Skip to content
Snippets Groups Projects
Select Git revision
  • b6e03c10bf3ff08c7678a946a2208b60e66f4426
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

xfs_super.c

Blame
  • user avatar
    Darrick J. Wong authored
    Now that reflink is no longer experimental, reject attempts to mount
    with DAX until that whole mess gets sorted out.
    
    Signed-off-by: default avatarDarrick J. Wong <darrick.wong@oracle.com>
    Reviewed-by: default avatarBill O'Donnell <billodo@redhat.com>
    Reviewed-by: default avatarDave Chinner <dchinner@redhat.com>
    b6e03c10
    History
    xfs_super.c 54.97 KiB
    /*
     * Copyright (c) 2000-2006 Silicon Graphics, Inc.
     * All Rights Reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it would be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write the Free Software Foundation,
     * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
     */
    
    #include "xfs.h"
    #include "xfs_shared.h"
    #include "xfs_format.h"
    #include "xfs_log_format.h"
    #include "xfs_trans_resv.h"
    #include "xfs_sb.h"
    #include "xfs_mount.h"
    #include "xfs_da_format.h"
    #include "xfs_inode.h"
    #include "xfs_btree.h"
    #include "xfs_bmap.h"
    #include "xfs_alloc.h"
    #include "xfs_error.h"
    #include "xfs_fsops.h"
    #include "xfs_trans.h"
    #include "xfs_buf_item.h"
    #include "xfs_log.h"
    #include "xfs_log_priv.h"
    #include "xfs_da_btree.h"
    #include "xfs_dir2.h"
    #include "xfs_extfree_item.h"
    #include "xfs_mru_cache.h"
    #include "xfs_inode_item.h"
    #include "xfs_icache.h"
    #include "xfs_trace.h"
    #include "xfs_icreate_item.h"
    #include "xfs_filestream.h"
    #include "xfs_quota.h"
    #include "xfs_sysfs.h"
    #include "xfs_ondisk.h"
    #include "xfs_rmap_item.h"
    #include "xfs_refcount_item.h"
    #include "xfs_bmap_item.h"
    #include "xfs_reflink.h"
    
    #include <linux/namei.h>
    #include <linux/dax.h>
    #include <linux/init.h>
    #include <linux/slab.h>
    #include <linux/mount.h>
    #include <linux/mempool.h>
    #include <linux/writeback.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/parser.h>
    
    static const struct super_operations xfs_super_operations;
    struct bio_set *xfs_ioend_bioset;
    
    static struct kset *xfs_kset;		/* top-level xfs sysfs dir */
    #ifdef DEBUG
    static struct xfs_kobj xfs_dbg_kobj;	/* global debug sysfs attrs */
    #endif
    
    /*
     * Table driven mount option parser.
     */
    enum {
    	Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_biosize,
    	Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
    	Opt_mtpt, Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
    	Opt_allocsize, Opt_norecovery, Opt_barrier, Opt_nobarrier,
    	Opt_inode64, Opt_inode32, Opt_ikeep, Opt_noikeep,
    	Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, Opt_filestreams,
    	Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, Opt_prjquota,
    	Opt_uquota, Opt_gquota, Opt_pquota,
    	Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
    	Opt_discard, Opt_nodiscard, Opt_dax, Opt_err,
    };
    
    static const match_table_t tokens = {
    	{Opt_logbufs,	"logbufs=%u"},	/* number of XFS log buffers */
    	{Opt_logbsize,	"logbsize=%s"},	/* size of XFS log buffers */
    	{Opt_logdev,	"logdev=%s"},	/* log device */
    	{Opt_rtdev,	"rtdev=%s"},	/* realtime I/O device */
    	{Opt_biosize,	"biosize=%u"},	/* log2 of preferred buffered io size */
    	{Opt_wsync,	"wsync"},	/* safe-mode nfs compatible mount */
    	{Opt_noalign,	"noalign"},	/* turn off stripe alignment */
    	{Opt_swalloc,	"swalloc"},	/* turn on stripe width allocation */
    	{Opt_sunit,	"sunit=%u"},	/* data volume stripe unit */
    	{Opt_swidth,	"swidth=%u"},	/* data volume stripe width */
    	{Opt_nouuid,	"nouuid"},	/* ignore filesystem UUID */
    	{Opt_mtpt,	"mtpt"},	/* filesystem mount point */
    	{Opt_grpid,	"grpid"},	/* group-ID from parent directory */
    	{Opt_nogrpid,	"nogrpid"},	/* group-ID from current process */
    	{Opt_bsdgroups,	"bsdgroups"},	/* group-ID from parent directory */
    	{Opt_sysvgroups,"sysvgroups"},	/* group-ID from current process */
    	{Opt_allocsize,	"allocsize=%s"},/* preferred allocation size */
    	{Opt_norecovery,"norecovery"},	/* don't run XFS recovery */
    	{Opt_inode64,	"inode64"},	/* inodes can be allocated anywhere */
    	{Opt_inode32,   "inode32"},	/* inode allocation limited to
    					 * XFS_MAXINUMBER_32 */
    	{Opt_ikeep,	"ikeep"},	/* do not free empty inode clusters */
    	{Opt_noikeep,	"noikeep"},	/* free empty inode clusters */
    	{Opt_largeio,	"largeio"},	/* report large I/O sizes in stat() */
    	{Opt_nolargeio,	"nolargeio"},	/* do not report large I/O sizes
    					 * in stat(). */
    	{Opt_attr2,	"attr2"},	/* do use attr2 attribute format */
    	{Opt_noattr2,	"noattr2"},	/* do not use attr2 attribute format */
    	{Opt_filestreams,"filestreams"},/* use filestreams allocator */
    	{Opt_quota,	"quota"},	/* disk quotas (user) */
    	{Opt_noquota,	"noquota"},	/* no quotas */
    	{Opt_usrquota,	"usrquota"},	/* user quota enabled */
    	{Opt_grpquota,	"grpquota"},	/* group quota enabled */
    	{Opt_prjquota,	"prjquota"},	/* project quota enabled */
    	{Opt_uquota,	"uquota"},	/* user quota (IRIX variant) */
    	{Opt_gquota,	"gquota"},	/* group quota (IRIX variant) */
    	{Opt_pquota,	"pquota"},	/* project quota (IRIX variant) */
    	{Opt_uqnoenforce,"uqnoenforce"},/* user quota limit enforcement */
    	{Opt_gqnoenforce,"gqnoenforce"},/* group quota limit enforcement */
    	{Opt_pqnoenforce,"pqnoenforce"},/* project quota limit enforcement */
    	{Opt_qnoenforce, "qnoenforce"},	/* same as uqnoenforce */
    	{Opt_discard,	"discard"},	/* Discard unused blocks */
    	{Opt_nodiscard,	"nodiscard"},	/* Do not discard unused blocks */
    
    	{Opt_dax,	"dax"},		/* Enable direct access to bdev pages */
    
    	/* Deprecated mount options scheduled for removal */
    	{Opt_barrier,	"barrier"},	/* use writer barriers for log write and
    					 * unwritten extent conversion */
    	{Opt_nobarrier,	"nobarrier"},	/* .. disable */
    
    	{Opt_err,	NULL},
    };
    
    
    STATIC int
    suffix_kstrtoint(const substring_t *s, unsigned int base, int *res)
    {
    	int	last, shift_left_factor = 0, _res;
    	char	*value;
    	int	ret = 0;
    
    	value = match_strdup(s);
    	if (!value)
    		return -ENOMEM;
    
    	last = strlen(value) - 1;
    	if (value[last] == 'K' || value[last] == 'k') {
    		shift_left_factor = 10;
    		value[last] = '\0';
    	}
    	if (value[last] == 'M' || value[last] == 'm') {
    		shift_left_factor = 20;
    		value[last] = '\0';
    	}
    	if (value[last] == 'G' || value[last] == 'g') {
    		shift_left_factor = 30;
    		value[last] = '\0';
    	}
    
    	if (kstrtoint(value, base, &_res))
    		ret = -EINVAL;
    	kfree(value);
    	*res = _res << shift_left_factor;
    	return ret;
    }
    
    /*
     * This function fills in xfs_mount_t fields based on mount args.
     * Note: the superblock has _not_ yet been read in.
     *
     * Note that this function leaks the various device name allocations on
     * failure.  The caller takes care of them.
     *
     * *sb is const because this is also used to test options on the remount
     * path, and we don't want this to have any side effects at remount time.
     * Today this function does not change *sb, but just to future-proof...
     */
    STATIC int
    xfs_parseargs(
    	struct xfs_mount	*mp,
    	char			*options)
    {
    	const struct super_block *sb = mp->m_super;
    	char			*p;
    	substring_t		args[MAX_OPT_ARGS];
    	int			dsunit = 0;
    	int			dswidth = 0;
    	int			iosize = 0;
    	uint8_t			iosizelog = 0;
    
