Skip to content
Snippets Groups Projects
Select Git revision
  • 61edab8d144ae7b4d7206b91adec947579a73c0a
  • linus-master default
  • kunit_is_love
  • kunit_drm
  • tonyk/futex_waitv
  • hidraw_rwlock
  • futex_waitv
  • futex2-dev
  • idle_sleep
  • futex2-proton
  • futex-tests
  • futex2
  • futex2-numa
  • fwm-5.11
  • cf-fix
  • tmpfs-ic
  • futex2-stable-5.11
  • futex2-stable
  • futex2-lpc
  • gaming
  • futex-fixes
21 results

marvell.c

Blame
  • memcontrol.c 186.40 KiB
    /* memcontrol.c - Memory Controller
     *
     * Copyright IBM Corporation, 2007
     * Author Balbir Singh <balbir@linux.vnet.ibm.com>
     *
     * Copyright 2007 OpenVZ SWsoft Inc
     * Author: Pavel Emelianov <xemul@openvz.org>
     *
     * Memory thresholds
     * Copyright (C) 2009 Nokia Corporation
     * Author: Kirill A. Shutemov
     *
     * Kernel Memory Controller
     * Copyright (C) 2012 Parallels Inc. and Google Inc.
     * Authors: Glauber Costa and Suleiman Souhlal
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/res_counter.h>
    #include <linux/memcontrol.h>
    #include <linux/cgroup.h>
    #include <linux/mm.h>
    #include <linux/hugetlb.h>
    #include <linux/pagemap.h>
    #include <linux/smp.h>
    #include <linux/page-flags.h>
    #include <linux/backing-dev.h>
    #include <linux/bit_spinlock.h>
    #include <linux/rcupdate.h>
    #include <linux/limits.h>
    #include <linux/export.h>
    #include <linux/mutex.h>
    #include <linux/rbtree.h>
    #include <linux/slab.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    #include <linux/spinlock.h>
    #include <linux/eventfd.h>
    #include <linux/sort.h>
    #include <linux/fs.h>
    #include <linux/seq_file.h>
    #include <linux/vmalloc.h>
    #include <linux/vmpressure.h>
    #include <linux/mm_inline.h>
    #include <linux/page_cgroup.h>
    #include <linux/cpu.h>
    #include <linux/oom.h>
    #include "internal.h"
    #include <net/sock.h>
    #include <net/ip.h>
    #include <net/tcp_memcontrol.h>
    
    #include <asm/uaccess.h>
    
    #include <trace/events/vmscan.h>
    
    struct cgroup_subsys mem_cgroup_subsys __read_mostly;
    EXPORT_SYMBOL(mem_cgroup_subsys);
    
    #define MEM_CGROUP_RECLAIM_RETRIES	5
    static struct mem_cgroup *root_mem_cgroup __read_mostly;
    
    #ifdef CONFIG_MEMCG_SWAP
    /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
    int do_swap_account __read_mostly;
    
    /* for remember boot option*/
    #ifdef CONFIG_MEMCG_SWAP_ENABLED
    static int really_do_swap_account __initdata = 1;
    #else
    static int really_do_swap_account __initdata = 0;
    #endif
    
    #else
    #define do_swap_account		0
    #endif
    
    
    static const char * const mem_cgroup_stat_names[] = {
    	"cache",
    	"rss",
    	"rss_huge",
    	"mapped_file",
    	"writeback",
    	"swap",
    };
    
    enum mem_cgroup_events_index {
    	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
    	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
    	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
    	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
    	MEM_CGROUP_EVENTS_NSTATS,
    };
    
    static const char * const mem_cgroup_events_names[] = {
    	"pgpgin",
    	"pgpgout",
    	"pgfault",
    	"pgmajfault",
    };
    
    static const char * const mem_cgroup_lru_names[] = {
    	"inactive_anon",
    	"active_anon",
    	"inactive_file",
    	"active_file",
    	"unevictable",
    };
    
    /*
     * Per memcg event counter is incremented at every pagein/pageout. With THP,
     * it will be incremated by the number of pages. This counter is used for
     * for trigger some periodic events. This is straightforward and better
     * than using jiffies etc. to handle periodic memcg event.
     */
    enum mem_cgroup_events_target {
    	MEM_CGROUP_TARGET_THRESH,
    	MEM_CGROUP_TARGET_SOFTLIMIT,
    	MEM_CGROUP_TARGET_NUMAINFO,
    	MEM_CGROUP_NTARGETS,
    };
    #define THRESHOLDS_EVENTS_TARGET 128
    #define SOFTLIMIT_EVENTS_TARGET 1024
    #define NUMAINFO_EVENTS_TARGET	1024
    
    struct mem_cgroup_stat_cpu {
    	long count[MEM_CGROUP_STAT_NSTATS];
    	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
    	unsigned long nr_page_events;
    	unsigned long targets[MEM_CGROUP_NTARGETS];
    };
    
    struct mem_cgroup_reclaim_iter {
    	/*
    	 * last scanned hierarchy member. Valid only if last_dead_count
    	 * matches memcg->dead_count of the hierarchy root group.
    	 */
    	struct mem_cgroup *last_visited;
    	unsigned long last_dead_count;
    
    	/* scan generation, increased every round-trip */
    	unsigned int generation;
    };
    
    /*
     * per-zone information in memory controller.
     */
    struct mem_cgroup_per_zone {
    	struct lruvec		lruvec;
    	unsigned long		lru_size[NR_LRU_LISTS];
    
    	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
    
    	struct rb_node		tree_node;	/* RB tree node */
    	unsigned long long	usage_in_excess;/* Set to the value by which */
    						/* the soft limit is exceeded*/
    	bool			on_tree;
    	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
    						/* use container_of	   */
    };
    
    struct mem_cgroup_per_node {
    	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
    };
    
    /*
     * Cgroups above their limits are maintained in a RB-Tree, independent of
     * their hierarchy representation
     */
    
    struct mem_cgroup_tree_per_zone {
    	struct rb_root rb_root;
    	spinlock_t lock;
    };
    
    struct mem_cgroup_tree_per_node {
    	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
    };
    
    struct mem_cgroup_tree {
    	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
    };
    
    static struct mem_cgroup_tree soft_limit_tree __read_mostly;
    
    struct mem_cgroup_threshold {
    	struct eventfd_ctx *eventfd;
    	u64 threshold;
    };
    
    /* For threshold */
    struct mem_cgroup_threshold_ary {
    	/* An array index points to threshold just below or equal to usage. */
    	int current_threshold;
    	/* Size of entries[] */
    	unsigned int size;
    	/* Array of thresholds */
    	struct mem_cgroup_threshold entries[0];
    };
    
    struct mem_cgroup_thresholds {
    	/* Primary thresholds array */
    	struct mem_cgroup_threshold_ary *primary;
    	/*
    	 * Spare threshold array.
    	 * This is needed to make mem_cgroup_unregister_event() "never fail".
    	 * It must be able to store at least primary->size - 1 entries.
    	 */
    	struct mem_cgroup_threshold_ary *spare;
    };
    
    /* for OOM */
    struct mem_cgroup_eventfd_list {
    	struct list_head list;
    	struct eventfd_ctx *eventfd;
    };
    
    static void mem_cgroup_threshold(struct mem_cgroup *memcg);
    static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
    
    /*
     * The memory controller data structure. The memory controller controls both
     * page cache and RSS per cgroup. We would eventually like to provide
     * statistics based on the statistics developed by Rik Van Riel for clock-pro,
     * to help the administrator determine what knobs to tune.
     *
     * TODO: Add a water mark for the memory controller. Reclaim will begin when
     * we hit the water mark. May be even add a low water mark, such that
     * no reclaim occurs from a cgroup at it's low water mark, this is
     * a feature that will be implemented much later in the future.
     */
    struct mem_cgroup {
    	struct cgroup_subsys_state css;
    	/*
    	 * the counter to account for memory usage
    	 */
    	struct res_counter res;
    
    	/* vmpressure notifications */
    	struct vmpressure vmpressure;
    
    	/*
    	 * the counter to account for mem+swap usage.
    	 */
    	struct res_counter memsw;
    
    	/*
    	 * the counter to account for kernel memory usage.
    	 */
    	struct res_counter kmem;
    	/*
    	 * Should the accounting and control be hierarchical, per subtree?
    	 */
    	bool use_hierarchy;
    	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
    
    	bool		oom_lock;
    	atomic_t	under_oom;
    	atomic_t	oom_wakeups;
    
    	int	swappiness;
    	/* OOM-Killer disable */
    	int		oom_kill_disable;
    
    	/* set when res.limit == memsw.limit */
    	bool		memsw_is_minimum;
    
    	/* protect arrays of thresholds */
    	struct mutex thresholds_lock;
    
    	/* thresholds for memory usage. RCU-protected */
    	struct mem_cgroup_thresholds thresholds;
    
    	/* thresholds for mem+swap usage. RCU-protected */
    	struct mem_cgroup_thresholds memsw_thresholds;
    
    	/* For oom notifier event fd */
    	struct list_head oom_notify;
    
