Skip to content
Snippets Groups Projects
Select Git revision
  • f9f1e414128ea58d8e848a0275db0f644c9e9f45
  • master default
  • android-container
  • nanopc-t4
  • for-kernelci
  • WIP-syscall
  • v4.16-rc5
  • v4.16-rc4
  • v4.16-rc3
  • v4.16-rc2
  • v4.16-rc1
  • v4.15
  • v4.15-rc9
  • v4.15-rc8
  • v4.15-rc7
  • v4.15-rc6
  • v4.15-rc5
  • v4.15-rc4
  • v4.15-rc3
  • v4.15-rc2
  • v4.15-rc1
  • v4.14
  • v4.14-rc8
  • v4.14-rc7
  • v4.14-rc6
  • v4.14-rc5
26 results

xen-netfront.c

Blame
  • dm-raid.c 38.39 KiB
    /*
     * Copyright (C) 2010-2011 Neil Brown
     * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
     *
     * This file is released under the GPL.
     */
    
    #include <linux/slab.h>
    #include <linux/module.h>
    
    #include "md.h"
    #include "raid1.h"
    #include "raid5.h"
    #include "raid10.h"
    #include "bitmap.h"
    
    #include <linux/device-mapper.h>
    
    #define DM_MSG_PREFIX "raid"
    
    /*
     * The following flags are used by dm-raid.c to set up the array state.
     * They must be cleared before md_run is called.
     */
    #define FirstUse 10             /* rdev flag */
    
    struct raid_dev {
    	/*
    	 * Two DM devices, one to hold metadata and one to hold the
    	 * actual data/parity.  The reason for this is to not confuse
    	 * ti->len and give more flexibility in altering size and
    	 * characteristics.
    	 *
    	 * While it is possible for this device to be associated
    	 * with a different physical device than the data_dev, it
    	 * is intended for it to be the same.
    	 *    |--------- Physical Device ---------|
    	 *    |- meta_dev -|------ data_dev ------|
    	 */
    	struct dm_dev *meta_dev;
    	struct dm_dev *data_dev;
    	struct md_rdev rdev;
    };
    
    /*
     * Flags for rs->print_flags field.
     */
    #define DMPF_SYNC              0x1
    #define DMPF_NOSYNC            0x2
    #define DMPF_REBUILD           0x4
    #define DMPF_DAEMON_SLEEP      0x8
    #define DMPF_MIN_RECOVERY_RATE 0x10
    #define DMPF_MAX_RECOVERY_RATE 0x20
    #define DMPF_MAX_WRITE_BEHIND  0x40
    #define DMPF_STRIPE_CACHE      0x80
    #define DMPF_REGION_SIZE       0x100
    #define DMPF_RAID10_COPIES     0x200
    #define DMPF_RAID10_FORMAT     0x400
    
    struct raid_set {
    	struct dm_target *ti;
    
    	uint32_t bitmap_loaded;
    	uint32_t print_flags;
    
    	struct mddev md;
    	struct raid_type *raid_type;
    	struct dm_target_callbacks callbacks;
    
    	struct raid_dev dev[0];
    };
    
    /* Supported raid types and properties. */
    static struct raid_type {
    	const char *name;		/* RAID algorithm. */
    	const char *descr;		/* Descriptor text for logging. */
    	const unsigned parity_devs;	/* # of parity devices. */
    	const unsigned minimal_devs;	/* minimal # of devices in set. */
    	const unsigned level;		/* RAID level. */
    	const unsigned algorithm;	/* RAID algorithm. */
    } raid_types[] = {
    	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
    	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
    	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
    	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
    	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
    	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
    	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
    	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
    	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
    	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
    };
    
    static unsigned raid10_md_layout_to_copies(int layout)
    {
    	return layout & 0xFF;
    }
    
    static int raid10_format_to_md_layout(char *format, unsigned copies)
    {
    	/* 1 "far" copy, and 'copies' "near" copies */
    	return (1 << 8) | (copies & 0xFF);
    }
    
    static struct raid_type *get_raid_type(char *name)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
    		if (!strcmp(raid_types[i].name, name))
    			return &raid_types[i];
    
    	return NULL;
    }
    
    static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
    {
    	unsigned i;
    	struct raid_set *rs;
    
    	if (raid_devs <= raid_type->parity_devs) {
    		ti->error = "Insufficient number of devices";
    		return ERR_PTR(-EINVAL);
    	}
    
    	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
    	if (!rs) {
    		ti->error = "Cannot allocate raid context";
    		return ERR_PTR(-ENOMEM);
    	}
    
    	mddev_init(&rs->md);
    
    	rs->ti = ti;
    	rs->raid_type = raid_type;
    	rs->md.raid_disks = raid_devs;
    	rs->md.level = raid_type->level;
    	rs->md.new_level = rs->md.level;
    	rs->md.layout = raid_type->algorithm;
    	rs->md.new_layout = rs->md.layout;
    	rs->md.delta_disks = 0;
    	rs->md.recovery_cp = 0;
    
    	for (i = 0; i < raid_devs; i++)
    		md_rdev_init(&rs->dev[i].rdev);
    