    	/*
    	 * set up the mount name first so all the errors will refer to the
    	 * correct device.
    	 */
    	mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
    	if (!mp->m_fsname)
    		return -ENOMEM;
    	mp->m_fsname_len = strlen(mp->m_fsname) + 1;
    
    	/*
    	 * Copy binary VFS mount flags we are interested in.
    	 */
    	if (sb_rdonly(sb))
    		mp->m_flags |= XFS_MOUNT_RDONLY;
    	if (sb->s_flags & SB_DIRSYNC)
    		mp->m_flags |= XFS_MOUNT_DIRSYNC;
    	if (sb->s_flags & SB_SYNCHRONOUS)
    		mp->m_flags |= XFS_MOUNT_WSYNC;
    
    	/*
    	 * Set some default flags that could be cleared by the mount option
    	 * parsing.
    	 */
    	mp->m_flags |= XFS_MOUNT_BARRIER;
    	mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
    
    	/*
    	 * These can be overridden by the mount option parsing.
    	 */
    	mp->m_logbufs = -1;
    	mp->m_logbsize = -1;
    
    	if (!options)
    		goto done;
    
    	while ((p = strsep(&options, ",")) != NULL) {
    		int		token;
    
    		if (!*p)
    			continue;
    
    		token = match_token(p, tokens, args);
    		switch (token) {
    		case Opt_logbufs:
    			if (match_int(args, &mp->m_logbufs))
    				return -EINVAL;
    			break;
    		case Opt_logbsize:
    			if (suffix_kstrtoint(args, 10, &mp->m_logbsize))
    				return -EINVAL;
    			break;
    		case Opt_logdev:
    			mp->m_logname = match_strdup(args);
    			if (!mp->m_logname)
    				return -ENOMEM;
    			break;
    		case Opt_mtpt:
    			xfs_warn(mp, "%s option not allowed on this system", p);
    			return -EINVAL;
    		case Opt_rtdev:
    			mp->m_rtname = match_strdup(args);
    			if (!mp->m_rtname)
    				return -ENOMEM;
    			break;
    		case Opt_allocsize:
    		case Opt_biosize:
    			if (suffix_kstrtoint(args, 10, &iosize))
    				return -EINVAL;
    			iosizelog = ffs(iosize) - 1;
    			break;
    		case Opt_grpid:
    		case Opt_bsdgroups:
    			mp->m_flags |= XFS_MOUNT_GRPID;
    			break;
    		case Opt_nogrpid:
    		case Opt_sysvgroups:
    			mp->m_flags &= ~XFS_MOUNT_GRPID;
    			break;
    		case Opt_wsync:
    			mp->m_flags |= XFS_MOUNT_WSYNC;
    			break;
    		case Opt_norecovery:
    			mp->m_flags |= XFS_MOUNT_NORECOVERY;
    			break;
    		case Opt_noalign:
    			mp->m_flags |= XFS_MOUNT_NOALIGN;
    			break;
    		case Opt_swalloc:
    			mp->m_flags |= XFS_MOUNT_SWALLOC;
    			break;
    		case Opt_sunit:
    			if (match_int(args, &dsunit))
    				return -EINVAL;
    			break;
    		case Opt_swidth:
    			if (match_int(args, &dswidth))
    				return -EINVAL;
    			break;
    		case Opt_inode32:
    			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
    			break;
    		case Opt_inode64:
    			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
    			break;
    		case Opt_nouuid:
    			mp->m_flags |= XFS_MOUNT_NOUUID;
    			break;
    		case Opt_ikeep:
    			mp->m_flags |= XFS_MOUNT_IKEEP;
    			break;
    		case Opt_noikeep:
    			mp->m_flags &= ~XFS_MOUNT_IKEEP;
    			break;
    		case Opt_largeio:
    			mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
    			break;
    		case Opt_nolargeio:
    			mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
    			break;
    		case Opt_attr2:
    			mp->m_flags |= XFS_MOUNT_ATTR2;
    			break;
    		case Opt_noattr2:
    			mp->m_flags &= ~XFS_MOUNT_ATTR2;
    			mp->m_flags |= XFS_MOUNT_NOATTR2;
    			break;
    		case Opt_filestreams:
    			mp->m_flags |= XFS_MOUNT_FILESTREAMS;
    			break;
    		case Opt_noquota:
    			mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
    			mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
    			mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
    			break;
    		case Opt_quota:
    		case Opt_uquota:
    		case Opt_usrquota:
    			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
    					 XFS_UQUOTA_ENFD);
    			break;
    		case Opt_qnoenforce:
    		case Opt_uqnoenforce:
    			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
    			mp->m_qflags &= ~XFS_UQUOTA_ENFD;
    			break;
    		case Opt_pquota:
    		case Opt_prjquota:
    			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
    					 XFS_PQUOTA_ENFD);
    			break;
    		case Opt_pqnoenforce:
    			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
    			mp->m_qflags &= ~XFS_PQUOTA_ENFD;
    			break;
    		case Opt_gquota:
    		case Opt_grpquota:
    			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
    					 XFS_GQUOTA_ENFD);
    			break;
    		case Opt_gqnoenforce:
    			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
    			mp->m_qflags &= ~XFS_GQUOTA_ENFD;
    			break;
    		case Opt_discard:
    			mp->m_flags |= XFS_MOUNT_DISCARD;
    			break;
    		case Opt_nodiscard:
    			mp->m_flags &= ~XFS_MOUNT_DISCARD;
    			break;
    #ifdef CONFIG_FS_DAX
    		case Opt_dax:
    			mp->m_flags |= XFS_MOUNT_DAX;
    			break;
    #endif
    		case Opt_barrier:
    			xfs_warn(mp, "%s option is deprecated, ignoring.", p);
    			mp->m_flags |= XFS_MOUNT_BARRIER;
    			break;
    		case Opt_nobarrier:
    			xfs_warn(mp, "%s option is deprecated, ignoring.", p);
    			mp->m_flags &= ~XFS_MOUNT_BARRIER;
    			break;
    		default:
    			xfs_warn(mp, "unknown mount option [%s].", p);
    			return -EINVAL;
    		}
    	}
    
    	/*
    	 * no recovery flag requires a read-only mount
    	 */
    	if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
    	    !(mp->m_flags & XFS_MOUNT_RDONLY)) {
    		xfs_warn(mp, "no-recovery mounts must be read-only.");
    		return -EINVAL;
    	}
    
    	if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
    		xfs_warn(mp,
    	"sunit and swidth options incompatible with the noalign option");
    		return -EINVAL;
    	}
    
    #ifndef CONFIG_XFS_QUOTA
    	if (XFS_IS_QUOTA_RUNNING(mp)) {
    		xfs_warn(mp, "quota support not available in this kernel.");
    		return -EINVAL;
    	}
    #endif
    
    	if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
    		xfs_warn(mp, "sunit and swidth must be specified together");
    		return -EINVAL;
    	}
    
    	if (dsunit && (dswidth % dsunit != 0)) {
    		xfs_warn(mp,
    	"stripe width (%d) must be a multiple of the stripe unit (%d)",
    			dswidth, dsunit);
    		return -EINVAL;
    	}
    
    done:
    	if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) {
    		/*
    		 * At this point the superblock has not been read
    		 * in, therefore we do not know the block size.
    		 * Before the mount call ends we will convert
    		 * these to FSBs.
    		 */
    		mp->m_dalign = dsunit;
    		mp->m_swidth = dswidth;
    	}
    
    	if (mp->m_logbufs != -1 &&
    	    mp->m_logbufs != 0 &&
    	    (mp->m_logbufs < XLOG_MIN_ICLOGS ||
    	     mp->m_logbufs > XLOG_MAX_ICLOGS)) {
    		xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
    			mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
    		return -EINVAL;
    	}
    	if (mp->m_logbsize != -1 &&
    	    mp->m_logbsize !=  0 &&
    	    (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
    	     mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
    	     !is_power_of_2(mp->m_logbsize))) {
    		xfs_warn(mp,
    			"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
    			mp->m_logbsize);
    		return -EINVAL;
    	}
    
    	if (iosizelog) {
    		if (iosizelog > XFS_MAX_IO_LOG ||
    		    iosizelog < XFS_MIN_IO_LOG) {
    			xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
    				iosizelog, XFS_MIN_IO_LOG,
    				XFS_MAX_IO_LOG);
    			return -EINVAL;
    		}
    
    		mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
    		mp->m_readio_log = iosizelog;
    		mp->m_writeio_log = iosizelog;
    	}
    
    	return 0;
    }
    
    struct proc_xfs_info {
    	uint64_t	flag;
    	char		*str;
    };
    