    	/*
    	 * Should we move charges of a task when a task is moved into this
    	 * mem_cgroup ? And what type of charges should we move ?
    	 */
    	unsigned long move_charge_at_immigrate;
    	/*
    	 * set > 0 if pages under this cgroup are moving to other cgroup.
    	 */
    	atomic_t	moving_account;
    	/* taken only while moving_account > 0 */
    	spinlock_t	move_lock;
    	/*
    	 * percpu counter.
    	 */
    	struct mem_cgroup_stat_cpu __percpu *stat;
    	/*
    	 * used when a cpu is offlined or other synchronizations
    	 * See mem_cgroup_read_stat().
    	 */
    	struct mem_cgroup_stat_cpu nocpu_base;
    	spinlock_t pcp_counter_lock;
    
    	atomic_t	dead_count;
    #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
    	struct tcp_memcontrol tcp_mem;
    #endif
    #if defined(CONFIG_MEMCG_KMEM)
    	/* analogous to slab_common's slab_caches list. per-memcg */
    	struct list_head memcg_slab_caches;
    	/* Not a spinlock, we can take a lot of time walking the list */
    	struct mutex slab_caches_mutex;
            /* Index in the kmem_cache->memcg_params->memcg_caches array */
    	int kmemcg_id;
    #endif
    
    	int last_scanned_node;
    #if MAX_NUMNODES > 1
    	nodemask_t	scan_nodes;
    	atomic_t	numainfo_events;
    	atomic_t	numainfo_updating;
    #endif
    
    	struct mem_cgroup_per_node *nodeinfo[0];
    	/* WARNING: nodeinfo must be the last member here */
    };
    
    static size_t memcg_size(void)
    {
    	return sizeof(struct mem_cgroup) +
    		nr_node_ids * sizeof(struct mem_cgroup_per_node);
    }
    
    /* internal only representation about the status of kmem accounting. */
    enum {
    	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
    	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
    	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
    };
    
    /* We account when limit is on, but only after call sites are patched */
    #define KMEM_ACCOUNTED_MASK \
    		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
    
    #ifdef CONFIG_MEMCG_KMEM
    static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
    {
    	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
    }
    
    static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
    {
    	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
    }
    
    static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
    {
    	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
    }
    
    static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
    {
    	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
    }
    
    static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
    {
    	/*
    	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
    	 * will call css_put() if it sees the memcg is dead.
    	 */
    	smp_wmb();
    	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
    		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
    }
    
    static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
    {
    	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
    				  &memcg->kmem_account_flags);
    }
    #endif
    
    /* Stuffs for move charges at task migration. */
    /*
     * Types of charges to be moved. "move_charge_at_immitgrate" and
     * "immigrate_flags" are treated as a left-shifted bitmap of these types.
     */
    enum move_type {
    	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
    	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
    	NR_MOVE_TYPE,
    };
    
    /* "mc" and its members are protected by cgroup_mutex */
    static struct move_charge_struct {
    	spinlock_t	  lock; /* for from, to */
    	struct mem_cgroup *from;
    	struct mem_cgroup *to;
    	unsigned long immigrate_flags;
    	unsigned long precharge;
    	unsigned long moved_charge;
    	unsigned long moved_swap;
    	struct task_struct *moving_task;	/* a task moving charges */
    	wait_queue_head_t waitq;		/* a waitq for other context */
    } mc = {
    	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
    	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
    };
    
    static bool move_anon(void)
    {
    	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
    }
    
    static bool move_file(void)
    {
    	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
    }
    
    /*
     * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
     * limit reclaim to prevent infinite loops, if they ever occur.
     */
    #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
    #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
    
    enum charge_type {
    	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
    	MEM_CGROUP_CHARGE_TYPE_ANON,
    	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
    	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
    	NR_CHARGE_TYPE,
    };
    
    /* for encoding cft->private value on file */
    enum res_type {
    	_MEM,
    	_MEMSWAP,
    	_OOM_TYPE,
    	_KMEM,
    };
    
    #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
    #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
    #define MEMFILE_ATTR(val)	((val) & 0xffff)
    /* Used for OOM nofiier */
    #define OOM_CONTROL		(0)
    
    /*
     * Reclaim flags for mem_cgroup_hierarchical_reclaim
     */
    #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
    #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
    #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
    #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
    
    /*
     * The memcg_create_mutex will be held whenever a new cgroup is created.
     * As a consequence, any change that needs to protect against new child cgroups
     * appearing has to hold it as well.
     */
    static DEFINE_MUTEX(memcg_create_mutex);
    
    struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
    {
    	return s ? container_of(s, struct mem_cgroup, css) : NULL;
    }
    
    /* Some nice accessors for the vmpressure. */
    struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
    {
    	if (!memcg)
    		memcg = root_mem_cgroup;
    	return &memcg->vmpressure;
    }
    
    struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
    {
    	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
    }
    
    struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
    {
    	return &mem_cgroup_from_css(css)->vmpressure;
    }
    
    static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
    {
    	return (memcg == root_mem_cgroup);
    }
    
    /* Writing them here to avoid exposing memcg's inner layout */
    #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
    
    void sock_update_memcg(struct sock *sk)
    {
    	if (mem_cgroup_sockets_enabled) {
    		struct mem_cgroup *memcg;
    		struct cg_proto *cg_proto;
    
    		BUG_ON(!sk->sk_prot->proto_cgroup);
    
    		/* Socket cloning can throw us here with sk_cgrp already
    		 * filled. It won't however, necessarily happen from
    		 * process context. So the test for root memcg given
    		 * the current task's memcg won't help us in this case.
    		 *
    		 * Respecting the original socket's memcg is a better
    		 * decision in this case.
    		 */
    		if (sk->sk_cgrp) {
    			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
    			css_get(&sk->sk_cgrp->memcg->css);
    			return;
    		}
    
    		rcu_read_lock();
    		memcg = mem_cgroup_from_task(current);
    		cg_proto = sk->sk_prot->proto_cgroup(memcg);
    		if (!mem_cgroup_is_root(memcg) &&
    		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
    			sk->sk_cgrp = cg_proto;
    		}
    		rcu_read_unlock();
    	}
    }
    EXPORT_SYMBOL(sock_update_memcg);
    
    void sock_release_memcg(struct sock *sk)
    {
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		struct mem_cgroup *memcg;
    		WARN_ON(!sk->sk_cgrp->memcg);
    		memcg = sk->sk_cgrp->memcg;
    		css_put(&sk->sk_cgrp->memcg->css);
    	}
    }
    
    struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
    {
    	if (!memcg || mem_cgroup_is_root(memcg))
    		return NULL;
    
    	return &memcg->tcp_mem.cg_proto;
    }
    EXPORT_SYMBOL(tcp_proto_cgroup);
    
    static void disarm_sock_keys(struct mem_cgroup *memcg)
    {
    	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
    		return;
    	static_key_slow_dec(&memcg_socket_limit_enabled);
    }
    #else
    static void disarm_sock_keys(struct mem_cgroup *memcg)
    {
    }
    #endif
    
    #ifdef CONFIG_MEMCG_KMEM
    /*
     * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
     * There are two main reasons for not using the css_id for this:
     *  1) this works better in sparse environments, where we have a lot of memcgs,
     *     but only a few kmem-limited. Or also, if we have, for instance, 200
     *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
     *     200 entry array for that.
     *
     *  2) In order not to violate the cgroup API, we would like to do all memory
     *     allocation in ->create(). At that point, we haven't yet allocated the
     *     css_id. Having a separate index prevents us from messing with the cgroup
     *     core for this
     *
     * The current size of the caches array is stored in
     * memcg_limited_groups_array_size.  It will double each time we have to
     * increase it.
     */
    static DEFINE_IDA(kmem_limited_groups);
    int memcg_limited_groups_array_size;
    
    /*
     * MIN_SIZE is different than 1, because we would like to avoid going through
     * the alloc/free process all the time. In a small machine, 4 kmem-limited
     * cgroups is a reasonable guess. In the future, it could be a parameter or
     * tunable, but that is strictly not necessary.
     *
     * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
     * this constant directly from cgroup, but it is understandable that this is
     * better kept as an internal representation in cgroup.c. In any case, the
     * css_id space is not getting any smaller, and we don't have to necessarily
     * increase ours as well if it increases.
     */
    #define MEMCG_CACHES_MIN_SIZE 4
    #define MEMCG_CACHES_MAX_SIZE 65535
    
