io_limit = 128;
    module_param(io_limit, uint, 0);
    MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
    
    /*
     * Specs often allow 5 msec for a page write, sometimes 20 msec;
     * it's important to recover from write timeouts.
     */
    static unsigned write_timeout = 25;
    module_param(write_timeout, uint, 0);
    MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
    
    #define AT24_SIZE_BYTELEN 5
    #define AT24_SIZE_FLAGS 8
    
    #define AT24_BITMASK(x) (BIT(x) - 1)
    
    /* create non-zero magic value for given eeprom parameters */
    #define AT24_DEVICE_MAGIC(_len, _flags) 		\
    	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
    	    << AT24_SIZE_BYTELEN | ilog2(_len))
    
    /*
     * Both reads and writes fail if the previous write didn't complete yet. This
     * macro loops a few times waiting at least long enough for one entire page
     * write to work while making sure that at least one iteration is run before
     * checking the break condition.
     *
     * It takes two parameters: a variable in which the future timeout in jiffies
     * will be stored and a temporary variable holding the time of the last
     * iteration of processing the request. Both should be unsigned integers
     * holding at least 32 bits.
     */
    #define loop_until_timeout(tout, op_time)				\
    	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
    	     op_time ? time_before(op_time, tout) : true;		\
    	     usleep_range(1000, 1500), op_time = jiffies)
    
    static const struct i2c_device_id at24_ids[] = {
    	/* needs 8 addresses as A0-A2 are ignored */
    	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
    	/* old variants can't be handled with this generic entry! */
    	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
    	{ "24cs01",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
    	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
    	{ "24cs02",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
    	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
    				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
    	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
    				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
    	/* spd is a 24c02 in memory DIMMs */
    	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
    				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
    	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
    	{ "24cs04",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
    	/* 24rf08 quirk is handled at i2c-core */
    	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
    	{ "24cs08",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
    	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
    	{ "24cs16",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
    	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
    	{ "24cs32",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_ADDR16 |
    				AT24_FLAG_SERIAL |
    				AT24_FLAG_READONLY) },
    	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
    	{ "24cs64",	AT24_DEVICE_MAGIC(16,
    				AT24_FLAG_ADDR16 |
    				AT24_FLAG_SERIAL |
    				AT24_FLAG_READONLY) },
    	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
    	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
    	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
    	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
    	{ "at24", 0 },
    	{ /* END OF LIST */ }
    };
    MODULE_DEVICE_TABLE(i2c, at24_ids);
    
    static const struct of_device_id at24_of_match[] = {
    	{
    		.compatible = "atmel,24c00",
    		.data = (void *)AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR)
    	},
    	{
    		.compatible = "atmel,24c01",
    		.data = (void *)AT24_DEVICE_MAGIC(1024 / 8, 0)
    	},
    	{
    		.compatible = "atmel,24c02",
    		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8, 0)
    	},
    	{
    		.compatible = "atmel,spd",
    		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8,
    				AT24_FLAG_READONLY | AT24_FLAG_IRUGO)
    	},
    	{
    		.compatible = "atmel,24c04",
    		.data = (void *)AT24_DEVICE_MAGIC(4096 / 8, 0)
    	},
    	{
    		.compatible = "atmel,24c08",
    		.data = (void *)AT24_DEVICE_MAGIC(8192 / 8, 0)
    	},
    	{
    		.compatible = "atmel,24c16",
    		.data = (void *)AT24_DEVICE_MAGIC(16384 / 8, 0)
    	},
    	{
    		.compatible = "atmel,24c32",
    		.data = (void *)AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16)
    	},
    	{
    		.compatible = "atmel,24c64",
    		.data = (void *)AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16)
    	},
    	{
    		.compatible = "atmel,24c128",
    		.data = (void *)AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16)
    	},
    	{
    		.compatible = "atmel,24c256",
    		.data = (void *)AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16)
    	},
    	{
    		.compatible = "atmel,24c512",
    		.data = (void *)AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16)
    	},
    	{
    		.compatible = "atmel,24c1024",
    		.data = (void *)AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16)
    	},
    	{ },
    };
    MODULE_DEVICE_TABLE(of, at24_of_match);
    
    static const struct acpi_device_id at24_acpi_ids[] = {
    	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
    	{ }
    };
    MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
    
