Skip to content
Snippets Groups Projects
Select Git revision
  • de51257aa301652876ab6e8f13ea4eadbe4a3846
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

memory.c

Blame
    • Hugh Dickins's avatar
      de51257a
      mm: fix ia64 crash when gcore reads gate area · de51257a
      Hugh Dickins authored
      
      Debian's ia64 autobuilders have been seeing kernel freeze or reboot
      when running the gdb testsuite (Debian bug 588574): dannf bisected to
      2.6.32 62eede62 "mm: ZERO_PAGE without
      PTE_SPECIAL"; and reproduced it with gdb's gcore on a simple target.
      
      I'd missed updating the gate_vma handling in __get_user_pages(): that
      happens to use vm_normal_page() (nowadays failing on the zero page),
      yet reported success even when it failed to get a page - boom when
      access_process_vm() tried to copy that to its intermediate buffer.
      
      Fix this, resisting cleanups: in particular, leave it for now reporting
      success when not asked to get any pages - very probably safe to change,
      but let's not risk it without testing exposure.
      
      Why did ia64 crash with 16kB pages, but succeed with 64kB pages?
      Because setup_gate() pads each 64kB of its gate area with zero pages.
      
      Reported-by: default avatarAndreas Barth <aba@not.so.argh.org>
      Bisected-by: default avatardann frazier <dannf@debian.org>
      Signed-off-by: default avatarHugh Dickins <hughd@google.com>
      Tested-by: default avatardann frazier <dannf@dannf.org>
      Cc: stable@kernel.org
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      de51257a
      History
      mm: fix ia64 crash when gcore reads gate area
      Hugh Dickins authored
      
      Debian's ia64 autobuilders have been seeing kernel freeze or reboot
      when running the gdb testsuite (Debian bug 588574): dannf bisected to
      2.6.32 62eede62 "mm: ZERO_PAGE without
      PTE_SPECIAL"; and reproduced it with gdb's gcore on a simple target.
      
      I'd missed updating the gate_vma handling in __get_user_pages(): that
      happens to use vm_normal_page() (nowadays failing on the zero page),
      yet reported success even when it failed to get a page - boom when
      access_process_vm() tried to copy that to its intermediate buffer.
      
      Fix this, resisting cleanups: in particular, leave it for now reporting
      success when not asked to get any pages - very probably safe to change,
      but let's not risk it without testing exposure.
      
      Why did ia64 crash with 16kB pages, but succeed with 64kB pages?
      Because setup_gate() pads each 64kB of its gate area with zero pages.
      
      Reported-by: default avatarAndreas Barth <aba@not.so.argh.org>
      Bisected-by: default avatardann frazier <dannf@debian.org>
      Signed-off-by: default avatarHugh Dickins <hughd@google.com>
      Tested-by: default avatardann frazier <dannf@dannf.org>
      Cc: stable@kernel.org
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
    ordered-data.c 21.75 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/gfp.h>
    #include <linux/slab.h>
    #include <linux/blkdev.h>
    #include <linux/writeback.h>
    #include <linux/pagevec.h>
    #include "ctree.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "extent_io.h"
    
    static u64 entry_end(struct btrfs_ordered_extent *entry)
    {
    	if (entry->file_offset + entry->len < entry->file_offset)
    		return (u64)-1;
    	return entry->file_offset + entry->len;
    }
    
    /* returns NULL if the insertion worked, or it returns the node it did find
     * in the tree
     */
    static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
    				   struct rb_node *node)
    {
    	struct rb_node **p = &root->rb_node;
    	struct rb_node *parent = NULL;
    	struct btrfs_ordered_extent *entry;
    
    	while (*p) {
    		parent = *p;
    		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
    
    		if (file_offset < entry->file_offset)
    			p = &(*p)->rb_left;
    		else if (file_offset >= entry_end(entry))
    			p = &(*p)->rb_right;
    		else
    			return parent;
    	}
    
    	rb_link_node(node, parent, p);
    	rb_insert_color(node, root);
    	return NULL;
    }
    
