Skip to content
Snippets Groups Projects
Select Git revision
  • d852b5f35e84e60c930589eeb14a6df21ea9b1cb
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

mips.c

Blame
    • James Hogan's avatar
      d852b5f3
      KVM: MIPS: Add missing uaccess.h include · d852b5f3
      James Hogan authored
      
      MIPS KVM uses user memory accessors but mips.c doesn't directly include
      uaccess.h, so include it now.
      
      This wasn't too much of a problem before v4.9-rc1 as asm/module.h
      included asm/uaccess.h, however since commit 29abfbd9 ("mips:
      separate extable.h, switch module.h to it") this is no longer the case.
      
      This resulted in build failures when trace points were disabled, as
      trace/define_trace.h includes trace/trace_events.h only ifdef
      TRACEPOINTS_ENABLED, which goes on to include asm/uaccess.h via a couple
      of other headers.
      
      Fixes: 29abfbd9 ("mips: separate extable.h, switch module.h to it")
      Signed-off-by: default avatarJames Hogan <james.hogan@imgtec.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: "Radim Krčmář" <rkrcmar@redhat.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: linux-mips@linux-mips.org
      Cc: kvm@vger.kernel.org
      d852b5f3
      History
      KVM: MIPS: Add missing uaccess.h include
      James Hogan authored
      
      MIPS KVM uses user memory accessors but mips.c doesn't directly include
      uaccess.h, so include it now.
      
      This wasn't too much of a problem before v4.9-rc1 as asm/module.h
      included asm/uaccess.h, however since commit 29abfbd9 ("mips:
      separate extable.h, switch module.h to it") this is no longer the case.
      
      This resulted in build failures when trace points were disabled, as
      trace/define_trace.h includes trace/trace_events.h only ifdef
      TRACEPOINTS_ENABLED, which goes on to include asm/uaccess.h via a couple
      of other headers.
      
      Fixes: 29abfbd9 ("mips: separate extable.h, switch module.h to it")
      Signed-off-by: default avatarJames Hogan <james.hogan@imgtec.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: "Radim Krčmář" <rkrcmar@redhat.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: linux-mips@linux-mips.org
      Cc: kvm@vger.kernel.org
    mips.c 45.02 KiB
    /*
     * This file is subject to the terms and conditions of the GNU General Public
     * License.  See the file "COPYING" in the main directory of this archive
     * for more details.
     *
     * KVM/MIPS: MIPS specific KVM APIs
     *
     * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
     * Authors: Sanjay Lal <sanjayl@kymasys.com>
     */
    
    #include <linux/bitops.h>
    #include <linux/errno.h>
    #include <linux/err.h>
    #include <linux/kdebug.h>
    #include <linux/module.h>
    #include <linux/uaccess.h>
    #include <linux/vmalloc.h>
    #include <linux/fs.h>
    #include <linux/bootmem.h>
    #include <asm/fpu.h>
    #include <asm/page.h>
    #include <asm/cacheflush.h>
    #include <asm/mmu_context.h>
    #include <asm/pgtable.h>
    
    #include <linux/kvm_host.h>
    
    #include "interrupt.h"
    #include "commpage.h"
    
    #define CREATE_TRACE_POINTS
    #include "trace.h"
    
    #ifndef VECTORSPACING
    #define VECTORSPACING 0x100	/* for EI/VI mode */
    #endif
    
    #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
    struct kvm_stats_debugfs_item debugfs_entries[] = {
    	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
    	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
    	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
    	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
    	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
    	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
    	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
    	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
    	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
    	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
    	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
    	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
    	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
    	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
    	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
    	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
    	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
    	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
    	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
    	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
    	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
    	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
    	{NULL}
    };
    
    static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
    {
    	int i;
    
    	for_each_possible_cpu(i) {
    		vcpu->arch.guest_kernel_asid[i] = 0;
    		vcpu->arch.guest_user_asid[i] = 0;
    	}
    
    	return 0;
    }
    
    /*
     * XXXKYMA: We are simulatoring a processor that has the WII bit set in
     * Config7, so we are "runnable" if interrupts are pending
     */
    int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
    {
    	return !!(vcpu->arch.pending_exceptions);
    }
    
    int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
    {
    	return 1;
    }
    
    int kvm_arch_hardware_enable(void)
    {
    	return 0;
    }
    
    int kvm_arch_hardware_setup(void)
    {
    	return 0;
    }
    
    void kvm_arch_check_processor_compat(void *rtn)
    {
    	*(int *)rtn = 0;
    }
    
    static void kvm_mips_init_tlbs(struct kvm *kvm)
    {
    	unsigned long wired;
    
    	/*
    	 * Add a wired entry to the TLB, it is used to map the commpage to
    	 * the Guest kernel
    	 */
    	wired = read_c0_wired();
    	write_c0_wired(wired + 1);
    	mtc0_tlbw_hazard();
    	kvm->arch.commpage_tlb = wired;
    
    	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
    		  kvm->arch.commpage_tlb);
    }
    
    static void kvm_mips_init_vm_percpu(void *arg)
    {
    	struct kvm *kvm = (struct kvm *)arg;
    
    	kvm_mips_init_tlbs(kvm);
    	kvm_mips_callbacks->vm_init(kvm);
    
    }
    
    int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
    {
    	if (atomic_inc_return(&kvm_mips_instance) == 1) {
    		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
    			  __func__);
    		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
    	}
    
    	return 0;
    }
    
    bool kvm_arch_has_vcpu_debugfs(void)
    {
    	return false;
    }
    
    int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
    {
    	return 0;
    }
    
    void kvm_mips_free_vcpus(struct kvm *kvm)
    {
    	unsigned int i;
    	struct kvm_vcpu *vcpu;
    
    	/* Put the pages we reserved for the guest pmap */
    	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
    		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
    			kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
    	}
    	kfree(kvm->arch.guest_pmap);
    
    	kvm_for_each_vcpu(i, vcpu, kvm) {
    		kvm_arch_vcpu_free(vcpu);
    	}
    
    	mutex_lock(&kvm->lock);
    
