Skip to content
Snippets Groups Projects
Select Git revision
  • 2c33c27fd6033ced942c9a591b8ac15c07c57d70
  • linus-master default
  • kunit_is_love
  • kunit_drm
  • tonyk/futex_waitv
  • hidraw_rwlock
  • futex_waitv
  • futex2-dev
  • idle_sleep
  • futex2-proton
  • futex-tests
  • futex2
  • futex2-numa
  • fwm-5.11
  • cf-fix
  • tmpfs-ic
  • futex2-stable-5.11
  • futex2-stable
  • futex2-lpc
  • gaming
  • futex-fixes
21 results

header.S

Blame
  • builtin-stat.c 58.36 KiB
    /*
     * builtin-stat.c
     *
     * Builtin stat command: Give a precise performance counters summary
     * overview about any workload, CPU or specific PID.
     *
     * Sample output:
    
       $ perf stat ./hackbench 10
    
      Time: 0.118
    
      Performance counter stats for './hackbench 10':
    
           1708.761321 task-clock                #   11.037 CPUs utilized
                41,190 context-switches          #    0.024 M/sec
                 6,735 CPU-migrations            #    0.004 M/sec
                17,318 page-faults               #    0.010 M/sec
         5,205,202,243 cycles                    #    3.046 GHz
         3,856,436,920 stalled-cycles-frontend   #   74.09% frontend cycles idle
         1,600,790,871 stalled-cycles-backend    #   30.75% backend  cycles idle
         2,603,501,247 instructions              #    0.50  insns per cycle
                                                 #    1.48  stalled cycles per insn
           484,357,498 branches                  #  283.455 M/sec
             6,388,934 branch-misses             #    1.32% of all branches
    
            0.154822978  seconds time elapsed
    
     *
     * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
     *
     * Improvements and fixes by:
     *
     *   Arjan van de Ven <arjan@linux.intel.com>
     *   Yanmin Zhang <yanmin.zhang@intel.com>
     *   Wu Fengguang <fengguang.wu@intel.com>
     *   Mike Galbraith <efault@gmx.de>
     *   Paul Mackerras <paulus@samba.org>
     *   Jaswinder Singh Rajput <jaswinder@kernel.org>
     *
     * Released under the GPL v2. (and only v2, not any later version)
     */
    
    #include "perf.h"
    #include "builtin.h"
    #include "util/cgroup.h"
    #include "util/util.h"
    #include <subcmd/parse-options.h>
    #include "util/parse-events.h"
    #include "util/pmu.h"
    #include "util/event.h"
    #include "util/evlist.h"
    #include "util/evsel.h"
    #include "util/debug.h"
    #include "util/color.h"
    #include "util/stat.h"
    #include "util/header.h"
    #include "util/cpumap.h"
    #include "util/thread.h"
    #include "util/thread_map.h"
    #include "util/counts.h"
    #include "util/session.h"
    #include "util/tool.h"
    #include "asm/bug.h"
    
    #include <stdlib.h>
    #include <sys/prctl.h>
    #include <locale.h>
    
    #define DEFAULT_SEPARATOR	" "
    #define CNTR_NOT_SUPPORTED	"<not supported>"
    #define CNTR_NOT_COUNTED	"<not counted>"
    
    static void print_counters(struct timespec *ts, int argc, const char **argv);
    
    /* Default events used for perf stat -T */
    static const char *transaction_attrs = {
    	"task-clock,"
    	"{"
    	"instructions,"
    	"cycles,"
    	"cpu/cycles-t/,"
    	"cpu/tx-start/,"
    	"cpu/el-start/,"
    	"cpu/cycles-ct/"
    	"}"
    };
    
    /* More limited version when the CPU does not have all events. */
    static const char * transaction_limited_attrs = {
    	"task-clock,"
    	"{"
    	"instructions,"
    	"cycles,"
    	"cpu/cycles-t/,"
    	"cpu/tx-start/"
    	"}"
    };
    
    static struct perf_evlist	*evsel_list;
    
    static struct target target = {
    	.uid	= UINT_MAX,
    };
    
    typedef int (*aggr_get_id_t)(struct cpu_map *m, int cpu);
    
    static int			run_count			=  1;
    static bool			no_inherit			= false;
    static volatile pid_t		child_pid			= -1;
    static bool			null_run			=  false;
    static int			detailed_run			=  0;
    static bool			transaction_run;
    static bool			big_num				=  true;
    static int			big_num_opt			=  -1;
    static const char		*csv_sep			= NULL;
    static bool			csv_output			= false;
    static bool			group				= false;
    static const char		*pre_cmd			= NULL;
    static const char		*post_cmd			= NULL;
    static bool			sync_run			= false;
    static unsigned int		initial_delay			= 0;
    static unsigned int		unit_width			= 4; /* strlen("unit") */
    static bool			forever				= false;
    static bool			metric_only			= false;
    static struct timespec		ref_time;
    static struct cpu_map		*aggr_map;
    static aggr_get_id_t		aggr_get_id;
    static bool			append_file;
    static const char		*output_name;
    static int			output_fd;
    
    struct perf_stat {
    	bool			 record;
    	struct perf_data_file	 file;
    	struct perf_session	*session;
    	u64			 bytes_written;
    	struct perf_tool	 tool;
    	bool			 maps_allocated;
    	struct cpu_map		*cpus;
    	struct thread_map	*threads;
    	enum aggr_mode		 aggr_mode;
    };
    
    static struct perf_stat		perf_stat;
    #define STAT_RECORD		perf_stat.record
    
    static volatile int done = 0;
    
    static struct perf_stat_config stat_config = {
    	.aggr_mode	= AGGR_GLOBAL,
    	.scale		= true,
    };
    
    static inline void diff_timespec(struct timespec *r, struct timespec *a,
    				 struct timespec *b)
    {
    	r->tv_sec = a->tv_sec - b->tv_sec;
    	if (a->tv_nsec < b->tv_nsec) {
    		r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
    		r->tv_sec--;
    	} else {
    		r->tv_nsec = a->tv_nsec - b->tv_nsec ;
    	}
    }
    
    static void perf_stat__reset_stats(void)
    {
    	perf_evlist__reset_stats(evsel_list);
    	perf_stat__reset_shadow_stats();
    }
    
    static int create_perf_stat_counter(struct perf_evsel *evsel)
    {
    	struct perf_event_attr *attr = &evsel->attr;
    
    	if (stat_config.scale)
    		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
    				    PERF_FORMAT_TOTAL_TIME_RUNNING;
    
    	attr->inherit = !no_inherit;
    
    	/*
    	 * Some events get initialized with sample_(period/type) set,
    	 * like tracepoints. Clear it up for counting.
    	 */
    	attr->sample_period = 0;
    
    	/*
    	 * But set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless
    	 * while avoiding that older tools show confusing messages.
    	 *
    	 * However for pipe sessions we need to keep it zero,
    	 * because script's perf_evsel__check_attr is triggered
    	 * by attr->sample_type != 0, and we can't run it on
    	 * stat sessions.
    	 */
    	if (!(STAT_RECORD && perf_stat.file.is_pipe))
    		attr->sample_type = PERF_SAMPLE_IDENTIFIER;
    
    	/*
    	 * Disabling all counters initially, they will be enabled
    	 * either manually by us or by kernel via enable_on_exec
    	 * set later.
    	 */
    	if (perf_evsel__is_group_leader(evsel)) {
    		attr->disabled = 1;
    
    		/*
    		 * In case of initial_delay we enable tracee
    		 * events manually.
    		 */
    		if (target__none(&target) && !initial_delay)
    			attr->enable_on_exec = 1;
    	}
    
    	if (target__has_cpu(&target))
    		return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
    
    	return perf_evsel__open_per_thread(evsel, evsel_list->threads);
    }
    
    /*
     * Does the counter have nsecs as a unit?
     */
    static inline int nsec_counter(struct perf_evsel *evsel)
    {
    	if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
    	    perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
    		return 1;
    
    	return 0;
    }
    
    static int process_synthesized_event(struct perf_tool *tool __maybe_unused,
    				     union perf_event *event,
    				     struct perf_sample *sample __maybe_unused,
    				     struct machine *machine __maybe_unused)
    {
    	if (perf_data_file__write(&perf_stat.file, event, event->header.size) < 0) {
    		pr_err("failed to write perf data, error: %m\n");
    		return -1;
    	}
    
    	perf_stat.bytes_written += event->header.size;
    	return 0;
    }
    
    static int write_stat_round_event(u64 tm, u64 type)
    {
    	return perf_event__synthesize_stat_round(NULL, tm, type,
    						 process_synthesized_event,
    						 NULL);
    }
    
    #define WRITE_STAT_ROUND_EVENT(time, interval) \
    	write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval)
    
    #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
    
    static int
    perf_evsel__write_stat_event(struct perf_evsel *counter, u32 cpu, u32 thread,
    			     struct perf_counts_values *count)
    {
    	struct perf_sample_id *sid = SID(counter, cpu, thread);
    
    	return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count,
    					   process_synthesized_event, NULL);
    }
    