    /*-------------------------------------------------------------------------*/
    
    /*
     * This routine supports chips which consume multiple I2C addresses. It
     * computes the addressing information to be used for a given r/w request.
     * Assumes that sanity checks for offset happened at sysfs-layer.
     *
     * Slave address and byte offset derive from the offset. Always
     * set the byte address; on a multi-master board, another master
     * may have changed the chip's "current" address pointer.
     *
     * REVISIT some multi-address chips don't rollover page reads to
     * the next slave address, so we may need to truncate the count.
     * Those chips might need another quirk flag.
     *
     * If the real hardware used four adjacent 24c02 chips and that
     * were misconfigured as one 24c08, that would be a similar effect:
     * one "eeprom" file not four, but larger reads would fail when
     * they crossed certain pages.
     */
    static struct i2c_client *at24_translate_offset(struct at24_data *at24,
    						unsigned int *offset)
    {
    	unsigned i;
    
    	if (at24->chip.flags & AT24_FLAG_ADDR16) {
    		i = *offset >> 16;
    		*offset &= 0xffff;
    	} else {
    		i = *offset >> 8;
    		*offset &= 0xff;
    	}
    
    	return at24->client[i];
    }
    
    static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
    				      unsigned int offset, size_t count)
    {
    	unsigned long timeout, read_time;
    	struct i2c_client *client;
    	int status;
    
    	client = at24_translate_offset(at24, &offset);
    
    	if (count > io_limit)
    		count = io_limit;
    
    	/* Smaller eeproms can work given some SMBus extension calls */
    	if (count > I2C_SMBUS_BLOCK_MAX)
    		count = I2C_SMBUS_BLOCK_MAX;
    
    	loop_until_timeout(timeout, read_time) {
    		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
    								   offset,
    								   count, buf);
    
    		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
    				count, offset, status, jiffies);
    
    		if (status == count)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
    				    unsigned int offset, size_t count)
    {
    	unsigned long timeout, read_time;
    	struct i2c_client *client;
    	struct i2c_msg msg[2];
    	int status, i;
    	u8 msgbuf[2];
    
    	memset(msg, 0, sizeof(msg));
    	client = at24_translate_offset(at24, &offset);
    
    	if (count > io_limit)
    		count = io_limit;
    
    	/*
    	 * When we have a better choice than SMBus calls, use a combined I2C
    	 * message. Write address; then read up to io_limit data bytes. Note
    	 * that read page rollover helps us here (unlike writes). msgbuf is
    	 * u8 and will cast to our needs.
    	 */
    	i = 0;
    	if (at24->chip.flags & AT24_FLAG_ADDR16)
    		msgbuf[i++] = offset >> 8;
    	msgbuf[i++] = offset;
    
    	msg[0].addr = client->addr;
    	msg[0].buf = msgbuf;
    	msg[0].len = i;
    
    	msg[1].addr = client->addr;
    	msg[1].flags = I2C_M_RD;
    	msg[1].buf = buf;
    	msg[1].len = count;
    
    	loop_until_timeout(timeout, read_time) {
    		status = i2c_transfer(client->adapter, msg, 2);
    		if (status == 2)
    			status = count;
    
    		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
    				count, offset, status, jiffies);
    
    		if (status == count)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
    				       unsigned int offset, size_t count)
    {
    	unsigned long timeout, read_time;
    	struct i2c_client *client;
    	struct i2c_msg msg[2];
    	u8 addrbuf[2];
    	int status;
    
    	client = at24_translate_offset(at24, &offset);
    
    	memset(msg, 0, sizeof(msg));
    	msg[0].addr = client->addr;
    	msg[0].buf = addrbuf;
    