    /*
     * look for a given offset in the tree, and if it can't be found return the
     * first lesser offset
     */
    static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
    				     struct rb_node **prev_ret)
    {
    	struct rb_node *n = root->rb_node;
    	struct rb_node *prev = NULL;
    	struct rb_node *test;
    	struct btrfs_ordered_extent *entry;
    	struct btrfs_ordered_extent *prev_entry = NULL;
    
    	while (n) {
    		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
    		prev = n;
    		prev_entry = entry;
    
    		if (file_offset < entry->file_offset)
    			n = n->rb_left;
    		else if (file_offset >= entry_end(entry))
    			n = n->rb_right;
    		else
    			return n;
    	}
    	if (!prev_ret)
    		return NULL;
    
    	while (prev && file_offset >= entry_end(prev_entry)) {
    		test = rb_next(prev);
    		if (!test)
    			break;
    		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
    				      rb_node);
    		if (file_offset < entry_end(prev_entry))
    			break;
    
    		prev = test;
    	}
    	if (prev)
    		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
    				      rb_node);
    	while (prev && file_offset < entry_end(prev_entry)) {
    		test = rb_prev(prev);
    		if (!test)
    			break;
    		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
    				      rb_node);
    		prev = test;
    	}
    	*prev_ret = prev;
    	return NULL;
    }
    
    /*
     * helper to check if a given offset is inside a given entry
     */
    static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
    {
    	if (file_offset < entry->file_offset ||
    	    entry->file_offset + entry->len <= file_offset)
    		return 0;
    	return 1;
    }
    
    /*
     * look find the first ordered struct that has this offset, otherwise
     * the first one less than this offset
     */
    static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
    					  u64 file_offset)
    {
    	struct rb_root *root = &tree->tree;
    	struct rb_node *prev;
    	struct rb_node *ret;
    	struct btrfs_ordered_extent *entry;
    
    	if (tree->last) {
    		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
    				 rb_node);
    		if (offset_in_entry(entry, file_offset))
    			return tree->last;
    	}
    	ret = __tree_search(root, file_offset, &prev);
    	if (!ret)
    		ret = prev;
    	if (ret)
    		tree->last = ret;
    	return ret;
    }
    
    /* allocate and add a new ordered_extent into the per-inode tree.
     * file_offset is the logical offset in the file
     *
     * start is the disk block number of an extent already reserved in the
     * extent allocation tree
     *
     * len is the length of the extent
     *
     * The tree is given a single reference on the ordered extent that was
     * inserted.
     */
    int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
    			     u64 start, u64 len, u64 disk_len, int type)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	entry = kzalloc(sizeof(*entry), GFP_NOFS);
    	if (!entry)
    		return -ENOMEM;
    
    	mutex_lock(&tree->mutex);
    	entry->file_offset = file_offset;
    	entry->start = start;
    	entry->len = len;
    	entry->disk_len = disk_len;
    	entry->bytes_left = len;
    	entry->inode = inode;
    	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
    		set_bit(type, &entry->flags);
    
    	/* one ref for the tree */
    	atomic_set(&entry->refs, 1);
    	init_waitqueue_head(&entry->wait);
    	INIT_LIST_HEAD(&entry->list);
    	INIT_LIST_HEAD(&entry->root_extent_list);
    
    	node = tree_insert(&tree->tree, file_offset,
    			   &entry->rb_node);
    	BUG_ON(node);
    
    	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
    	list_add_tail(&entry->root_extent_list,
    		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
    	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
    
    	mutex_unlock(&tree->mutex);
    	BUG_ON(node);
    	return 0;
    }
    
    /*
     * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
     * when an ordered extent is finished.  If the list covers more than one
     * ordered extent, it is split across multiples.
     */
    int btrfs_add_ordered_sum(struct inode *inode,
    			  struct btrfs_ordered_extent *entry,
    			  struct btrfs_ordered_sum *sum)
    {
    	struct btrfs_ordered_inode_tree *tree;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	list_add_tail(&sum->list, &entry->list);
    	mutex_unlock(&tree->mutex);
    	return 0;
    }
    