    /*
     * Read out the results of a single counter:
     * do not aggregate counts across CPUs in system-wide mode
     */
    static int read_counter(struct perf_evsel *counter)
    {
    	int nthreads = thread_map__nr(evsel_list->threads);
    	int ncpus = perf_evsel__nr_cpus(counter);
    	int cpu, thread;
    
    	if (!counter->supported)
    		return -ENOENT;
    
    	if (counter->system_wide)
    		nthreads = 1;
    
    	for (thread = 0; thread < nthreads; thread++) {
    		for (cpu = 0; cpu < ncpus; cpu++) {
    			struct perf_counts_values *count;
    
    			count = perf_counts(counter->counts, cpu, thread);
    			if (perf_evsel__read(counter, cpu, thread, count))
    				return -1;
    
    			if (STAT_RECORD) {
    				if (perf_evsel__write_stat_event(counter, cpu, thread, count)) {
    					pr_err("failed to write stat event\n");
    					return -1;
    				}
    			}
    		}
    	}
    
    	return 0;
    }
    
    static void read_counters(bool close_counters)
    {
    	struct perf_evsel *counter;
    
    	evlist__for_each(evsel_list, counter) {
    		if (read_counter(counter))
    			pr_debug("failed to read counter %s\n", counter->name);
    
    		if (perf_stat_process_counter(&stat_config, counter))
    			pr_warning("failed to process counter %s\n", counter->name);
    
    		if (close_counters) {
    			perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter),
    					     thread_map__nr(evsel_list->threads));
    		}
    	}
    }
    
    static void process_interval(void)
    {
    	struct timespec ts, rs;
    
    	read_counters(false);
    
    	clock_gettime(CLOCK_MONOTONIC, &ts);
    	diff_timespec(&rs, &ts, &ref_time);
    
    	if (STAT_RECORD) {
    		if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSECS_PER_SEC + rs.tv_nsec, INTERVAL))
    			pr_err("failed to write stat round event\n");
    	}
    
    	print_counters(&rs, 0, NULL);
    }
    
    static void enable_counters(void)
    {
    	if (initial_delay)
    		usleep(initial_delay * 1000);
    
    	/*
    	 * We need to enable counters only if:
    	 * - we don't have tracee (attaching to task or cpu)
    	 * - we have initial delay configured
    	 */
    	if (!target__none(&target) || initial_delay)
    		perf_evlist__enable(evsel_list);
    }
    
    static volatile int workload_exec_errno;
    
    /*
     * perf_evlist__prepare_workload will send a SIGUSR1
     * if the fork fails, since we asked by setting its
     * want_signal to true.
     */
    static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
    					void *ucontext __maybe_unused)
    {
    	workload_exec_errno = info->si_value.sival_int;
    }
    
    static bool has_unit(struct perf_evsel *counter)
    {
    	return counter->unit && *counter->unit;
    }
    
    static bool has_scale(struct perf_evsel *counter)
    {
    	return counter->scale != 1;
    }
    
    static int perf_stat_synthesize_config(bool is_pipe)
    {
    	struct perf_evsel *counter;
    	int err;
    
    	if (is_pipe) {
    		err = perf_event__synthesize_attrs(NULL, perf_stat.session,
    						   process_synthesized_event);
    		if (err < 0) {
    			pr_err("Couldn't synthesize attrs.\n");
    			return err;
    		}
    	}
    
    	/*
    	 * Synthesize other events stuff not carried within
    	 * attr event - unit, scale, name
    	 */
    	evlist__for_each(evsel_list, counter) {
    		if (!counter->supported)
    			continue;
    
    		/*
    		 * Synthesize unit and scale only if it's defined.
    		 */
    		if (has_unit(counter)) {
    			err = perf_event__synthesize_event_update_unit(NULL, counter, process_synthesized_event);
    			if (err < 0) {
    				pr_err("Couldn't synthesize evsel unit.\n");
    				return err;
    			}
    		}
    
    		if (has_scale(counter)) {
    			err = perf_event__synthesize_event_update_scale(NULL, counter, process_synthesized_event);
    			if (err < 0) {
    				pr_err("Couldn't synthesize evsel scale.\n");
    				return err;
    			}
    		}
    
    		if (counter->own_cpus) {
    			err = perf_event__synthesize_event_update_cpus(NULL, counter, process_synthesized_event);
    			if (err < 0) {
    				pr_err("Couldn't synthesize evsel scale.\n");
    				return err;
    			}
    		}
    
    		/*
    		 * Name is needed only for pipe output,
    		 * perf.data carries event names.
    		 */
    		if (is_pipe) {
    			err = perf_event__synthesize_event_update_name(NULL, counter, process_synthesized_event);
    			if (err < 0) {
    				pr_err("Couldn't synthesize evsel name.\n");
    				return err;
    			}
    		}
    	}
    
    	err = perf_event__synthesize_thread_map2(NULL, evsel_list->threads,
    						process_synthesized_event,
    						NULL);
    	if (err < 0) {
    		pr_err("Couldn't synthesize thread map.\n");
    		return err;
    	}
    
    	err = perf_event__synthesize_cpu_map(NULL, evsel_list->cpus,
    					     process_synthesized_event, NULL);
    	if (err < 0) {
    		pr_err("Couldn't synthesize thread map.\n");
    		return err;
    	}
    
    	err = perf_event__synthesize_stat_config(NULL, &stat_config,
    						 process_synthesized_event, NULL);
    	if (err < 0) {
    		pr_err("Couldn't synthesize config.\n");
    		return err;
    	}
    
    	return 0;
    }
    
    #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
    
    static int __store_counter_ids(struct perf_evsel *counter,
    			       struct cpu_map *cpus,
    			       struct thread_map *threads)
    {
    	int cpu, thread;
    
    	for (cpu = 0; cpu < cpus->nr; cpu++) {
    		for (thread = 0; thread < threads->nr; thread++) {
    			int fd = FD(counter, cpu, thread);
    
    			if (perf_evlist__id_add_fd(evsel_list, counter,
    						   cpu, thread, fd) < 0)
    				return -1;
    		}
    	}
    
    	return 0;
    }
    
    static int store_counter_ids(struct perf_evsel *counter)
    {
    	struct cpu_map *cpus = counter->cpus;
    	struct thread_map *threads = counter->threads;
    
    	if (perf_evsel__alloc_id(counter, cpus->nr, threads->nr))
    		return -ENOMEM;
    
    	return __store_counter_ids(counter, cpus, threads);
    }
    
    static int __run_perf_stat(int argc, const char **argv)
    {
    	int interval = stat_config.interval;
    	char msg[512];
    	unsigned long long t0, t1;
    	struct perf_evsel *counter;
    	struct timespec ts;
    	size_t l;
    	int status = 0;
    	const bool forks = (argc > 0);
    	bool is_pipe = STAT_RECORD ? perf_stat.file.is_pipe : false;
    
    	if (interval) {
    		ts.tv_sec  = interval / 1000;
    		ts.tv_nsec = (interval % 1000) * 1000000;
    	} else {
    		ts.tv_sec  = 1;
    		ts.tv_nsec = 0;
    	}
    
    	if (forks) {
    		if (perf_evlist__prepare_workload(evsel_list, &target, argv, is_pipe,
    						  workload_exec_failed_signal) < 0) {
    			perror("failed to prepare workload");
    			return -1;
    		}
    		child_pid = evsel_list->workload.pid;
    	}
    
    	if (group)
    		perf_evlist__set_leader(evsel_list);
    
    	evlist__for_each(evsel_list, counter) {
    		if (create_perf_stat_counter(counter) < 0) {
    			/*
    			 * PPC returns ENXIO for HW counters until 2.6.37
    			 * (behavior changed with commit b0a873e).
    			 */
    			if (errno == EINVAL || errno == ENOSYS ||
    			    errno == ENOENT || errno == EOPNOTSUPP ||
    			    errno == ENXIO) {
    				if (verbose)
    					ui__warning("%s event is not supported by the kernel.\n",
    						    perf_evsel__name(counter));
    				counter->supported = false;
    
    				if ((counter->leader != counter) ||
    				    !(counter->leader->nr_members > 1))
    					continue;
    			}
    
    			perf_evsel__open_strerror(counter, &target,
    						  errno, msg, sizeof(msg));
    			ui__error("%s\n", msg);
    
    			if (child_pid != -1)
    				kill(child_pid, SIGTERM);
    
    			return -1;
    		}
    		counter->supported = true;
    
    		l = strlen(counter->unit);
    		if (l > unit_width)
    			unit_width = l;
    
    		if (STAT_RECORD && store_counter_ids(counter))
    			return -1;
    	}
    
    	if (perf_evlist__apply_filters(evsel_list, &counter)) {
    		error("failed to set filter \"%s\" on event %s with %d (%s)\n",
    			counter->filter, perf_evsel__name(counter), errno,
    			strerror_r(errno, msg, sizeof(msg)));
    		return -1;
    	}
    
    	if (STAT_RECORD) {
    		int err, fd = perf_data_file__fd(&perf_stat.file);
    
    		if (is_pipe) {
    			err = perf_header__write_pipe(perf_data_file__fd(&perf_stat.file));
    		} else {
    			err = perf_session__write_header(perf_stat.session, evsel_list,
    							 fd, false);
    		}
    
    		if (err < 0)
    			return err;
    
    		err = perf_stat_synthesize_config(is_pipe);
    		if (err < 0)
    			return err;
    	}
    