    	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
    		kvm->vcpus[i] = NULL;
    
    	atomic_set(&kvm->online_vcpus, 0);
    
    	mutex_unlock(&kvm->lock);
    }
    
    static void kvm_mips_uninit_tlbs(void *arg)
    {
    	/* Restore wired count */
    	write_c0_wired(0);
    	mtc0_tlbw_hazard();
    	/* Clear out all the TLBs */
    	kvm_local_flush_tlb_all();
    }
    
    void kvm_arch_destroy_vm(struct kvm *kvm)
    {
    	kvm_mips_free_vcpus(kvm);
    
    	/* If this is the last instance, restore wired count */
    	if (atomic_dec_return(&kvm_mips_instance) == 0) {
    		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
    			  __func__);
    		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
    	}
    }
    
    long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
    			unsigned long arg)
    {
    	return -ENOIOCTLCMD;
    }
    
    int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
    			    unsigned long npages)
    {
    	return 0;
    }
    
    int kvm_arch_prepare_memory_region(struct kvm *kvm,
    				   struct kvm_memory_slot *memslot,
    				   const struct kvm_userspace_memory_region *mem,
    				   enum kvm_mr_change change)
    {
    	return 0;
    }
    
    void kvm_arch_commit_memory_region(struct kvm *kvm,
    				   const struct kvm_userspace_memory_region *mem,
    				   const struct kvm_memory_slot *old,
    				   const struct kvm_memory_slot *new,
    				   enum kvm_mr_change change)
    {
    	unsigned long npages = 0;
    	int i;
    
    	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
    		  __func__, kvm, mem->slot, mem->guest_phys_addr,
    		  mem->memory_size, mem->userspace_addr);
    
    	/* Setup Guest PMAP table */
    	if (!kvm->arch.guest_pmap) {
    		if (mem->slot == 0)
    			npages = mem->memory_size >> PAGE_SHIFT;
    
    		if (npages) {
    			kvm->arch.guest_pmap_npages = npages;
    			kvm->arch.guest_pmap =
    			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
    
    			if (!kvm->arch.guest_pmap) {
    				kvm_err("Failed to allocate guest PMAP\n");
    				return;
    			}
    
    			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
    				  npages, kvm->arch.guest_pmap);
    
    			/* Now setup the page table */
    			for (i = 0; i < npages; i++)
    				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
    		}
    	}
    }
    
    static inline void dump_handler(const char *symbol, void *start, void *end)
    {
    	u32 *p;
    
    	pr_debug("LEAF(%s)\n", symbol);
    
    	pr_debug("\t.set push\n");
    	pr_debug("\t.set noreorder\n");
    
    	for (p = start; p < (u32 *)end; ++p)
    		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
    
    	pr_debug("\t.set\tpop\n");
    
    	pr_debug("\tEND(%s)\n", symbol);
    }
    
    struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
    {
    	int err, size;
    	void *gebase, *p, *handler;
    	int i;
    
    	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
    
    	if (!vcpu) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	err = kvm_vcpu_init(vcpu, kvm, id);
    
    	if (err)
    		goto out_free_cpu;
    
    	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
    
    	/*
    	 * Allocate space for host mode exception handlers that handle
    	 * guest mode exits
    	 */
    	if (cpu_has_veic || cpu_has_vint)
    		size = 0x200 + VECTORSPACING * 64;
    	else
    		size = 0x4000;
    
    	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
    
    	if (!gebase) {
    		err = -ENOMEM;
    		goto out_uninit_cpu;
    	}
    	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
    		  ALIGN(size, PAGE_SIZE), gebase);
    
    	/*
    	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
    	 * limits us to the low 512MB of physical address space. If the memory
    	 * we allocate is out of range, just give up now.
    	 */
    	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
    		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
    			gebase);
    		err = -ENOMEM;
    		goto out_free_gebase;
    	}
    
    	/* Save new ebase */
    	vcpu->arch.guest_ebase = gebase;
    
    	/* Build guest exception vectors dynamically in unmapped memory */
    	handler = gebase + 0x2000;
    
    	/* TLB Refill, EXL = 0 */
    	kvm_mips_build_exception(gebase, handler);
    
    	/* General Exception Entry point */
    	kvm_mips_build_exception(gebase + 0x180, handler);
    
    	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
    	for (i = 0; i < 8; i++) {
    		kvm_debug("L1 Vectored handler @ %p\n",
    			  gebase + 0x200 + (i * VECTORSPACING));
    		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
    					 handler);
    	}
    
    	/* General exit handler */
    	p = handler;
    	p = kvm_mips_build_exit(p);
    
    	/* Guest entry routine */
    	vcpu->arch.vcpu_run = p;
    	p = kvm_mips_build_vcpu_run(p);
    
    	/* Dump the generated code */
    	pr_debug("#include <asm/asm.h>\n");
    	pr_debug("#include <asm/regdef.h>\n");
    	pr_debug("\n");
    	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
    	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
    	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
    
    	/* Invalidate the icache for these ranges */
    	local_flush_icache_range((unsigned long)gebase,
    				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
    
    	/*
    	 * Allocate comm page for guest kernel, a TLB will be reserved for
    	 * mapping GVA @ 0xFFFF8000 to this page
    	 */
    	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
    
    	if (!vcpu->arch.kseg0_commpage) {
    		err = -ENOMEM;
    		goto out_free_gebase;
    	}
    
    	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
    	kvm_mips_commpage_init(vcpu);
    
    	/* Init */
    	vcpu->arch.last_sched_cpu = -1;
    
    	/* Start off the timer */
    	kvm_mips_init_count(vcpu);
    
    	return vcpu;
    
    out_free_gebase:
    	kfree(gebase);
    
    out_uninit_cpu:
    	kvm_vcpu_uninit(vcpu);
    
    out_free_cpu:
    	kfree(vcpu);
    
    out:
    	return ERR_PTR(err);
    }
    
    void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
    {
    	hrtimer_cancel(&vcpu->arch.comparecount_timer);
    
    	kvm_vcpu_uninit(vcpu);
    
    	kvm_mips_dump_stats(vcpu);
    
    	kfree(vcpu->arch.guest_ebase);
    	kfree(vcpu->arch.kseg0_commpage);
    	kfree(vcpu);
    }
    
    void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
    {
    	kvm_arch_vcpu_free(vcpu);
    }
    
    int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
    					struct kvm_guest_debug *dbg)
    {
    	return -ENOIOCTLCMD;
    }
    