    /*
     * this is used to account for finished IO across a given range
     * of the file.  The IO should not span ordered extents.  If
     * a given ordered_extent is completely done, 1 is returned, otherwise
     * 0.
     *
     * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
     * to make sure this function only returns 1 once for a given ordered extent.
     */
    int btrfs_dec_test_ordered_pending(struct inode *inode,
    				   u64 file_offset, u64 io_size)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry;
    	int ret;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = tree_search(tree, file_offset);
    	if (!node) {
    		ret = 1;
    		goto out;
    	}
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	if (!offset_in_entry(entry, file_offset)) {
    		ret = 1;
    		goto out;
    	}
    
    	if (io_size > entry->bytes_left) {
    		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
    		       (unsigned long long)entry->bytes_left,
    		       (unsigned long long)io_size);
    	}
    	entry->bytes_left -= io_size;
    	if (entry->bytes_left == 0)
    		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
    	else
    		ret = 1;
    out:
    	mutex_unlock(&tree->mutex);
    	return ret == 0;
    }
    
    /*
     * used to drop a reference on an ordered extent.  This will free
     * the extent if the last reference is dropped
     */
    int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
    {
    	struct list_head *cur;
    	struct btrfs_ordered_sum *sum;
    
    	if (atomic_dec_and_test(&entry->refs)) {
    		while (!list_empty(&entry->list)) {
    			cur = entry->list.next;
    			sum = list_entry(cur, struct btrfs_ordered_sum, list);
    			list_del(&sum->list);
    			kfree(sum);
    		}
    		kfree(entry);
    	}
    	return 0;
    }
    
    /*
     * remove an ordered extent from the tree.  No references are dropped
     * and you must wake_up entry->wait.  You must hold the tree mutex
     * while you call this function.
     */
    static int __btrfs_remove_ordered_extent(struct inode *inode,
    				struct btrfs_ordered_extent *entry)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	node = &entry->rb_node;
    	rb_erase(node, &tree->tree);
    	tree->last = NULL;
    	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
    
    	spin_lock(&BTRFS_I(inode)->accounting_lock);
    	BTRFS_I(inode)->outstanding_extents--;
    	spin_unlock(&BTRFS_I(inode)->accounting_lock);
    	btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
    					      inode, 1);
    
    	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
    	list_del_init(&entry->root_extent_list);
    
    	/*
    	 * we have no more ordered extents for this inode and
    	 * no dirty pages.  We can safely remove it from the
    	 * list of ordered extents
    	 */
    	if (RB_EMPTY_ROOT(&tree->tree) &&
    	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
    		list_del_init(&BTRFS_I(inode)->ordered_operations);
    	}
    	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
    
    	return 0;
    }
    
    /*
     * remove an ordered extent from the tree.  No references are dropped
     * but any waiters are woken.
     */
    int btrfs_remove_ordered_extent(struct inode *inode,
    				struct btrfs_ordered_extent *entry)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	int ret;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	ret = __btrfs_remove_ordered_extent(inode, entry);
    	mutex_unlock(&tree->mutex);
    	wake_up(&entry->wait);
    
    	return ret;
    }
    
    /*
     * wait for all the ordered extents in a root.  This is done when balancing
     * space between drives.
     */
    int btrfs_wait_ordered_extents(struct btrfs_root *root,
    			       int nocow_only, int delay_iput)
    {
    	struct list_head splice;
    	struct list_head *cur;
    	struct btrfs_ordered_extent *ordered;
    	struct inode *inode;
    
    	INIT_LIST_HEAD(&splice);
    
    	spin_lock(&root->fs_info->ordered_extent_lock);
    	list_splice_init(&root->fs_info->ordered_extents, &splice);
    	while (!list_empty(&splice)) {
    		cur = splice.next;
    		ordered = list_entry(cur, struct btrfs_ordered_extent,
    				     root_extent_list);
    		if (nocow_only &&
    		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
    		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
    			list_move(&ordered->root_extent_list,
    				  &root->fs_info->ordered_extents);
    			cond_resched_lock(&root->fs_info->ordered_extent_lock);
    			continue;
    		}
    
    		list_del_init(&ordered->root_extent_list);
    		atomic_inc(&ordered->refs);
    
    		/*
    		 * the inode may be getting freed (in sys_unlink path).
    		 */
    		inode = igrab(ordered->inode);
    
    		spin_unlock(&root->fs_info->ordered_extent_lock);
    
    		if (inode) {
    			btrfs_start_ordered_extent(inode, ordered, 1);
    			btrfs_put_ordered_extent(ordered);
    			if (delay_iput)
    				btrfs_add_delayed_iput(inode);
    			else
    				iput(inode);
    		} else {
    			btrfs_put_ordered_extent(ordered);
    		}
    
    		spin_lock(&root->fs_info->ordered_extent_lock);
    	}
    	spin_unlock(&root->fs_info->ordered_extent_lock);
    	return 0;
    }
    