    	/*
    	 * Enable counters and exec the command:
    	 */
    	t0 = rdclock();
    	clock_gettime(CLOCK_MONOTONIC, &ref_time);
    
    	if (forks) {
    		perf_evlist__start_workload(evsel_list);
    		enable_counters();
    
    		if (interval) {
    			while (!waitpid(child_pid, &status, WNOHANG)) {
    				nanosleep(&ts, NULL);
    				process_interval();
    			}
    		}
    		wait(&status);
    
    		if (workload_exec_errno) {
    			const char *emsg = strerror_r(workload_exec_errno, msg, sizeof(msg));
    			pr_err("Workload failed: %s\n", emsg);
    			return -1;
    		}
    
    		if (WIFSIGNALED(status))
    			psignal(WTERMSIG(status), argv[0]);
    	} else {
    		enable_counters();
    		while (!done) {
    			nanosleep(&ts, NULL);
    			if (interval)
    				process_interval();
    		}
    	}
    
    	t1 = rdclock();
    
    	update_stats(&walltime_nsecs_stats, t1 - t0);
    
    	read_counters(true);
    
    	return WEXITSTATUS(status);
    }
    
    static int run_perf_stat(int argc, const char **argv)
    {
    	int ret;
    
    	if (pre_cmd) {
    		ret = system(pre_cmd);
    		if (ret)
    			return ret;
    	}
    
    	if (sync_run)
    		sync();
    
    	ret = __run_perf_stat(argc, argv);
    	if (ret)
    		return ret;
    
    	if (post_cmd) {
    		ret = system(post_cmd);
    		if (ret)
    			return ret;
    	}
    
    	return ret;
    }
    
    static void print_running(u64 run, u64 ena)
    {
    	if (csv_output) {
    		fprintf(stat_config.output, "%s%" PRIu64 "%s%.2f",
    					csv_sep,
    					run,
    					csv_sep,
    					ena ? 100.0 * run / ena : 100.0);
    	} else if (run != ena) {
    		fprintf(stat_config.output, "  (%.2f%%)", 100.0 * run / ena);
    	}
    }
    
    static void print_noise_pct(double total, double avg)
    {
    	double pct = rel_stddev_stats(total, avg);
    
    	if (csv_output)
    		fprintf(stat_config.output, "%s%.2f%%", csv_sep, pct);
    	else if (pct)
    		fprintf(stat_config.output, "  ( +-%6.2f%% )", pct);
    }
    
    static void print_noise(struct perf_evsel *evsel, double avg)
    {
    	struct perf_stat_evsel *ps;
    
    	if (run_count == 1)
    		return;
    
    	ps = evsel->priv;
    	print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
    }
    
    static void aggr_printout(struct perf_evsel *evsel, int id, int nr)
    {
    	switch (stat_config.aggr_mode) {
    	case AGGR_CORE:
    		fprintf(stat_config.output, "S%d-C%*d%s%*d%s",
    			cpu_map__id_to_socket(id),
    			csv_output ? 0 : -8,
    			cpu_map__id_to_cpu(id),
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    		break;
    	case AGGR_SOCKET:
    		fprintf(stat_config.output, "S%*d%s%*d%s",
    			csv_output ? 0 : -5,
    			id,
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    			break;
    	case AGGR_NONE:
    		fprintf(stat_config.output, "CPU%*d%s",
    			csv_output ? 0 : -4,
    			perf_evsel__cpus(evsel)->map[id], csv_sep);
    		break;
    	case AGGR_THREAD:
    		fprintf(stat_config.output, "%*s-%*d%s",
    			csv_output ? 0 : 16,
    			thread_map__comm(evsel->threads, id),
    			csv_output ? 0 : -8,
    			thread_map__pid(evsel->threads, id),
    			csv_sep);
    		break;
    	case AGGR_GLOBAL:
    	case AGGR_UNSET:
    	default:
    		break;
    	}
    }
    
    struct outstate {
    	FILE *fh;
    	bool newline;
    	const char *prefix;
    	int  nfields;
    	int  id, nr;
    	struct perf_evsel *evsel;
    };
    
    #define METRIC_LEN  35
    
    static void new_line_std(void *ctx)
    {
    	struct outstate *os = ctx;
    
    	os->newline = true;
    }
    
    static void do_new_line_std(struct outstate *os)
    {
    	fputc('\n', os->fh);
    	fputs(os->prefix, os->fh);
    	aggr_printout(os->evsel, os->id, os->nr);
    	if (stat_config.aggr_mode == AGGR_NONE)
    		fprintf(os->fh, "        ");
    	fprintf(os->fh, "                                                 ");
    }
    
    static void print_metric_std(void *ctx, const char *color, const char *fmt,
    			     const char *unit, double val)
    {
    	struct outstate *os = ctx;
    	FILE *out = os->fh;
    	int n;
    	bool newline = os->newline;
    
    	os->newline = false;
    
    	if (unit == NULL || fmt == NULL) {
    		fprintf(out, "%-*s", METRIC_LEN, "");
    		return;
    	}
    
    	if (newline)
    		do_new_line_std(os);
    
    	n = fprintf(out, " # ");
    	if (color)
    		n += color_fprintf(out, color, fmt, val);
    	else
    		n += fprintf(out, fmt, val);
    	fprintf(out, " %-*s", METRIC_LEN - n - 1, unit);
    }
    
    static void new_line_csv(void *ctx)
    {
    	struct outstate *os = ctx;
    	int i;
    
    	fputc('\n', os->fh);
    	if (os->prefix)
    		fprintf(os->fh, "%s%s", os->prefix, csv_sep);
    	aggr_printout(os->evsel, os->id, os->nr);
    	for (i = 0; i < os->nfields; i++)
    		fputs(csv_sep, os->fh);
    }
    
    static void print_metric_csv(void *ctx,
    			     const char *color __maybe_unused,
    			     const char *fmt, const char *unit, double val)
    {
    	struct outstate *os = ctx;
    	FILE *out = os->fh;
    	char buf[64], *vals, *ends;
    
    	if (unit == NULL || fmt == NULL) {
    		fprintf(out, "%s%s%s%s", csv_sep, csv_sep, csv_sep, csv_sep);
    		return;
    	}
    	snprintf(buf, sizeof(buf), fmt, val);
    	vals = buf;
    	while (isspace(*vals))
    		vals++;
    	ends = vals;
    	while (isdigit(*ends) || *ends == '.')
    		ends++;
    	*ends = 0;
    	while (isspace(*unit))
    		unit++;
    	fprintf(out, "%s%s%s%s", csv_sep, vals, csv_sep, unit);
    }
    
    #define METRIC_ONLY_LEN 20
    
    /* Filter out some columns that don't work well in metrics only mode */
    
    static bool valid_only_metric(const char *unit)
    {
    	if (!unit)
    		return false;
    	if (strstr(unit, "/sec") ||
    	    strstr(unit, "hz") ||
    	    strstr(unit, "Hz") ||
    	    strstr(unit, "CPUs utilized"))
    		return false;
    	return true;
    }
    
    static const char *fixunit(char *buf, struct perf_evsel *evsel,
    			   const char *unit)
    {
    	if (!strncmp(unit, "of all", 6)) {
    		snprintf(buf, 1024, "%s %s", perf_evsel__name(evsel),
    			 unit);
    		return buf;
    	}
    	return unit;
    }
    
    static void print_metric_only(void *ctx, const char *color, const char *fmt,
    			      const char *unit, double val)
    {
    	struct outstate *os = ctx;
    	FILE *out = os->fh;
    	int n;
    	char buf[1024];
    	unsigned mlen = METRIC_ONLY_LEN;
    
    	if (!valid_only_metric(unit))
    		return;
    	unit = fixunit(buf, os->evsel, unit);
    	if (color)
    		n = color_fprintf(out, color, fmt, val);
    	else
    		n = fprintf(out, fmt, val);
    	if (n > METRIC_ONLY_LEN)
    		n = METRIC_ONLY_LEN;
    	if (mlen < strlen(unit))
    		mlen = strlen(unit) + 1;
    	fprintf(out, "%*s", mlen - n, "");
    }
    
    static void print_metric_only_csv(void *ctx, const char *color __maybe_unused,
    				  const char *fmt,
    				  const char *unit, double val)
    {
    	struct outstate *os = ctx;
    	FILE *out = os->fh;
    	char buf[64], *vals, *ends;
    	char tbuf[1024];
    