    /* Must be called with preemption disabled, just before entering guest */
    static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
    {
    	struct mips_coproc *cop0 = vcpu->arch.cop0;
    	int cpu = smp_processor_id();
    	unsigned int gasid;
    
    	/*
    	 * Lazy host ASID regeneration for guest user mode.
    	 * If the guest ASID has changed since the last guest usermode
    	 * execution, regenerate the host ASID so as to invalidate stale TLB
    	 * entries.
    	 */
    	if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
    		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
    		if (gasid != vcpu->arch.last_user_gasid) {
    			kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
    						vcpu);
    			vcpu->arch.guest_user_asid[cpu] =
    				vcpu->arch.guest_user_mm.context.asid[cpu];
    			vcpu->arch.last_user_gasid = gasid;
    		}
    	}
    }
    
    int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	int r = 0;
    	sigset_t sigsaved;
    
    	if (vcpu->sigset_active)
    		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
    
    	if (vcpu->mmio_needed) {
    		if (!vcpu->mmio_is_write)
    			kvm_mips_complete_mmio_load(vcpu, run);
    		vcpu->mmio_needed = 0;
    	}
    
    	lose_fpu(1);
    
    	local_irq_disable();
    	/* Check if we have any exceptions/interrupts pending */
    	kvm_mips_deliver_interrupts(vcpu,
    				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
    
    	guest_enter_irqoff();
    
    	/* Disable hardware page table walking while in guest */
    	htw_stop();
    
    	trace_kvm_enter(vcpu);
    
    	kvm_mips_check_asids(vcpu);
    
    	r = vcpu->arch.vcpu_run(run, vcpu);
    	trace_kvm_out(vcpu);
    
    	/* Re-enable HTW before enabling interrupts */
    	htw_start();
    
    	guest_exit_irqoff();
    	local_irq_enable();
    
    	if (vcpu->sigset_active)
    		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
    
    	return r;
    }
    
    int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
    			     struct kvm_mips_interrupt *irq)
    {
    	int intr = (int)irq->irq;
    	struct kvm_vcpu *dvcpu = NULL;
    
    	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
    		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
    			  (int)intr);
    
    	if (irq->cpu == -1)
    		dvcpu = vcpu;
    	else
    		dvcpu = vcpu->kvm->vcpus[irq->cpu];
    
    	if (intr == 2 || intr == 3 || intr == 4) {
    		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
    
    	} else if (intr == -2 || intr == -3 || intr == -4) {
    		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
    	} else {
    		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
    			irq->cpu, irq->irq);
    		return -EINVAL;
    	}
    
    	dvcpu->arch.wait = 0;
    
    	if (swait_active(&dvcpu->wq))
    		swake_up(&dvcpu->wq);
    
    	return 0;
    }
    
    int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
    				    struct kvm_mp_state *mp_state)
    {
    	return -ENOIOCTLCMD;
    }
    
    int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
    				    struct kvm_mp_state *mp_state)
    {
    	return -ENOIOCTLCMD;
    }
    
    static u64 kvm_mips_get_one_regs[] = {
    	KVM_REG_MIPS_R0,
    	KVM_REG_MIPS_R1,
    	KVM_REG_MIPS_R2,
    	KVM_REG_MIPS_R3,
    	KVM_REG_MIPS_R4,
    	KVM_REG_MIPS_R5,
    	KVM_REG_MIPS_R6,
    	KVM_REG_MIPS_R7,
    	KVM_REG_MIPS_R8,
    	KVM_REG_MIPS_R9,
    	KVM_REG_MIPS_R10,
    	KVM_REG_MIPS_R11,
    	KVM_REG_MIPS_R12,
    	KVM_REG_MIPS_R13,
    	KVM_REG_MIPS_R14,
    	KVM_REG_MIPS_R15,
    	KVM_REG_MIPS_R16,
    	KVM_REG_MIPS_R17,
    	KVM_REG_MIPS_R18,
    	KVM_REG_MIPS_R19,
    	KVM_REG_MIPS_R20,
    	KVM_REG_MIPS_R21,
    	KVM_REG_MIPS_R22,
    	KVM_REG_MIPS_R23,
    	KVM_REG_MIPS_R24,
    	KVM_REG_MIPS_R25,
    	KVM_REG_MIPS_R26,
    	KVM_REG_MIPS_R27,
    	KVM_REG_MIPS_R28,
    	KVM_REG_MIPS_R29,
    	KVM_REG_MIPS_R30,
    	KVM_REG_MIPS_R31,
    
    #ifndef CONFIG_CPU_MIPSR6
    	KVM_REG_MIPS_HI,
    	KVM_REG_MIPS_LO,
    #endif
    	KVM_REG_MIPS_PC,
    
    	KVM_REG_MIPS_CP0_INDEX,
    	KVM_REG_MIPS_CP0_CONTEXT,
    	KVM_REG_MIPS_CP0_USERLOCAL,
    	KVM_REG_MIPS_CP0_PAGEMASK,
    	KVM_REG_MIPS_CP0_WIRED,
    	KVM_REG_MIPS_CP0_HWRENA,
    	KVM_REG_MIPS_CP0_BADVADDR,
    	KVM_REG_MIPS_CP0_COUNT,
    	KVM_REG_MIPS_CP0_ENTRYHI,
    	KVM_REG_MIPS_CP0_COMPARE,
    	KVM_REG_MIPS_CP0_STATUS,
    	KVM_REG_MIPS_CP0_CAUSE,
    	KVM_REG_MIPS_CP0_EPC,
    	KVM_REG_MIPS_CP0_PRID,
    	KVM_REG_MIPS_CP0_CONFIG,
    	KVM_REG_MIPS_CP0_CONFIG1,
    	KVM_REG_MIPS_CP0_CONFIG2,
    	KVM_REG_MIPS_CP0_CONFIG3,
    	KVM_REG_MIPS_CP0_CONFIG4,
    	KVM_REG_MIPS_CP0_CONFIG5,
    	KVM_REG_MIPS_CP0_CONFIG7,
    	KVM_REG_MIPS_CP0_ERROREPC,
    