    /*
     * A lot of the calls to the cache allocation functions are expected to be
     * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
     * conditional to this static branch, we'll have to allow modules that does
     * kmem_cache_alloc and the such to see this symbol as well
     */
    struct static_key memcg_kmem_enabled_key;
    EXPORT_SYMBOL(memcg_kmem_enabled_key);
    
    static void disarm_kmem_keys(struct mem_cgroup *memcg)
    {
    	if (memcg_kmem_is_active(memcg)) {
    		static_key_slow_dec(&memcg_kmem_enabled_key);
    		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
    	}
    	/*
    	 * This check can't live in kmem destruction function,
    	 * since the charges will outlive the cgroup
    	 */
    	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
    }
    #else
    static void disarm_kmem_keys(struct mem_cgroup *memcg)
    {
    }
    #endif /* CONFIG_MEMCG_KMEM */
    
    static void disarm_static_keys(struct mem_cgroup *memcg)
    {
    	disarm_sock_keys(memcg);
    	disarm_kmem_keys(memcg);
    }
    
    static void drain_all_stock_async(struct mem_cgroup *memcg);
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
    {
    	VM_BUG_ON((unsigned)nid >= nr_node_ids);
    	return &memcg->nodeinfo[nid]->zoneinfo[zid];
    }
    
    struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
    {
    	return &memcg->css;
    }
    
    static struct mem_cgroup_per_zone *
    page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
    {
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	return mem_cgroup_zoneinfo(memcg, nid, zid);
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_node_zone(int nid, int zid)
    {
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_from_page(struct page *page)
    {
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static void
    __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
    				struct mem_cgroup_per_zone *mz,
    				struct mem_cgroup_tree_per_zone *mctz,
    				unsigned long long new_usage_in_excess)
    {
    	struct rb_node **p = &mctz->rb_root.rb_node;
    	struct rb_node *parent = NULL;
    	struct mem_cgroup_per_zone *mz_node;
    
    	if (mz->on_tree)
    		return;
    
    	mz->usage_in_excess = new_usage_in_excess;
    	if (!mz->usage_in_excess)
    		return;
    	while (*p) {
    		parent = *p;
    		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
    					tree_node);
    		if (mz->usage_in_excess < mz_node->usage_in_excess)
    			p = &(*p)->rb_left;
    		/*
    		 * We can't avoid mem cgroups that are over their soft
    		 * limit by the same amount
    		 */
    		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
    			p = &(*p)->rb_right;
    	}
    	rb_link_node(&mz->tree_node, parent, p);
    	rb_insert_color(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = true;
    }
    
    static void
    __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
    				struct mem_cgroup_per_zone *mz,
    				struct mem_cgroup_tree_per_zone *mctz)
    {
    	if (!mz->on_tree)
    		return;
    	rb_erase(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = false;
    }
    
    static void
    mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
    				struct mem_cgroup_per_zone *mz,
    				struct mem_cgroup_tree_per_zone *mctz)
    {
    	spin_lock(&mctz->lock);
    	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
    	spin_unlock(&mctz->lock);
    }
    
    
    static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
    {
    	unsigned long long excess;
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup_tree_per_zone *mctz;
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    	mctz = soft_limit_tree_from_page(page);
    
    	/*
    	 * Necessary to update all ancestors when hierarchy is used.
    	 * because their event counter is not touched.
    	 */
    	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
    		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
    		excess = res_counter_soft_limit_excess(&memcg->res);
    		/*
    		 * We have to update the tree if mz is on RB-tree or
    		 * mem is over its softlimit.
    		 */
    		if (excess || mz->on_tree) {
    			spin_lock(&mctz->lock);
    			/* if on-tree, remove it */
    			if (mz->on_tree)
    				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
    			/*
    			 * Insert again. mz->usage_in_excess will be updated.
    			 * If excess is 0, no tree ops.
    			 */
    			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
    			spin_unlock(&mctz->lock);
    		}
    	}
    }
    
    static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
    {
    	int node, zone;
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup_tree_per_zone *mctz;
    
    	for_each_node(node) {
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			mz = mem_cgroup_zoneinfo(memcg, node, zone);
    			mctz = soft_limit_tree_node_zone(node, zone);
    			mem_cgroup_remove_exceeded(memcg, mz, mctz);
    		}
    	}
    }
    
    static struct mem_cgroup_per_zone *
    __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct rb_node *rightmost = NULL;
    	struct mem_cgroup_per_zone *mz;
    
    retry:
    	mz = NULL;
    	rightmost = rb_last(&mctz->rb_root);
    	if (!rightmost)
    		goto done;		/* Nothing to reclaim from */
    
    	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
    	/*
    	 * Remove the node now but someone else can add it back,
    	 * we will to add it back at the end of reclaim to its correct
    	 * position in the tree.
    	 */
    	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
    	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
    		!css_tryget(&mz->memcg->css))
    		goto retry;
    done:
    	return mz;
    }
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct mem_cgroup_per_zone *mz;
    
    	spin_lock(&mctz->lock);
    	mz = __mem_cgroup_largest_soft_limit_node(mctz);
    	spin_unlock(&mctz->lock);
    	return mz;
    }
    
    /*
     * Implementation Note: reading percpu statistics for memcg.
     *
     * Both of vmstat[] and percpu_counter has threshold and do periodic
     * synchronization to implement "quick" read. There are trade-off between
     * reading cost and precision of value. Then, we may have a chance to implement
     * a periodic synchronizion of counter in memcg's counter.
     *
     * But this _read() function is used for user interface now. The user accounts
     * memory usage by memory cgroup and he _always_ requires exact value because
     * he accounts memory. Even if we provide quick-and-fuzzy read, we always
     * have to visit all online cpus and make sum. So, for now, unnecessary
     * synchronization is not implemented. (just implemented for cpu hotplug)
     *
     * If there are kernel internal actions which can make use of some not-exact
     * value, and reading all cpu value can be performance bottleneck in some
     * common workload, threashold and synchonization as vmstat[] should be
     * implemented.
     */
    static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
    				 enum mem_cgroup_stat_index idx)
    {
    	long val = 0;
    	int cpu;
    
    	get_online_cpus();
    	for_each_online_cpu(cpu)
    		val += per_cpu(memcg->stat->count[idx], cpu);
    #ifdef CONFIG_HOTPLUG_CPU
    	spin_lock(&memcg->pcp_counter_lock);
    	val += memcg->nocpu_base.count[idx];
    	spin_unlock(&memcg->pcp_counter_lock);
    #endif
    	put_online_cpus();
    	return val;
    }
    
    static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
    					 bool charge)
    {
    	int val = (charge) ? 1 : -1;
    	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
    }
    
    static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
    					    enum mem_cgroup_events_index idx)
    {
    	unsigned long val = 0;
    	int cpu;
    
    	get_online_cpus();
    	for_each_online_cpu(cpu)
    		val += per_cpu(memcg->stat->events[idx], cpu);
    #ifdef CONFIG_HOTPLUG_CPU
    	spin_lock(&memcg->pcp_counter_lock);
    	val += memcg->nocpu_base.events[idx];
    	spin_unlock(&memcg->pcp_counter_lock);
    #endif
    	put_online_cpus();
    	return val;
    }
    
    static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
    					 struct page *page,
    					 bool anon, int nr_pages)
    {
    	preempt_disable();
    
    	/*
    	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
    	 * counted as CACHE even if it's on ANON LRU.
    	 */
    	if (anon)
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
    				nr_pages);
    	else
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
    				nr_pages);
    
    	if (PageTransHuge(page))
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
    				nr_pages);
    
    	/* pagein of a big page is an event. So, ignore page size */
    	if (nr_pages > 0)
    		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
    	else {
    		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
    		nr_pages = -nr_pages; /* for event */
    	}
    
    	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
    
    	preempt_enable();
    }
    
    unsigned long
    mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
    {
    	struct mem_cgroup_per_zone *mz;
    
    	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
    	return mz->lru_size[lru];
    }
    
    static unsigned long
    mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
    			unsigned int lru_mask)
    {
    	struct mem_cgroup_per_zone *mz;
    	enum lru_list lru;
    	unsigned long ret = 0;
    
    	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
    
    	for_each_lru(lru) {
    		if (BIT(lru) & lru_mask)
    			ret += mz->lru_size[lru];
    	}
    	return ret;
    }
    
    static unsigned long
    mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
    			int nid, unsigned int lru_mask)
    {
    	u64 total = 0;
    	int zid;
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++)
    		total += mem_cgroup_zone_nr_lru_pages(memcg,
    						nid, zid, lru_mask);
    
    	return total;
    }
    
    static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
    			unsigned int lru_mask)
    {
    	int nid;
    	u64 total = 0;
    
    	for_each_node_state(nid, N_MEMORY)
    		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
    	return total;
    }
    
    static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
    				       enum mem_cgroup_events_target target)
    {
    	unsigned long val, next;
    
    	val = __this_cpu_read(memcg->stat->nr_page_events);
    	next = __this_cpu_read(memcg->stat->targets[target]);
    	/* from time_after() in jiffies.h */
    	if ((long)next - (long)val < 0) {
    		switch (target) {
    		case MEM_CGROUP_TARGET_THRESH:
    			next = val + THRESHOLDS_EVENTS_TARGET;
    			break;
    		case MEM_CGROUP_TARGET_SOFTLIMIT:
    			next = val + SOFTLIMIT_EVENTS_TARGET;
    			break;
    		case MEM_CGROUP_TARGET_NUMAINFO:
    			next = val + NUMAINFO_EVENTS_TARGET;
    			break;
    		default:
    			break;
    		}
    		__this_cpu_write(memcg->stat->targets[target], next);
    		return true;
    	}
    	return false;
    }
    