    	if (!valid_only_metric(unit))
    		return;
    	unit = fixunit(tbuf, os->evsel, unit);
    	snprintf(buf, sizeof buf, fmt, val);
    	vals = buf;
    	while (isspace(*vals))
    		vals++;
    	ends = vals;
    	while (isdigit(*ends) || *ends == '.')
    		ends++;
    	*ends = 0;
    	fprintf(out, "%s%s", vals, csv_sep);
    }
    
    static void new_line_metric(void *ctx __maybe_unused)
    {
    }
    
    static void print_metric_header(void *ctx, const char *color __maybe_unused,
    				const char *fmt __maybe_unused,
    				const char *unit, double val __maybe_unused)
    {
    	struct outstate *os = ctx;
    	char tbuf[1024];
    
    	if (!valid_only_metric(unit))
    		return;
    	unit = fixunit(tbuf, os->evsel, unit);
    	if (csv_output)
    		fprintf(os->fh, "%s%s", unit, csv_sep);
    	else
    		fprintf(os->fh, "%-*s ", METRIC_ONLY_LEN, unit);
    }
    
    static void nsec_printout(int id, int nr, struct perf_evsel *evsel, double avg)
    {
    	FILE *output = stat_config.output;
    	double msecs = avg / 1e6;
    	const char *fmt_v, *fmt_n;
    	char name[25];
    
    	fmt_v = csv_output ? "%.6f%s" : "%18.6f%s";
    	fmt_n = csv_output ? "%s" : "%-25s";
    
    	aggr_printout(evsel, id, nr);
    
    	scnprintf(name, sizeof(name), "%s%s",
    		  perf_evsel__name(evsel), csv_output ? "" : " (msec)");
    
    	fprintf(output, fmt_v, msecs, csv_sep);
    
    	if (csv_output)
    		fprintf(output, "%s%s", evsel->unit, csv_sep);
    	else
    		fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep);
    
    	fprintf(output, fmt_n, name);
    
    	if (evsel->cgrp)
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    }
    
    static int first_shadow_cpu(struct perf_evsel *evsel, int id)
    {
    	int i;
    
    	if (!aggr_get_id)
    		return 0;
    
    	if (stat_config.aggr_mode == AGGR_NONE)
    		return id;
    
    	if (stat_config.aggr_mode == AGGR_GLOBAL)
    		return 0;
    
    	for (i = 0; i < perf_evsel__nr_cpus(evsel); i++) {
    		int cpu2 = perf_evsel__cpus(evsel)->map[i];
    
    		if (aggr_get_id(evsel_list->cpus, cpu2) == id)
    			return cpu2;
    	}
    	return 0;
    }
    
    static void abs_printout(int id, int nr, struct perf_evsel *evsel, double avg)
    {
    	FILE *output = stat_config.output;
    	double sc =  evsel->scale;
    	const char *fmt;
    
    	if (csv_output) {
    		fmt = sc != 1.0 ?  "%.2f%s" : "%.0f%s";
    	} else {
    		if (big_num)
    			fmt = sc != 1.0 ? "%'18.2f%s" : "%'18.0f%s";
    		else
    			fmt = sc != 1.0 ? "%18.2f%s" : "%18.0f%s";
    	}
    
    	aggr_printout(evsel, id, nr);
    
    	fprintf(output, fmt, avg, csv_sep);
    
    	if (evsel->unit)
    		fprintf(output, "%-*s%s",
    			csv_output ? 0 : unit_width,
    			evsel->unit, csv_sep);
    
    	fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel));
    
    	if (evsel->cgrp)
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    }
    
    static void printout(int id, int nr, struct perf_evsel *counter, double uval,
    		     char *prefix, u64 run, u64 ena, double noise)
    {
    	struct perf_stat_output_ctx out;
    	struct outstate os = {
    		.fh = stat_config.output,
    		.prefix = prefix ? prefix : "",
    		.id = id,
    		.nr = nr,
    		.evsel = counter,
    	};
    	print_metric_t pm = print_metric_std;
    	void (*nl)(void *);
    
    	if (metric_only) {
    		nl = new_line_metric;
    		if (csv_output)
    			pm = print_metric_only_csv;
    		else
    			pm = print_metric_only;
    	} else
    		nl = new_line_std;
    
    	if (csv_output && !metric_only) {
    		static int aggr_fields[] = {
    			[AGGR_GLOBAL] = 0,
    			[AGGR_THREAD] = 1,
    			[AGGR_NONE] = 1,
    			[AGGR_SOCKET] = 2,
    			[AGGR_CORE] = 2,
    		};
    
    		pm = print_metric_csv;
    		nl = new_line_csv;
    		os.nfields = 3;
    		os.nfields += aggr_fields[stat_config.aggr_mode];
    		if (counter->cgrp)
    			os.nfields++;
    	}
    	if (run == 0 || ena == 0 || counter->counts->scaled == -1) {
    		if (metric_only) {
    			pm(&os, NULL, "", "", 0);
    			return;
    		}
    		aggr_printout(counter, id, nr);
    
    		fprintf(stat_config.output, "%*s%s",
    			csv_output ? 0 : 18,
    			counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    			csv_sep);
    
    		fprintf(stat_config.output, "%-*s%s",
    			csv_output ? 0 : unit_width,
    			counter->unit, csv_sep);
    
    		fprintf(stat_config.output, "%*s",
    			csv_output ? 0 : -25,
    			perf_evsel__name(counter));
    
    		if (counter->cgrp)
    			fprintf(stat_config.output, "%s%s",
    				csv_sep, counter->cgrp->name);
    
    		if (!csv_output)
    			pm(&os, NULL, NULL, "", 0);
    		print_noise(counter, noise);
    		print_running(run, ena);
    		if (csv_output)
    			pm(&os, NULL, NULL, "", 0);
    		return;
    	}
    
    	if (metric_only)
    		/* nothing */;
    	else if (nsec_counter(counter))
    		nsec_printout(id, nr, counter, uval);
    	else
    		abs_printout(id, nr, counter, uval);
    
    	out.print_metric = pm;
    	out.new_line = nl;
    	out.ctx = &os;
    
    	if (csv_output && !metric_only) {
    		print_noise(counter, noise);
    		print_running(run, ena);
    	}
    
    	perf_stat__print_shadow_stats(counter, uval,
    				first_shadow_cpu(counter, id),
    				&out);
    	if (!csv_output && !metric_only) {
    		print_noise(counter, noise);
    		print_running(run, ena);
    	}
    }
    
    static void aggr_update_shadow(void)
    {
    	int cpu, s2, id, s;
    	u64 val;
    	struct perf_evsel *counter;
    
    	for (s = 0; s < aggr_map->nr; s++) {
    		id = aggr_map->map[s];
    		evlist__for_each(evsel_list, counter) {
    			val = 0;
    			for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    				s2 = aggr_get_id(evsel_list->cpus, cpu);
    				if (s2 != id)
    					continue;
    				val += perf_counts(counter->counts, cpu, 0)->val;
    			}
    			val = val * counter->scale;
    			perf_stat__update_shadow_stats(counter, &val,
    						       first_shadow_cpu(counter, id));
    		}
    	}
    }
    
    static void print_aggr(char *prefix)
    {
    	FILE *output = stat_config.output;
    	struct perf_evsel *counter;
    	int cpu, s, s2, id, nr;
    	double uval;
    	u64 ena, run, val;
    	bool first;
    
    	if (!(aggr_map || aggr_get_id))
    		return;
    
    	aggr_update_shadow();
    
    	/*
    	 * With metric_only everything is on a single line.
    	 * Without each counter has its own line.
    	 */
    	for (s = 0; s < aggr_map->nr; s++) {
    		if (prefix && metric_only)
    			fprintf(output, "%s", prefix);
    
    		id = aggr_map->map[s];
    		first = true;
    		evlist__for_each(evsel_list, counter) {
    			val = ena = run = 0;
    			nr = 0;
    			for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    				s2 = aggr_get_id(perf_evsel__cpus(counter), cpu);
    				if (s2 != id)
    					continue;
    				val += perf_counts(counter->counts, cpu, 0)->val;
    				ena += perf_counts(counter->counts, cpu, 0)->ena;
    				run += perf_counts(counter->counts, cpu, 0)->run;
    				nr++;
    			}
    			if (first && metric_only) {
    				first = false;
    				aggr_printout(counter, id, nr);
    			}
    			if (prefix && !metric_only)
    				fprintf(output, "%s", prefix);
    
    			uval = val * counter->scale;
    			printout(id, nr, counter, uval, prefix, run, ena, 1.0);
    			if (!metric_only)
    				fputc('\n', output);
    		}
    		if (metric_only)
    			fputc('\n', output);
    	}
    }
    
    static void print_aggr_thread(struct perf_evsel *counter, char *prefix)
    {
    	FILE *output = stat_config.output;
    	int nthreads = thread_map__nr(counter->threads);
    	int ncpus = cpu_map__nr(counter->cpus);
    	int cpu, thread;
    	double uval;
    
    	for (thread = 0; thread < nthreads; thread++) {
    		u64 ena = 0, run = 0, val = 0;
    
    		for (cpu = 0; cpu < ncpus; cpu++) {
    			val += perf_counts(counter->counts, cpu, thread)->val;
    			ena += perf_counts(counter->counts, cpu, thread)->ena;
    			run += perf_counts(counter->counts, cpu, thread)->run;
    		}
    
    		if (prefix)
    			fprintf(output, "%s", prefix);
    
    		uval = val * counter->scale;
    		printout(thread, 0, counter, uval, prefix, run, ena, 1.0);
    		fputc('\n', output);
    	}
    }
    