    	KVM_REG_MIPS_COUNT_CTL,
    	KVM_REG_MIPS_COUNT_RESUME,
    	KVM_REG_MIPS_COUNT_HZ,
    };
    
    static u64 kvm_mips_get_one_regs_fpu[] = {
    	KVM_REG_MIPS_FCR_IR,
    	KVM_REG_MIPS_FCR_CSR,
    };
    
    static u64 kvm_mips_get_one_regs_msa[] = {
    	KVM_REG_MIPS_MSA_IR,
    	KVM_REG_MIPS_MSA_CSR,
    };
    
    static u64 kvm_mips_get_one_regs_kscratch[] = {
    	KVM_REG_MIPS_CP0_KSCRATCH1,
    	KVM_REG_MIPS_CP0_KSCRATCH2,
    	KVM_REG_MIPS_CP0_KSCRATCH3,
    	KVM_REG_MIPS_CP0_KSCRATCH4,
    	KVM_REG_MIPS_CP0_KSCRATCH5,
    	KVM_REG_MIPS_CP0_KSCRATCH6,
    };
    
    static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
    {
    	unsigned long ret;
    
    	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
    	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
    		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
    		/* odd doubles */
    		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
    			ret += 16;
    	}
    	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
    		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
    	ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
    	ret += kvm_mips_callbacks->num_regs(vcpu);
    
    	return ret;
    }
    
    static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
    {
    	u64 index;
    	unsigned int i;
    
    	if (copy_to_user(indices, kvm_mips_get_one_regs,
    			 sizeof(kvm_mips_get_one_regs)))
    		return -EFAULT;
    	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
    
    	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
    		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
    				 sizeof(kvm_mips_get_one_regs_fpu)))
    			return -EFAULT;
    		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
    
    		for (i = 0; i < 32; ++i) {
    			index = KVM_REG_MIPS_FPR_32(i);
    			if (copy_to_user(indices, &index, sizeof(index)))
    				return -EFAULT;
    			++indices;
    
    			/* skip odd doubles if no F64 */
    			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
    				continue;
    
    			index = KVM_REG_MIPS_FPR_64(i);
    			if (copy_to_user(indices, &index, sizeof(index)))
    				return -EFAULT;
    			++indices;
    		}
    	}
    
    	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
    		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
    				 sizeof(kvm_mips_get_one_regs_msa)))
    			return -EFAULT;
    		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
    
    		for (i = 0; i < 32; ++i) {
    			index = KVM_REG_MIPS_VEC_128(i);
    			if (copy_to_user(indices, &index, sizeof(index)))
    				return -EFAULT;
    			++indices;
    		}
    	}
    
    	for (i = 0; i < 6; ++i) {
    		if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
    			continue;
    
    		if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
    				 sizeof(kvm_mips_get_one_regs_kscratch[i])))
    			return -EFAULT;
    		++indices;
    	}
    
    	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
    }
    
    static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
    			    const struct kvm_one_reg *reg)
    {
    	struct mips_coproc *cop0 = vcpu->arch.cop0;
    	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
    	int ret;
    	s64 v;
    	s64 vs[2];
    	unsigned int idx;
    
    	switch (reg->id) {
    	/* General purpose registers */
    	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
    		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
    		break;
    #ifndef CONFIG_CPU_MIPSR6
    	case KVM_REG_MIPS_HI:
    		v = (long)vcpu->arch.hi;
    		break;
    	case KVM_REG_MIPS_LO:
    		v = (long)vcpu->arch.lo;
    		break;
    #endif
    	case KVM_REG_MIPS_PC:
    		v = (long)vcpu->arch.pc;
    		break;
    
    	/* Floating point registers */
    	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
    		/* Odd singles in top of even double when FR=0 */
    		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
    			v = get_fpr32(&fpu->fpr[idx], 0);
    		else
    			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
    		break;
    	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
    		/* Can't access odd doubles in FR=0 mode */
    		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
    			return -EINVAL;
    		v = get_fpr64(&fpu->fpr[idx], 0);
    		break;
    	case KVM_REG_MIPS_FCR_IR:
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		v = boot_cpu_data.fpu_id;
    		break;
    	case KVM_REG_MIPS_FCR_CSR:
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		v = fpu->fcr31;
    		break;
    
    	/* MIPS SIMD Architecture (MSA) registers */
    	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		/* Can't access MSA registers in FR=0 mode */
    		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
    #ifdef CONFIG_CPU_LITTLE_ENDIAN
    		/* least significant byte first */
    		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
    		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
    #else
    		/* most significant byte first */
    		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
    		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
    #endif
    		break;
    	case KVM_REG_MIPS_MSA_IR:
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		v = boot_cpu_data.msa_id;
    		break;
    	case KVM_REG_MIPS_MSA_CSR:
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		v = fpu->msacsr;
    		break;
    
    	/* Co-processor 0 registers */
    	case KVM_REG_MIPS_CP0_INDEX:
    		v = (long)kvm_read_c0_guest_index(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONTEXT:
    		v = (long)kvm_read_c0_guest_context(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_USERLOCAL:
    		v = (long)kvm_read_c0_guest_userlocal(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_PAGEMASK:
    		v = (long)kvm_read_c0_guest_pagemask(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_WIRED:
    		v = (long)kvm_read_c0_guest_wired(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_HWRENA:
    		v = (long)kvm_read_c0_guest_hwrena(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_BADVADDR:
    		v = (long)kvm_read_c0_guest_badvaddr(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_ENTRYHI:
    		v = (long)kvm_read_c0_guest_entryhi(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_COMPARE:
    		v = (long)kvm_read_c0_guest_compare(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_STATUS:
    		v = (long)kvm_read_c0_guest_status(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CAUSE:
    		v = (long)kvm_read_c0_guest_cause(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_EPC:
    		v = (long)kvm_read_c0_guest_epc(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_PRID:
    		v = (long)kvm_read_c0_guest_prid(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG:
    		v = (long)kvm_read_c0_guest_config(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG1:
    		v = (long)kvm_read_c0_guest_config1(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG2:
    		v = (long)kvm_read_c0_guest_config2(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG3:
    		v = (long)kvm_read_c0_guest_config3(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG4:
    		v = (long)kvm_read_c0_guest_config4(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG5:
    		v = (long)kvm_read_c0_guest_config5(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_CONFIG7:
    		v = (long)kvm_read_c0_guest_config7(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_ERROREPC:
    		v = (long)kvm_read_c0_guest_errorepc(cop0);
    		break;
    	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
    		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
    		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
    			return -EINVAL;
    		switch (idx) {
    		case 2:
    			v = (long)kvm_read_c0_guest_kscratch1(cop0);
    			break;
    		case 3:
    			v = (long)kvm_read_c0_guest_kscratch2(cop0);
    			break;
    		case 4:
    			v = (long)kvm_read_c0_guest_kscratch3(cop0);
    			break;
    		case 5:
    			v = (long)kvm_read_c0_guest_kscratch4(cop0);
    			break;
    		case 6:
    			v = (long)kvm_read_c0_guest_kscratch5(cop0);
    			break;
    		case 7:
    			v = (long)kvm_read_c0_guest_kscratch6(cop0);
    			break;
    		}
    		break;
    	/* registers to be handled specially */
    	default:
    		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
    		if (ret)
    			return ret;
    		break;
    	}
    	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
    		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
    