    /*
     * Check events in order.
     *
     */
    static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
    {
    	preempt_disable();
    	/* threshold event is triggered in finer grain than soft limit */
    	if (unlikely(mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_THRESH))) {
    		bool do_softlimit;
    		bool do_numainfo __maybe_unused;
    
    		do_softlimit = mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_SOFTLIMIT);
    #if MAX_NUMNODES > 1
    		do_numainfo = mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_NUMAINFO);
    #endif
    		preempt_enable();
    
    		mem_cgroup_threshold(memcg);
    		if (unlikely(do_softlimit))
    			mem_cgroup_update_tree(memcg, page);
    #if MAX_NUMNODES > 1
    		if (unlikely(do_numainfo))
    			atomic_inc(&memcg->numainfo_events);
    #endif
    	} else
    		preempt_enable();
    }
    
    struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
    {
    	/*
    	 * mm_update_next_owner() may clear mm->owner to NULL
    	 * if it races with swapoff, page migration, etc.
    	 * So this can be called with p == NULL.
    	 */
    	if (unlikely(!p))
    		return NULL;
    
    	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
    }
    
    struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
    {
    	struct mem_cgroup *memcg = NULL;
    
    	if (!mm)
    		return NULL;
    	/*
    	 * Because we have no locks, mm->owner's may be being moved to other
    	 * cgroup. We use css_tryget() here even if this looks
    	 * pessimistic (rather than adding locks here).
    	 */
    	rcu_read_lock();
    	do {
    		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
    		if (unlikely(!memcg))
    			break;
    	} while (!css_tryget(&memcg->css));
    	rcu_read_unlock();
    	return memcg;
    }
    
    /*
     * Returns a next (in a pre-order walk) alive memcg (with elevated css
     * ref. count) or NULL if the whole root's subtree has been visited.
     *
     * helper function to be used by mem_cgroup_iter
     */
    static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
    		struct mem_cgroup *last_visited)
    {
    	struct cgroup_subsys_state *prev_css, *next_css;
    
    	prev_css = last_visited ? &last_visited->css : NULL;
    skip_node:
    	next_css = css_next_descendant_pre(prev_css, &root->css);
    
    	/*
    	 * Even if we found a group we have to make sure it is
    	 * alive. css && !memcg means that the groups should be
    	 * skipped and we should continue the tree walk.
    	 * last_visited css is safe to use because it is
    	 * protected by css_get and the tree walk is rcu safe.
    	 */
    	if (next_css) {
    		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
    
    		if (css_tryget(&mem->css))
    			return mem;
    		else {
    			prev_css = next_css;
    			goto skip_node;
    		}
    	}
    
    	return NULL;
    }
    
    static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
    {
    	/*
    	 * When a group in the hierarchy below root is destroyed, the
    	 * hierarchy iterator can no longer be trusted since it might
    	 * have pointed to the destroyed group.  Invalidate it.
    	 */
    	atomic_inc(&root->dead_count);
    }
    
    static struct mem_cgroup *
    mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
    		     struct mem_cgroup *root,
    		     int *sequence)
    {
    	struct mem_cgroup *position = NULL;
    	/*
    	 * A cgroup destruction happens in two stages: offlining and
    	 * release.  They are separated by a RCU grace period.
    	 *
    	 * If the iterator is valid, we may still race with an
    	 * offlining.  The RCU lock ensures the object won't be
    	 * released, tryget will fail if we lost the race.
    	 */
    	*sequence = atomic_read(&root->dead_count);
    	if (iter->last_dead_count == *sequence) {
    		smp_rmb();
    		position = iter->last_visited;
    		if (position && !css_tryget(&position->css))
    			position = NULL;
    	}
    	return position;
    }
    
    static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
    				   struct mem_cgroup *last_visited,
    				   struct mem_cgroup *new_position,
    				   int sequence)
    {
    	if (last_visited)
    		css_put(&last_visited->css);
    	/*
    	 * We store the sequence count from the time @last_visited was
    	 * loaded successfully instead of rereading it here so that we
    	 * don't lose destruction events in between.  We could have
    	 * raced with the destruction of @new_position after all.
    	 */
    	iter->last_visited = new_position;
    	smp_wmb();
    	iter->last_dead_count = sequence;
    }
    
    /**
     * mem_cgroup_iter - iterate over memory cgroup hierarchy
     * @root: hierarchy root
     * @prev: previously returned memcg, NULL on first invocation
     * @reclaim: cookie for shared reclaim walks, NULL for full walks
     *
     * Returns references to children of the hierarchy below @root, or
     * @root itself, or %NULL after a full round-trip.
     *
     * Caller must pass the return value in @prev on subsequent
     * invocations for reference counting, or use mem_cgroup_iter_break()
     * to cancel a hierarchy walk before the round-trip is complete.
     *
     * Reclaimers can specify a zone and a priority level in @reclaim to
     * divide up the memcgs in the hierarchy among all concurrent
     * reclaimers operating on the same zone and priority.
     */
    struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
    				   struct mem_cgroup *prev,
    				   struct mem_cgroup_reclaim_cookie *reclaim)
    {
    	struct mem_cgroup *memcg = NULL;
    	struct mem_cgroup *last_visited = NULL;
    
    	if (mem_cgroup_disabled())
    		return NULL;
    
    	if (!root)
    		root = root_mem_cgroup;
    
    	if (prev && !reclaim)
    		last_visited = prev;
    
    	if (!root->use_hierarchy && root != root_mem_cgroup) {
    		if (prev)
    			goto out_css_put;
    		return root;
    	}
    
    	rcu_read_lock();
    	while (!memcg) {
    		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
    		int uninitialized_var(seq);
    
    		if (reclaim) {
    			int nid = zone_to_nid(reclaim->zone);
    			int zid = zone_idx(reclaim->zone);
    			struct mem_cgroup_per_zone *mz;
    
    			mz = mem_cgroup_zoneinfo(root, nid, zid);
    			iter = &mz->reclaim_iter[reclaim->priority];
    			if (prev && reclaim->generation != iter->generation) {
    				iter->last_visited = NULL;
    				goto out_unlock;
    			}
    
    			last_visited = mem_cgroup_iter_load(iter, root, &seq);
    		}
    
    		memcg = __mem_cgroup_iter_next(root, last_visited);
    
    		if (reclaim) {
    			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
    
    			if (!memcg)
    				iter->generation++;
    			else if (!prev && memcg)
    				reclaim->generation = iter->generation;
    		}
    
    		if (prev && !memcg)
    			goto out_unlock;
    	}
    out_unlock:
    	rcu_read_unlock();
    out_css_put:
    	if (prev && prev != root)
    		css_put(&prev->css);
    
    	return memcg;
    }
    
    /**
     * mem_cgroup_iter_break - abort a hierarchy walk prematurely
     * @root: hierarchy root
     * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
     */
    void mem_cgroup_iter_break(struct mem_cgroup *root,
    			   struct mem_cgroup *prev)
    {
    	if (!root)
    		root = root_mem_cgroup;
    	if (prev && prev != root)
    		css_put(&prev->css);
    }
    
    /*
     * Iteration constructs for visiting all cgroups (under a tree).  If
     * loops are exited prematurely (break), mem_cgroup_iter_break() must
     * be used for reference counting.
     */
    #define for_each_mem_cgroup_tree(iter, root)		\
    	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
    	     iter != NULL;				\
    	     iter = mem_cgroup_iter(root, iter, NULL))
    
    #define for_each_mem_cgroup(iter)			\
    	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
    	     iter != NULL;				\
    	     iter = mem_cgroup_iter(NULL, iter, NULL))
    
    void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
    {
    	struct mem_cgroup *memcg;
    
    	rcu_read_lock();
    	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
    	if (unlikely(!memcg))
    		goto out;
    
    	switch (idx) {
    	case PGFAULT:
    		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
    		break;
    	case PGMAJFAULT:
    		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
    		break;
    	default:
    		BUG();
    	}
    out:
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
    
    /**
     * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
     * @zone: zone of the wanted lruvec
     * @memcg: memcg of the wanted lruvec
     *
     * Returns the lru list vector holding pages for the given @zone and
     * @mem.  This can be the global zone lruvec, if the memory controller
     * is disabled.
     */
    struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
    				      struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_per_zone *mz;
    	struct lruvec *lruvec;
    
    	if (mem_cgroup_disabled()) {
    		lruvec = &zone->lruvec;
    		goto out;
    	}
    
    	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
    	lruvec = &mz->lruvec;
    out:
    	/*
    	 * Since a node can be onlined after the mem_cgroup was created,
    	 * we have to be prepared to initialize lruvec->zone here;
    	 * and if offlined then reonlined, we need to reinitialize it.
    	 */
    	if (unlikely(lruvec->zone != zone))
    		lruvec->zone = zone;
    	return lruvec;
    }
    
    /*
     * Following LRU functions are allowed to be used without PCG_LOCK.
     * Operations are called by routine of global LRU independently from memcg.
     * What we have to take care of here is validness of pc->mem_cgroup.
     *
     * Changes to pc->mem_cgroup happens when
     * 1. charge
     * 2. moving account
     * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
     * It is added to LRU before charge.
     * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
     * When moving account, the page is not on LRU. It's isolated.
     */
    
    /**
     * mem_cgroup_page_lruvec - return lruvec for adding an lru page
     * @page: the page
     * @zone: zone of the page
     */
    struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
    {
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup *memcg;
    	struct page_cgroup *pc;
    	struct lruvec *lruvec;
    
    	if (mem_cgroup_disabled()) {
    		lruvec = &zone->lruvec;
    		goto out;
    	}
    
    	pc = lookup_page_cgroup(page);
    	memcg = pc->mem_cgroup;
    