    /*
     * this is used during transaction commit to write all the inodes
     * added to the ordered operation list.  These files must be fully on
     * disk before the transaction commits.
     *
     * we have two modes here, one is to just start the IO via filemap_flush
     * and the other is to wait for all the io.  When we wait, we have an
     * extra check to make sure the ordered operation list really is empty
     * before we return
     */
    int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
    {
    	struct btrfs_inode *btrfs_inode;
    	struct inode *inode;
    	struct list_head splice;
    
    	INIT_LIST_HEAD(&splice);
    
    	mutex_lock(&root->fs_info->ordered_operations_mutex);
    	spin_lock(&root->fs_info->ordered_extent_lock);
    again:
    	list_splice_init(&root->fs_info->ordered_operations, &splice);
    
    	while (!list_empty(&splice)) {
    		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
    				   ordered_operations);
    
    		inode = &btrfs_inode->vfs_inode;
    
    		list_del_init(&btrfs_inode->ordered_operations);
    
    		/*
    		 * the inode may be getting freed (in sys_unlink path).
    		 */
    		inode = igrab(inode);
    
    		if (!wait && inode) {
    			list_add_tail(&BTRFS_I(inode)->ordered_operations,
    			      &root->fs_info->ordered_operations);
    		}
    		spin_unlock(&root->fs_info->ordered_extent_lock);
    
    		if (inode) {
    			if (wait)
    				btrfs_wait_ordered_range(inode, 0, (u64)-1);
    			else
    				filemap_flush(inode->i_mapping);
    			btrfs_add_delayed_iput(inode);
    		}
    
    		cond_resched();
    		spin_lock(&root->fs_info->ordered_extent_lock);
    	}
    	if (wait && !list_empty(&root->fs_info->ordered_operations))
    		goto again;
    
    	spin_unlock(&root->fs_info->ordered_extent_lock);
    	mutex_unlock(&root->fs_info->ordered_operations_mutex);
    
    	return 0;
    }
    
    /*
     * Used to start IO or wait for a given ordered extent to finish.
     *
     * If wait is one, this effectively waits on page writeback for all the pages
     * in the extent, and it waits on the io completion code to insert
     * metadata into the btree corresponding to the extent
     */
    void btrfs_start_ordered_extent(struct inode *inode,
    				       struct btrfs_ordered_extent *entry,
    				       int wait)
    {
    	u64 start = entry->file_offset;
    	u64 end = start + entry->len - 1;
    
    	/*
    	 * pages in the range can be dirty, clean or writeback.  We
    	 * start IO on any dirty ones so the wait doesn't stall waiting
    	 * for pdflush to find them
    	 */
    	filemap_fdatawrite_range(inode->i_mapping, start, end);
    	if (wait) {
    		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
    						 &entry->flags));
    	}
    }
    
    /*
     * Used to wait on ordered extents across a large range of bytes.
     */
    int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
    {
    	u64 end;
    	u64 orig_end;
    	u64 wait_end;
    	struct btrfs_ordered_extent *ordered;
    	int found;
    
    	if (start + len < start) {
    		orig_end = INT_LIMIT(loff_t);
    	} else {
    		orig_end = start + len - 1;
    		if (orig_end > INT_LIMIT(loff_t))
    			orig_end = INT_LIMIT(loff_t);
    	}
    	wait_end = orig_end;
    again:
    	/* start IO across the range first to instantiate any delalloc
    	 * extents
    	 */
    	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
    
    	/* The compression code will leave pages locked but return from
    	 * writepage without setting the page writeback.  Starting again
    	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
    	 */
    	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
    