    	/*
    	 * The address pointer of the device is shared between the regular
    	 * EEPROM array and the serial number block. The dummy write (part of
    	 * the sequential read protocol) ensures the address pointer is reset
    	 * to the desired position.
    	 */
    	if (at24->chip.flags & AT24_FLAG_ADDR16) {
    		/*
    		 * For 16 bit address pointers, the word address must contain
    		 * a '10' sequence in bits 11 and 10 regardless of the
    		 * intended position of the address pointer.
    		 */
    		addrbuf[0] = 0x08;
    		addrbuf[1] = offset;
    		msg[0].len = 2;
    	} else {
    		/*
    		 * Otherwise the word address must begin with a '10' sequence,
    		 * regardless of the intended address.
    		 */
    		addrbuf[0] = 0x80 + offset;
    		msg[0].len = 1;
    	}
    
    	msg[1].addr = client->addr;
    	msg[1].flags = I2C_M_RD;
    	msg[1].buf = buf;
    	msg[1].len = count;
    
    	loop_until_timeout(timeout, read_time) {
    		status = i2c_transfer(client->adapter, msg, 2);
    		if (status == 2)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
    				    unsigned int offset, size_t count)
    {
    	unsigned long timeout, read_time;
    	struct i2c_client *client;
    	struct i2c_msg msg[2];
    	u8 addrbuf[2];
    	int status;
    
    	client = at24_translate_offset(at24, &offset);
    
    	memset(msg, 0, sizeof(msg));
    	msg[0].addr = client->addr;
    	msg[0].buf = addrbuf;
    	/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
    	addrbuf[0] = 0xa0 - at24->chip.byte_len + offset;
    	msg[0].len = 1;
    	msg[1].addr = client->addr;
    	msg[1].flags = I2C_M_RD;
    	msg[1].buf = buf;
    	msg[1].len = count;
    
    	loop_until_timeout(timeout, read_time) {
    		status = i2c_transfer(client->adapter, msg, 2);
    		if (status == 2)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    /*
     * Note that if the hardware write-protect pin is pulled high, the whole
     * chip is normally write protected. But there are plenty of product
     * variants here, including OTP fuses and partial chip protect.
     *
     * We only use page mode writes; the alternative is sloooow. These routines
     * write at most one page.
     */
    
    static size_t at24_adjust_write_count(struct at24_data *at24,
    				      unsigned int offset, size_t count)
    {
    	unsigned next_page;
    
    	/* write_max is at most a page */
    	if (count > at24->write_max)
    		count = at24->write_max;
    
    	/* Never roll over backwards, to the start of this page */
    	next_page = roundup(offset + 1, at24->chip.page_size);
    	if (offset + count > next_page)
    		count = next_page - offset;
    
    	return count;
    }
    
    static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
    					     const char *buf,
    					     unsigned int offset, size_t count)
    {
    	unsigned long timeout, write_time;
    	struct i2c_client *client;
    	ssize_t status = 0;
    
    	client = at24_translate_offset(at24, &offset);
    	count = at24_adjust_write_count(at24, offset, count);
    
    	loop_until_timeout(timeout, write_time) {
    		status = i2c_smbus_write_i2c_block_data(client,
    							offset, count, buf);
    		if (status == 0)
    			status = count;
    
    		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
    				count, offset, status, jiffies);
    
    		if (status == count)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
    					    const char *buf,
    					    unsigned int offset, size_t count)
    {
    	unsigned long timeout, write_time;
    	struct i2c_client *client;
    	ssize_t status = 0;
    
    	client = at24_translate_offset(at24, &offset);
    
    	loop_until_timeout(timeout, write_time) {
    		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
    		if (status == 0)
    			status = count;
    
    		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
    				count, offset, status, jiffies);
    
    		if (status == count)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
    				     unsigned int offset, size_t count)
    {
    	unsigned long timeout, write_time;
    	struct i2c_client *client;
    	struct i2c_msg msg;
    	ssize_t status = 0;
    	int i = 0;
    
    	client = at24_translate_offset(at24, &offset);
    	count = at24_adjust_write_count(at24, offset, count);
    
    	msg.addr = client->addr;
    	msg.flags = 0;
    
    	/* msg.buf is u8 and casts will mask the values */
    	msg.buf = at24->writebuf;
    	if (at24->chip.flags & AT24_FLAG_ADDR16)
    		msg.buf[i++] = offset >> 8;
    
    	msg.buf[i++] = offset;
    	memcpy(&msg.buf[i], buf, count);
    	msg.len = i + count;
    
    	loop_until_timeout(timeout, write_time) {
    		status = i2c_transfer(client->adapter, &msg, 1);
    		if (status == 1)
    			status = count;
    