    STATIC int
    xfs_showargs(
    	struct xfs_mount	*mp,
    	struct seq_file		*m)
    {
    	static struct proc_xfs_info xfs_info_set[] = {
    		/* the few simple ones we can get from the mount struct */
    		{ XFS_MOUNT_IKEEP,		",ikeep" },
    		{ XFS_MOUNT_WSYNC,		",wsync" },
    		{ XFS_MOUNT_NOALIGN,		",noalign" },
    		{ XFS_MOUNT_SWALLOC,		",swalloc" },
    		{ XFS_MOUNT_NOUUID,		",nouuid" },
    		{ XFS_MOUNT_NORECOVERY,		",norecovery" },
    		{ XFS_MOUNT_ATTR2,		",attr2" },
    		{ XFS_MOUNT_FILESTREAMS,	",filestreams" },
    		{ XFS_MOUNT_GRPID,		",grpid" },
    		{ XFS_MOUNT_DISCARD,		",discard" },
    		{ XFS_MOUNT_SMALL_INUMS,	",inode32" },
    		{ XFS_MOUNT_DAX,		",dax" },
    		{ 0, NULL }
    	};
    	static struct proc_xfs_info xfs_info_unset[] = {
    		/* the few simple ones we can get from the mount struct */
    		{ XFS_MOUNT_COMPAT_IOSIZE,	",largeio" },
    		{ XFS_MOUNT_BARRIER,		",nobarrier" },
    		{ XFS_MOUNT_SMALL_INUMS,	",inode64" },
    		{ 0, NULL }
    	};
    	struct proc_xfs_info	*xfs_infop;
    
    	for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
    		if (mp->m_flags & xfs_infop->flag)
    			seq_puts(m, xfs_infop->str);
    	}
    	for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
    		if (!(mp->m_flags & xfs_infop->flag))
    			seq_puts(m, xfs_infop->str);
    	}
    
    	if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
    		seq_printf(m, ",allocsize=%dk",
    				(int)(1 << mp->m_writeio_log) >> 10);
    
    	if (mp->m_logbufs > 0)
    		seq_printf(m, ",logbufs=%d", mp->m_logbufs);
    	if (mp->m_logbsize > 0)
    		seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
    
    	if (mp->m_logname)
    		seq_show_option(m, "logdev", mp->m_logname);
    	if (mp->m_rtname)
    		seq_show_option(m, "rtdev", mp->m_rtname);
    
    	if (mp->m_dalign > 0)
    		seq_printf(m, ",sunit=%d",
    				(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
    	if (mp->m_swidth > 0)
    		seq_printf(m, ",swidth=%d",
    				(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
    
    	if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
    		seq_puts(m, ",usrquota");
    	else if (mp->m_qflags & XFS_UQUOTA_ACCT)
    		seq_puts(m, ",uqnoenforce");
    
    	if (mp->m_qflags & XFS_PQUOTA_ACCT) {
    		if (mp->m_qflags & XFS_PQUOTA_ENFD)
    			seq_puts(m, ",prjquota");
    		else
    			seq_puts(m, ",pqnoenforce");
    	}
    	if (mp->m_qflags & XFS_GQUOTA_ACCT) {
    		if (mp->m_qflags & XFS_GQUOTA_ENFD)
    			seq_puts(m, ",grpquota");
    		else
    			seq_puts(m, ",gqnoenforce");
    	}
    
    	if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
    		seq_puts(m, ",noquota");
    
    	return 0;
    }
    static uint64_t
    xfs_max_file_offset(
    	unsigned int		blockshift)
    {
    	unsigned int		pagefactor = 1;
    	unsigned int		bitshift = BITS_PER_LONG - 1;
    
    	/* Figure out maximum filesize, on Linux this can depend on
    	 * the filesystem blocksize (on 32 bit platforms).
    	 * __block_write_begin does this in an [unsigned] long...
    	 *      page->index << (PAGE_SHIFT - bbits)
    	 * So, for page sized blocks (4K on 32 bit platforms),
    	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
    	 *      (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1)
    	 * but for smaller blocksizes it is less (bbits = log2 bsize).
    	 * Note1: get_block_t takes a long (implicit cast from above)
    	 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
    	 * can optionally convert the [unsigned] long from above into
    	 * an [unsigned] long long.
    	 */
    
    #if BITS_PER_LONG == 32
    # if defined(CONFIG_LBDAF)
    	ASSERT(sizeof(sector_t) == 8);
    	pagefactor = PAGE_SIZE;
    	bitshift = BITS_PER_LONG;
    # else
    	pagefactor = PAGE_SIZE >> (PAGE_SHIFT - blockshift);
    # endif
    #endif
    
    	return (((uint64_t)pagefactor) << bitshift) - 1;
    }
    
    /*
     * Set parameters for inode allocation heuristics, taking into account
     * filesystem size and inode32/inode64 mount options; i.e. specifically
     * whether or not XFS_MOUNT_SMALL_INUMS is set.
     *
     * Inode allocation patterns are altered only if inode32 is requested
     * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
     * If altered, XFS_MOUNT_32BITINODES is set as well.
     *
     * An agcount independent of that in the mount structure is provided
     * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
     * to the potentially higher ag count.
     *
     * Returns the maximum AG index which may contain inodes.
     */
    xfs_agnumber_t
    xfs_set_inode_alloc(
    	struct xfs_mount *mp,
    	xfs_agnumber_t	agcount)
    {
    	xfs_agnumber_t	index;
    	xfs_agnumber_t	maxagi = 0;
    	xfs_sb_t	*sbp = &mp->m_sb;
    	xfs_agnumber_t	max_metadata;
    	xfs_agino_t	agino;
    	xfs_ino_t	ino;
    
    	/*
    	 * Calculate how much should be reserved for inodes to meet
    	 * the max inode percentage.  Used only for inode32.
    	 */
    	if (mp->m_maxicount) {
    		uint64_t	icount;
    
    		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
    		do_div(icount, 100);
    		icount += sbp->sb_agblocks - 1;
    		do_div(icount, sbp->sb_agblocks);
    		max_metadata = icount;
    	} else {
    		max_metadata = agcount;
    	}
    
    	/* Get the last possible inode in the filesystem */
    	agino =	XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
    	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
    
    	/*
    	 * If user asked for no more than 32-bit inodes, and the fs is
    	 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
    	 * the allocator to accommodate the request.
    	 */
    	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
    		mp->m_flags |= XFS_MOUNT_32BITINODES;
    	else
    		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
    
    	for (index = 0; index < agcount; index++) {
    		struct xfs_perag	*pag;
    
    		ino = XFS_AGINO_TO_INO(mp, index, agino);
    
    		pag = xfs_perag_get(mp, index);
    
    		if (mp->m_flags & XFS_MOUNT_32BITINODES) {
    			if (ino > XFS_MAXINUMBER_32) {
    				pag->pagi_inodeok = 0;
    				pag->pagf_metadata = 0;
    			} else {
    				pag->pagi_inodeok = 1;
    				maxagi++;
    				if (index < max_metadata)
    					pag->pagf_metadata = 1;
    				else
    					pag->pagf_metadata = 0;
    			}
    		} else {
    			pag->pagi_inodeok = 1;
    			pag->pagf_metadata = 0;
    		}
    
    		xfs_perag_put(pag);
    	}
    
    	return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
    }
    
    STATIC int
    xfs_blkdev_get(
    	xfs_mount_t		*mp,
    	const char		*name,
    	struct block_device	**bdevp)
    {
    	int			error = 0;
    
    	*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
    				    mp);
    	if (IS_ERR(*bdevp)) {
    		error = PTR_ERR(*bdevp);
    		xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
    	}
    
    	return error;
    }
    
    STATIC void
    xfs_blkdev_put(
    	struct block_device	*bdev)
    {
    	if (bdev)
    		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
    }
    
    void
    xfs_blkdev_issue_flush(
    	xfs_buftarg_t		*buftarg)
    {
    	blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL);
    }
    
    STATIC void
    xfs_close_devices(
    	struct xfs_mount	*mp)
    {
    	struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
    
    	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
    		struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
    		struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
    
    		xfs_free_buftarg(mp, mp->m_logdev_targp);
    		xfs_blkdev_put(logdev);
    		fs_put_dax(dax_logdev);
    	}
    	if (mp->m_rtdev_targp) {
    		struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
    		struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
    
    		xfs_free_buftarg(mp, mp->m_rtdev_targp);
    		xfs_blkdev_put(rtdev);
    		fs_put_dax(dax_rtdev);
    	}
    	xfs_free_buftarg(mp, mp->m_ddev_targp);
    	fs_put_dax(dax_ddev);
    }
    