    		return put_user(v, uaddr64);
    	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
    		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
    		u32 v32 = (u32)v;
    
    		return put_user(v32, uaddr32);
    	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
    		void __user *uaddr = (void __user *)(long)reg->addr;
    
    		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
    	} else {
    		return -EINVAL;
    	}
    }
    
    static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
    			    const struct kvm_one_reg *reg)
    {
    	struct mips_coproc *cop0 = vcpu->arch.cop0;
    	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
    	s64 v;
    	s64 vs[2];
    	unsigned int idx;
    
    	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
    		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
    
    		if (get_user(v, uaddr64) != 0)
    			return -EFAULT;
    	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
    		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
    		s32 v32;
    
    		if (get_user(v32, uaddr32) != 0)
    			return -EFAULT;
    		v = (s64)v32;
    	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
    		void __user *uaddr = (void __user *)(long)reg->addr;
    
    		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
    	} else {
    		return -EINVAL;
    	}
    
    	switch (reg->id) {
    	/* General purpose registers */
    	case KVM_REG_MIPS_R0:
    		/* Silently ignore requests to set $0 */
    		break;
    	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
    		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
    		break;
    #ifndef CONFIG_CPU_MIPSR6
    	case KVM_REG_MIPS_HI:
    		vcpu->arch.hi = v;
    		break;
    	case KVM_REG_MIPS_LO:
    		vcpu->arch.lo = v;
    		break;
    #endif
    	case KVM_REG_MIPS_PC:
    		vcpu->arch.pc = v;
    		break;
    
    	/* Floating point registers */
    	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
    		/* Odd singles in top of even double when FR=0 */
    		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
    			set_fpr32(&fpu->fpr[idx], 0, v);
    		else
    			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
    		break;
    	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
    		/* Can't access odd doubles in FR=0 mode */
    		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
    			return -EINVAL;
    		set_fpr64(&fpu->fpr[idx], 0, v);
    		break;
    	case KVM_REG_MIPS_FCR_IR:
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		/* Read-only */
    		break;
    	case KVM_REG_MIPS_FCR_CSR:
    		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    			return -EINVAL;
    		fpu->fcr31 = v;
    		break;
    
    	/* MIPS SIMD Architecture (MSA) registers */
    	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
    #ifdef CONFIG_CPU_LITTLE_ENDIAN
    		/* least significant byte first */
    		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
    		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
    #else
    		/* most significant byte first */
    		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
    		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
    #endif
    		break;
    	case KVM_REG_MIPS_MSA_IR:
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		/* Read-only */
    		break;
    	case KVM_REG_MIPS_MSA_CSR:
    		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    			return -EINVAL;
    		fpu->msacsr = v;
    		break;
    
    	/* Co-processor 0 registers */
    	case KVM_REG_MIPS_CP0_INDEX:
    		kvm_write_c0_guest_index(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_CONTEXT:
    		kvm_write_c0_guest_context(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_USERLOCAL:
    		kvm_write_c0_guest_userlocal(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_PAGEMASK:
    		kvm_write_c0_guest_pagemask(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_WIRED:
    		kvm_write_c0_guest_wired(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_HWRENA:
    		kvm_write_c0_guest_hwrena(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_BADVADDR:
    		kvm_write_c0_guest_badvaddr(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_ENTRYHI:
    		kvm_write_c0_guest_entryhi(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_STATUS:
    		kvm_write_c0_guest_status(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_EPC:
    		kvm_write_c0_guest_epc(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_PRID:
    		kvm_write_c0_guest_prid(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_ERROREPC:
    		kvm_write_c0_guest_errorepc(cop0, v);
    		break;
    	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
    		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
    		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
    			return -EINVAL;
    		switch (idx) {
    		case 2:
    			kvm_write_c0_guest_kscratch1(cop0, v);
    			break;
    		case 3:
    			kvm_write_c0_guest_kscratch2(cop0, v);
    			break;
    		case 4:
    			kvm_write_c0_guest_kscratch3(cop0, v);
    			break;
    		case 5:
    			kvm_write_c0_guest_kscratch4(cop0, v);
    			break;
    		case 6:
    			kvm_write_c0_guest_kscratch5(cop0, v);
    			break;
    		case 7:
    			kvm_write_c0_guest_kscratch6(cop0, v);
    			break;
    		}
    		break;
    	/* registers to be handled specially */
    	default:
    		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
    	}
    	return 0;
    }
    
    static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
    				     struct kvm_enable_cap *cap)
    {
    	int r = 0;
    
    	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
    		return -EINVAL;
    	if (cap->flags)
    		return -EINVAL;
    	if (cap->args[0])
    		return -EINVAL;
    
    	switch (cap->cap) {
    	case KVM_CAP_MIPS_FPU:
    		vcpu->arch.fpu_enabled = true;
    		break;
    	case KVM_CAP_MIPS_MSA:
    		vcpu->arch.msa_enabled = true;
    		break;
    	default:
    		r = -EINVAL;
    		break;
    	}
    
    	return r;
    }
    
    long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
    			 unsigned long arg)
    {
    	struct kvm_vcpu *vcpu = filp->private_data;
    	void __user *argp = (void __user *)arg;
    	long r;
    
    	switch (ioctl) {
    	case KVM_SET_ONE_REG:
    	case KVM_GET_ONE_REG: {
    		struct kvm_one_reg reg;
    
    		if (copy_from_user(&reg, argp, sizeof(reg)))
    			return -EFAULT;
    		if (ioctl == KVM_SET_ONE_REG)
    			return kvm_mips_set_reg(vcpu, &reg);
    		else
    			return kvm_mips_get_reg(vcpu, &reg);
    	}
    	case KVM_GET_REG_LIST: {
    		struct kvm_reg_list __user *user_list = argp;
    		struct kvm_reg_list reg_list;
    		unsigned n;
    