    	/*
    	 * Surreptitiously switch any uncharged offlist page to root:
    	 * an uncharged page off lru does nothing to secure
    	 * its former mem_cgroup from sudden removal.
    	 *
    	 * Our caller holds lru_lock, and PageCgroupUsed is updated
    	 * under page_cgroup lock: between them, they make all uses
    	 * of pc->mem_cgroup safe.
    	 */
    	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
    		pc->mem_cgroup = memcg = root_mem_cgroup;
    
    	mz = page_cgroup_zoneinfo(memcg, page);
    	lruvec = &mz->lruvec;
    out:
    	/*
    	 * Since a node can be onlined after the mem_cgroup was created,
    	 * we have to be prepared to initialize lruvec->zone here;
    	 * and if offlined then reonlined, we need to reinitialize it.
    	 */
    	if (unlikely(lruvec->zone != zone))
    		lruvec->zone = zone;
    	return lruvec;
    }
    
    /**
     * mem_cgroup_update_lru_size - account for adding or removing an lru page
     * @lruvec: mem_cgroup per zone lru vector
     * @lru: index of lru list the page is sitting on
     * @nr_pages: positive when adding or negative when removing
     *
     * This function must be called when a page is added to or removed from an
     * lru list.
     */
    void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
    				int nr_pages)
    {
    	struct mem_cgroup_per_zone *mz;
    	unsigned long *lru_size;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
    	lru_size = mz->lru_size + lru;
    	*lru_size += nr_pages;
    	VM_BUG_ON((long)(*lru_size) < 0);
    }
    
    /*
     * Checks whether given mem is same or in the root_mem_cgroup's
     * hierarchy subtree
     */
    bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
    				  struct mem_cgroup *memcg)
    {
    	if (root_memcg == memcg)
    		return true;
    	if (!root_memcg->use_hierarchy || !memcg)
    		return false;
    	return css_is_ancestor(&memcg->css, &root_memcg->css);
    }
    
    static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
    				       struct mem_cgroup *memcg)
    {
    	bool ret;
    
    	rcu_read_lock();
    	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
    	rcu_read_unlock();
    	return ret;
    }
    
    bool task_in_mem_cgroup(struct task_struct *task,
    			const struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *curr = NULL;
    	struct task_struct *p;
    	bool ret;
    
    	p = find_lock_task_mm(task);
    	if (p) {
    		curr = try_get_mem_cgroup_from_mm(p->mm);
    		task_unlock(p);
    	} else {
    		/*
    		 * All threads may have already detached their mm's, but the oom
    		 * killer still needs to detect if they have already been oom
    		 * killed to prevent needlessly killing additional tasks.
    		 */
    		rcu_read_lock();
    		curr = mem_cgroup_from_task(task);
    		if (curr)
    			css_get(&curr->css);
    		rcu_read_unlock();
    	}
    	if (!curr)
    		return false;
    	/*
    	 * We should check use_hierarchy of "memcg" not "curr". Because checking
    	 * use_hierarchy of "curr" here make this function true if hierarchy is
    	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
    	 * hierarchy(even if use_hierarchy is disabled in "memcg").
    	 */
    	ret = mem_cgroup_same_or_subtree(memcg, curr);
    	css_put(&curr->css);
    	return ret;
    }
    
    int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
    {
    	unsigned long inactive_ratio;
    	unsigned long inactive;
    	unsigned long active;
    	unsigned long gb;
    
    	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
    	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
    
    	gb = (inactive + active) >> (30 - PAGE_SHIFT);
    	if (gb)
    		inactive_ratio = int_sqrt(10 * gb);
    	else
    		inactive_ratio = 1;
    
    	return inactive * inactive_ratio < active;
    }
    
    #define mem_cgroup_from_res_counter(counter, member)	\
    	container_of(counter, struct mem_cgroup, member)
    
    /**
     * mem_cgroup_margin - calculate chargeable space of a memory cgroup
     * @memcg: the memory cgroup
     *
     * Returns the maximum amount of memory @mem can be charged with, in
     * pages.
     */
    static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
    {
    	unsigned long long margin;
    
    	margin = res_counter_margin(&memcg->res);
    	if (do_swap_account)
    		margin = min(margin, res_counter_margin(&memcg->memsw));
    	return margin >> PAGE_SHIFT;
    }
    
    int mem_cgroup_swappiness(struct mem_cgroup *memcg)
    {
    	/* root ? */
    	if (!css_parent(&memcg->css))
    		return vm_swappiness;
    
    	return memcg->swappiness;
    }
    
    /*
     * memcg->moving_account is used for checking possibility that some thread is
     * calling move_account(). When a thread on CPU-A starts moving pages under
     * a memcg, other threads should check memcg->moving_account under
     * rcu_read_lock(), like this:
     *
     *         CPU-A                                    CPU-B
     *                                              rcu_read_lock()
     *         memcg->moving_account+1              if (memcg->mocing_account)
     *                                                   take heavy locks.
     *         synchronize_rcu()                    update something.
     *                                              rcu_read_unlock()
     *         start move here.
     */
    
    /* for quick checking without looking up memcg */
    atomic_t memcg_moving __read_mostly;
    
    static void mem_cgroup_start_move(struct mem_cgroup *memcg)
    {
    	atomic_inc(&memcg_moving);
    	atomic_inc(&memcg->moving_account);
    	synchronize_rcu();
    }
    
    static void mem_cgroup_end_move(struct mem_cgroup *memcg)
    {
    	/*
    	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
    	 * We check NULL in callee rather than caller.
    	 */
    	if (memcg) {
    		atomic_dec(&memcg_moving);
    		atomic_dec(&memcg->moving_account);
    	}
    }
    
    /*
     * 2 routines for checking "mem" is under move_account() or not.
     *
     * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
     *			  is used for avoiding races in accounting.  If true,
     *			  pc->mem_cgroup may be overwritten.
     *
     * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
     *			  under hierarchy of moving cgroups. This is for
     *			  waiting at hith-memory prressure caused by "move".
     */
    
    static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
    {
    	VM_BUG_ON(!rcu_read_lock_held());
    	return atomic_read(&memcg->moving_account) > 0;
    }
    
    static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *from;
    	struct mem_cgroup *to;
    	bool ret = false;
    	/*
    	 * Unlike task_move routines, we access mc.to, mc.from not under
    	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
    	 */
    	spin_lock(&mc.lock);
    	from = mc.from;
    	to = mc.to;
    	if (!from)
    		goto unlock;
    
    	ret = mem_cgroup_same_or_subtree(memcg, from)
    		|| mem_cgroup_same_or_subtree(memcg, to);
    unlock:
    	spin_unlock(&mc.lock);
    	return ret;
    }
    
    static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
    {
    	if (mc.moving_task && current != mc.moving_task) {
    		if (mem_cgroup_under_move(memcg)) {
    			DEFINE_WAIT(wait);
    			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
    			/* moving charge context might have finished. */
    			if (mc.moving_task)
    				schedule();
    			finish_wait(&mc.waitq, &wait);
    			return true;
    		}
    	}
    	return false;
    }
    
    /*
     * Take this lock when
     * - a code tries to modify page's memcg while it's USED.
     * - a code tries to modify page state accounting in a memcg.
     * see mem_cgroup_stolen(), too.
     */
    static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
    				  unsigned long *flags)
    {
    	spin_lock_irqsave(&memcg->move_lock, *flags);
    }
    
    static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
    				unsigned long *flags)
    {
    	spin_unlock_irqrestore(&memcg->move_lock, *flags);
    }
    
    #define K(x) ((x) << (PAGE_SHIFT-10))
    /**
     * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
     * @memcg: The memory cgroup that went over limit
     * @p: Task that is going to be killed
     *
     * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
     * enabled
     */
    void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
    {
    	struct cgroup *task_cgrp;
    	struct cgroup *mem_cgrp;
    	/*
    	 * Need a buffer in BSS, can't rely on allocations. The code relies
    	 * on the assumption that OOM is serialized for memory controller.
    	 * If this assumption is broken, revisit this code.
    	 */
    	static char memcg_name[PATH_MAX];
    	int ret;
    	struct mem_cgroup *iter;
    	unsigned int i;
    
    	if (!p)
    		return;
    
    	rcu_read_lock();
    
    	mem_cgrp = memcg->css.cgroup;
    	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
    
    	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
    	if (ret < 0) {
    		/*
    		 * Unfortunately, we are unable to convert to a useful name
    		 * But we'll still print out the usage information
    		 */
    		rcu_read_unlock();
    		goto done;
    	}
    	rcu_read_unlock();
    
    	pr_info("Task in %s killed", memcg_name);
    
    	rcu_read_lock();
    	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
    	if (ret < 0) {
    		rcu_read_unlock();
    		goto done;
    	}
    	rcu_read_unlock();
    
    	/*
    	 * Continues from above, so we don't need an KERN_ level
    	 */
    	pr_cont(" as a result of limit of %s\n", memcg_name);
    done:
    