    /*
     * The file system configurations are:
     *	(1) device (partition) with data and internal log
     *	(2) logical volume with data and log subvolumes.
     *	(3) logical volume with data, log, and realtime subvolumes.
     *
     * We only have to handle opening the log and realtime volumes here if
     * they are present.  The data subvolume has already been opened by
     * get_sb_bdev() and is stored in sb->s_bdev.
     */
    STATIC int
    xfs_open_devices(
    	struct xfs_mount	*mp)
    {
    	struct block_device	*ddev = mp->m_super->s_bdev;
    	struct dax_device	*dax_ddev = fs_dax_get_by_bdev(ddev);
    	struct dax_device	*dax_logdev = NULL, *dax_rtdev = NULL;
    	struct block_device	*logdev = NULL, *rtdev = NULL;
    	int			error;
    
    	/*
    	 * Open real time and log devices - order is important.
    	 */
    	if (mp->m_logname) {
    		error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
    		if (error)
    			goto out;
    		dax_logdev = fs_dax_get_by_bdev(logdev);
    	}
    
    	if (mp->m_rtname) {
    		error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
    		if (error)
    			goto out_close_logdev;
    
    		if (rtdev == ddev || rtdev == logdev) {
    			xfs_warn(mp,
    	"Cannot mount filesystem with identical rtdev and ddev/logdev.");
    			error = -EINVAL;
    			goto out_close_rtdev;
    		}
    		dax_rtdev = fs_dax_get_by_bdev(rtdev);
    	}
    
    	/*
    	 * Setup xfs_mount buffer target pointers
    	 */
    	error = -ENOMEM;
    	mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
    	if (!mp->m_ddev_targp)
    		goto out_close_rtdev;
    
    	if (rtdev) {
    		mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
    		if (!mp->m_rtdev_targp)
    			goto out_free_ddev_targ;
    	}
    
    	if (logdev && logdev != ddev) {
    		mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
    		if (!mp->m_logdev_targp)
    			goto out_free_rtdev_targ;
    	} else {
    		mp->m_logdev_targp = mp->m_ddev_targp;
    	}
    
    	return 0;
    
     out_free_rtdev_targ:
    	if (mp->m_rtdev_targp)
    		xfs_free_buftarg(mp, mp->m_rtdev_targp);
     out_free_ddev_targ:
    	xfs_free_buftarg(mp, mp->m_ddev_targp);
     out_close_rtdev:
    	xfs_blkdev_put(rtdev);
    	fs_put_dax(dax_rtdev);
     out_close_logdev:
    	if (logdev && logdev != ddev) {
    		xfs_blkdev_put(logdev);
    		fs_put_dax(dax_logdev);
    	}
     out:
    	fs_put_dax(dax_ddev);
    	return error;
    }
    
    /*
     * Setup xfs_mount buffer target pointers based on superblock
     */
    STATIC int
    xfs_setup_devices(
    	struct xfs_mount	*mp)
    {
    	int			error;
    
    	error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
    	if (error)
    		return error;
    
    	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
    		unsigned int	log_sector_size = BBSIZE;
    
    		if (xfs_sb_version_hassector(&mp->m_sb))
    			log_sector_size = mp->m_sb.sb_logsectsize;
    		error = xfs_setsize_buftarg(mp->m_logdev_targp,
    					    log_sector_size);
    		if (error)
    			return error;
    	}
    	if (mp->m_rtdev_targp) {
    		error = xfs_setsize_buftarg(mp->m_rtdev_targp,
    					    mp->m_sb.sb_sectsize);
    		if (error)
    			return error;
    	}
    
    	return 0;
    }
    
    STATIC int
    xfs_init_mount_workqueues(
    	struct xfs_mount	*mp)
    {
    	mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname);
    	if (!mp->m_buf_workqueue)
    		goto out;
    
    	mp->m_data_workqueue = alloc_workqueue("xfs-data/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
    	if (!mp->m_data_workqueue)
    		goto out_destroy_buf;
    
    	mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
    	if (!mp->m_unwritten_workqueue)
    		goto out_destroy_data_iodone_queue;
    
    	mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
    	if (!mp->m_cil_workqueue)
    		goto out_destroy_unwritten;
    
    	mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
    	if (!mp->m_reclaim_workqueue)
    		goto out_destroy_cil;
    
    	mp->m_log_workqueue = alloc_workqueue("xfs-log/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE|WQ_HIGHPRI, 0,
    			mp->m_fsname);
    	if (!mp->m_log_workqueue)
    		goto out_destroy_reclaim;
    
    	mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
    	if (!mp->m_eofblocks_workqueue)
    		goto out_destroy_log;
    
    	mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
    					       mp->m_fsname);
    	if (!mp->m_sync_workqueue)
    		goto out_destroy_eofb;
    
    	return 0;
    
    out_destroy_eofb:
    	destroy_workqueue(mp->m_eofblocks_workqueue);
    out_destroy_log:
    	destroy_workqueue(mp->m_log_workqueue);
    out_destroy_reclaim:
    	destroy_workqueue(mp->m_reclaim_workqueue);
    out_destroy_cil:
    	destroy_workqueue(mp->m_cil_workqueue);
    out_destroy_unwritten:
    	destroy_workqueue(mp->m_unwritten_workqueue);
    out_destroy_data_iodone_queue:
    	destroy_workqueue(mp->m_data_workqueue);
    out_destroy_buf:
    	destroy_workqueue(mp->m_buf_workqueue);
    out:
    	return -ENOMEM;
    }
    
    STATIC void
    xfs_destroy_mount_workqueues(
    	struct xfs_mount	*mp)
    {
    	destroy_workqueue(mp->m_sync_workqueue);
    	destroy_workqueue(mp->m_eofblocks_workqueue);
    	destroy_workqueue(mp->m_log_workqueue);
    	destroy_workqueue(mp->m_reclaim_workqueue);
    	destroy_workqueue(mp->m_cil_workqueue);
    	destroy_workqueue(mp->m_data_workqueue);
    	destroy_workqueue(mp->m_unwritten_workqueue);
    	destroy_workqueue(mp->m_buf_workqueue);
    }
    
    /*
     * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
     * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
     * for IO to complete so that we effectively throttle multiple callers to the
     * rate at which IO is completing.
     */
    void
    xfs_flush_inodes(
    	struct xfs_mount	*mp)
    {
    	struct super_block	*sb = mp->m_super;
    
    	if (down_read_trylock(&sb->s_umount)) {
    		sync_inodes_sb(sb);
    		up_read(&sb->s_umount);
    	}
    }
    
    /* Catch misguided souls that try to use this interface on XFS */
    STATIC struct inode *
    xfs_fs_alloc_inode(
    	struct super_block	*sb)
    {
    	BUG();
    	return NULL;
    }
    
    /*
     * Now that the generic code is guaranteed not to be accessing
     * the linux inode, we can inactivate and reclaim the inode.
     */
    STATIC void
    xfs_fs_destroy_inode(
    	struct inode		*inode)
    {
    	struct xfs_inode	*ip = XFS_I(inode);
    	int			error;
    
    	trace_xfs_destroy_inode(ip);
    
    	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
    	XFS_STATS_INC(ip->i_mount, vn_rele);
    	XFS_STATS_INC(ip->i_mount, vn_remove);
    
    	if (xfs_is_reflink_inode(ip)) {
    		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
    		if (error && !XFS_FORCED_SHUTDOWN(ip->i_mount))
    			xfs_warn(ip->i_mount,
    "Error %d while evicting CoW blocks for inode %llu.",
    					error, ip->i_ino);
    	}
    
    	xfs_inactive(ip);
    
    	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
    	XFS_STATS_INC(ip->i_mount, vn_reclaim);
    
    	/*
    	 * We should never get here with one of the reclaim flags already set.
    	 */
    	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
    	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
    
    	/*
    	 * We always use background reclaim here because even if the
    	 * inode is clean, it still may be under IO and hence we have
    	 * to take the flush lock. The background reclaim path handles
    	 * this more efficiently than we can here, so simply let background
    	 * reclaim tear down all inodes.
    	 */
    	xfs_inode_set_reclaim_tag(ip);
    }
    
    /*
     * Slab object creation initialisation for the XFS inode.
     * This covers only the idempotent fields in the XFS inode;
     * all other fields need to be initialised on allocation
     * from the slab. This avoids the need to repeatedly initialise
     * fields in the xfs inode that left in the initialise state
     * when freeing the inode.
     */
    STATIC void
    xfs_fs_inode_init_once(
    	void			*inode)
    {
    	struct xfs_inode	*ip = inode;
    
    	memset(ip, 0, sizeof(struct xfs_inode));
    
    	/* vfs inode */
    	inode_init_once(VFS_I(ip));
    
    	/* xfs inode */
    	atomic_set(&ip->i_pincount, 0);
    	spin_lock_init(&ip->i_flags_lock);
    
    	mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
    		     "xfsino", ip->i_ino);
    	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
    		     "xfsino", ip->i_ino);
    }
    