    /*
     * Print out the results of a single counter:
     * aggregated counts in system-wide mode
     */
    static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
    {
    	FILE *output = stat_config.output;
    	struct perf_stat_evsel *ps = counter->priv;
    	double avg = avg_stats(&ps->res_stats[0]);
    	double uval;
    	double avg_enabled, avg_running;
    
    	avg_enabled = avg_stats(&ps->res_stats[1]);
    	avg_running = avg_stats(&ps->res_stats[2]);
    
    	if (prefix && !metric_only)
    		fprintf(output, "%s", prefix);
    
    	uval = avg * counter->scale;
    	printout(-1, 0, counter, uval, prefix, avg_running, avg_enabled, avg);
    	if (!metric_only)
    		fprintf(output, "\n");
    }
    
    /*
     * Print out the results of a single counter:
     * does not use aggregated count in system-wide
     */
    static void print_counter(struct perf_evsel *counter, char *prefix)
    {
    	FILE *output = stat_config.output;
    	u64 ena, run, val;
    	double uval;
    	int cpu;
    
    	for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    		val = perf_counts(counter->counts, cpu, 0)->val;
    		ena = perf_counts(counter->counts, cpu, 0)->ena;
    		run = perf_counts(counter->counts, cpu, 0)->run;
    
    		if (prefix)
    			fprintf(output, "%s", prefix);
    
    		uval = val * counter->scale;
    		printout(cpu, 0, counter, uval, prefix, run, ena, 1.0);
    
    		fputc('\n', output);
    	}
    }
    
    static int aggr_header_lens[] = {
    	[AGGR_CORE] = 18,
    	[AGGR_SOCKET] = 12,
    	[AGGR_NONE] = 15,
    	[AGGR_THREAD] = 24,
    	[AGGR_GLOBAL] = 0,
    };
    
    static void print_metric_headers(char *prefix)
    {
    	struct perf_stat_output_ctx out;
    	struct perf_evsel *counter;
    	struct outstate os = {
    		.fh = stat_config.output
    	};
    
    	if (prefix)
    		fprintf(stat_config.output, "%s", prefix);
    
    	if (!csv_output)
    		fprintf(stat_config.output, "%*s",
    			aggr_header_lens[stat_config.aggr_mode], "");
    
    	/* Print metrics headers only */
    	evlist__for_each(evsel_list, counter) {
    		os.evsel = counter;
    		out.ctx = &os;
    		out.print_metric = print_metric_header;
    		out.new_line = new_line_metric;
    		os.evsel = counter;
    		perf_stat__print_shadow_stats(counter, 0,
    					      0,
    					      &out);
    	}
    	fputc('\n', stat_config.output);
    }
    
    static void print_interval(char *prefix, struct timespec *ts)
    {
    	FILE *output = stat_config.output;
    	static int num_print_interval;
    
    	sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, csv_sep);
    
    	if (num_print_interval == 0 && !csv_output && !metric_only) {
    		switch (stat_config.aggr_mode) {
    		case AGGR_SOCKET:
    			fprintf(output, "#           time socket cpus             counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_CORE:
    			fprintf(output, "#           time core         cpus             counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_NONE:
    			fprintf(output, "#           time CPU                counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_THREAD:
    			fprintf(output, "#           time             comm-pid                  counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_GLOBAL:
    		default:
    			fprintf(output, "#           time             counts %*s events\n", unit_width, "unit");
    		case AGGR_UNSET:
    			break;
    		}
    	}
    
    	if (++num_print_interval == 25)
    		num_print_interval = 0;
    }
    
    static void print_header(int argc, const char **argv)
    {
    	FILE *output = stat_config.output;
    	int i;
    
    	fflush(stdout);
    
    	if (!csv_output) {
    		fprintf(output, "\n");
    		fprintf(output, " Performance counter stats for ");
    		if (target.system_wide)
    			fprintf(output, "\'system wide");
    		else if (target.cpu_list)
    			fprintf(output, "\'CPU(s) %s", target.cpu_list);
    		else if (!target__has_task(&target)) {
    			fprintf(output, "\'%s", argv ? argv[0] : "pipe");
    			for (i = 1; argv && (i < argc); i++)
    				fprintf(output, " %s", argv[i]);
    		} else if (target.pid)
    			fprintf(output, "process id \'%s", target.pid);
    		else
    			fprintf(output, "thread id \'%s", target.tid);
    
    		fprintf(output, "\'");
    		if (run_count > 1)
    			fprintf(output, " (%d runs)", run_count);
    		fprintf(output, ":\n\n");
    	}
    }
    
    static void print_footer(void)
    {
    	FILE *output = stat_config.output;
    
    	if (!null_run)
    		fprintf(output, "\n");
    	fprintf(output, " %17.9f seconds time elapsed",
    			avg_stats(&walltime_nsecs_stats)/1e9);
    	if (run_count > 1) {
    		fprintf(output, "                                        ");
    		print_noise_pct(stddev_stats(&walltime_nsecs_stats),
    				avg_stats(&walltime_nsecs_stats));
    	}
    	fprintf(output, "\n\n");
    }
    
    static void print_counters(struct timespec *ts, int argc, const char **argv)
    {
    	int interval = stat_config.interval;
    	struct perf_evsel *counter;
    	char buf[64], *prefix = NULL;
    
    	/* Do not print anything if we record to the pipe. */
    	if (STAT_RECORD && perf_stat.file.is_pipe)
    		return;
    
    	if (interval)
    		print_interval(prefix = buf, ts);
    	else
    		print_header(argc, argv);
    
    	if (metric_only) {
    		static int num_print_iv;
    
    		if (num_print_iv == 0)
    			print_metric_headers(prefix);
    		if (num_print_iv++ == 25)
    			num_print_iv = 0;
    		if (stat_config.aggr_mode == AGGR_GLOBAL && prefix)
    			fprintf(stat_config.output, "%s", prefix);
    	}
    
    	switch (stat_config.aggr_mode) {
    	case AGGR_CORE:
    	case AGGR_SOCKET:
    		print_aggr(prefix);
    		break;
    	case AGGR_THREAD:
    		evlist__for_each(evsel_list, counter)
    			print_aggr_thread(counter, prefix);
    		break;
    	case AGGR_GLOBAL:
    		evlist__for_each(evsel_list, counter)
    			print_counter_aggr(counter, prefix);
    		if (metric_only)
    			fputc('\n', stat_config.output);
    		break;
    	case AGGR_NONE:
    		evlist__for_each(evsel_list, counter)
    			print_counter(counter, prefix);
    		break;
    	case AGGR_UNSET:
    	default:
    		break;
    	}
    
    	if (!interval && !csv_output)
    		print_footer();
    
    	fflush(stat_config.output);
    }
    
    static volatile int signr = -1;
    
    static void skip_signal(int signo)
    {
    	if ((child_pid == -1) || stat_config.interval)
    		done = 1;
    
    	signr = signo;
    	/*
    	 * render child_pid harmless
    	 * won't send SIGTERM to a random
    	 * process in case of race condition
    	 * and fast PID recycling
    	 */
    	child_pid = -1;
    }
    
    static void sig_atexit(void)
    {
    	sigset_t set, oset;
    