    	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
    		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
    		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
    		res_counter_read_u64(&memcg->res, RES_FAILCNT));
    	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
    		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
    		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
    		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
    	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
    		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
    		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
    		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
    
    	for_each_mem_cgroup_tree(iter, memcg) {
    		pr_info("Memory cgroup stats");
    
    		rcu_read_lock();
    		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
    		if (!ret)
    			pr_cont(" for %s", memcg_name);
    		rcu_read_unlock();
    		pr_cont(":");
    
    		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
    				continue;
    			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
    				K(mem_cgroup_read_stat(iter, i)));
    		}
    
    		for (i = 0; i < NR_LRU_LISTS; i++)
    			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
    				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
    
    		pr_cont("\n");
    	}
    }
    
    /*
     * This function returns the number of memcg under hierarchy tree. Returns
     * 1(self count) if no children.
     */
    static int mem_cgroup_count_children(struct mem_cgroup *memcg)
    {
    	int num = 0;
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		num++;
    	return num;
    }
    
    /*
     * Return the memory (and swap, if configured) limit for a memcg.
     */
    static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
    {
    	u64 limit;
    
    	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    
    	/*
    	 * Do not consider swap space if we cannot swap due to swappiness
    	 */
    	if (mem_cgroup_swappiness(memcg)) {
    		u64 memsw;
    
    		limit += total_swap_pages << PAGE_SHIFT;
    		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    
    		/*
    		 * If memsw is finite and limits the amount of swap space
    		 * available to this memcg, return that limit.
    		 */
    		limit = min(limit, memsw);
    	}
    
    	return limit;
    }
    
    static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
    				     int order)
    {
    	struct mem_cgroup *iter;
    	unsigned long chosen_points = 0;
    	unsigned long totalpages;
    	unsigned int points = 0;
    	struct task_struct *chosen = NULL;
    
    	/*
    	 * If current has a pending SIGKILL or is exiting, then automatically
    	 * select it.  The goal is to allow it to allocate so that it may
    	 * quickly exit and free its memory.
    	 */
    	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
    		set_thread_flag(TIF_MEMDIE);
    		return;
    	}
    
    	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
    	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
    	for_each_mem_cgroup_tree(iter, memcg) {
    		struct css_task_iter it;
    		struct task_struct *task;
    
    		css_task_iter_start(&iter->css, &it);
    		while ((task = css_task_iter_next(&it))) {
    			switch (oom_scan_process_thread(task, totalpages, NULL,
    							false)) {
    			case OOM_SCAN_SELECT:
    				if (chosen)
    					put_task_struct(chosen);
    				chosen = task;
    				chosen_points = ULONG_MAX;
    				get_task_struct(chosen);
    				/* fall through */
    			case OOM_SCAN_CONTINUE:
    				continue;
    			case OOM_SCAN_ABORT:
    				css_task_iter_end(&it);
    				mem_cgroup_iter_break(memcg, iter);
    				if (chosen)
    					put_task_struct(chosen);
    				return;
    			case OOM_SCAN_OK:
    				break;
    			};
    			points = oom_badness(task, memcg, NULL, totalpages);
    			if (points > chosen_points) {
    				if (chosen)
    					put_task_struct(chosen);
    				chosen = task;
    				chosen_points = points;
    				get_task_struct(chosen);
    			}
    		}
    		css_task_iter_end(&it);
    	}
    
    	if (!chosen)
    		return;
    	points = chosen_points * 1000 / totalpages;
    	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
    			 NULL, "Memory cgroup out of memory");
    }
    
    static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
    					gfp_t gfp_mask,
    					unsigned long flags)
    {
    	unsigned long total = 0;
    	bool noswap = false;
    	int loop;
    
    	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
    		noswap = true;
    	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
    		noswap = true;
    
    	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
    		if (loop)
    			drain_all_stock_async(memcg);
    		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
    		/*
    		 * Allow limit shrinkers, which are triggered directly
    		 * by userspace, to catch signals and stop reclaim
    		 * after minimal progress, regardless of the margin.
    		 */
    		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
    			break;
    		if (mem_cgroup_margin(memcg))
    			break;
    		/*
    		 * If nothing was reclaimed after two attempts, there
    		 * may be no reclaimable pages in this hierarchy.
    		 */
    		if (loop && !total)
    			break;
    	}
    	return total;
    }
    
    /**
     * test_mem_cgroup_node_reclaimable
     * @memcg: the target memcg
     * @nid: the node ID to be checked.
     * @noswap : specify true here if the user wants flle only information.
     *
     * This function returns whether the specified memcg contains any
     * reclaimable pages on a node. Returns true if there are any reclaimable
     * pages in the node.
     */
    static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
    		int nid, bool noswap)
    {
    	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
    		return true;
    	if (noswap || !total_swap_pages)
    		return false;
    	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
    		return true;
    	return false;
    
    }
    #if MAX_NUMNODES > 1
    
    /*
     * Always updating the nodemask is not very good - even if we have an empty
     * list or the wrong list here, we can start from some node and traverse all
     * nodes based on the zonelist. So update the list loosely once per 10 secs.
     *
     */
    static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
    {
    	int nid;
    	/*
    	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
    	 * pagein/pageout changes since the last update.
    	 */
    	if (!atomic_read(&memcg->numainfo_events))
    		return;
    	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
    		return;
    
    	/* make a nodemask where this memcg uses memory from */
    	memcg->scan_nodes = node_states[N_MEMORY];
    
    	for_each_node_mask(nid, node_states[N_MEMORY]) {
    
    		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
    			node_clear(nid, memcg->scan_nodes);
    	}
    
    	atomic_set(&memcg->numainfo_events, 0);
    	atomic_set(&memcg->numainfo_updating, 0);
    }
    
    /*
     * Selecting a node where we start reclaim from. Because what we need is just
     * reducing usage counter, start from anywhere is O,K. Considering
     * memory reclaim from current node, there are pros. and cons.
     *
     * Freeing memory from current node means freeing memory from a node which
     * we'll use or we've used. So, it may make LRU bad. And if several threads
     * hit limits, it will see a contention on a node. But freeing from remote
     * node means more costs for memory reclaim because of memory latency.
     *
     * Now, we use round-robin. Better algorithm is welcomed.
     */
    int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
    {
    	int node;
    
    	mem_cgroup_may_update_nodemask(memcg);
    	node = memcg->last_scanned_node;
    
    	node = next_node(node, memcg->scan_nodes);
    	if (node == MAX_NUMNODES)
    		node = first_node(memcg->scan_nodes);
    	/*
    	 * We call this when we hit limit, not when pages are added to LRU.
    	 * No LRU may hold pages because all pages are UNEVICTABLE or
    	 * memcg is too small and all pages are not on LRU. In that case,
    	 * we use curret node.
    	 */
    	if (unlikely(node == MAX_NUMNODES))
    		node = numa_node_id();
    
    	memcg->last_scanned_node = node;
    	return node;
    }
    
    /*
     * Check all nodes whether it contains reclaimable pages or not.
     * For quick scan, we make use of scan_nodes. This will allow us to skip
     * unused nodes. But scan_nodes is lazily updated and may not cotain
     * enough new information. We need to do double check.
     */
    static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
    {
    	int nid;
    
    	/*
    	 * quick check...making use of scan_node.
    	 * We can skip unused nodes.
    	 */
    	if (!nodes_empty(memcg->scan_nodes)) {
    		for (nid = first_node(memcg->scan_nodes);
    		     nid < MAX_NUMNODES;
    		     nid = next_node(nid, memcg->scan_nodes)) {
    
    			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
    				return true;
    		}
    	}
    	/*
    	 * Check rest of nodes.
    	 */
    	for_each_node_state(nid, N_MEMORY) {
    		if (node_isset(nid, memcg->scan_nodes))
    			continue;
    		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
    			return true;
    	}
    	return false;
    }
    
    #else
    int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
    {
    	return 0;
    }
    
    static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
    {
    	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
    }
    #endif
    
    static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
    				   struct zone *zone,
    				   gfp_t gfp_mask,
    				   unsigned long *total_scanned)
    {
    	struct mem_cgroup *victim = NULL;
    	int total = 0;
    	int loop = 0;
    	unsigned long excess;
    	unsigned long nr_scanned;
    	struct mem_cgroup_reclaim_cookie reclaim = {
    		.zone = zone,
    		.priority = 0,
    	};
    
    	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
    
    	while (1) {
    		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
    		if (!victim) {
    			loop++;
    			if (loop >= 2) {
    				/*
    				 * If we have not been able to reclaim
    				 * anything, it might because there are
    				 * no reclaimable pages under this hierarchy
    				 */
    				if (!total)
    					break;
    				/*
    				 * We want to do more targeted reclaim.
    				 * excess >> 2 is not to excessive so as to
    				 * reclaim too much, nor too less that we keep
    				 * coming back to reclaim from this cgroup
    				 */
    				if (total >= (excess >> 2) ||
    					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
    					break;
    			}
    			continue;
    		}
    		if (!mem_cgroup_reclaimable(victim, false))
    			continue;
    		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
    						     zone, &nr_scanned);
    		*total_scanned += nr_scanned;
    		if (!res_counter_soft_limit_excess(&root_memcg->res))
    			break;
    	}
    	mem_cgroup_iter_break(root_memcg, victim);
    	return total;
    }
    
    static DEFINE_SPINLOCK(memcg_oom_lock);
    