    	/*
    	 * Remaining items to be initialized by further RAID params:
    	 *  rs->md.persistent
    	 *  rs->md.external
    	 *  rs->md.chunk_sectors
    	 *  rs->md.new_chunk_sectors
    	 *  rs->md.dev_sectors
    	 */
    
    	return rs;
    }
    
    static void context_free(struct raid_set *rs)
    {
    	int i;
    
    	for (i = 0; i < rs->md.raid_disks; i++) {
    		if (rs->dev[i].meta_dev)
    			dm_put_device(rs->ti, rs->dev[i].meta_dev);
    		md_rdev_clear(&rs->dev[i].rdev);
    		if (rs->dev[i].data_dev)
    			dm_put_device(rs->ti, rs->dev[i].data_dev);
    	}
    
    	kfree(rs);
    }
    
    /*
     * For every device we have two words
     *  <meta_dev>: meta device name or '-' if missing
     *  <data_dev>: data device name or '-' if missing
     *
     * The following are permitted:
     *    - -
     *    - <data_dev>
     *    <meta_dev> <data_dev>
     *
     * The following is not allowed:
     *    <meta_dev> -
     *
     * This code parses those words.  If there is a failure,
     * the caller must use context_free to unwind the operations.
     */
    static int dev_parms(struct raid_set *rs, char **argv)
    {
    	int i;
    	int rebuild = 0;
    	int metadata_available = 0;
    	int ret = 0;
    
    	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
    		rs->dev[i].rdev.raid_disk = i;
    
    		rs->dev[i].meta_dev = NULL;
    		rs->dev[i].data_dev = NULL;
    
    		/*
    		 * There are no offsets, since there is a separate device
    		 * for data and metadata.
    		 */
    		rs->dev[i].rdev.data_offset = 0;
    		rs->dev[i].rdev.mddev = &rs->md;
    
    		if (strcmp(argv[0], "-")) {
    			ret = dm_get_device(rs->ti, argv[0],
    					    dm_table_get_mode(rs->ti->table),
    					    &rs->dev[i].meta_dev);
    			rs->ti->error = "RAID metadata device lookup failure";
    			if (ret)
    				return ret;
    
    			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
    			if (!rs->dev[i].rdev.sb_page)
    				return -ENOMEM;
    		}
    
    		if (!strcmp(argv[1], "-")) {
    			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
    			    (!rs->dev[i].rdev.recovery_offset)) {
    				rs->ti->error = "Drive designated for rebuild not specified";
    				return -EINVAL;
    			}
    
    			rs->ti->error = "No data device supplied with metadata device";
    			if (rs->dev[i].meta_dev)
    				return -EINVAL;
    
    			continue;
    		}
    
    		ret = dm_get_device(rs->ti, argv[1],
    				    dm_table_get_mode(rs->ti->table),
    				    &rs->dev[i].data_dev);
    		if (ret) {
    			rs->ti->error = "RAID device lookup failure";
    			return ret;
    		}
    
    		if (rs->dev[i].meta_dev) {
    			metadata_available = 1;
    			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
    		}
    		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
    		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
    		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
    			rebuild++;
    	}
    
    	if (metadata_available) {
    		rs->md.external = 0;
    		rs->md.persistent = 1;
    		rs->md.major_version = 2;
    	} else if (rebuild && !rs->md.recovery_cp) {
    		/*
    		 * Without metadata, we will not be able to tell if the array
    		 * is in-sync or not - we must assume it is not.  Therefore,
    		 * it is impossible to rebuild a drive.
    		 *
    		 * Even if there is metadata, the on-disk information may
    		 * indicate that the array is not in-sync and it will then
    		 * fail at that time.
    		 *
    		 * User could specify 'nosync' option if desperate.
    		 */
    		DMERR("Unable to rebuild drive while array is not in-sync");
    		rs->ti->error = "RAID device lookup failure";
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    /*
     * validate_region_size
     * @rs
     * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
     *
     * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
     * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
     *
     * Returns: 0 on success, -EINVAL on failure.
     */
    static int validate_region_size(struct raid_set *rs, unsigned long region_size)
    {
    	unsigned long min_region_size = rs->ti->len / (1 << 21);
    
    	if (!region_size) {
    		/*
    		 * Choose a reasonable default.  All figures in sectors.
    		 */
    		if (min_region_size > (1 << 13)) {
    			/* If not a power of 2, make it the next power of 2 */
    			if (min_region_size & (min_region_size - 1))
    				region_size = 1 << fls(region_size);
    			DMINFO("Choosing default region size of %lu sectors",
    			       region_size);
    		} else {
    			DMINFO("Choosing default region size of 4MiB");
    			region_size = 1 << 13; /* sectors */
    		}
    	} else {
    		/*
    		 * Validate user-supplied value.
    		 */
    		if (region_size > rs->ti->len) {
    			rs->ti->error = "Supplied region size is too large";
    			return -EINVAL;
    		}
    
    		if (region_size < min_region_size) {
    			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
    			      region_size, min_region_size);
    			rs->ti->error = "Supplied region size is too small";
    			return -EINVAL;
    		}
    
    		if (!is_power_of_2(region_size)) {
    			rs->ti->error = "Region size is not a power of 2";
    			return -EINVAL;
    		}
    
    		if (region_size < rs->md.chunk_sectors) {
    			rs->ti->error = "Region size is smaller than the chunk size";
    			return -EINVAL;
    		}
    	}
    
    	/*
    	 * Convert sectors to bytes.
    	 */
    	rs->md.bitmap_info.chunksize = (region_size << 9);
    
    	return 0;
    }
    
    /*
     * validate_rebuild_devices
     * @rs
     *
     * Determine if the devices specified for rebuild can result in a valid
     * usable array that is capable of rebuilding the given devices.
     *
     * Returns: 0 on success, -EINVAL on failure.
     */
    static int validate_rebuild_devices(struct raid_set *rs)
    {
    	unsigned i, rebuild_cnt = 0;
    	unsigned rebuilds_per_group, copies, d;
    
    	if (!(rs->print_flags & DMPF_REBUILD))
    		return 0;
    
    	for (i = 0; i < rs->md.raid_disks; i++)
    		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
    			rebuild_cnt++;
    
    	switch (rs->raid_type->level) {
    	case 1:
    		if (rebuild_cnt >= rs->md.raid_disks)
    			goto too_many;
    		break;
    	case 4:
    	case 5:
    	case 6:
    		if (rebuild_cnt > rs->raid_type->parity_devs)
    			goto too_many;
    		break;
    	case 10:
    		copies = raid10_md_layout_to_copies(rs->md.layout);
    		if (rebuild_cnt < copies)
    			break;
    