    	/*
    	 * avoid race condition with SIGCHLD handler
    	 * in skip_signal() which is modifying child_pid
    	 * goal is to avoid send SIGTERM to a random
    	 * process
    	 */
    	sigemptyset(&set);
    	sigaddset(&set, SIGCHLD);
    	sigprocmask(SIG_BLOCK, &set, &oset);
    
    	if (child_pid != -1)
    		kill(child_pid, SIGTERM);
    
    	sigprocmask(SIG_SETMASK, &oset, NULL);
    
    	if (signr == -1)
    		return;
    
    	signal(signr, SIG_DFL);
    	kill(getpid(), signr);
    }
    
    static int stat__set_big_num(const struct option *opt __maybe_unused,
    			     const char *s __maybe_unused, int unset)
    {
    	big_num_opt = unset ? 0 : 1;
    	return 0;
    }
    
    static const struct option stat_options[] = {
    	OPT_BOOLEAN('T', "transaction", &transaction_run,
    		    "hardware transaction statistics"),
    	OPT_CALLBACK('e', "event", &evsel_list, "event",
    		     "event selector. use 'perf list' to list available events",
    		     parse_events_option),
    	OPT_CALLBACK(0, "filter", &evsel_list, "filter",
    		     "event filter", parse_filter),
    	OPT_BOOLEAN('i', "no-inherit", &no_inherit,
    		    "child tasks do not inherit counters"),
    	OPT_STRING('p', "pid", &target.pid, "pid",
    		   "stat events on existing process id"),
    	OPT_STRING('t', "tid", &target.tid, "tid",
    		   "stat events on existing thread id"),
    	OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
    		    "system-wide collection from all CPUs"),
    	OPT_BOOLEAN('g', "group", &group,
    		    "put the counters into a counter group"),
    	OPT_BOOLEAN('c', "scale", &stat_config.scale, "scale/normalize counters"),
    	OPT_INCR('v', "verbose", &verbose,
    		    "be more verbose (show counter open errors, etc)"),
    	OPT_INTEGER('r', "repeat", &run_count,
    		    "repeat command and print average + stddev (max: 100, forever: 0)"),
    	OPT_BOOLEAN('n', "null", &null_run,
    		    "null run - dont start any counters"),
    	OPT_INCR('d', "detailed", &detailed_run,
    		    "detailed run - start a lot of events"),
    	OPT_BOOLEAN('S', "sync", &sync_run,
    		    "call sync() before starting a run"),
    	OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
    			   "print large numbers with thousands\' separators",
    			   stat__set_big_num),
    	OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
    		    "list of cpus to monitor in system-wide"),
    	OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode,
    		    "disable CPU count aggregation", AGGR_NONE),
    	OPT_STRING('x', "field-separator", &csv_sep, "separator",
    		   "print counts with custom separator"),
    	OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
    		     "monitor event in cgroup name only", parse_cgroups),
    	OPT_STRING('o', "output", &output_name, "file", "output file name"),
    	OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
    	OPT_INTEGER(0, "log-fd", &output_fd,
    		    "log output to fd, instead of stderr"),
    	OPT_STRING(0, "pre", &pre_cmd, "command",
    			"command to run prior to the measured command"),
    	OPT_STRING(0, "post", &post_cmd, "command",
    			"command to run after to the measured command"),
    	OPT_UINTEGER('I', "interval-print", &stat_config.interval,
    		    "print counts at regular interval in ms (>= 10)"),
    	OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode,
    		     "aggregate counts per processor socket", AGGR_SOCKET),
    	OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode,
    		     "aggregate counts per physical processor core", AGGR_CORE),
    	OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode,
    		     "aggregate counts per thread", AGGR_THREAD),
    	OPT_UINTEGER('D', "delay", &initial_delay,
    		     "ms to wait before starting measurement after program start"),
    	OPT_BOOLEAN(0, "metric-only", &metric_only,
    			"Only print computed metrics. No raw values"),
    	OPT_END()
    };
    
    static int perf_stat__get_socket(struct cpu_map *map, int cpu)
    {
    	return cpu_map__get_socket(map, cpu, NULL);
    }
    
    static int perf_stat__get_core(struct cpu_map *map, int cpu)
    {
    	return cpu_map__get_core(map, cpu, NULL);
    }
    
    static int cpu_map__get_max(struct cpu_map *map)
    {
    	int i, max = -1;
    
    	for (i = 0; i < map->nr; i++) {
    		if (map->map[i] > max)
    			max = map->map[i];
    	}
    
    	return max;
    }
    
    static struct cpu_map *cpus_aggr_map;
    
    static int perf_stat__get_aggr(aggr_get_id_t get_id, struct cpu_map *map, int idx)
    {
    	int cpu;
    
    	if (idx >= map->nr)
    		return -1;
    
    	cpu = map->map[idx];
    
    	if (cpus_aggr_map->map[cpu] == -1)
    		cpus_aggr_map->map[cpu] = get_id(map, idx);
    
    	return cpus_aggr_map->map[cpu];
    }
    
    static int perf_stat__get_socket_cached(struct cpu_map *map, int idx)
    {
    	return perf_stat__get_aggr(perf_stat__get_socket, map, idx);
    }
    
    static int perf_stat__get_core_cached(struct cpu_map *map, int idx)
    {
    	return perf_stat__get_aggr(perf_stat__get_core, map, idx);
    }
    
    static int perf_stat_init_aggr_mode(void)
    {
    	int nr;
    
    	switch (stat_config.aggr_mode) {
    	case AGGR_SOCKET:
    		if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) {
    			perror("cannot build socket map");
    			return -1;
    		}
    		aggr_get_id = perf_stat__get_socket_cached;
    		break;
    	case AGGR_CORE:
    		if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) {
    			perror("cannot build core map");
    			return -1;
    		}
    		aggr_get_id = perf_stat__get_core_cached;
    		break;
    	case AGGR_NONE:
    	case AGGR_GLOBAL:
    	case AGGR_THREAD:
    	case AGGR_UNSET:
    	default:
    		break;
    	}
    
    	/*
    	 * The evsel_list->cpus is the base we operate on,
    	 * taking the highest cpu number to be the size of
    	 * the aggregation translate cpumap.
    	 */
    	nr = cpu_map__get_max(evsel_list->cpus);
    	cpus_aggr_map = cpu_map__empty_new(nr + 1);
    	return cpus_aggr_map ? 0 : -ENOMEM;
    }
    
    static void perf_stat__exit_aggr_mode(void)
    {
    	cpu_map__put(aggr_map);
    	cpu_map__put(cpus_aggr_map);
    	aggr_map = NULL;
    	cpus_aggr_map = NULL;
    }
    
    static inline int perf_env__get_cpu(struct perf_env *env, struct cpu_map *map, int idx)
    {
    	int cpu;
    
    	if (idx > map->nr)
    		return -1;
    
    	cpu = map->map[idx];
    
    	if (cpu >= env->nr_cpus_online)
    		return -1;
    
    	return cpu;
    }
    
    static int perf_env__get_socket(struct cpu_map *map, int idx, void *data)
    {
    	struct perf_env *env = data;
    	int cpu = perf_env__get_cpu(env, map, idx);
    
    	return cpu == -1 ? -1 : env->cpu[cpu].socket_id;
    }
    
    static int perf_env__get_core(struct cpu_map *map, int idx, void *data)
    {
    	struct perf_env *env = data;
    	int core = -1, cpu = perf_env__get_cpu(env, map, idx);
    
    	if (cpu != -1) {
    		int socket_id = env->cpu[cpu].socket_id;
    
    		/*
    		 * Encode socket in upper 16 bits
    		 * core_id is relative to socket, and
    		 * we need a global id. So we combine
    		 * socket + core id.
    		 */
    		core = (socket_id << 16) | (env->cpu[cpu].core_id & 0xffff);
    	}
    
    	return core;
    }
    
    static int perf_env__build_socket_map(struct perf_env *env, struct cpu_map *cpus,
    				      struct cpu_map **sockp)
    {
    	return cpu_map__build_map(cpus, sockp, perf_env__get_socket, env);
    }
    
    static int perf_env__build_core_map(struct perf_env *env, struct cpu_map *cpus,
    				    struct cpu_map **corep)
    {
    	return cpu_map__build_map(cpus, corep, perf_env__get_core, env);
    }
    
    static int perf_stat__get_socket_file(struct cpu_map *map, int idx)
    {
    	return perf_env__get_socket(map, idx, &perf_stat.session->header.env);
    }
    
    static int perf_stat__get_core_file(struct cpu_map *map, int idx)
    {
    	return perf_env__get_core(map, idx, &perf_stat.session->header.env);
    }
    
    static int perf_stat_init_aggr_mode_file(struct perf_stat *st)
    {
    	struct perf_env *env = &st->session->header.env;
    
    	switch (stat_config.aggr_mode) {
    	case AGGR_SOCKET:
    		if (perf_env__build_socket_map(env, evsel_list->cpus, &aggr_map)) {
    			perror("cannot build socket map");
    			return -1;
    		}
    		aggr_get_id = perf_stat__get_socket_file;
    		break;
    	case AGGR_CORE:
    		if (perf_env__build_core_map(env, evsel_list->cpus, &aggr_map)) {
    			perror("cannot build core map");
    			return -1;
    		}
    		aggr_get_id = perf_stat__get_core_file;
    		break;
    	case AGGR_NONE:
    	case AGGR_GLOBAL:
    	case AGGR_THREAD:
    	case AGGR_UNSET:
    	default:
    		break;
    	}
    
    	return 0;
    }
    
    /*
     * Add default attributes, if there were no attributes specified or
     * if -d/--detailed, -d -d or -d -d -d is used:
     */
    static int add_default_attributes(void)
    {
    	struct perf_event_attr default_attrs0[] = {
    
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES	},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS		},
    