    		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
    				count, offset, status, jiffies);
    
    		if (status == count)
    			return count;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static int at24_read(void *priv, unsigned int off, void *val, size_t count)
    {
    	struct at24_data *at24 = priv;
    	struct i2c_client *client;
    	char *buf = val;
    	int ret;
    
    	if (unlikely(!count))
    		return count;
    
    	if (off + count > at24->chip.byte_len)
    		return -EINVAL;
    
    	client = at24_translate_offset(at24, &off);
    
    	ret = pm_runtime_get_sync(&client->dev);
    	if (ret < 0) {
    		pm_runtime_put_noidle(&client->dev);
    		return ret;
    	}
    
    	/*
    	 * Read data from chip, protecting against concurrent updates
    	 * from this host, but not from other I2C masters.
    	 */
    	mutex_lock(&at24->lock);
    
    	while (count) {
    		int	status;
    
    		status = at24->read_func(at24, buf, off, count);
    		if (status < 0) {
    			mutex_unlock(&at24->lock);
    			pm_runtime_put(&client->dev);
    			return status;
    		}
    		buf += status;
    		off += status;
    		count -= status;
    	}
    
    	mutex_unlock(&at24->lock);
    
    	pm_runtime_put(&client->dev);
    
    	return 0;
    }
    
    static int at24_write(void *priv, unsigned int off, void *val, size_t count)
    {
    	struct at24_data *at24 = priv;
    	struct i2c_client *client;
    	char *buf = val;
    	int ret;
    
    	if (unlikely(!count))
    		return -EINVAL;
    
    	if (off + count > at24->chip.byte_len)
    		return -EINVAL;
    
    	client = at24_translate_offset(at24, &off);
    
    	ret = pm_runtime_get_sync(&client->dev);
    	if (ret < 0) {
    		pm_runtime_put_noidle(&client->dev);
    		return ret;
    	}
    
    	/*
    	 * Write data to chip, protecting against concurrent updates
    	 * from this host, but not from other I2C masters.
    	 */
    	mutex_lock(&at24->lock);
    
    	while (count) {
    		int status;
    
    		status = at24->write_func(at24, buf, off, count);
    		if (status < 0) {
    			mutex_unlock(&at24->lock);
    			pm_runtime_put(&client->dev);
    			return status;
    		}
    		buf += status;
    		off += status;
    		count -= status;
    	}
    
    	mutex_unlock(&at24->lock);
    
    	pm_runtime_put(&client->dev);
    
    	return 0;
    }
    
    static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
    {
    	int err;
    	u32 val;
    
    	if (device_property_present(dev, "read-only"))
    		chip->flags |= AT24_FLAG_READONLY;
    
    	err = device_property_read_u32(dev, "size", &val);
    	if (!err)
    		chip->byte_len = val;
    
    	err = device_property_read_u32(dev, "pagesize", &val);
    	if (!err) {
    		chip->page_size = val;
    	} else {
    		/*
    		 * This is slow, but we can't know all eeproms, so we better
    		 * play safe. Specifying custom eeprom-types via platform_data
    		 * is recommended anyhow.
    		 */
    		chip->page_size = 1;
    	}
    }
    
    static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
    {
    	struct at24_platform_data chip;
    	kernel_ulong_t magic = 0;
    	bool writable;
    	int use_smbus = 0;
    	int use_smbus_write = 0;
    	struct at24_data *at24;
    	int err;
    	unsigned i, num_addresses;
    	u8 test_byte;
    
    	if (client->dev.platform_data) {
    		chip = *(struct at24_platform_data *)client->dev.platform_data;
    	} else {
    		/*
    		 * The I2C core allows OF nodes compatibles to match against the
    		 * I2C device ID table as a fallback, so check not only if an OF
    		 * node is present but also if it matches an OF device ID entry.
    		 */
    		if (client->dev.of_node &&
    		    of_match_device(at24_of_match, &client->dev)) {
    			magic = (kernel_ulong_t)
    				of_device_get_match_data(&client->dev);
    		} else if (id) {
    			magic = id->driver_data;
    		} else {
    			const struct acpi_device_id *aid;
    
    			aid = acpi_match_device(at24_acpi_ids, &client->dev);
    			if (aid)
    				magic = aid->driver_data;
    		}
    		if (!magic)
    			return -ENODEV;
    