    /*
     * We do an unlocked check for XFS_IDONTCACHE here because we are already
     * serialised against cache hits here via the inode->i_lock and igrab() in
     * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
     * racing with us, and it avoids needing to grab a spinlock here for every inode
     * we drop the final reference on.
     */
    STATIC int
    xfs_fs_drop_inode(
    	struct inode		*inode)
    {
    	struct xfs_inode	*ip = XFS_I(inode);
    
    	/*
    	 * If this unlinked inode is in the middle of recovery, don't
    	 * drop the inode just yet; log recovery will take care of
    	 * that.  See the comment for this inode flag.
    	 */
    	if (ip->i_flags & XFS_IRECOVERY) {
    		ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
    		return 0;
    	}
    
    	return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE);
    }
    
    STATIC void
    xfs_free_fsname(
    	struct xfs_mount	*mp)
    {
    	kfree(mp->m_fsname);
    	kfree(mp->m_rtname);
    	kfree(mp->m_logname);
    }
    
    STATIC int
    xfs_fs_sync_fs(
    	struct super_block	*sb,
    	int			wait)
    {
    	struct xfs_mount	*mp = XFS_M(sb);
    
    	/*
    	 * Doing anything during the async pass would be counterproductive.
    	 */
    	if (!wait)
    		return 0;
    
    	xfs_log_force(mp, XFS_LOG_SYNC);
    	if (laptop_mode) {
    		/*
    		 * The disk must be active because we're syncing.
    		 * We schedule log work now (now that the disk is
    		 * active) instead of later (when it might not be).
    		 */
    		flush_delayed_work(&mp->m_log->l_work);
    	}
    
    	return 0;
    }
    
    STATIC int
    xfs_fs_statfs(
    	struct dentry		*dentry,
    	struct kstatfs		*statp)
    {
    	struct xfs_mount	*mp = XFS_M(dentry->d_sb);
    	xfs_sb_t		*sbp = &mp->m_sb;
    	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
    	uint64_t		fakeinos, id;
    	uint64_t		icount;
    	uint64_t		ifree;
    	uint64_t		fdblocks;
    	xfs_extlen_t		lsize;
    	int64_t			ffree;
    
    	statp->f_type = XFS_SB_MAGIC;
    	statp->f_namelen = MAXNAMELEN - 1;
    
    	id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
    	statp->f_fsid.val[0] = (u32)id;
    	statp->f_fsid.val[1] = (u32)(id >> 32);
    
    	icount = percpu_counter_sum(&mp->m_icount);
    	ifree = percpu_counter_sum(&mp->m_ifree);
    	fdblocks = percpu_counter_sum(&mp->m_fdblocks);
    
    	spin_lock(&mp->m_sb_lock);
    	statp->f_bsize = sbp->sb_blocksize;
    	lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
    	statp->f_blocks = sbp->sb_dblocks - lsize;
    	spin_unlock(&mp->m_sb_lock);
    
    	statp->f_bfree = fdblocks - mp->m_alloc_set_aside;
    	statp->f_bavail = statp->f_bfree;
    
    	fakeinos = statp->f_bfree << sbp->sb_inopblog;
    	statp->f_files = MIN(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
    	if (mp->m_maxicount)
    		statp->f_files = min_t(typeof(statp->f_files),
    					statp->f_files,
    					mp->m_maxicount);
    
    	/* If sb_icount overshot maxicount, report actual allocation */
    	statp->f_files = max_t(typeof(statp->f_files),
    					statp->f_files,
    					sbp->sb_icount);
    
    	/* make sure statp->f_ffree does not underflow */
    	ffree = statp->f_files - (icount - ifree);
    	statp->f_ffree = max_t(int64_t, ffree, 0);
    
    
    	if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
    	    ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
    			      (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
    		xfs_qm_statvfs(ip, statp);
    
    	if (XFS_IS_REALTIME_MOUNT(mp) &&
    	    (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
    		statp->f_blocks = sbp->sb_rblocks;
    		statp->f_bavail = statp->f_bfree =
    			sbp->sb_frextents * sbp->sb_rextsize;
    	}
    
    	return 0;
    }
    
    STATIC void
    xfs_save_resvblks(struct xfs_mount *mp)
    {
    	uint64_t resblks = 0;
    
    	mp->m_resblks_save = mp->m_resblks;
    	xfs_reserve_blocks(mp, &resblks, NULL);
    }
    
    STATIC void
    xfs_restore_resvblks(struct xfs_mount *mp)
    {
    	uint64_t resblks;
    
    	if (mp->m_resblks_save) {
    		resblks = mp->m_resblks_save;
    		mp->m_resblks_save = 0;
    	} else
    		resblks = xfs_default_resblks(mp);
    
    	xfs_reserve_blocks(mp, &resblks, NULL);
    }
    
    /*
     * Trigger writeback of all the dirty metadata in the file system.
     *
     * This ensures that the metadata is written to their location on disk rather
     * than just existing in transactions in the log. This means after a quiesce
     * there is no log replay required to write the inodes to disk - this is the
     * primary difference between a sync and a quiesce.
     *
     * Note: xfs_log_quiesce() stops background log work - the callers must ensure
     * it is started again when appropriate.
     */
    void
    xfs_quiesce_attr(
    	struct xfs_mount	*mp)
    {
    	int	error = 0;
    
    	/* wait for all modifications to complete */
    	while (atomic_read(&mp->m_active_trans) > 0)
    		delay(100);
    
    	/* force the log to unpin objects from the now complete transactions */
    	xfs_log_force(mp, XFS_LOG_SYNC);
    
    	/* reclaim inodes to do any IO before the freeze completes */
    	xfs_reclaim_inodes(mp, 0);
    	xfs_reclaim_inodes(mp, SYNC_WAIT);
    
    	/* Push the superblock and write an unmount record */
    	error = xfs_log_sbcount(mp);
    	if (error)
    		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
    				"Frozen image may not be consistent.");
    	/*
    	 * Just warn here till VFS can correctly support
    	 * read-only remount without racing.
    	 */
    	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
    
    	xfs_log_quiesce(mp);
    }
    
    STATIC int
    xfs_test_remount_options(
    	struct super_block	*sb,
    	struct xfs_mount	*mp,
    	char			*options)
    {
    	int			error = 0;
    	struct xfs_mount	*tmp_mp;
    
    	tmp_mp = kmem_zalloc(sizeof(*tmp_mp), KM_MAYFAIL);
    	if (!tmp_mp)
    		return -ENOMEM;
    
    	tmp_mp->m_super = sb;
    	error = xfs_parseargs(tmp_mp, options);
    	xfs_free_fsname(tmp_mp);
    	kmem_free(tmp_mp);
    
    	return error;
    }
    
    STATIC int
    xfs_fs_remount(
    	struct super_block	*sb,
    	int			*flags,
    	char			*options)
    {
    	struct xfs_mount	*mp = XFS_M(sb);
    	xfs_sb_t		*sbp = &mp->m_sb;
    	substring_t		args[MAX_OPT_ARGS];
    	char			*p;
    	int			error;
    
    	/* First, check for complete junk; i.e. invalid options */
    	error = xfs_test_remount_options(sb, mp, options);
    	if (error)
    		return error;
    
    	sync_filesystem(sb);
    	while ((p = strsep(&options, ",")) != NULL) {
    		int token;
    
    		if (!*p)
    			continue;
    
    		token = match_token(p, tokens, args);
    		switch (token) {
    		case Opt_barrier:
    			xfs_warn(mp, "%s option is deprecated, ignoring.", p);
    			mp->m_flags |= XFS_MOUNT_BARRIER;
    			break;
    		case Opt_nobarrier:
    			xfs_warn(mp, "%s option is deprecated, ignoring.", p);
    			mp->m_flags &= ~XFS_MOUNT_BARRIER;
    			break;
    		case Opt_inode64:
    			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
    			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
    			break;
    		case Opt_inode32:
    			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
    			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
    			break;
    		default:
    			/*
    			 * Logically we would return an error here to prevent
    			 * users from believing they might have changed
    			 * mount options using remount which can't be changed.
    			 *
    			 * But unfortunately mount(8) adds all options from
    			 * mtab and fstab to the mount arguments in some cases
    			 * so we can't blindly reject options, but have to
    			 * check for each specified option if it actually
    			 * differs from the currently set option and only
    			 * reject it if that's the case.
    			 *
    			 * Until that is implemented we return success for
    			 * every remount request, and silently ignore all
    			 * options that we can't actually change.
    			 */
    #if 0
    			xfs_info(mp,
    		"mount option \"%s\" not supported for remount", p);
    			return -EINVAL;
    #else
    			break;
    #endif
    		}
    	}
    