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES		},
    };
    	struct perf_event_attr frontend_attrs[] = {
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	},
    };
    	struct perf_event_attr backend_attrs[] = {
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND	},
    };
    	struct perf_event_attr default_attrs1[] = {
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS		},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES		},
    
    };
    
    /*
     * Detailed stats (-d), covering the L1 and last level data caches:
     */
    	struct perf_event_attr detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_LL			<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_LL			<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    };
    
    /*
     * Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
     */
    	struct perf_event_attr very_detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1I		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1I		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_DTLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_DTLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_ITLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_ITLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
    };
    
    /*
     * Very, very detailed stats (-d -d -d), adding prefetch events:
     */
    	struct perf_event_attr very_very_detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_PREFETCH	<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_PREFETCH	<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    };
    
    	/* Set attrs if no event is selected and !null_run: */
    	if (null_run)
    		return 0;
    
    	if (transaction_run) {
    		int err;
    		if (pmu_have_event("cpu", "cycles-ct") &&
    		    pmu_have_event("cpu", "el-start"))
    			err = parse_events(evsel_list, transaction_attrs, NULL);
    		else
    			err = parse_events(evsel_list, transaction_limited_attrs, NULL);
    		if (err) {
    			fprintf(stderr, "Cannot set up transaction events\n");
    			return -1;
    		}
    		return 0;
    	}
    
    	if (!evsel_list->nr_entries) {
    		if (perf_evlist__add_default_attrs(evsel_list, default_attrs0) < 0)
    			return -1;
    		if (pmu_have_event("cpu", "stalled-cycles-frontend")) {
    			if (perf_evlist__add_default_attrs(evsel_list,
    						frontend_attrs) < 0)
    				return -1;
    		}
    		if (pmu_have_event("cpu", "stalled-cycles-backend")) {
    			if (perf_evlist__add_default_attrs(evsel_list,
    						backend_attrs) < 0)
    				return -1;
    		}
    		if (perf_evlist__add_default_attrs(evsel_list, default_attrs1) < 0)
    			return -1;
    	}
    
    	/* Detailed events get appended to the event list: */
    
    	if (detailed_run <  1)
    		return 0;
    
    	/* Append detailed run extra attributes: */
    	if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
    		return -1;
    
    	if (detailed_run < 2)
    		return 0;
    
    	/* Append very detailed run extra attributes: */
    	if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
    		return -1;
    
    	if (detailed_run < 3)
    		return 0;
    
    	/* Append very, very detailed run extra attributes: */
    	return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
    }
    
    static const char * const stat_record_usage[] = {
    	"perf stat record [<options>]",
    	NULL,
    };
    
    static void init_features(struct perf_session *session)
    {
    	int feat;
    
    	for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++)
    		perf_header__set_feat(&session->header, feat);
    
    	perf_header__clear_feat(&session->header, HEADER_BUILD_ID);
    	perf_header__clear_feat(&session->header, HEADER_TRACING_DATA);
    	perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK);
    	perf_header__clear_feat(&session->header, HEADER_AUXTRACE);
    }
    
    static int __cmd_record(int argc, const char **argv)
    {
    	struct perf_session *session;
    	struct perf_data_file *file = &perf_stat.file;
    
    	argc = parse_options(argc, argv, stat_options, stat_record_usage,
    			     PARSE_OPT_STOP_AT_NON_OPTION);
    
    	if (output_name)
    		file->path = output_name;
    
    	if (run_count != 1 || forever) {
    		pr_err("Cannot use -r option with perf stat record.\n");
    		return -1;
    	}
    
    	session = perf_session__new(file, false, NULL);
    	if (session == NULL) {
    		pr_err("Perf session creation failed.\n");
    		return -1;
    	}
    
    	init_features(session);
    
    	session->evlist   = evsel_list;
    	perf_stat.session = session;
    	perf_stat.record  = true;
    	return argc;
    }
    
    static int process_stat_round_event(struct perf_tool *tool __maybe_unused,
    				    union perf_event *event,
    				    struct perf_session *session)
    {
    	struct stat_round_event *round = &event->stat_round;
    	struct perf_evsel *counter;
    	struct timespec tsh, *ts = NULL;
    	const char **argv = session->header.env.cmdline_argv;
    	int argc = session->header.env.nr_cmdline;
    
    	evlist__for_each(evsel_list, counter)
    		perf_stat_process_counter(&stat_config, counter);
    
    	if (round->type == PERF_STAT_ROUND_TYPE__FINAL)
    		update_stats(&walltime_nsecs_stats, round->time);
    
    	if (stat_config.interval && round->time) {
    		tsh.tv_sec  = round->time / NSECS_PER_SEC;
    		tsh.tv_nsec = round->time % NSECS_PER_SEC;
    		ts = &tsh;
    	}
    
    	print_counters(ts, argc, argv);
    	return 0;
    }
    
    static
    int process_stat_config_event(struct perf_tool *tool __maybe_unused,
    			      union perf_event *event,
    			      struct perf_session *session __maybe_unused)
    {
    	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
    
    	perf_event__read_stat_config(&stat_config, &event->stat_config);
    
    	if (cpu_map__empty(st->cpus)) {
    		if (st->aggr_mode != AGGR_UNSET)
    			pr_warning("warning: processing task data, aggregation mode not set\n");
    		return 0;
    	}
    
    	if (st->aggr_mode != AGGR_UNSET)
    		stat_config.aggr_mode = st->aggr_mode;
    
    	if (perf_stat.file.is_pipe)
    		perf_stat_init_aggr_mode();
    	else
    		perf_stat_init_aggr_mode_file(st);
    
    	return 0;
    }
    
    static int set_maps(struct perf_stat *st)
    {
    	if (!st->cpus || !st->threads)
    		return 0;
    
    	if (WARN_ONCE(st->maps_allocated, "stats double allocation\n"))
    		return -EINVAL;
    
    	perf_evlist__set_maps(evsel_list, st->cpus, st->threads);
    
    	if (perf_evlist__alloc_stats(evsel_list, true))
    		return -ENOMEM;
    
    	st->maps_allocated = true;
    	return 0;
    }
    
    static
    int process_thread_map_event(struct perf_tool *tool __maybe_unused,
    			     union perf_event *event,
    			     struct perf_session *session __maybe_unused)
    {
    	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
    
    	if (st->threads) {
    		pr_warning("Extra thread map event, ignoring.\n");
    		return 0;
    	}
    
    	st->threads = thread_map__new_event(&event->thread_map);
    	if (!st->threads)
    		return -ENOMEM;
    
    	return set_maps(st);
    }
    
    static
    int process_cpu_map_event(struct perf_tool *tool __maybe_unused,
    			  union perf_event *event,
    			  struct perf_session *session __maybe_unused)
    {
    	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
    	struct cpu_map *cpus;
    
    	if (st->cpus) {
    		pr_warning("Extra cpu map event, ignoring.\n");
    		return 0;
    	}
    
    	cpus = cpu_map__new_data(&event->cpu_map.data);
    	if (!cpus)
    		return -ENOMEM;
    
    	st->cpus = cpus;
    	return set_maps(st);
    }
    
    static const char * const stat_report_usage[] = {
    	"perf stat report [<options>]",
    	NULL,
    };
    
    static struct perf_stat perf_stat = {
    	.tool = {
    		.attr		= perf_event__process_attr,
    		.event_update	= perf_event__process_event_update,
    		.thread_map	= process_thread_map_event,
    		.cpu_map	= process_cpu_map_event,
    		.stat_config	= process_stat_config_event,
    		.stat		= perf_event__process_stat_event,
    		.stat_round	= process_stat_round_event,
    	},
    	.aggr_mode = AGGR_UNSET,
    };
    
    static int __cmd_report(int argc, const char **argv)
    {
    	struct perf_session *session;
    	const struct option options[] = {
    	OPT_STRING('i', "input", &input_name, "file", "input file name"),
    	OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode,
    		     "aggregate counts per processor socket", AGGR_SOCKET),
    	OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode,
    		     "aggregate counts per physical processor core", AGGR_CORE),
    	OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode,
    		     "disable CPU count aggregation", AGGR_NONE),
    	OPT_END()
    	};
    	struct stat st;
    	int ret;
    
    	argc = parse_options(argc, argv, options, stat_report_usage, 0);
    
    	if (!input_name || !strlen(input_name)) {
    		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
    			input_name = "-";
    		else
    			input_name = "perf.data";
    	}
    
    	perf_stat.file.path = input_name;
    	perf_stat.file.mode = PERF_DATA_MODE_READ;
    
    	session = perf_session__new(&perf_stat.file, false, &perf_stat.tool);
    	if (session == NULL)
    		return -1;
    
    	perf_stat.session  = session;
    	stat_config.output = stderr;
    	evsel_list         = session->evlist;
    
    	ret = perf_session__process_events(session);
    	if (ret)
    		return ret;
    
    	perf_session__delete(session);
    	return 0;
    }
    
    int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
    {
    	const char * const stat_usage[] = {
    		"perf stat [<options>] [<command>]",
    		NULL
    	};
    	int status = -EINVAL, run_idx;
    	const char *mode;
    	FILE *output = stderr;
    	unsigned int interval;
    	const char * const stat_subcommands[] = { "record", "report" };
    
    	setlocale(LC_ALL, "");
    
    	evsel_list = perf_evlist__new();
    	if (evsel_list == NULL)
    		return -ENOMEM;
    
    	parse_events__shrink_config_terms();
    	argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands,
    					(const char **) stat_usage,
    					PARSE_OPT_STOP_AT_NON_OPTION);
    	perf_stat__init_shadow_stats();
    
    	if (csv_sep) {
    		csv_output = true;
    		if (!strcmp(csv_sep, "\\t"))
    			csv_sep = "\t";
    	} else
    		csv_sep = DEFAULT_SEPARATOR;
    
    	if (argc && !strncmp(argv[0], "rec", 3)) {
    		argc = __cmd_record(argc, argv);
    		if (argc < 0)
    			return -1;
    	} else if (argc && !strncmp(argv[0], "rep", 3))
    		return __cmd_report(argc, argv);
    
    	interval = stat_config.interval;
    