    /*
     * Check OOM-Killer is already running under our hierarchy.
     * If someone is running, return false.
     */
    static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter, *failed = NULL;
    
    	spin_lock(&memcg_oom_lock);
    
    	for_each_mem_cgroup_tree(iter, memcg) {
    		if (iter->oom_lock) {
    			/*
    			 * this subtree of our hierarchy is already locked
    			 * so we cannot give a lock.
    			 */
    			failed = iter;
    			mem_cgroup_iter_break(memcg, iter);
    			break;
    		} else
    			iter->oom_lock = true;
    	}
    
    	if (failed) {
    		/*
    		 * OK, we failed to lock the whole subtree so we have
    		 * to clean up what we set up to the failing subtree
    		 */
    		for_each_mem_cgroup_tree(iter, memcg) {
    			if (iter == failed) {
    				mem_cgroup_iter_break(memcg, iter);
    				break;
    			}
    			iter->oom_lock = false;
    		}
    	}
    
    	spin_unlock(&memcg_oom_lock);
    
    	return !failed;
    }
    
    static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	spin_lock(&memcg_oom_lock);
    	for_each_mem_cgroup_tree(iter, memcg)
    		iter->oom_lock = false;
    	spin_unlock(&memcg_oom_lock);
    }
    
    static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		atomic_inc(&iter->under_oom);
    }
    
    static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	/*
    	 * When a new child is created while the hierarchy is under oom,
    	 * mem_cgroup_oom_lock() may not be called. We have to use
    	 * atomic_add_unless() here.
    	 */
    	for_each_mem_cgroup_tree(iter, memcg)
    		atomic_add_unless(&iter->under_oom, -1, 0);
    }
    
    static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
    
    struct oom_wait_info {
    	struct mem_cgroup *memcg;
    	wait_queue_t	wait;
    };
    
    static int memcg_oom_wake_function(wait_queue_t *wait,
    	unsigned mode, int sync, void *arg)
    {
    	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
    	struct mem_cgroup *oom_wait_memcg;
    	struct oom_wait_info *oom_wait_info;
    
    	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
    	oom_wait_memcg = oom_wait_info->memcg;
    
    	/*
    	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
    	 * Then we can use css_is_ancestor without taking care of RCU.
    	 */
    	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
    		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
    		return 0;
    	return autoremove_wake_function(wait, mode, sync, arg);
    }
    
    static void memcg_wakeup_oom(struct mem_cgroup *memcg)
    {
    	atomic_inc(&memcg->oom_wakeups);
    	/* for filtering, pass "memcg" as argument. */
    	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
    }
    
    static void memcg_oom_recover(struct mem_cgroup *memcg)
    {
    	if (memcg && atomic_read(&memcg->under_oom))
    		memcg_wakeup_oom(memcg);
    }
    
    static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
    {
    	if (!current->memcg_oom.may_oom)
    		return;
    	/*
    	 * We are in the middle of the charge context here, so we
    	 * don't want to block when potentially sitting on a callstack
    	 * that holds all kinds of filesystem and mm locks.
    	 *
    	 * Also, the caller may handle a failed allocation gracefully
    	 * (like optional page cache readahead) and so an OOM killer
    	 * invocation might not even be necessary.
    	 *
    	 * That's why we don't do anything here except remember the
    	 * OOM context and then deal with it at the end of the page
    	 * fault when the stack is unwound, the locks are released,
    	 * and when we know whether the fault was overall successful.
    	 */
    	css_get(&memcg->css);
    	current->memcg_oom.memcg = memcg;
    	current->memcg_oom.gfp_mask = mask;
    	current->memcg_oom.order = order;
    }
    
    /**
     * mem_cgroup_oom_synchronize - complete memcg OOM handling
     * @handle: actually kill/wait or just clean up the OOM state
     *
     * This has to be called at the end of a page fault if the memcg OOM
     * handler was enabled.
     *
     * Memcg supports userspace OOM handling where failed allocations must
     * sleep on a waitqueue until the userspace task resolves the
     * situation.  Sleeping directly in the charge context with all kinds
     * of locks held is not a good idea, instead we remember an OOM state
     * in the task and mem_cgroup_oom_synchronize() has to be called at
     * the end of the page fault to complete the OOM handling.
     *
     * Returns %true if an ongoing memcg OOM situation was detected and
     * completed, %false otherwise.
     */
    bool mem_cgroup_oom_synchronize(bool handle)
    {
    	struct mem_cgroup *memcg = current->memcg_oom.memcg;
    	struct oom_wait_info owait;
    	bool locked;
    
    	/* OOM is global, do not handle */
    	if (!memcg)
    		return false;
    
    	if (!handle)
    		goto cleanup;
    
    	owait.memcg = memcg;
    	owait.wait.flags = 0;
    	owait.wait.func = memcg_oom_wake_function;
    	owait.wait.private = current;
    	INIT_LIST_HEAD(&owait.wait.task_list);
    
    	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
    	mem_cgroup_mark_under_oom(memcg);
    
    	locked = mem_cgroup_oom_trylock(memcg);
    
    	if (locked)
    		mem_cgroup_oom_notify(memcg);
    
    	if (locked && !memcg->oom_kill_disable) {
    		mem_cgroup_unmark_under_oom(memcg);
    		finish_wait(&memcg_oom_waitq, &owait.wait);
    		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
    					 current->memcg_oom.order);
    	} else {
    		schedule();
    		mem_cgroup_unmark_under_oom(memcg);
    		finish_wait(&memcg_oom_waitq, &owait.wait);
    	}
    
    	if (locked) {
    		mem_cgroup_oom_unlock(memcg);
    		/*
    		 * There is no guarantee that an OOM-lock contender
    		 * sees the wakeups triggered by the OOM kill
    		 * uncharges.  Wake any sleepers explicitely.
    		 */
    		memcg_oom_recover(memcg);
    	}
    cleanup:
    	current->memcg_oom.memcg = NULL;
    	css_put(&memcg->css);
    	return true;
    }
    
    /*
     * Currently used to update mapped file statistics, but the routine can be
     * generalized to update other statistics as well.
     *
     * Notes: Race condition
     *
     * We usually use page_cgroup_lock() for accessing page_cgroup member but
     * it tends to be costly. But considering some conditions, we doesn't need
     * to do so _always_.
     *
     * Considering "charge", lock_page_cgroup() is not required because all
     * file-stat operations happen after a page is attached to radix-tree. There
     * are no race with "charge".
     *
     * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
     * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
     * if there are race with "uncharge". Statistics itself is properly handled
     * by flags.
     *
     * Considering "move", this is an only case we see a race. To make the race
     * small, we check mm->moving_account and detect there are possibility of race
     * If there is, we take a lock.
     */
    
    void __mem_cgroup_begin_update_page_stat(struct page *page,
    				bool *locked, unsigned long *flags)
    {
    	struct mem_cgroup *memcg;
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup(page);
    again:
    	memcg = pc->mem_cgroup;
    	if (unlikely(!memcg || !PageCgroupUsed(pc)))
    		return;
    	/*
    	 * If this memory cgroup is not under account moving, we don't
    	 * need to take move_lock_mem_cgroup(). Because we already hold
    	 * rcu_read_lock(), any calls to move_account will be delayed until
    	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
    	 */
    	if (!mem_cgroup_stolen(memcg))
    		return;
    
    	move_lock_mem_cgroup(memcg, flags);
    	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
    		move_unlock_mem_cgroup(memcg, flags);
    		goto again;
    	}
    	*locked = true;
    }
    
    void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
    {
    	struct page_cgroup *pc = lookup_page_cgroup(page);
    
    	/*
    	 * It's guaranteed that pc->mem_cgroup never changes while
    	 * lock is held because a routine modifies pc->mem_cgroup
    	 * should take move_lock_mem_cgroup().
    	 */
    	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
    }
    
    void mem_cgroup_update_page_stat(struct page *page,
    				 enum mem_cgroup_stat_index idx, int val)
    {
    	struct mem_cgroup *memcg;
    	struct page_cgroup *pc = lookup_page_cgroup(page);
    	unsigned long uninitialized_var(flags);
    
    	if (mem_cgroup_disabled())
    		return;
    
    	VM_BUG_ON(!rcu_read_lock_held());
    	memcg = pc->mem_cgroup;
    	if (unlikely(!memcg || !PageCgroupUsed(pc)))
    		return;
    
    	this_cpu_add(memcg->stat->count[idx], val);
    }
    
    /*
     * size of first charge trial. "32" comes from vmscan.c's magic value.
     * TODO: maybe necessary to use big numbers in big irons.
     */
    #define CHARGE_BATCH	32U
    struct memcg_stock_pcp {
    	struct mem_cgroup *cached; /* this never be root cgroup */
    	unsigned int nr_pages;
    	struct work_struct work;
    	unsigned long flags;
    #define FLUSHING_CACHED_CHARGE	0
    };
    static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
    static DEFINE_MUTEX(percpu_charge_mutex);
    