    		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
    			return -EFAULT;
    		n = reg_list.n;
    		reg_list.n = kvm_mips_num_regs(vcpu);
    		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
    			return -EFAULT;
    		if (n < reg_list.n)
    			return -E2BIG;
    		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
    	}
    	case KVM_NMI:
    		/* Treat the NMI as a CPU reset */
    		r = kvm_mips_reset_vcpu(vcpu);
    		break;
    	case KVM_INTERRUPT:
    		{
    			struct kvm_mips_interrupt irq;
    
    			r = -EFAULT;
    			if (copy_from_user(&irq, argp, sizeof(irq)))
    				goto out;
    
    			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
    				  irq.irq);
    
    			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
    			break;
    		}
    	case KVM_ENABLE_CAP: {
    		struct kvm_enable_cap cap;
    
    		r = -EFAULT;
    		if (copy_from_user(&cap, argp, sizeof(cap)))
    			goto out;
    		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
    		break;
    	}
    	default:
    		r = -ENOIOCTLCMD;
    	}
    
    out:
    	return r;
    }
    
    /* Get (and clear) the dirty memory log for a memory slot. */
    int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
    {
    	struct kvm_memslots *slots;
    	struct kvm_memory_slot *memslot;
    	unsigned long ga, ga_end;
    	int is_dirty = 0;
    	int r;
    	unsigned long n;
    
    	mutex_lock(&kvm->slots_lock);
    
    	r = kvm_get_dirty_log(kvm, log, &is_dirty);
    	if (r)
    		goto out;
    
    	/* If nothing is dirty, don't bother messing with page tables. */
    	if (is_dirty) {
    		slots = kvm_memslots(kvm);
    		memslot = id_to_memslot(slots, log->slot);
    
    		ga = memslot->base_gfn << PAGE_SHIFT;
    		ga_end = ga + (memslot->npages << PAGE_SHIFT);
    
    		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
    			 ga_end);
    
    		n = kvm_dirty_bitmap_bytes(memslot);
    		memset(memslot->dirty_bitmap, 0, n);
    	}
    
    	r = 0;
    out:
    	mutex_unlock(&kvm->slots_lock);
    	return r;
    
    }
    
    long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
    {
    	long r;
    
    	switch (ioctl) {
    	default:
    		r = -ENOIOCTLCMD;
    	}
    
    	return r;
    }
    
    int kvm_arch_init(void *opaque)
    {
    	if (kvm_mips_callbacks) {
    		kvm_err("kvm: module already exists\n");
    		return -EEXIST;
    	}
    
    	return kvm_mips_emulation_init(&kvm_mips_callbacks);
    }
    
    void kvm_arch_exit(void)
    {
    	kvm_mips_callbacks = NULL;
    }
    
    int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
    				  struct kvm_sregs *sregs)
    {
    	return -ENOIOCTLCMD;
    }
    
    int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
    				  struct kvm_sregs *sregs)
    {
    	return -ENOIOCTLCMD;
    }
    
    void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
    {
    }
    
    int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
    {
    	return -ENOIOCTLCMD;
    }
    
    int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
    {
    	return -ENOIOCTLCMD;
    }
    
    int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
    {
    	return VM_FAULT_SIGBUS;
    }
    
    int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
    {
    	int r;
    
    	switch (ext) {
    	case KVM_CAP_ONE_REG:
    	case KVM_CAP_ENABLE_CAP:
    		r = 1;
    		break;
    	case KVM_CAP_COALESCED_MMIO:
    		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
    		break;
    	case KVM_CAP_MIPS_FPU:
    		/* We don't handle systems with inconsistent cpu_has_fpu */
    		r = !!raw_cpu_has_fpu;
    		break;
    	case KVM_CAP_MIPS_MSA:
    		/*
    		 * We don't support MSA vector partitioning yet:
    		 * 1) It would require explicit support which can't be tested
    		 *    yet due to lack of support in current hardware.
    		 * 2) It extends the state that would need to be saved/restored
    		 *    by e.g. QEMU for migration.
    		 *
    		 * When vector partitioning hardware becomes available, support
    		 * could be added by requiring a flag when enabling
    		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
    		 * to save/restore the appropriate extra state.
    		 */
    		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
    		break;
    	default:
    		r = 0;
    		break;
    	}
    	return r;
    }
    
    int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
    {
    	return kvm_mips_pending_timer(vcpu);
    }
    
    int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
    {
    	int i;
    	struct mips_coproc *cop0;
    
    	if (!vcpu)
    		return -1;
    
    	kvm_debug("VCPU Register Dump:\n");
    	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
    	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
    
    	for (i = 0; i < 32; i += 4) {
    		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
    		       vcpu->arch.gprs[i],
    		       vcpu->arch.gprs[i + 1],
    		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
    	}
    	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
    	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
    
    	cop0 = vcpu->arch.cop0;
    	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
    		  kvm_read_c0_guest_status(cop0),
    		  kvm_read_c0_guest_cause(cop0));
    
    	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
    
    	return 0;
    }
    
    int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
    {
    	int i;
    
    	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
    		vcpu->arch.gprs[i] = regs->gpr[i];
    	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
    	vcpu->arch.hi = regs->hi;
    	vcpu->arch.lo = regs->lo;
    	vcpu->arch.pc = regs->pc;
    
    	return 0;
    }
    
    int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
    		regs->gpr[i] = vcpu->arch.gprs[i];
    
    	regs->hi = vcpu->arch.hi;
    	regs->lo = vcpu->arch.lo;
    	regs->pc = vcpu->arch.pc;
    
    	return 0;
    }
    
    static void kvm_mips_comparecount_func(unsigned long data)
    {
    	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
    
    	kvm_mips_callbacks->queue_timer_int(vcpu);
    
    	vcpu->arch.wait = 0;
    	if (swait_active(&vcpu->wq))
    		swake_up(&vcpu->wq);
    }
    
    /* low level hrtimer wake routine */
    static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
    {
    	struct kvm_vcpu *vcpu;
    