    		/*
    		 * It is possible to have a higher rebuild count for RAID10,
    		 * as long as the failed devices occur in different mirror
    		 * groups (i.e. different stripes).
    		 *
    		 * Right now, we only allow for "near" copies.  When other
    		 * formats are added, we will have to check those too.
    		 *
    		 * When checking "near" format, make sure no adjacent devices
    		 * have failed beyond what can be handled.  In addition to the
    		 * simple case where the number of devices is a multiple of the
    		 * number of copies, we must also handle cases where the number
    		 * of devices is not a multiple of the number of copies.
    		 * E.g.    dev1 dev2 dev3 dev4 dev5
    		 *          A    A    B    B    C
    		 *          C    D    D    E    E
    		 */
    		rebuilds_per_group = 0;
    		for (i = 0; i < rs->md.raid_disks * copies; i++) {
    			d = i % rs->md.raid_disks;
    			if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
    			    (++rebuilds_per_group >= copies))
    				goto too_many;
    			if (!((i + 1) % copies))
    				rebuilds_per_group = 0;
    		}
    		break;
    	default:
    		DMERR("The rebuild parameter is not supported for %s",
    		      rs->raid_type->name);
    		rs->ti->error = "Rebuild not supported for this RAID type";
    		return -EINVAL;
    	}
    
    	return 0;
    
    too_many:
    	rs->ti->error = "Too many rebuild devices specified";
    	return -EINVAL;
    }
    
    /*
     * Possible arguments are...
     *	<chunk_size> [optional_args]
     *
     * Argument definitions
     *    <chunk_size>			The number of sectors per disk that
     *                                      will form the "stripe"
     *    [[no]sync]			Force or prevent recovery of the
     *                                      entire array
     *    [rebuild <idx>]			Rebuild the drive indicated by the index
     *    [daemon_sleep <ms>]		Time between bitmap daemon work to
     *                                      clear bits
     *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
     *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
     *    [write_mostly <idx>]		Indicate a write mostly drive via index
     *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
     *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
     *    [region_size <sectors>]           Defines granularity of bitmap
     *
     * RAID10-only options:
     *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
     *    [raid10_format <near>]            Layout algorithm.  (Default: near)
     */
    static int parse_raid_params(struct raid_set *rs, char **argv,
    			     unsigned num_raid_params)
    {
    	char *raid10_format = "near";
    	unsigned raid10_copies = 2;
    	unsigned i;
    	unsigned long value, region_size = 0;
    	sector_t sectors_per_dev = rs->ti->len;
    	sector_t max_io_len;
    	char *key;
    
    	/*
    	 * First, parse the in-order required arguments
    	 * "chunk_size" is the only argument of this type.
    	 */
    	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
    		rs->ti->error = "Bad chunk size";
    		return -EINVAL;
    	} else if (rs->raid_type->level == 1) {
    		if (value)
    			DMERR("Ignoring chunk size parameter for RAID 1");
    		value = 0;
    	} else if (!is_power_of_2(value)) {
    		rs->ti->error = "Chunk size must be a power of 2";
    		return -EINVAL;
    	} else if (value < 8) {
    		rs->ti->error = "Chunk size value is too small";
    		return -EINVAL;
    	}
    
    	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
    	argv++;
    	num_raid_params--;
    
    	/*
    	 * We set each individual device as In_sync with a completed
    	 * 'recovery_offset'.  If there has been a device failure or
    	 * replacement then one of the following cases applies:
    	 *
    	 *   1) User specifies 'rebuild'.
    	 *      - Device is reset when param is read.
    	 *   2) A new device is supplied.
    	 *      - No matching superblock found, resets device.
    	 *   3) Device failure was transient and returns on reload.
    	 *      - Failure noticed, resets device for bitmap replay.
    	 *   4) Device hadn't completed recovery after previous failure.
    	 *      - Superblock is read and overrides recovery_offset.
    	 *
    	 * What is found in the superblocks of the devices is always
    	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
    	 */
    	for (i = 0; i < rs->md.raid_disks; i++) {
    		set_bit(In_sync, &rs->dev[i].rdev.flags);
    		rs->dev[i].rdev.recovery_offset = MaxSector;
    	}
    
    	/*
    	 * Second, parse the unordered optional arguments
    	 */
    	for (i = 0; i < num_raid_params; i++) {
    		if (!strcasecmp(argv[i], "nosync")) {
    			rs->md.recovery_cp = MaxSector;
    			rs->print_flags |= DMPF_NOSYNC;
    			continue;
    		}
    		if (!strcasecmp(argv[i], "sync")) {
    			rs->md.recovery_cp = 0;
    			rs->print_flags |= DMPF_SYNC;
    			continue;
    		}
    
    		/* The rest of the optional arguments come in key/value pairs */
    		if ((i + 1) >= num_raid_params) {
    			rs->ti->error = "Wrong number of raid parameters given";
    			return -EINVAL;
    		}
    
    		key = argv[i++];
    