    		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
    		magic >>= AT24_SIZE_BYTELEN;
    		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
    
    		at24_get_pdata(&client->dev, &chip);
    
    		chip.setup = NULL;
    		chip.context = NULL;
    	}
    
    	if (!is_power_of_2(chip.byte_len))
    		dev_warn(&client->dev,
    			"byte_len looks suspicious (no power of 2)!\n");
    	if (!chip.page_size) {
    		dev_err(&client->dev, "page_size must not be 0!\n");
    		return -EINVAL;
    	}
    	if (!is_power_of_2(chip.page_size))
    		dev_warn(&client->dev,
    			"page_size looks suspicious (no power of 2)!\n");
    
    	/*
    	 * REVISIT: the size of the EUI-48 byte array is 6 in at24mac402, while
    	 * the call to ilog2() in AT24_DEVICE_MAGIC() rounds it down to 4.
    	 *
    	 * Eventually we'll get rid of the magic values altoghether in favor of
    	 * real structs, but for now just manually set the right size.
    	 */
    	if (chip.flags & AT24_FLAG_MAC && chip.byte_len == 4)
    		chip.byte_len = 6;
    
    	/* Use I2C operations unless we're stuck with SMBus extensions. */
    	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
    		if (chip.flags & AT24_FLAG_ADDR16)
    			return -EPFNOSUPPORT;
    
    		if (i2c_check_functionality(client->adapter,
    				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
    			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
    		} else if (i2c_check_functionality(client->adapter,
    				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
    			use_smbus = I2C_SMBUS_WORD_DATA;
    		} else if (i2c_check_functionality(client->adapter,
    				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
    			use_smbus = I2C_SMBUS_BYTE_DATA;
    		} else {
    			return -EPFNOSUPPORT;
    		}
    
    		if (i2c_check_functionality(client->adapter,
    				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
    			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
    		} else if (i2c_check_functionality(client->adapter,
    				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
    			use_smbus_write = I2C_SMBUS_BYTE_DATA;
    			chip.page_size = 1;
    		}
    	}
    
    	if (chip.flags & AT24_FLAG_TAKE8ADDR)
    		num_addresses = 8;
    	else
    		num_addresses =	DIV_ROUND_UP(chip.byte_len,
    			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
    
    	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
    		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
    	if (!at24)
    		return -ENOMEM;
    
    	mutex_init(&at24->lock);
    	at24->use_smbus = use_smbus;
    	at24->use_smbus_write = use_smbus_write;
    	at24->chip = chip;
    	at24->num_addresses = num_addresses;
    
    	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
    		dev_err(&client->dev,
    			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
    		return -EINVAL;
    	}
    
    	if (chip.flags & AT24_FLAG_SERIAL) {
    		at24->read_func = at24_eeprom_read_serial;
    	} else if (chip.flags & AT24_FLAG_MAC) {
    		at24->read_func = at24_eeprom_read_mac;
    	} else {
    		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
    						  : at24_eeprom_read_i2c;
    	}
    
    	if (at24->use_smbus) {
    		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
    			at24->write_func = at24_eeprom_write_smbus_block;
    		else
    			at24->write_func = at24_eeprom_write_smbus_byte;
    	} else {
    		at24->write_func = at24_eeprom_write_i2c;
    	}
    
    	writable = !(chip.flags & AT24_FLAG_READONLY);
    	if (writable) {
    		if (!use_smbus || use_smbus_write) {
    
    			unsigned write_max = chip.page_size;
    
    			if (write_max > io_limit)
    				write_max = io_limit;
    			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
    				write_max = I2C_SMBUS_BLOCK_MAX;
    			at24->write_max = write_max;
    
    			/* buffer (data + address at the beginning) */
    			at24->writebuf = devm_kzalloc(&client->dev,
    				write_max + 2, GFP_KERNEL);
    			if (!at24->writebuf)
    				return -ENOMEM;
    		} else {
    			dev_warn(&client->dev,
    				"cannot write due to controller restrictions.");
    		}
    	}
    
    	at24->client[0] = client;
    