    	/* ro -> rw */
    	if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & SB_RDONLY)) {
    		if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
    			xfs_warn(mp,
    		"ro->rw transition prohibited on norecovery mount");
    			return -EINVAL;
    		}
    
    		if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
    		    xfs_sb_has_ro_compat_feature(sbp,
    					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
    			xfs_warn(mp,
    "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
    				(sbp->sb_features_ro_compat &
    					XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
    			return -EINVAL;
    		}
    
    		mp->m_flags &= ~XFS_MOUNT_RDONLY;
    
    		/*
    		 * If this is the first remount to writeable state we
    		 * might have some superblock changes to update.
    		 */
    		if (mp->m_update_sb) {
    			error = xfs_sync_sb(mp, false);
    			if (error) {
    				xfs_warn(mp, "failed to write sb changes");
    				return error;
    			}
    			mp->m_update_sb = false;
    		}
    
    		/*
    		 * Fill out the reserve pool if it is empty. Use the stashed
    		 * value if it is non-zero, otherwise go with the default.
    		 */
    		xfs_restore_resvblks(mp);
    		xfs_log_work_queue(mp);
    		xfs_queue_eofblocks(mp);
    
    		/* Recover any CoW blocks that never got remapped. */
    		error = xfs_reflink_recover_cow(mp);
    		if (error) {
    			xfs_err(mp,
    	"Error %d recovering leftover CoW allocations.", error);
    			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
    			return error;
    		}
    		xfs_queue_cowblocks(mp);
    
    		/* Create the per-AG metadata reservation pool .*/
    		error = xfs_fs_reserve_ag_blocks(mp);
    		if (error && error != -ENOSPC)
    			return error;
    	}
    
    	/* rw -> ro */
    	if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & SB_RDONLY)) {
    		/* Get rid of any leftover CoW reservations... */
    		cancel_delayed_work_sync(&mp->m_cowblocks_work);
    		error = xfs_icache_free_cowblocks(mp, NULL);
    		if (error) {
    			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
    			return error;
    		}
    
    		/* Free the per-AG metadata reservation pool. */
    		error = xfs_fs_unreserve_ag_blocks(mp);
    		if (error) {
    			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
    			return error;
    		}
    
    		/*
    		 * Before we sync the metadata, we need to free up the reserve
    		 * block pool so that the used block count in the superblock on
    		 * disk is correct at the end of the remount. Stash the current
    		 * reserve pool size so that if we get remounted rw, we can
    		 * return it to the same size.
    		 */
    		xfs_save_resvblks(mp);
    
    		/*
    		 * Cancel background eofb scanning so it cannot race with the
    		 * final log force+buftarg wait and deadlock the remount.
    		 */
    		cancel_delayed_work_sync(&mp->m_eofblocks_work);
    
    		xfs_quiesce_attr(mp);
    		mp->m_flags |= XFS_MOUNT_RDONLY;
    	}
    
    	return 0;
    }
    
    /*
     * Second stage of a freeze. The data is already frozen so we only
     * need to take care of the metadata. Once that's done sync the superblock
     * to the log to dirty it in case of a crash while frozen. This ensures that we
     * will recover the unlinked inode lists on the next mount.
     */
    STATIC int
    xfs_fs_freeze(
    	struct super_block	*sb)
    {
    	struct xfs_mount	*mp = XFS_M(sb);
    
    	xfs_save_resvblks(mp);
    	xfs_quiesce_attr(mp);
    	return xfs_sync_sb(mp, true);
    }
    
    STATIC int
    xfs_fs_unfreeze(
    	struct super_block	*sb)
    {
    	struct xfs_mount	*mp = XFS_M(sb);
    
    	xfs_restore_resvblks(mp);
    	xfs_log_work_queue(mp);
    	return 0;
    }
    
    STATIC int
    xfs_fs_show_options(
    	struct seq_file		*m,
    	struct dentry		*root)
    {
    	return xfs_showargs(XFS_M(root->d_sb), m);
    }
    
    /*
     * This function fills in xfs_mount_t fields based on mount args.
     * Note: the superblock _has_ now been read in.
     */
    STATIC int
    xfs_finish_flags(
    	struct xfs_mount	*mp)
    {
    	int			ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
    
    	/* Fail a mount where the logbuf is smaller than the log stripe */
    	if (xfs_sb_version_haslogv2(&mp->m_sb)) {
    		if (mp->m_logbsize <= 0 &&
    		    mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
    			mp->m_logbsize = mp->m_sb.sb_logsunit;
    		} else if (mp->m_logbsize > 0 &&
    			   mp->m_logbsize < mp->m_sb.sb_logsunit) {
    			xfs_warn(mp,
    		"logbuf size must be greater than or equal to log stripe size");
    			return -EINVAL;
    		}
    	} else {
    		/* Fail a mount if the logbuf is larger than 32K */
    		if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
    			xfs_warn(mp,
    		"logbuf size for version 1 logs must be 16K or 32K");
    			return -EINVAL;
    		}
    	}
    
    	/*
    	 * V5 filesystems always use attr2 format for attributes.
    	 */
    	if (xfs_sb_version_hascrc(&mp->m_sb) &&
    	    (mp->m_flags & XFS_MOUNT_NOATTR2)) {
    		xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
    			     "attr2 is always enabled for V5 filesystems.");
    		return -EINVAL;
    	}
    
    	/*
    	 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
    	 * told by noattr2 to turn it off
    	 */
    	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
    	    !(mp->m_flags & XFS_MOUNT_NOATTR2))
    		mp->m_flags |= XFS_MOUNT_ATTR2;
    
    	/*
    	 * prohibit r/w mounts of read-only filesystems
    	 */
    	if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
    		xfs_warn(mp,
    			"cannot mount a read-only filesystem as read-write");
    		return -EROFS;
    	}
    
    	if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
    	    (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
    	    !xfs_sb_version_has_pquotino(&mp->m_sb)) {
    		xfs_warn(mp,
    		  "Super block does not support project and group quota together");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int
    xfs_init_percpu_counters(
    	struct xfs_mount	*mp)
    {
    	int		error;
    
    	error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
    	if (error)
    		return -ENOMEM;
    
    	error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
    	if (error)
    		goto free_icount;
    
    	error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
    	if (error)
    		goto free_ifree;
    
    	return 0;
    
    free_ifree:
    	percpu_counter_destroy(&mp->m_ifree);
    free_icount:
    	percpu_counter_destroy(&mp->m_icount);
    	return -ENOMEM;
    }
    
    void
    xfs_reinit_percpu_counters(
    	struct xfs_mount	*mp)
    {
    	percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
    	percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
    	percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
    }
    
    static void
    xfs_destroy_percpu_counters(
    	struct xfs_mount	*mp)
    {
    	percpu_counter_destroy(&mp->m_icount);
    	percpu_counter_destroy(&mp->m_ifree);
    	percpu_counter_destroy(&mp->m_fdblocks);
    }
    
    STATIC int
    xfs_fs_fill_super(
    	struct super_block	*sb,
    	void			*data,
    	int			silent)
    {
    	struct inode		*root;
    	struct xfs_mount	*mp = NULL;
    	int			flags = 0, error = -ENOMEM;
    
    	mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
    	if (!mp)
    		goto out;
    
    	spin_lock_init(&mp->m_sb_lock);
    	mutex_init(&mp->m_growlock);
    	atomic_set(&mp->m_active_trans, 0);
    	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
    	INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
    	INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
    	mp->m_kobj.kobject.kset = xfs_kset;
    
    	mp->m_super = sb;
    	sb->s_fs_info = mp;
    
    	error = xfs_parseargs(mp, (char *)data);
    	if (error)
    		goto out_free_fsname;
    
    	sb_min_blocksize(sb, BBSIZE);
    	sb->s_xattr = xfs_xattr_handlers;
    	sb->s_export_op = &xfs_export_operations;
    #ifdef CONFIG_XFS_QUOTA
    	sb->s_qcop = &xfs_quotactl_operations;
    	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
    #endif
    	sb->s_op = &xfs_super_operations;
    
    	if (silent)
    		flags |= XFS_MFSI_QUIET;
    
    	error = xfs_open_devices(mp);
    	if (error)
    		goto out_free_fsname;
    
    	error = xfs_init_mount_workqueues(mp);
    	if (error)
    		goto out_close_devices;
    
    	error = xfs_init_percpu_counters(mp);
    	if (error)
    		goto out_destroy_workqueues;
    
    	/* Allocate stats memory before we do operations that might use it */
    	mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
    	if (!mp->m_stats.xs_stats) {
    		error = -ENOMEM;
    		goto out_destroy_counters;
    	}
    
    	error = xfs_readsb(mp, flags);
    	if (error)
    		goto out_free_stats;
    
    	error = xfs_finish_flags(mp);
    	if (error)
    		goto out_free_sb;
    
    	error = xfs_setup_devices(mp);
    	if (error)
    		goto out_free_sb;
    
    	error = xfs_filestream_mount(mp);
    	if (error)
    		goto out_free_sb;
    