    		/* Parameters that take a string value are checked here. */
    		if (!strcasecmp(key, "raid10_format")) {
    			if (rs->raid_type->level != 10) {
    				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
    				return -EINVAL;
    			}
    			if (strcmp("near", argv[i])) {
    				rs->ti->error = "Invalid 'raid10_format' value given";
    				return -EINVAL;
    			}
    			raid10_format = argv[i];
    			rs->print_flags |= DMPF_RAID10_FORMAT;
    			continue;
    		}
    
    		if (strict_strtoul(argv[i], 10, &value) < 0) {
    			rs->ti->error = "Bad numerical argument given in raid params";
    			return -EINVAL;
    		}
    
    		/* Parameters that take a numeric value are checked here */
    		if (!strcasecmp(key, "rebuild")) {
    			if (value >= rs->md.raid_disks) {
    				rs->ti->error = "Invalid rebuild index given";
    				return -EINVAL;
    			}
    			clear_bit(In_sync, &rs->dev[value].rdev.flags);
    			rs->dev[value].rdev.recovery_offset = 0;
    			rs->print_flags |= DMPF_REBUILD;
    		} else if (!strcasecmp(key, "write_mostly")) {
    			if (rs->raid_type->level != 1) {
    				rs->ti->error = "write_mostly option is only valid for RAID1";
    				return -EINVAL;
    			}
    			if (value >= rs->md.raid_disks) {
    				rs->ti->error = "Invalid write_mostly drive index given";
    				return -EINVAL;
    			}
    			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
    		} else if (!strcasecmp(key, "max_write_behind")) {
    			if (rs->raid_type->level != 1) {
    				rs->ti->error = "max_write_behind option is only valid for RAID1";
    				return -EINVAL;
    			}
    			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
    
    			/*
    			 * In device-mapper, we specify things in sectors, but
    			 * MD records this value in kB
    			 */
    			value /= 2;
    			if (value > COUNTER_MAX) {
    				rs->ti->error = "Max write-behind limit out of range";
    				return -EINVAL;
    			}
    			rs->md.bitmap_info.max_write_behind = value;
    		} else if (!strcasecmp(key, "daemon_sleep")) {
    			rs->print_flags |= DMPF_DAEMON_SLEEP;
    			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
    				rs->ti->error = "daemon sleep period out of range";
    				return -EINVAL;
    			}
    			rs->md.bitmap_info.daemon_sleep = value;
    		} else if (!strcasecmp(key, "stripe_cache")) {
    			rs->print_flags |= DMPF_STRIPE_CACHE;
    
    			/*
    			 * In device-mapper, we specify things in sectors, but
    			 * MD records this value in kB
    			 */
    			value /= 2;
    
    			if ((rs->raid_type->level != 5) &&
    			    (rs->raid_type->level != 6)) {
    				rs->ti->error = "Inappropriate argument: stripe_cache";
    				return -EINVAL;
    			}
    			if (raid5_set_cache_size(&rs->md, (int)value)) {
    				rs->ti->error = "Bad stripe_cache size";
    				return -EINVAL;
    			}
    		} else if (!strcasecmp(key, "min_recovery_rate")) {
    			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
    			if (value > INT_MAX) {
    				rs->ti->error = "min_recovery_rate out of range";
    				return -EINVAL;
    			}
    			rs->md.sync_speed_min = (int)value;
    		} else if (!strcasecmp(key, "max_recovery_rate")) {
    			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
    			if (value > INT_MAX) {
    				rs->ti->error = "max_recovery_rate out of range";
    				return -EINVAL;
    			}
    			rs->md.sync_speed_max = (int)value;
    		} else if (!strcasecmp(key, "region_size")) {
    			rs->print_flags |= DMPF_REGION_SIZE;
    			region_size = value;
    		} else if (!strcasecmp(key, "raid10_copies") &&
    			   (rs->raid_type->level == 10)) {
    			if ((value < 2) || (value > 0xFF)) {
    				rs->ti->error = "Bad value for 'raid10_copies'";
    				return -EINVAL;
    			}
    			rs->print_flags |= DMPF_RAID10_COPIES;
    			raid10_copies = value;
    		} else {
    			DMERR("Unable to parse RAID parameter: %s", key);
    			rs->ti->error = "Unable to parse RAID parameters";
    			return -EINVAL;
    		}
    	}
    
    	if (validate_region_size(rs, region_size))
    		return -EINVAL;
    
    	if (rs->md.chunk_sectors)
    		max_io_len = rs->md.chunk_sectors;
    	else
    		max_io_len = region_size;
    
    	if (dm_set_target_max_io_len(rs->ti, max_io_len))
    		return -EINVAL;
    
    	if (rs->raid_type->level == 10) {
    		if (raid10_copies > rs->md.raid_disks) {
    			rs->ti->error = "Not enough devices to satisfy specification";
    			return -EINVAL;
    		}
    
    		/* (Len * #mirrors) / #devices */
    		sectors_per_dev = rs->ti->len * raid10_copies;
    		sector_div(sectors_per_dev, rs->md.raid_disks);
    
    		rs->md.layout = raid10_format_to_md_layout(raid10_format,
    							   raid10_copies);
    		rs->md.new_layout = rs->md.layout;
    	} else if ((rs->raid_type->level > 1) &&
    		   sector_div(sectors_per_dev,
    			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
    		rs->ti->error = "Target length not divisible by number of data devices";
    		return -EINVAL;
    	}
    	rs->md.dev_sectors = sectors_per_dev;
    
    	if (validate_rebuild_devices(rs))
    		return -EINVAL;
    