    	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
    	kvm_mips_comparecount_func((unsigned long) vcpu);
    	return kvm_mips_count_timeout(vcpu);
    }
    
    int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
    {
    	kvm_mips_callbacks->vcpu_init(vcpu);
    	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
    		     HRTIMER_MODE_REL);
    	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
    	return 0;
    }
    
    int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
    				  struct kvm_translation *tr)
    {
    	return 0;
    }
    
    /* Initial guest state */
    int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
    {
    	return kvm_mips_callbacks->vcpu_setup(vcpu);
    }
    
    static void kvm_mips_set_c0_status(void)
    {
    	u32 status = read_c0_status();
    
    	if (cpu_has_dsp)
    		status |= (ST0_MX);
    
    	write_c0_status(status);
    	ehb();
    }
    
    /*
     * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
     */
    int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
    {
    	u32 cause = vcpu->arch.host_cp0_cause;
    	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
    	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
    	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
    	enum emulation_result er = EMULATE_DONE;
    	int ret = RESUME_GUEST;
    
    	/* re-enable HTW before enabling interrupts */
    	htw_start();
    
    	/* Set a default exit reason */
    	run->exit_reason = KVM_EXIT_UNKNOWN;
    	run->ready_for_interrupt_injection = 1;
    
    	/*
    	 * Set the appropriate status bits based on host CPU features,
    	 * before we hit the scheduler
    	 */
    	kvm_mips_set_c0_status();
    
    	local_irq_enable();
    
    	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
    			cause, opc, run, vcpu);
    	trace_kvm_exit(vcpu, exccode);
    
    	/*
    	 * Do a privilege check, if in UM most of these exit conditions end up
    	 * causing an exception to be delivered to the Guest Kernel
    	 */
    	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
    	if (er == EMULATE_PRIV_FAIL) {
    		goto skip_emul;
    	} else if (er == EMULATE_FAIL) {
    		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
    		ret = RESUME_HOST;
    		goto skip_emul;
    	}
    
    	switch (exccode) {
    	case EXCCODE_INT:
    		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
    
    		++vcpu->stat.int_exits;
    
    		if (need_resched())
    			cond_resched();
    
    		ret = RESUME_GUEST;
    		break;
    
    	case EXCCODE_CPU:
    		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
    
    		++vcpu->stat.cop_unusable_exits;
    		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
    		/* XXXKYMA: Might need to return to user space */
    		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
    			ret = RESUME_HOST;
    		break;
    
    	case EXCCODE_MOD:
    		++vcpu->stat.tlbmod_exits;
    		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
    		break;
    
    	case EXCCODE_TLBS:
    		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
    			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
    			  badvaddr);
    
    		++vcpu->stat.tlbmiss_st_exits;
    		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
    		break;
    
    	case EXCCODE_TLBL:
    		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
    			  cause, opc, badvaddr);
    
    		++vcpu->stat.tlbmiss_ld_exits;
    		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
    		break;
    
    	case EXCCODE_ADES:
    		++vcpu->stat.addrerr_st_exits;
    		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
    		break;
    
    	case EXCCODE_ADEL:
    		++vcpu->stat.addrerr_ld_exits;
    		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
    		break;
    
    	case EXCCODE_SYS:
    		++vcpu->stat.syscall_exits;
    		ret = kvm_mips_callbacks->handle_syscall(vcpu);
    		break;
    
    	case EXCCODE_RI:
    		++vcpu->stat.resvd_inst_exits;
    		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
    		break;
    
    	case EXCCODE_BP:
    		++vcpu->stat.break_inst_exits;
    		ret = kvm_mips_callbacks->handle_break(vcpu);
    		break;
    
    	case EXCCODE_TR:
    		++vcpu->stat.trap_inst_exits;
    		ret = kvm_mips_callbacks->handle_trap(vcpu);
    		break;
    
    	case EXCCODE_MSAFPE:
    		++vcpu->stat.msa_fpe_exits;
    		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
    		break;
    
    	case EXCCODE_FPE:
    		++vcpu->stat.fpe_exits;
    		ret = kvm_mips_callbacks->handle_fpe(vcpu);
    		break;
    
    	case EXCCODE_MSADIS:
    		++vcpu->stat.msa_disabled_exits;
    		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
    		break;
    
    	default:
    		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
    			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
    			kvm_read_c0_guest_status(vcpu->arch.cop0));
    		kvm_arch_vcpu_dump_regs(vcpu);
    		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
    		ret = RESUME_HOST;
    		break;
    
    	}
    
    skip_emul:
    	local_irq_disable();
    
    	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
    		kvm_mips_deliver_interrupts(vcpu, cause);
    
    	if (!(ret & RESUME_HOST)) {
    		/* Only check for signals if not already exiting to userspace */
    		if (signal_pending(current)) {
    			run->exit_reason = KVM_EXIT_INTR;
    			ret = (-EINTR << 2) | RESUME_HOST;
    			++vcpu->stat.signal_exits;
    			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
    		}
    	}
    
    	if (ret == RESUME_GUEST) {
    		trace_kvm_reenter(vcpu);
    
    		kvm_mips_check_asids(vcpu);
    
    		/*
    		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
    		 * is live), restore FCR31 / MSACSR.
    		 *
    		 * This should be before returning to the guest exception
    		 * vector, as it may well cause an [MSA] FP exception if there
    		 * are pending exception bits unmasked. (see
    		 * kvm_mips_csr_die_notifier() for how that is handled).
    		 */
    		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
    		    read_c0_status() & ST0_CU1)
    			__kvm_restore_fcsr(&vcpu->arch);
    
    		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
    		    read_c0_config5() & MIPS_CONF5_MSAEN)
    			__kvm_restore_msacsr(&vcpu->arch);
    	}
    
    	/* Disable HTW before returning to guest or host */
    	htw_stop();
    
    	return ret;
    }
    
    /* Enable FPU for guest and restore context */
    void kvm_own_fpu(struct kvm_vcpu *vcpu)
    {
    	struct mips_coproc *cop0 = vcpu->arch.cop0;
    	unsigned int sr, cfg5;
    
    	preempt_disable();
    
    	sr = kvm_read_c0_guest_status(cop0);
    
    	/*
    	 * If MSA state is already live, it is undefined how it interacts with
    	 * FR=0 FPU state, and we don't want to hit reserved instruction
    	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
    	 * play it safe and save it first.
    	 *
    	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
    	 * get called when guest CU1 is set, however we can't trust the guest
    	 * not to clobber the status register directly via the commpage.
    	 */
    	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
    	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
    		kvm_lose_fpu(vcpu);
    