    	/*
    	 * we must configure the block size in the superblock before we run the
    	 * full mount process as the mount process can lookup and cache inodes.
    	 */
    	sb->s_magic = XFS_SB_MAGIC;
    	sb->s_blocksize = mp->m_sb.sb_blocksize;
    	sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
    	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
    	sb->s_max_links = XFS_MAXLINK;
    	sb->s_time_gran = 1;
    	set_posix_acl_flag(sb);
    
    	/* version 5 superblocks support inode version counters. */
    	if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
    		sb->s_flags |= SB_I_VERSION;
    
    	if (mp->m_flags & XFS_MOUNT_DAX) {
    		xfs_warn(mp,
    		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
    
    		error = bdev_dax_supported(sb, sb->s_blocksize);
    		if (error) {
    			xfs_alert(mp,
    			"DAX unsupported by block device. Turning off DAX.");
    			mp->m_flags &= ~XFS_MOUNT_DAX;
    		}
    		if (xfs_sb_version_hasreflink(&mp->m_sb)) {
    			xfs_alert(mp,
    		"DAX and reflink cannot be used together!");
    			error = -EINVAL;
    			goto out_filestream_unmount;
    		}
    	}
    
    	if (mp->m_flags & XFS_MOUNT_DISCARD) {
    		struct request_queue *q = bdev_get_queue(sb->s_bdev);
    
    		if (!blk_queue_discard(q)) {
    			xfs_warn(mp, "mounting with \"discard\" option, but "
    					"the device does not support discard");
    			mp->m_flags &= ~XFS_MOUNT_DISCARD;
    		}
    	}
    
    	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
    		if (mp->m_sb.sb_rblocks) {
    			xfs_alert(mp,
    	"EXPERIMENTAL reverse mapping btree not compatible with realtime device!");
    			error = -EINVAL;
    			goto out_filestream_unmount;
    		}
    		xfs_alert(mp,
    	"EXPERIMENTAL reverse mapping btree feature enabled. Use at your own risk!");
    	}
    
    	error = xfs_mountfs(mp);
    	if (error)
    		goto out_filestream_unmount;
    
    	root = igrab(VFS_I(mp->m_rootip));
    	if (!root) {
    		error = -ENOENT;
    		goto out_unmount;
    	}
    	sb->s_root = d_make_root(root);
    	if (!sb->s_root) {
    		error = -ENOMEM;
    		goto out_unmount;
    	}
    
    	return 0;
    
     out_filestream_unmount:
    	xfs_filestream_unmount(mp);
     out_free_sb:
    	xfs_freesb(mp);
     out_free_stats:
    	free_percpu(mp->m_stats.xs_stats);
     out_destroy_counters:
    	xfs_destroy_percpu_counters(mp);
     out_destroy_workqueues:
    	xfs_destroy_mount_workqueues(mp);
     out_close_devices:
    	xfs_close_devices(mp);
     out_free_fsname:
    	xfs_free_fsname(mp);
    	kfree(mp);
     out:
    	return error;
    
     out_unmount:
    	xfs_filestream_unmount(mp);
    	xfs_unmountfs(mp);
    	goto out_free_sb;
    }
    
    STATIC void
    xfs_fs_put_super(
    	struct super_block	*sb)
    {
    	struct xfs_mount	*mp = XFS_M(sb);
    
    	xfs_notice(mp, "Unmounting Filesystem");
    	xfs_filestream_unmount(mp);
    	xfs_unmountfs(mp);
    
    	xfs_freesb(mp);
    	free_percpu(mp->m_stats.xs_stats);
    	xfs_destroy_percpu_counters(mp);
    	xfs_destroy_mount_workqueues(mp);
    	xfs_close_devices(mp);
    	xfs_free_fsname(mp);
    	kfree(mp);
    }
    
    STATIC struct dentry *
    xfs_fs_mount(
    	struct file_system_type	*fs_type,
    	int			flags,
    	const char		*dev_name,
    	void			*data)
    {
    	return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
    }
    
    static long
    xfs_fs_nr_cached_objects(
    	struct super_block	*sb,
    	struct shrink_control	*sc)
    {
    	return xfs_reclaim_inodes_count(XFS_M(sb));
    }
    
    static long
    xfs_fs_free_cached_objects(
    	struct super_block	*sb,
    	struct shrink_control	*sc)
    {
    	return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
    }
    
    static const struct super_operations xfs_super_operations = {
    	.alloc_inode		= xfs_fs_alloc_inode,
    	.destroy_inode		= xfs_fs_destroy_inode,
    	.drop_inode		= xfs_fs_drop_inode,
    	.put_super		= xfs_fs_put_super,
    	.sync_fs		= xfs_fs_sync_fs,
    	.freeze_fs		= xfs_fs_freeze,
    	.unfreeze_fs		= xfs_fs_unfreeze,
    	.statfs			= xfs_fs_statfs,
    	.remount_fs		= xfs_fs_remount,
    	.show_options		= xfs_fs_show_options,
    	.nr_cached_objects	= xfs_fs_nr_cached_objects,
    	.free_cached_objects	= xfs_fs_free_cached_objects,
    };
    
    static struct file_system_type xfs_fs_type = {
    	.owner			= THIS_MODULE,
    	.name			= "xfs",
    	.mount			= xfs_fs_mount,
    	.kill_sb		= kill_block_super,
    	.fs_flags		= FS_REQUIRES_DEV,
    };
    MODULE_ALIAS_FS("xfs");
    
    STATIC int __init
    xfs_init_zones(void)
    {
    	xfs_ioend_bioset = bioset_create(4 * MAX_BUF_PER_PAGE,
    			offsetof(struct xfs_ioend, io_inline_bio),
    			BIOSET_NEED_BVECS);
    	if (!xfs_ioend_bioset)
    		goto out;
    
    	xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
    						"xfs_log_ticket");
    	if (!xfs_log_ticket_zone)
    		goto out_free_ioend_bioset;
    
    	xfs_bmap_free_item_zone = kmem_zone_init(
    			sizeof(struct xfs_extent_free_item),
    			"xfs_bmap_free_item");
    	if (!xfs_bmap_free_item_zone)
    		goto out_destroy_log_ticket_zone;
    
    	xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
    						"xfs_btree_cur");
    	if (!xfs_btree_cur_zone)
    		goto out_destroy_bmap_free_item_zone;
    
    	xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
    						"xfs_da_state");
    	if (!xfs_da_state_zone)
    		goto out_destroy_btree_cur_zone;
    
    	xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
    	if (!xfs_ifork_zone)
    		goto out_destroy_da_state_zone;
    
    	xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
    	if (!xfs_trans_zone)
    		goto out_destroy_ifork_zone;
    
    	xfs_log_item_desc_zone =
    		kmem_zone_init(sizeof(struct xfs_log_item_desc),
    			       "xfs_log_item_desc");
    	if (!xfs_log_item_desc_zone)
    		goto out_destroy_trans_zone;
    
    	/*
    	 * The size of the zone allocated buf log item is the maximum
    	 * size possible under XFS.  This wastes a little bit of memory,
    	 * but it is much faster.
    	 */
    	xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item),
    					   "xfs_buf_item");
    	if (!xfs_buf_item_zone)
    		goto out_destroy_log_item_desc_zone;
    
    	xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
    			((XFS_EFD_MAX_FAST_EXTENTS - 1) *
    				 sizeof(xfs_extent_t))), "xfs_efd_item");
    	if (!xfs_efd_zone)
    		goto out_destroy_buf_item_zone;
    
    	xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
    			((XFS_EFI_MAX_FAST_EXTENTS - 1) *
    				sizeof(xfs_extent_t))), "xfs_efi_item");
    	if (!xfs_efi_zone)
    		goto out_destroy_efd_zone;
    
    	xfs_inode_zone =
    		kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
    			KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD |
    			KM_ZONE_ACCOUNT, xfs_fs_inode_init_once);
    	if (!xfs_inode_zone)
    		goto out_destroy_efi_zone;
    
    	xfs_ili_zone =
    		kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
    					KM_ZONE_SPREAD, NULL);
    	if (!xfs_ili_zone)
    		goto out_destroy_inode_zone;
    	xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item),
    					"xfs_icr");
    	if (!xfs_icreate_zone)
    		goto out_destroy_ili_zone;
    
    	xfs_rud_zone = kmem_zone_init(sizeof(struct xfs_rud_log_item),
    			"xfs_rud_item");
    	if (!xfs_rud_zone)
    		goto out_destroy_icreate_zone;
    
    	xfs_rui_zone = kmem_zone_init(
    			xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
    			"xfs_rui_item");
    	if (!xfs_rui_zone)
    		goto out_destroy_rud_zone;
    
    	xfs_cud_zone = kmem_zone_init(sizeof(struct xfs_cud_log_item),
    			"xfs_cud_item");
    	if (!xfs_cud_zone)
    		goto out_destroy_rui_zone;
    