    	/* Assume there are no metadata devices until the drives are parsed */
    	rs->md.persistent = 0;
    	rs->md.external = 1;
    
    	return 0;
    }
    
    static void do_table_event(struct work_struct *ws)
    {
    	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
    
    	dm_table_event(rs->ti->table);
    }
    
    static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
    {
    	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
    
    	if (rs->raid_type->level == 1)
    		return md_raid1_congested(&rs->md, bits);
    
    	if (rs->raid_type->level == 10)
    		return md_raid10_congested(&rs->md, bits);
    
    	return md_raid5_congested(&rs->md, bits);
    }
    
    /*
     * This structure is never routinely used by userspace, unlike md superblocks.
     * Devices with this superblock should only ever be accessed via device-mapper.
     */
    #define DM_RAID_MAGIC 0x64526D44
    struct dm_raid_superblock {
    	__le32 magic;		/* "DmRd" */
    	__le32 features;	/* Used to indicate possible future changes */
    
    	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
    	__le32 array_position;	/* The position of this drive in the array */
    
    	__le64 events;		/* Incremented by md when superblock updated */
    	__le64 failed_devices;	/* Bit field of devices to indicate failures */
    
    	/*
    	 * This offset tracks the progress of the repair or replacement of
    	 * an individual drive.
    	 */
    	__le64 disk_recovery_offset;
    
    	/*
    	 * This offset tracks the progress of the initial array
    	 * synchronisation/parity calculation.
    	 */
    	__le64 array_resync_offset;
    
    	/*
    	 * RAID characteristics
    	 */
    	__le32 level;
    	__le32 layout;
    	__le32 stripe_sectors;
    
    	__u8 pad[452];		/* Round struct to 512 bytes. */
    				/* Always set to 0 when writing. */
    } __packed;
    
    static int read_disk_sb(struct md_rdev *rdev, int size)
    {
    	BUG_ON(!rdev->sb_page);
    
    	if (rdev->sb_loaded)
    		return 0;
    
    	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
    		DMERR("Failed to read superblock of device at position %d",
    		      rdev->raid_disk);
    		md_error(rdev->mddev, rdev);
    		return -EINVAL;
    	}
    
    	rdev->sb_loaded = 1;
    
    	return 0;
    }
    
    static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
    {
    	int i;
    	uint64_t failed_devices;
    	struct dm_raid_superblock *sb;
    	struct raid_set *rs = container_of(mddev, struct raid_set, md);
    
    	sb = page_address(rdev->sb_page);
    	failed_devices = le64_to_cpu(sb->failed_devices);
    
    	for (i = 0; i < mddev->raid_disks; i++)
    		if (!rs->dev[i].data_dev ||
    		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
    			failed_devices |= (1ULL << i);
    
    	memset(sb, 0, sizeof(*sb));
    
    	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
    	sb->features = cpu_to_le32(0);	/* No features yet */
    
    	sb->num_devices = cpu_to_le32(mddev->raid_disks);
    	sb->array_position = cpu_to_le32(rdev->raid_disk);
    
    	sb->events = cpu_to_le64(mddev->events);
    	sb->failed_devices = cpu_to_le64(failed_devices);
    
    	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
    	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
    
    	sb->level = cpu_to_le32(mddev->level);
    	sb->layout = cpu_to_le32(mddev->layout);
    	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
    }
    
    /*
     * super_load
     *
     * This function creates a superblock if one is not found on the device
     * and will decide which superblock to use if there's a choice.
     *
     * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
     */
    static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
    {
    	int ret;
    	struct dm_raid_superblock *sb;
    	struct dm_raid_superblock *refsb;
    	uint64_t events_sb, events_refsb;
    
    	rdev->sb_start = 0;
    	rdev->sb_size = sizeof(*sb);
    
    	ret = read_disk_sb(rdev, rdev->sb_size);
    	if (ret)
    		return ret;
    
    	sb = page_address(rdev->sb_page);
    
    	/*
    	 * Two cases that we want to write new superblocks and rebuild:
    	 * 1) New device (no matching magic number)
    	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
    	 */
    	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
    	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
    		super_sync(rdev->mddev, rdev);
    
    		set_bit(FirstUse, &rdev->flags);
    
    		/* Force writing of superblocks to disk */
    		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
    
    		/* Any superblock is better than none, choose that if given */
    		return refdev ? 0 : 1;
    	}
    
    	if (!refdev)
    		return 1;
    
    	events_sb = le64_to_cpu(sb->events);
    
    	refsb = page_address(refdev->sb_page);
    	events_refsb = le64_to_cpu(refsb->events);
    
    	return (events_sb > events_refsb) ? 1 : 0;
    }
    
    static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
    {
    	int role;
    	struct raid_set *rs = container_of(mddev, struct raid_set, md);
    	uint64_t events_sb;
    	uint64_t failed_devices;
    	struct dm_raid_superblock *sb;
    	uint32_t new_devs = 0;
    	uint32_t rebuilds = 0;
    	struct md_rdev *r;
    	struct dm_raid_superblock *sb2;
    
    	sb = page_address(rdev->sb_page);
    	events_sb = le64_to_cpu(sb->events);
    	failed_devices = le64_to_cpu(sb->failed_devices);
    
    	/*
    	 * Initialise to 1 if this is a new superblock.
    	 */
    	mddev->events = events_sb ? : 1;
    
    	/*
    	 * Reshaping is not currently allowed
    	 */
    	if ((le32_to_cpu(sb->level) != mddev->level) ||
    	    (le32_to_cpu(sb->layout) != mddev->layout) ||
    	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
    		DMERR("Reshaping arrays not yet supported.");
    		return -EINVAL;
    	}
    
    	/* We can only change the number of devices in RAID1 right now */
    	if ((rs->raid_type->level != 1) &&
    	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
    		DMERR("Reshaping arrays not yet supported.");
    		return -EINVAL;
    	}
    
    	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
    		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
    