    	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
    
    	end = orig_end;
    	found = 0;
    	while (1) {
    		ordered = btrfs_lookup_first_ordered_extent(inode, end);
    		if (!ordered)
    			break;
    		if (ordered->file_offset > orig_end) {
    			btrfs_put_ordered_extent(ordered);
    			break;
    		}
    		if (ordered->file_offset + ordered->len < start) {
    			btrfs_put_ordered_extent(ordered);
    			break;
    		}
    		found++;
    		btrfs_start_ordered_extent(inode, ordered, 1);
    		end = ordered->file_offset;
    		btrfs_put_ordered_extent(ordered);
    		if (end == 0 || end == start)
    			break;
    		end--;
    	}
    	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
    			   EXTENT_DELALLOC, 0, NULL)) {
    		schedule_timeout(1);
    		goto again;
    	}
    	return 0;
    }
    
    /*
     * find an ordered extent corresponding to file_offset.  return NULL if
     * nothing is found, otherwise take a reference on the extent and return it
     */
    struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
    							 u64 file_offset)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry = NULL;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = tree_search(tree, file_offset);
    	if (!node)
    		goto out;
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	if (!offset_in_entry(entry, file_offset))
    		entry = NULL;
    	if (entry)
    		atomic_inc(&entry->refs);
    out:
    	mutex_unlock(&tree->mutex);
    	return entry;
    }
    
    /*
     * lookup and return any extent before 'file_offset'.  NULL is returned
     * if none is found
     */
    struct btrfs_ordered_extent *
    btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
    {
    	struct btrfs_ordered_inode_tree *tree;
    	struct rb_node *node;
    	struct btrfs_ordered_extent *entry = NULL;
    
    	tree = &BTRFS_I(inode)->ordered_tree;
    	mutex_lock(&tree->mutex);
    	node = tree_search(tree, file_offset);
    	if (!node)
    		goto out;
    
    	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    	atomic_inc(&entry->refs);
    out:
    	mutex_unlock(&tree->mutex);
    	return entry;
    }
    
    /*
     * After an extent is done, call this to conditionally update the on disk
     * i_size.  i_size is updated to cover any fully written part of the file.
     */
    int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
    				struct btrfs_ordered_extent *ordered)
    {
    	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	u64 disk_i_size;
    	u64 new_i_size;
    	u64 i_size_test;
    	u64 i_size = i_size_read(inode);
    	struct rb_node *node;
    	struct rb_node *prev = NULL;
    	struct btrfs_ordered_extent *test;
    	int ret = 1;
    
    	if (ordered)
    		offset = entry_end(ordered);
    
    	mutex_lock(&tree->mutex);
    	disk_i_size = BTRFS_I(inode)->disk_i_size;
    
    	/* truncate file */
    	if (disk_i_size > i_size) {
    		BTRFS_I(inode)->disk_i_size = i_size;
    		ret = 0;
    		goto out;
    	}
    
    	/*
    	 * if the disk i_size is already at the inode->i_size, or
    	 * this ordered extent is inside the disk i_size, we're done
    	 */
    	if (disk_i_size == i_size || offset <= disk_i_size) {
    		goto out;
    	}
    
    	/*
    	 * we can't update the disk_isize if there are delalloc bytes
    	 * between disk_i_size and  this ordered extent
    	 */
    	if (test_range_bit(io_tree, disk_i_size, offset - 1,
    			   EXTENT_DELALLOC, 0, NULL)) {
    		goto out;
    	}
    	/*
    	 * walk backward from this ordered extent to disk_i_size.
    	 * if we find an ordered extent then we can't update disk i_size
    	 * yet
    	 */
    	if (ordered) {
    		node = rb_prev(&ordered->rb_node);
    	} else {
    		prev = tree_search(tree, offset);
    		/*
    		 * we insert file extents without involving ordered struct,
    		 * so there should be no ordered struct cover this offset
    		 */
    		if (prev) {
    			test = rb_entry(prev, struct btrfs_ordered_extent,
    					rb_node);
    			BUG_ON(offset_in_entry(test, offset));
    		}
    		node = prev;
    	}
    	while (node) {
    		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    		if (test->file_offset + test->len <= disk_i_size)
    			break;
    		if (test->file_offset >= i_size)
    			break;
    		if (test->file_offset >= disk_i_size)
    			goto out;
    		node = rb_prev(node);
    	}
    	new_i_size = min_t(u64, offset, i_size);
    