    	/*
    	 * For record command the -o is already taken care of.
    	 */
    	if (!STAT_RECORD && output_name && strcmp(output_name, "-"))
    		output = NULL;
    
    	if (output_name && output_fd) {
    		fprintf(stderr, "cannot use both --output and --log-fd\n");
    		parse_options_usage(stat_usage, stat_options, "o", 1);
    		parse_options_usage(NULL, stat_options, "log-fd", 0);
    		goto out;
    	}
    
    	if (metric_only && stat_config.aggr_mode == AGGR_THREAD) {
    		fprintf(stderr, "--metric-only is not supported with --per-thread\n");
    		goto out;
    	}
    
    	if (metric_only && stat_config.aggr_mode == AGGR_NONE) {
    		fprintf(stderr, "--metric-only is not supported with -A\n");
    		goto out;
    	}
    
    	if (metric_only && run_count > 1) {
    		fprintf(stderr, "--metric-only is not supported with -r\n");
    		goto out;
    	}
    
    	if (output_fd < 0) {
    		fprintf(stderr, "argument to --log-fd must be a > 0\n");
    		parse_options_usage(stat_usage, stat_options, "log-fd", 0);
    		goto out;
    	}
    
    	if (!output) {
    		struct timespec tm;
    		mode = append_file ? "a" : "w";
    
    		output = fopen(output_name, mode);
    		if (!output) {
    			perror("failed to create output file");
    			return -1;
    		}
    		clock_gettime(CLOCK_REALTIME, &tm);
    		fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
    	} else if (output_fd > 0) {
    		mode = append_file ? "a" : "w";
    		output = fdopen(output_fd, mode);
    		if (!output) {
    			perror("Failed opening logfd");
    			return -errno;
    		}
    	}
    
    	stat_config.output = output;
    
    	/*
    	 * let the spreadsheet do the pretty-printing
    	 */
    	if (csv_output) {
    		/* User explicitly passed -B? */
    		if (big_num_opt == 1) {
    			fprintf(stderr, "-B option not supported with -x\n");
    			parse_options_usage(stat_usage, stat_options, "B", 1);
    			parse_options_usage(NULL, stat_options, "x", 1);
    			goto out;
    		} else /* Nope, so disable big number formatting */
    			big_num = false;
    	} else if (big_num_opt == 0) /* User passed --no-big-num */
    		big_num = false;
    
    	if (!argc && target__none(&target))
    		usage_with_options(stat_usage, stat_options);
    
    	if (run_count < 0) {
    		pr_err("Run count must be a positive number\n");
    		parse_options_usage(stat_usage, stat_options, "r", 1);
    		goto out;
    	} else if (run_count == 0) {
    		forever = true;
    		run_count = 1;
    	}
    
    	if ((stat_config.aggr_mode == AGGR_THREAD) && !target__has_task(&target)) {
    		fprintf(stderr, "The --per-thread option is only available "
    			"when monitoring via -p -t options.\n");
    		parse_options_usage(NULL, stat_options, "p", 1);
    		parse_options_usage(NULL, stat_options, "t", 1);
    		goto out;
    	}
    
    	/*
    	 * no_aggr, cgroup are for system-wide only
    	 * --per-thread is aggregated per thread, we dont mix it with cpu mode
    	 */
    	if (((stat_config.aggr_mode != AGGR_GLOBAL &&
    	      stat_config.aggr_mode != AGGR_THREAD) || nr_cgroups) &&
    	    !target__has_cpu(&target)) {
    		fprintf(stderr, "both cgroup and no-aggregation "
    			"modes only available in system-wide mode\n");
    
    		parse_options_usage(stat_usage, stat_options, "G", 1);
    		parse_options_usage(NULL, stat_options, "A", 1);
    		parse_options_usage(NULL, stat_options, "a", 1);
    		goto out;
    	}
    
    	if (add_default_attributes())
    		goto out;
    
    	target__validate(&target);
    
    	if (perf_evlist__create_maps(evsel_list, &target) < 0) {
    		if (target__has_task(&target)) {
    			pr_err("Problems finding threads of monitor\n");
    			parse_options_usage(stat_usage, stat_options, "p", 1);
    			parse_options_usage(NULL, stat_options, "t", 1);
    		} else if (target__has_cpu(&target)) {
    			perror("failed to parse CPUs map");
    			parse_options_usage(stat_usage, stat_options, "C", 1);
    			parse_options_usage(NULL, stat_options, "a", 1);
    		}
    		goto out;
    	}
    
    	/*
    	 * Initialize thread_map with comm names,
    	 * so we could print it out on output.
    	 */
    	if (stat_config.aggr_mode == AGGR_THREAD)
    		thread_map__read_comms(evsel_list->threads);
    
    	if (interval && interval < 100) {
    		if (interval < 10) {
    			pr_err("print interval must be >= 10ms\n");
    			parse_options_usage(stat_usage, stat_options, "I", 1);
    			goto out;
    		} else
    			pr_warning("print interval < 100ms. "
    				   "The overhead percentage could be high in some cases. "
    				   "Please proceed with caution.\n");
    	}
    
    	if (perf_evlist__alloc_stats(evsel_list, interval))
    		goto out;
    
    	if (perf_stat_init_aggr_mode())
    		goto out;
    
    	/*
    	 * We dont want to block the signals - that would cause
    	 * child tasks to inherit that and Ctrl-C would not work.
    	 * What we want is for Ctrl-C to work in the exec()-ed
    	 * task, but being ignored by perf stat itself:
    	 */
    	atexit(sig_atexit);
    	if (!forever)
    		signal(SIGINT,  skip_signal);
    	signal(SIGCHLD, skip_signal);
    	signal(SIGALRM, skip_signal);
    	signal(SIGABRT, skip_signal);
    
    	status = 0;
    	for (run_idx = 0; forever || run_idx < run_count; run_idx++) {
    		if (run_count != 1 && verbose)
    			fprintf(output, "[ perf stat: executing run #%d ... ]\n",
    				run_idx + 1);
    
    		status = run_perf_stat(argc, argv);
    		if (forever && status != -1) {
    			print_counters(NULL, argc, argv);
    			perf_stat__reset_stats();
    		}
    	}
    
    	if (!forever && status != -1 && !interval)
    		print_counters(NULL, argc, argv);
    
    	if (STAT_RECORD) {
    		/*
    		 * We synthesize the kernel mmap record just so that older tools
    		 * don't emit warnings about not being able to resolve symbols
    		 * due to /proc/sys/kernel/kptr_restrict settings and instear provide
    		 * a saner message about no samples being in the perf.data file.
    		 *
    		 * This also serves to suppress a warning about f_header.data.size == 0
    		 * in header.c at the moment 'perf stat record' gets introduced, which
    		 * is not really needed once we start adding the stat specific PERF_RECORD_
    		 * records, but the need to suppress the kptr_restrict messages in older
    		 * tools remain  -acme
    		 */
    		int fd = perf_data_file__fd(&perf_stat.file);
    		int err = perf_event__synthesize_kernel_mmap((void *)&perf_stat,
    							     process_synthesized_event,
    							     &perf_stat.session->machines.host);
    		if (err) {
    			pr_warning("Couldn't synthesize the kernel mmap record, harmless, "
    				   "older tools may produce warnings about this file\n.");
    		}
    
    		if (!interval) {
    			if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL))
    				pr_err("failed to write stat round event\n");
    		}
    
    		if (!perf_stat.file.is_pipe) {
    			perf_stat.session->header.data_size += perf_stat.bytes_written;
    			perf_session__write_header(perf_stat.session, evsel_list, fd, true);
    		}
    
    		perf_session__delete(perf_stat.session);
    	}
    
    	perf_stat__exit_aggr_mode();
    	perf_evlist__free_stats(evsel_list);
    out:
    	perf_evlist__delete(evsel_list);
    	return status;
    }