    	/*
    	 * During load, we set FirstUse if a new superblock was written.
    	 * There are two reasons we might not have a superblock:
    	 * 1) The array is brand new - in which case, all of the
    	 *    devices must have their In_sync bit set.  Also,
    	 *    recovery_cp must be 0, unless forced.
    	 * 2) This is a new device being added to an old array
    	 *    and the new device needs to be rebuilt - in which
    	 *    case the In_sync bit will /not/ be set and
    	 *    recovery_cp must be MaxSector.
    	 */
    	rdev_for_each(r, mddev) {
    		if (!test_bit(In_sync, &r->flags)) {
    			DMINFO("Device %d specified for rebuild: "
    			       "Clearing superblock", r->raid_disk);
    			rebuilds++;
    		} else if (test_bit(FirstUse, &r->flags))
    			new_devs++;
    	}
    
    	if (!rebuilds) {
    		if (new_devs == mddev->raid_disks) {
    			DMINFO("Superblocks created for new array");
    			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
    		} else if (new_devs) {
    			DMERR("New device injected "
    			      "into existing array without 'rebuild' "
    			      "parameter specified");
    			return -EINVAL;
    		}
    	} else if (new_devs) {
    		DMERR("'rebuild' devices cannot be "
    		      "injected into an array with other first-time devices");
    		return -EINVAL;
    	} else if (mddev->recovery_cp != MaxSector) {
    		DMERR("'rebuild' specified while array is not in-sync");
    		return -EINVAL;
    	}
    
    	/*
    	 * Now we set the Faulty bit for those devices that are
    	 * recorded in the superblock as failed.
    	 */
    	rdev_for_each(r, mddev) {
    		if (!r->sb_page)
    			continue;
    		sb2 = page_address(r->sb_page);
    		sb2->failed_devices = 0;
    
    		/*
    		 * Check for any device re-ordering.
    		 */
    		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
    			role = le32_to_cpu(sb2->array_position);
    			if (role != r->raid_disk) {
    				if (rs->raid_type->level != 1) {
    					rs->ti->error = "Cannot change device "
    						"positions in RAID array";
    					return -EINVAL;
    				}
    				DMINFO("RAID1 device #%d now at position #%d",
    				       role, r->raid_disk);
    			}
    
    			/*
    			 * Partial recovery is performed on
    			 * returning failed devices.
    			 */
    			if (failed_devices & (1 << role))
    				set_bit(Faulty, &r->flags);
    		}
    	}
    
    	return 0;
    }
    
    static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
    {
    	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
    
    	/*
    	 * If mddev->events is not set, we know we have not yet initialized
    	 * the array.
    	 */
    	if (!mddev->events && super_init_validation(mddev, rdev))
    		return -EINVAL;
    
    	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
    	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
    	if (!test_bit(FirstUse, &rdev->flags)) {
    		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
    		if (rdev->recovery_offset != MaxSector)
    			clear_bit(In_sync, &rdev->flags);
    	}
    
    	/*
    	 * If a device comes back, set it as not In_sync and no longer faulty.
    	 */
    	if (test_bit(Faulty, &rdev->flags)) {
    		clear_bit(Faulty, &rdev->flags);
    		clear_bit(In_sync, &rdev->flags);
    		rdev->saved_raid_disk = rdev->raid_disk;
    		rdev->recovery_offset = 0;
    	}
    
    	clear_bit(FirstUse, &rdev->flags);
    
    	return 0;
    }
    
    /*
     * Analyse superblocks and select the freshest.
     */
    static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
    {
    	int ret;
    	unsigned redundancy = 0;
    	struct raid_dev *dev;
    	struct md_rdev *rdev, *tmp, *freshest;
    	struct mddev *mddev = &rs->md;
    
    	switch (rs->raid_type->level) {
    	case 1:
    		redundancy = rs->md.raid_disks - 1;
    		break;
    	case 4:
    	case 5:
    	case 6:
    		redundancy = rs->raid_type->parity_devs;
    		break;
    	case 10:
    		redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
    		break;
    	default:
    		ti->error = "Unknown RAID type";
    		return -EINVAL;
    	}
    
    	freshest = NULL;
    	rdev_for_each_safe(rdev, tmp, mddev) {
    		/*
    		 * Skipping super_load due to DMPF_SYNC will cause
    		 * the array to undergo initialization again as
    		 * though it were new.  This is the intended effect
    		 * of the "sync" directive.
    		 *
    		 * When reshaping capability is added, we must ensure
    		 * that the "sync" directive is disallowed during the
    		 * reshape.
    		 */
    		if (rs->print_flags & DMPF_SYNC)
    			continue;
    
    		if (!rdev->meta_bdev)
    			continue;
    
    		ret = super_load(rdev, freshest);
    
    		switch (ret) {
    		case 1:
    			freshest = rdev;
    			break;
    		case 0:
    			break;
    		default:
    			dev = container_of(rdev, struct raid_dev, rdev);
    			if (redundancy--) {
    				if (dev->meta_dev)
    					dm_put_device(ti, dev->meta_dev);
    
    				dev->meta_dev = NULL;
    				rdev->meta_bdev = NULL;
    
    				if (rdev->sb_page)
    					put_page(rdev->sb_page);
    
    				rdev->sb_page = NULL;
    
    				rdev->sb_loaded = 0;
    
    				/*
    				 * We might be able to salvage the data device
    				 * even though the meta device has failed.  For
    				 * now, we behave as though '- -' had been
    				 * set for this device in the table.
    				 */
    				if (dev->data_dev)
    					dm_put_device(ti, dev->data_dev);
    
    				dev->data_dev = NULL;
    				rdev->bdev = NULL;
    
    				list_del(&rdev->same_set);
    
    				continue;
    			}
    			ti->error = "Failed to load superblock";
    			return ret;
    		}
    	}
    
    	if (!freshest)
    		return 0;
    