    	/* use dummy devices for multiple-address chips */
    	for (i = 1; i < num_addresses; i++) {
    		at24->client[i] = i2c_new_dummy(client->adapter,
    					client->addr + i);
    		if (!at24->client[i]) {
    			dev_err(&client->dev, "address 0x%02x unavailable\n",
    					client->addr + i);
    			err = -EADDRINUSE;
    			goto err_clients;
    		}
    	}
    
    	i2c_set_clientdata(client, at24);
    
    	/* enable runtime pm */
    	pm_runtime_set_active(&client->dev);
    	pm_runtime_enable(&client->dev);
    
    	/*
    	 * Perform a one-byte test read to verify that the
    	 * chip is functional.
    	 */
    	err = at24_read(at24, 0, &test_byte, 1);
    	pm_runtime_idle(&client->dev);
    	if (err) {
    		err = -ENODEV;
    		goto err_clients;
    	}
    
    	at24->nvmem_config.name = dev_name(&client->dev);
    	at24->nvmem_config.dev = &client->dev;
    	at24->nvmem_config.read_only = !writable;
    	at24->nvmem_config.root_only = true;
    	at24->nvmem_config.owner = THIS_MODULE;
    	at24->nvmem_config.compat = true;
    	at24->nvmem_config.base_dev = &client->dev;
    	at24->nvmem_config.reg_read = at24_read;
    	at24->nvmem_config.reg_write = at24_write;
    	at24->nvmem_config.priv = at24;
    	at24->nvmem_config.stride = 4;
    	at24->nvmem_config.word_size = 1;
    	at24->nvmem_config.size = chip.byte_len;
    
    	at24->nvmem = nvmem_register(&at24->nvmem_config);
    
    	if (IS_ERR(at24->nvmem)) {
    		err = PTR_ERR(at24->nvmem);
    		goto err_clients;
    	}
    
    	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
    		chip.byte_len, client->name,
    		writable ? "writable" : "read-only", at24->write_max);
    	if (use_smbus == I2C_SMBUS_WORD_DATA ||
    	    use_smbus == I2C_SMBUS_BYTE_DATA) {
    		dev_notice(&client->dev, "Falling back to %s reads, "
    			   "performance will suffer\n", use_smbus ==
    			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
    	}
    
    	/* export data to kernel code */
    	if (chip.setup)
    		chip.setup(at24->nvmem, chip.context);
    
    	return 0;
    
    err_clients:
    	for (i = 1; i < num_addresses; i++)
    		if (at24->client[i])
    			i2c_unregister_device(at24->client[i]);
    
    	pm_runtime_disable(&client->dev);
    
    	return err;
    }
    
    static int at24_remove(struct i2c_client *client)
    {
    	struct at24_data *at24;
    	int i;
    
    	at24 = i2c_get_clientdata(client);
    
    	nvmem_unregister(at24->nvmem);
    
    	for (i = 1; i < at24->num_addresses; i++)
    		i2c_unregister_device(at24->client[i]);
    
    	pm_runtime_disable(&client->dev);
    	pm_runtime_set_suspended(&client->dev);
    
    	return 0;
    }
    
    /*-------------------------------------------------------------------------*/
    
    static struct i2c_driver at24_driver = {
    	.driver = {
    		.name = "at24",
    		.of_match_table = at24_of_match,
    		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
    	},
    	.probe = at24_probe,
    	.remove = at24_remove,
    	.id_table = at24_ids,
    };
    
    static int __init at24_init(void)
    {
    	if (!io_limit) {
    		pr_err("at24: io_limit must not be 0!\n");
    		return -EINVAL;
    	}
    
    	io_limit = rounddown_pow_of_two(io_limit);
    	return i2c_add_driver(&at24_driver);
    }
    module_init(at24_init);
    
    static void __exit at24_exit(void)
    {
    	i2c_del_driver(&at24_driver);
    }
    module_exit(at24_exit);
    
    MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
    MODULE_AUTHOR("David Brownell and Wolfram Sang");
    MODULE_LICENSE("GPL");