    	xfs_cui_zone = kmem_zone_init(
    			xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
    			"xfs_cui_item");
    	if (!xfs_cui_zone)
    		goto out_destroy_cud_zone;
    
    	xfs_bud_zone = kmem_zone_init(sizeof(struct xfs_bud_log_item),
    			"xfs_bud_item");
    	if (!xfs_bud_zone)
    		goto out_destroy_cui_zone;
    
    	xfs_bui_zone = kmem_zone_init(
    			xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
    			"xfs_bui_item");
    	if (!xfs_bui_zone)
    		goto out_destroy_bud_zone;
    
    	return 0;
    
     out_destroy_bud_zone:
    	kmem_zone_destroy(xfs_bud_zone);
     out_destroy_cui_zone:
    	kmem_zone_destroy(xfs_cui_zone);
     out_destroy_cud_zone:
    	kmem_zone_destroy(xfs_cud_zone);
     out_destroy_rui_zone:
    	kmem_zone_destroy(xfs_rui_zone);
     out_destroy_rud_zone:
    	kmem_zone_destroy(xfs_rud_zone);
     out_destroy_icreate_zone:
    	kmem_zone_destroy(xfs_icreate_zone);
     out_destroy_ili_zone:
    	kmem_zone_destroy(xfs_ili_zone);
     out_destroy_inode_zone:
    	kmem_zone_destroy(xfs_inode_zone);
     out_destroy_efi_zone:
    	kmem_zone_destroy(xfs_efi_zone);
     out_destroy_efd_zone:
    	kmem_zone_destroy(xfs_efd_zone);
     out_destroy_buf_item_zone:
    	kmem_zone_destroy(xfs_buf_item_zone);
     out_destroy_log_item_desc_zone:
    	kmem_zone_destroy(xfs_log_item_desc_zone);
     out_destroy_trans_zone:
    	kmem_zone_destroy(xfs_trans_zone);
     out_destroy_ifork_zone:
    	kmem_zone_destroy(xfs_ifork_zone);
     out_destroy_da_state_zone:
    	kmem_zone_destroy(xfs_da_state_zone);
     out_destroy_btree_cur_zone:
    	kmem_zone_destroy(xfs_btree_cur_zone);
     out_destroy_bmap_free_item_zone:
    	kmem_zone_destroy(xfs_bmap_free_item_zone);
     out_destroy_log_ticket_zone:
    	kmem_zone_destroy(xfs_log_ticket_zone);
     out_free_ioend_bioset:
    	bioset_free(xfs_ioend_bioset);
     out:
    	return -ENOMEM;
    }
    
    STATIC void
    xfs_destroy_zones(void)
    {
    	/*
    	 * Make sure all delayed rcu free are flushed before we
    	 * destroy caches.
    	 */
    	rcu_barrier();
    	kmem_zone_destroy(xfs_bui_zone);
    	kmem_zone_destroy(xfs_bud_zone);
    	kmem_zone_destroy(xfs_cui_zone);
    	kmem_zone_destroy(xfs_cud_zone);
    	kmem_zone_destroy(xfs_rui_zone);
    	kmem_zone_destroy(xfs_rud_zone);
    	kmem_zone_destroy(xfs_icreate_zone);
    	kmem_zone_destroy(xfs_ili_zone);
    	kmem_zone_destroy(xfs_inode_zone);
    	kmem_zone_destroy(xfs_efi_zone);
    	kmem_zone_destroy(xfs_efd_zone);
    	kmem_zone_destroy(xfs_buf_item_zone);
    	kmem_zone_destroy(xfs_log_item_desc_zone);
    	kmem_zone_destroy(xfs_trans_zone);
    	kmem_zone_destroy(xfs_ifork_zone);
    	kmem_zone_destroy(xfs_da_state_zone);
    	kmem_zone_destroy(xfs_btree_cur_zone);
    	kmem_zone_destroy(xfs_bmap_free_item_zone);
    	kmem_zone_destroy(xfs_log_ticket_zone);
    	bioset_free(xfs_ioend_bioset);
    }
    
    STATIC int __init
    xfs_init_workqueues(void)
    {
    	/*
    	 * The allocation workqueue can be used in memory reclaim situations
    	 * (writepage path), and parallelism is only limited by the number of
    	 * AGs in all the filesystems mounted. Hence use the default large
    	 * max_active value for this workqueue.
    	 */
    	xfs_alloc_wq = alloc_workqueue("xfsalloc",
    			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
    	if (!xfs_alloc_wq)
    		return -ENOMEM;
    
    	xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
    	if (!xfs_discard_wq)
    		goto out_free_alloc_wq;
    
    	return 0;
    out_free_alloc_wq:
    	destroy_workqueue(xfs_alloc_wq);
    	return -ENOMEM;
    }
    
    STATIC void
    xfs_destroy_workqueues(void)
    {
    	destroy_workqueue(xfs_discard_wq);
    	destroy_workqueue(xfs_alloc_wq);
    }
    
    STATIC int __init
    init_xfs_fs(void)
    {
    	int			error;
    
    	xfs_check_ondisk_structs();
    
    	printk(KERN_INFO XFS_VERSION_STRING " with "
    			 XFS_BUILD_OPTIONS " enabled\n");
    
    	xfs_extent_free_init_defer_op();
    	xfs_rmap_update_init_defer_op();
    	xfs_refcount_update_init_defer_op();
    	xfs_bmap_update_init_defer_op();
    
    	xfs_dir_startup();
    
    	error = xfs_init_zones();
    	if (error)
    		goto out;
    
    	error = xfs_init_workqueues();
    	if (error)
    		goto out_destroy_zones;
    
    	error = xfs_mru_cache_init();
    	if (error)
    		goto out_destroy_wq;
    
    	error = xfs_buf_init();
    	if (error)
    		goto out_mru_cache_uninit;
    
    	error = xfs_init_procfs();
    	if (error)
    		goto out_buf_terminate;
    
    	error = xfs_sysctl_register();
    	if (error)
    		goto out_cleanup_procfs;
    
    	xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
    	if (!xfs_kset) {
    		error = -ENOMEM;
    		goto out_sysctl_unregister;
    	}
    
    	xfsstats.xs_kobj.kobject.kset = xfs_kset;
    
    	xfsstats.xs_stats = alloc_percpu(struct xfsstats);
    	if (!xfsstats.xs_stats) {
    		error = -ENOMEM;
    		goto out_kset_unregister;
    	}
    
    	error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
    			       "stats");
    	if (error)
    		goto out_free_stats;
    
    #ifdef DEBUG
    	xfs_dbg_kobj.kobject.kset = xfs_kset;
    	error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
    	if (error)
    		goto out_remove_stats_kobj;
    #endif
    
    	error = xfs_qm_init();
    	if (error)
    		goto out_remove_dbg_kobj;
    
    	error = register_filesystem(&xfs_fs_type);
    	if (error)
    		goto out_qm_exit;
    	return 0;
    
     out_qm_exit:
    	xfs_qm_exit();
     out_remove_dbg_kobj:
    #ifdef DEBUG
    	xfs_sysfs_del(&xfs_dbg_kobj);
     out_remove_stats_kobj:
    #endif
    	xfs_sysfs_del(&xfsstats.xs_kobj);
     out_free_stats:
    	free_percpu(xfsstats.xs_stats);
     out_kset_unregister:
    	kset_unregister(xfs_kset);
     out_sysctl_unregister:
    	xfs_sysctl_unregister();
     out_cleanup_procfs:
    	xfs_cleanup_procfs();
     out_buf_terminate:
    	xfs_buf_terminate();
     out_mru_cache_uninit:
    	xfs_mru_cache_uninit();
     out_destroy_wq:
    	xfs_destroy_workqueues();
     out_destroy_zones:
    	xfs_destroy_zones();
     out:
    	return error;
    }
    
    STATIC void __exit
    exit_xfs_fs(void)
    {
    	xfs_qm_exit();
    	unregister_filesystem(&xfs_fs_type);
    #ifdef DEBUG
    	xfs_sysfs_del(&xfs_dbg_kobj);
    #endif
    	xfs_sysfs_del(&xfsstats.xs_kobj);
    	free_percpu(xfsstats.xs_stats);
    	kset_unregister(xfs_kset);
    	xfs_sysctl_unregister();
    	xfs_cleanup_procfs();
    	xfs_buf_terminate();
    	xfs_mru_cache_uninit();
    	xfs_destroy_workqueues();
    	xfs_destroy_zones();
    	xfs_uuid_table_free();
    }
    
    module_init(init_xfs_fs);
    module_exit(exit_xfs_fs);
    
    MODULE_AUTHOR("Silicon Graphics, Inc.");
    MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
    MODULE_LICENSE("GPL");