    	/*
    	 * Validation of the freshest device provides the source of
    	 * validation for the remaining devices.
    	 */
    	ti->error = "Unable to assemble array: Invalid superblocks";
    	if (super_validate(mddev, freshest))
    		return -EINVAL;
    
    	rdev_for_each(rdev, mddev)
    		if ((rdev != freshest) && super_validate(mddev, rdev))
    			return -EINVAL;
    
    	return 0;
    }
    
    /*
     * Construct a RAID4/5/6 mapping:
     * Args:
     *	<raid_type> <#raid_params> <raid_params>		\
     *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
     *
     * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
     * details on possible <raid_params>.
     */
    static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
    {
    	int ret;
    	struct raid_type *rt;
    	unsigned long num_raid_params, num_raid_devs;
    	struct raid_set *rs = NULL;
    
    	/* Must have at least <raid_type> <#raid_params> */
    	if (argc < 2) {
    		ti->error = "Too few arguments";
    		return -EINVAL;
    	}
    
    	/* raid type */
    	rt = get_raid_type(argv[0]);
    	if (!rt) {
    		ti->error = "Unrecognised raid_type";
    		return -EINVAL;
    	}
    	argc--;
    	argv++;
    
    	/* number of RAID parameters */
    	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
    		ti->error = "Cannot understand number of RAID parameters";
    		return -EINVAL;
    	}
    	argc--;
    	argv++;
    
    	/* Skip over RAID params for now and find out # of devices */
    	if (num_raid_params + 1 > argc) {
    		ti->error = "Arguments do not agree with counts given";
    		return -EINVAL;
    	}
    
    	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
    	    (num_raid_devs >= INT_MAX)) {
    		ti->error = "Cannot understand number of raid devices";
    		return -EINVAL;
    	}
    
    	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
    	if (IS_ERR(rs))
    		return PTR_ERR(rs);
    
    	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
    	if (ret)
    		goto bad;
    
    	ret = -EINVAL;
    
    	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
    	argv += num_raid_params + 1;
    
    	if (argc != (num_raid_devs * 2)) {
    		ti->error = "Supplied RAID devices does not match the count given";
    		goto bad;
    	}
    
    	ret = dev_parms(rs, argv);
    	if (ret)
    		goto bad;
    
    	rs->md.sync_super = super_sync;
    	ret = analyse_superblocks(ti, rs);
    	if (ret)
    		goto bad;
    
    	INIT_WORK(&rs->md.event_work, do_table_event);
    	ti->private = rs;
    	ti->num_flush_requests = 1;
    
    	mutex_lock(&rs->md.reconfig_mutex);
    	ret = md_run(&rs->md);
    	rs->md.in_sync = 0; /* Assume already marked dirty */
    	mutex_unlock(&rs->md.reconfig_mutex);
    
    	if (ret) {
    		ti->error = "Fail to run raid array";
    		goto bad;
    	}
    
    	if (ti->len != rs->md.array_sectors) {
    		ti->error = "Array size does not match requested target length";
    		ret = -EINVAL;
    		goto size_mismatch;
    	}
    	rs->callbacks.congested_fn = raid_is_congested;
    	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
    
    	mddev_suspend(&rs->md);
    	return 0;
    
    size_mismatch:
    	md_stop(&rs->md);
    bad:
    	context_free(rs);
    
    	return ret;
    }
    
    static void raid_dtr(struct dm_target *ti)
    {
    	struct raid_set *rs = ti->private;
    
    	list_del_init(&rs->callbacks.list);
    	md_stop(&rs->md);
    	context_free(rs);
    }
    
    static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
    {
    	struct raid_set *rs = ti->private;
    	struct mddev *mddev = &rs->md;
    
    	mddev->pers->make_request(mddev, bio);
    
    	return DM_MAPIO_SUBMITTED;
    }
    
    static int raid_status(struct dm_target *ti, status_type_t type,
    		       unsigned status_flags, char *result, unsigned maxlen)
    {
    	struct raid_set *rs = ti->private;
    	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
    	unsigned sz = 0;
    	int i, array_in_sync = 0;
    	sector_t sync;
    
    	switch (type) {
    	case STATUSTYPE_INFO:
    		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
    
    		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
    			sync = rs->md.curr_resync_completed;
    		else
    			sync = rs->md.recovery_cp;
    
    		if (sync >= rs->md.resync_max_sectors) {
    			array_in_sync = 1;
    			sync = rs->md.resync_max_sectors;
    		} else {
    			/*
    			 * The array may be doing an initial sync, or it may
    			 * be rebuilding individual components.  If all the
    			 * devices are In_sync, then it is the array that is
    			 * being initialized.
    			 */
    			for (i = 0; i < rs->md.raid_disks; i++)
    				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
    					array_in_sync = 1;
    		}
    		/*
    		 * Status characters:
    		 *  'D' = Dead/Failed device
    		 *  'a' = Alive but not in-sync
    		 *  'A' = Alive and in-sync
    		 */
    		for (i = 0; i < rs->md.raid_disks; i++) {
    			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
    				DMEMIT("D");
    			else if (!array_in_sync ||
    				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
    				DMEMIT("a");
    			else
    				DMEMIT("A");
    		}
    