    	/*
    	 * at this point, we know we can safely update i_size to at least
    	 * the offset from this ordered extent.  But, we need to
    	 * walk forward and see if ios from higher up in the file have
    	 * finished.
    	 */
    	if (ordered) {
    		node = rb_next(&ordered->rb_node);
    	} else {
    		if (prev)
    			node = rb_next(prev);
    		else
    			node = rb_first(&tree->tree);
    	}
    	i_size_test = 0;
    	if (node) {
    		/*
    		 * do we have an area where IO might have finished
    		 * between our ordered extent and the next one.
    		 */
    		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
    		if (test->file_offset > offset)
    			i_size_test = test->file_offset;
    	} else {
    		i_size_test = i_size;
    	}
    
    	/*
    	 * i_size_test is the end of a region after this ordered
    	 * extent where there are no ordered extents.  As long as there
    	 * are no delalloc bytes in this area, it is safe to update
    	 * disk_i_size to the end of the region.
    	 */
    	if (i_size_test > offset &&
    	    !test_range_bit(io_tree, offset, i_size_test - 1,
    			    EXTENT_DELALLOC, 0, NULL)) {
    		new_i_size = min_t(u64, i_size_test, i_size);
    	}
    	BTRFS_I(inode)->disk_i_size = new_i_size;
    	ret = 0;
    out:
    	/*
    	 * we need to remove the ordered extent with the tree lock held
    	 * so that other people calling this function don't find our fully
    	 * processed ordered entry and skip updating the i_size
    	 */
    	if (ordered)
    		__btrfs_remove_ordered_extent(inode, ordered);
    	mutex_unlock(&tree->mutex);
    	if (ordered)
    		wake_up(&ordered->wait);
    	return ret;
    }
    
    /*
     * search the ordered extents for one corresponding to 'offset' and
     * try to find a checksum.  This is used because we allow pages to
     * be reclaimed before their checksum is actually put into the btree
     */
    int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
    			   u32 *sum)
    {
    	struct btrfs_ordered_sum *ordered_sum;
    	struct btrfs_sector_sum *sector_sums;
    	struct btrfs_ordered_extent *ordered;
    	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
    	unsigned long num_sectors;
    	unsigned long i;
    	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
    	int ret = 1;
    
    	ordered = btrfs_lookup_ordered_extent(inode, offset);
    	if (!ordered)
    		return 1;
    
    	mutex_lock(&tree->mutex);
    	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
    		if (disk_bytenr >= ordered_sum->bytenr) {
    			num_sectors = ordered_sum->len / sectorsize;
    			sector_sums = ordered_sum->sums;
    			for (i = 0; i < num_sectors; i++) {
    				if (sector_sums[i].bytenr == disk_bytenr) {
    					*sum = sector_sums[i].sum;
    					ret = 0;
    					goto out;
    				}
    			}
    		}
    	}
    out:
    	mutex_unlock(&tree->mutex);
    	btrfs_put_ordered_extent(ordered);
    	return ret;
    }
    
    
    /*
     * add a given inode to the list of inodes that must be fully on
     * disk before a transaction commit finishes.
     *
     * This basically gives us the ext3 style data=ordered mode, and it is mostly
     * used to make sure renamed files are fully on disk.
     *
     * It is a noop if the inode is already fully on disk.
     *
     * If trans is not null, we'll do a friendly check for a transaction that
     * is already flushing things and force the IO down ourselves.
     */
    int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root,
    				struct inode *inode)
    {
    	u64 last_mod;
    
    	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
    
    	/*
    	 * if this file hasn't been changed since the last transaction
    	 * commit, we can safely return without doing anything
    	 */
    	if (last_mod < root->fs_info->last_trans_committed)
    		return 0;
    
    	/*
    	 * the transaction is already committing.  Just start the IO and
    	 * don't bother with all of this list nonsense
    	 */
    	if (trans && root->fs_info->running_transaction->blocked) {
    		btrfs_wait_ordered_range(inode, 0, (u64)-1);
    		return 0;
    	}
    
    	spin_lock(&root->fs_info->ordered_extent_lock);
    	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
    		list_add_tail(&BTRFS_I(inode)->ordered_operations,
    			      &root->fs_info->ordered_operations);
    	}
    	spin_unlock(&root->fs_info->ordered_extent_lock);
    
    	return 0;
    }