    	/*
    	 * Enable FPU for guest
    	 * We set FR and FRE according to guest context
    	 */
    	change_c0_status(ST0_CU1 | ST0_FR, sr);
    	if (cpu_has_fre) {
    		cfg5 = kvm_read_c0_guest_config5(cop0);
    		change_c0_config5(MIPS_CONF5_FRE, cfg5);
    	}
    	enable_fpu_hazard();
    
    	/* If guest FPU state not active, restore it now */
    	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
    		__kvm_restore_fpu(&vcpu->arch);
    		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
    	} else {
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
    	}
    
    	preempt_enable();
    }
    
    #ifdef CONFIG_CPU_HAS_MSA
    /* Enable MSA for guest and restore context */
    void kvm_own_msa(struct kvm_vcpu *vcpu)
    {
    	struct mips_coproc *cop0 = vcpu->arch.cop0;
    	unsigned int sr, cfg5;
    
    	preempt_disable();
    
    	/*
    	 * Enable FPU if enabled in guest, since we're restoring FPU context
    	 * anyway. We set FR and FRE according to guest context.
    	 */
    	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
    		sr = kvm_read_c0_guest_status(cop0);
    
    		/*
    		 * If FR=0 FPU state is already live, it is undefined how it
    		 * interacts with MSA state, so play it safe and save it first.
    		 */
    		if (!(sr & ST0_FR) &&
    		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
    				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
    			kvm_lose_fpu(vcpu);
    
    		change_c0_status(ST0_CU1 | ST0_FR, sr);
    		if (sr & ST0_CU1 && cpu_has_fre) {
    			cfg5 = kvm_read_c0_guest_config5(cop0);
    			change_c0_config5(MIPS_CONF5_FRE, cfg5);
    		}
    	}
    
    	/* Enable MSA for guest */
    	set_c0_config5(MIPS_CONF5_MSAEN);
    	enable_fpu_hazard();
    
    	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
    	case KVM_MIPS_AUX_FPU:
    		/*
    		 * Guest FPU state already loaded, only restore upper MSA state
    		 */
    		__kvm_restore_msa_upper(&vcpu->arch);
    		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
    		break;
    	case 0:
    		/* Neither FPU or MSA already active, restore full MSA state */
    		__kvm_restore_msa(&vcpu->arch);
    		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
    		if (kvm_mips_guest_has_fpu(&vcpu->arch))
    			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
    			      KVM_TRACE_AUX_FPU_MSA);
    		break;
    	default:
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
    		break;
    	}
    
    	preempt_enable();
    }
    #endif
    
    /* Drop FPU & MSA without saving it */
    void kvm_drop_fpu(struct kvm_vcpu *vcpu)
    {
    	preempt_disable();
    	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
    		disable_msa();
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
    		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
    	}
    	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
    		clear_c0_status(ST0_CU1 | ST0_FR);
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
    		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
    	}
    	preempt_enable();
    }
    
    /* Save and disable FPU & MSA */
    void kvm_lose_fpu(struct kvm_vcpu *vcpu)
    {
    	/*
    	 * FPU & MSA get disabled in root context (hardware) when it is disabled
    	 * in guest context (software), but the register state in the hardware
    	 * may still be in use. This is why we explicitly re-enable the hardware
    	 * before saving.
    	 */
    
    	preempt_disable();
    	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
    		set_c0_config5(MIPS_CONF5_MSAEN);
    		enable_fpu_hazard();
    
    		__kvm_save_msa(&vcpu->arch);
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
    
    		/* Disable MSA & FPU */
    		disable_msa();
    		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
    			clear_c0_status(ST0_CU1 | ST0_FR);
    			disable_fpu_hazard();
    		}
    		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
    	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
    		set_c0_status(ST0_CU1);
    		enable_fpu_hazard();
    
    		__kvm_save_fpu(&vcpu->arch);
    		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
    		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
    
    		/* Disable FPU */
    		clear_c0_status(ST0_CU1 | ST0_FR);
    		disable_fpu_hazard();
    	}
    	preempt_enable();
    }
    
    /*
     * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
     * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
     * exception if cause bits are set in the value being written.
     */
    static int kvm_mips_csr_die_notify(struct notifier_block *self,
    				   unsigned long cmd, void *ptr)
    {
    	struct die_args *args = (struct die_args *)ptr;
    	struct pt_regs *regs = args->regs;
    	unsigned long pc;
    
    	/* Only interested in FPE and MSAFPE */
    	if (cmd != DIE_FP && cmd != DIE_MSAFP)
    		return NOTIFY_DONE;
    
    	/* Return immediately if guest context isn't active */
    	if (!(current->flags & PF_VCPU))
    		return NOTIFY_DONE;
    
    	/* Should never get here from user mode */
    	BUG_ON(user_mode(regs));
    
    	pc = instruction_pointer(regs);
    	switch (cmd) {
    	case DIE_FP:
    		/* match 2nd instruction in __kvm_restore_fcsr */
    		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
    			return NOTIFY_DONE;
    		break;
    	case DIE_MSAFP:
    		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
    		if (!cpu_has_msa ||
    		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
    		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
    			return NOTIFY_DONE;
    		break;
    	}
    
    	/* Move PC forward a little and continue executing */
    	instruction_pointer(regs) += 4;
    
    	return NOTIFY_STOP;
    }
    
    static struct notifier_block kvm_mips_csr_die_notifier = {
    	.notifier_call = kvm_mips_csr_die_notify,
    };
    
    static int __init kvm_mips_init(void)
    {
    	int ret;
    
    	ret = kvm_mips_entry_setup();
    	if (ret)
    		return ret;
    
    	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
    
    	if (ret)
    		return ret;
    
    	register_die_notifier(&kvm_mips_csr_die_notifier);
    
    	return 0;
    }
    
    static void __exit kvm_mips_exit(void)
    {
    	kvm_exit();
    
    	unregister_die_notifier(&kvm_mips_csr_die_notifier);
    }
    
    module_init(kvm_mips_init);
    module_exit(kvm_mips_exit);
    
    EXPORT_TRACEPOINT_SYMBOL(kvm_exit);