    		/*
    		 * In-sync ratio:
    		 *  The in-sync ratio shows the progress of:
    		 *   - Initializing the array
    		 *   - Rebuilding a subset of devices of the array
    		 *  The user can distinguish between the two by referring
    		 *  to the status characters.
    		 */
    		DMEMIT(" %llu/%llu",
    		       (unsigned long long) sync,
    		       (unsigned long long) rs->md.resync_max_sectors);
    
    		break;
    	case STATUSTYPE_TABLE:
    		/* The string you would use to construct this array */
    		for (i = 0; i < rs->md.raid_disks; i++) {
    			if ((rs->print_flags & DMPF_REBUILD) &&
    			    rs->dev[i].data_dev &&
    			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
    				raid_param_cnt += 2; /* for rebuilds */
    			if (rs->dev[i].data_dev &&
    			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
    				raid_param_cnt += 2;
    		}
    
    		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
    		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
    			raid_param_cnt--;
    
    		DMEMIT("%s %u %u", rs->raid_type->name,
    		       raid_param_cnt, rs->md.chunk_sectors);
    
    		if ((rs->print_flags & DMPF_SYNC) &&
    		    (rs->md.recovery_cp == MaxSector))
    			DMEMIT(" sync");
    		if (rs->print_flags & DMPF_NOSYNC)
    			DMEMIT(" nosync");
    
    		for (i = 0; i < rs->md.raid_disks; i++)
    			if ((rs->print_flags & DMPF_REBUILD) &&
    			    rs->dev[i].data_dev &&
    			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
    				DMEMIT(" rebuild %u", i);
    
    		if (rs->print_flags & DMPF_DAEMON_SLEEP)
    			DMEMIT(" daemon_sleep %lu",
    			       rs->md.bitmap_info.daemon_sleep);
    
    		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
    			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
    
    		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
    			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
    
    		for (i = 0; i < rs->md.raid_disks; i++)
    			if (rs->dev[i].data_dev &&
    			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
    				DMEMIT(" write_mostly %u", i);
    
    		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
    			DMEMIT(" max_write_behind %lu",
    			       rs->md.bitmap_info.max_write_behind);
    
    		if (rs->print_flags & DMPF_STRIPE_CACHE) {
    			struct r5conf *conf = rs->md.private;
    
    			/* convert from kiB to sectors */
    			DMEMIT(" stripe_cache %d",
    			       conf ? conf->max_nr_stripes * 2 : 0);
    		}
    
    		if (rs->print_flags & DMPF_REGION_SIZE)
    			DMEMIT(" region_size %lu",
    			       rs->md.bitmap_info.chunksize >> 9);
    
    		if (rs->print_flags & DMPF_RAID10_COPIES)
    			DMEMIT(" raid10_copies %u",
    			       raid10_md_layout_to_copies(rs->md.layout));
    
    		if (rs->print_flags & DMPF_RAID10_FORMAT)
    			DMEMIT(" raid10_format near");
    
    		DMEMIT(" %d", rs->md.raid_disks);
    		for (i = 0; i < rs->md.raid_disks; i++) {
    			if (rs->dev[i].meta_dev)
    				DMEMIT(" %s", rs->dev[i].meta_dev->name);
    			else
    				DMEMIT(" -");
    
    			if (rs->dev[i].data_dev)
    				DMEMIT(" %s", rs->dev[i].data_dev->name);
    			else
    				DMEMIT(" -");
    		}
    	}
    
    	return 0;
    }
    
    static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
    {
    	struct raid_set *rs = ti->private;
    	unsigned i;
    	int ret = 0;
    
    	for (i = 0; !ret && i < rs->md.raid_disks; i++)
    		if (rs->dev[i].data_dev)
    			ret = fn(ti,
    				 rs->dev[i].data_dev,
    				 0, /* No offset on data devs */
    				 rs->md.dev_sectors,
    				 data);
    
    	return ret;
    }
    
    static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
    {
    	struct raid_set *rs = ti->private;
    	unsigned chunk_size = rs->md.chunk_sectors << 9;
    	struct r5conf *conf = rs->md.private;
    
    	blk_limits_io_min(limits, chunk_size);
    	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
    }
    
    static void raid_presuspend(struct dm_target *ti)
    {
    	struct raid_set *rs = ti->private;
    
    	md_stop_writes(&rs->md);
    }
    
    static void raid_postsuspend(struct dm_target *ti)
    {
    	struct raid_set *rs = ti->private;
    
    	mddev_suspend(&rs->md);
    }
    
    static void raid_resume(struct dm_target *ti)
    {
    	struct raid_set *rs = ti->private;
    
    	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
    	if (!rs->bitmap_loaded) {
    		bitmap_load(&rs->md);
    		rs->bitmap_loaded = 1;
    	}
    
    	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
    	mddev_resume(&rs->md);
    }
    
    static struct target_type raid_target = {
    	.name = "raid",
    	.version = {1, 3, 1},
    	.module = THIS_MODULE,
    	.ctr = raid_ctr,
    	.dtr = raid_dtr,
    	.map = raid_map,
    	.status = raid_status,
    	.iterate_devices = raid_iterate_devices,
    	.io_hints = raid_io_hints,
    	.presuspend = raid_presuspend,
    	.postsuspend = raid_postsuspend,
    	.resume = raid_resume,
    };
    
    static int __init dm_raid_init(void)
    {
    	return dm_register_target(&raid_target);
    }
    
    static void __exit dm_raid_exit(void)
    {
    	dm_unregister_target(&raid_target);
    }
    
    module_init(dm_raid_init);
    module_exit(dm_raid_exit);
    
    MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
    MODULE_ALIAS("dm-raid1");
    MODULE_ALIAS("dm-raid10");
    MODULE_ALIAS("dm-raid4");
    MODULE_ALIAS("dm-raid5");
    MODULE_ALIAS("dm-raid6");
    MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
    MODULE_LICENSE("GPL");