    /**
     * consume_stock: Try to consume stocked charge on this cpu.
     * @memcg: memcg to consume from.
     * @nr_pages: how many pages to charge.
     *
     * The charges will only happen if @memcg matches the current cpu's memcg
     * stock, and at least @nr_pages are available in that stock.  Failure to
     * service an allocation will refill the stock.
     *
     * returns true if successful, false otherwise.
     */
    static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	struct memcg_stock_pcp *stock;
    	bool ret = true;
    
    	if (nr_pages > CHARGE_BATCH)
    		return false;
    
    	stock = &get_cpu_var(memcg_stock);
    	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
    		stock->nr_pages -= nr_pages;
    	else /* need to call res_counter_charge */
    		ret = false;
    	put_cpu_var(memcg_stock);
    	return ret;
    }
    
    /*
     * Returns stocks cached in percpu to res_counter and reset cached information.
     */
    static void drain_stock(struct memcg_stock_pcp *stock)
    {
    	struct mem_cgroup *old = stock->cached;
    
    	if (stock->nr_pages) {
    		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
    
    		res_counter_uncharge(&old->res, bytes);
    		if (do_swap_account)
    			res_counter_uncharge(&old->memsw, bytes);
    		stock->nr_pages = 0;
    	}
    	stock->cached = NULL;
    }
    
    /*
     * This must be called under preempt disabled or must be called by
     * a thread which is pinned to local cpu.
     */
    static void drain_local_stock(struct work_struct *dummy)
    {
    	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
    	drain_stock(stock);
    	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
    }
    
    static void __init memcg_stock_init(void)
    {
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		struct memcg_stock_pcp *stock =
    					&per_cpu(memcg_stock, cpu);
    		INIT_WORK(&stock->work, drain_local_stock);
    	}
    }
    
    /*
     * Cache charges(val) which is from res_counter, to local per_cpu area.
     * This will be consumed by consume_stock() function, later.
     */
    static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
    
    	if (stock->cached != memcg) { /* reset if necessary */
    		drain_stock(stock);
    		stock->cached = memcg;
    	}
    	stock->nr_pages += nr_pages;
    	put_cpu_var(memcg_stock);
    }
    
    /*
     * Drains all per-CPU charge caches for given root_memcg resp. subtree
     * of the hierarchy under it. sync flag says whether we should block
     * until the work is done.
     */
    static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
    {
    	int cpu, curcpu;
    
    	/* Notify other cpus that system-wide "drain" is running */
    	get_online_cpus();
    	curcpu = get_cpu();
    	for_each_online_cpu(cpu) {
    		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
    		struct mem_cgroup *memcg;
    
    		memcg = stock->cached;
    		if (!memcg || !stock->nr_pages)
    			continue;
    		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
    			continue;
    		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
    			if (cpu == curcpu)
    				drain_local_stock(&stock->work);
    			else
    				schedule_work_on(cpu, &stock->work);
    		}
    	}
    	put_cpu();
    
    	if (!sync)
    		goto out;
    
    	for_each_online_cpu(cpu) {
    		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
    		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
    			flush_work(&stock->work);
    	}
    out:
    	put_online_cpus();
    }
    
    /*
     * Tries to drain stocked charges in other cpus. This function is asynchronous
     * and just put a work per cpu for draining localy on each cpu. Caller can
     * expects some charges will be back to res_counter later but cannot wait for
     * it.
     */
    static void drain_all_stock_async(struct mem_cgroup *root_memcg)
    {
    	/*
    	 * If someone calls draining, avoid adding more kworker runs.
    	 */
    	if (!mutex_trylock(&percpu_charge_mutex))
    		return;
    	drain_all_stock(root_memcg, false);
    	mutex_unlock(&percpu_charge_mutex);
    }
    
    /* This is a synchronous drain interface. */
    static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
    {
    	/* called when force_empty is called */
    	mutex_lock(&percpu_charge_mutex);
    	drain_all_stock(root_memcg, true);
    	mutex_unlock(&percpu_charge_mutex);
    }
    
    /*
     * This function drains percpu counter value from DEAD cpu and
     * move it to local cpu. Note that this function can be preempted.
     */
    static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
    {
    	int i;
    
    	spin_lock(&memcg->pcp_counter_lock);
    	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    		long x = per_cpu(memcg->stat->count[i], cpu);
    
    		per_cpu(memcg->stat->count[i], cpu) = 0;
    		memcg->nocpu_base.count[i] += x;
    	}
    	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
    		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
    
    		per_cpu(memcg->stat->events[i], cpu) = 0;
    		memcg->nocpu_base.events[i] += x;
    	}
    	spin_unlock(&memcg->pcp_counter_lock);
    }
    
    static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
    					unsigned long action,
    					void *hcpu)
    {
    	int cpu = (unsigned long)hcpu;
    	struct memcg_stock_pcp *stock;
    	struct mem_cgroup *iter;
    
    	if (action == CPU_ONLINE)
    		return NOTIFY_OK;
    
    	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
    		return NOTIFY_OK;
    
    	for_each_mem_cgroup(iter)
    		mem_cgroup_drain_pcp_counter(iter, cpu);
    
    	stock = &per_cpu(memcg_stock, cpu);
    	drain_stock(stock);
    	return NOTIFY_OK;
    }
    
    
    /* See __mem_cgroup_try_charge() for details */
    enum {
    	CHARGE_OK,		/* success */
    	CHARGE_RETRY,		/* need to retry but retry is not bad */
    	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
    	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
    };
    
    static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
    				unsigned int nr_pages, unsigned int min_pages,
    				bool invoke_oom)
    {
    	unsigned long csize = nr_pages * PAGE_SIZE;
    	struct mem_cgroup *mem_over_limit;
    	struct res_counter *fail_res;
    	unsigned long flags = 0;
    	int ret;
    
    	ret = res_counter_charge(&memcg->res, csize, &fail_res);
    
    	if (likely(!ret)) {
    		if (!do_swap_account)
    			return CHARGE_OK;
    		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
    		if (likely(!ret))
    			return CHARGE_OK;
    
    		res_counter_uncharge(&memcg->res, csize);
    		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
    		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
    	} else
    		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
    	/*
    	 * Never reclaim on behalf of optional batching, retry with a
    	 * single page instead.
    	 */
    	if (nr_pages > min_pages)
    		return CHARGE_RETRY;
    
    	if (!(gfp_mask & __GFP_WAIT))
    		return CHARGE_WOULDBLOCK;
    
    	if (gfp_mask & __GFP_NORETRY)
    		return CHARGE_NOMEM;
    
    	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
    	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
    		return CHARGE_RETRY;
    	/*
    	 * Even though the limit is exceeded at this point, reclaim
    	 * may have been able to free some pages.  Retry the charge
    	 * before killing the task.
    	 *
    	 * Only for regular pages, though: huge pages are rather
    	 * unlikely to succeed so close to the limit, and we fall back
    	 * to regular pages anyway in case of failure.
    	 */
    	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
    		return CHARGE_RETRY;
    
    	/*
    	 * At task move, charge accounts can be doubly counted. So, it's
    	 * better to wait until the end of task_move if something is going on.
    	 */
    	if (mem_cgroup_wait_acct_move(mem_over_limit))
    		return CHARGE_RETRY;
    
    	if (invoke_oom)
    		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
    
    	return CHARGE_NOMEM;
    }
    
    /*
     * __mem_cgroup_try_charge() does
     * 1. detect memcg to be charged against from passed *mm and *ptr,
     * 2. update res_counter
     * 3. call memory reclaim if necessary.
     *
     * In some special case, if the task is fatal, fatal_signal_pending() or
     * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
     * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
     * as possible without any hazards. 2: all pages should have a valid
     * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
     * pointer, that is treated as a charge to root_mem_cgroup.
     *
     * So __mem_cgroup_try_charge() will return
     *  0       ...  on success, filling *ptr with a valid memcg pointer.
     *  -ENOMEM ...  charge failure because of resource limits.
     *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
     *
     * Unlike the exported interface, an "oom" parameter is added. if oom==true,
     * the oom-killer can be invoked.
     */
    static int __mem_cgroup_try_charge(struct mm_struct *mm,
    				   gfp_t gfp_mask,
    				   unsigned int nr_pages,
    				   struct mem_cgroup **ptr,
    				   bool oom)
    {
    	unsigned int batch = max(CHARGE_BATCH, nr_pages);
    	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
    	struct mem_cgroup *memcg = NULL;
    	int ret;
    
    	/*
    	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
    	 * in system level. So, allow to go ahead dying process in addition to
    	 * MEMDIE process.
    	 */
    	if (unlikely(test_thread_flag(TIF_MEMDIE)
    		     || fatal_signal_pending(current)))
    		goto bypass;
    
    	if (unlikely(task_in_memcg_oom(current)))
    		goto bypass;
    
    	/*
    	 * We always charge the cgroup the mm_struct belongs to.
    	 * The mm_struct's mem_cgroup changes on task migration if the
    	 * thread group leader migrates. It's possible that mm is not
    	 * set, if so charge the root memcg (happens for pagecache usage).
    	 */
    	if (!*ptr && !mm)
    		*ptr = root_mem_cgroup;
    again:
    	if (*ptr) { /* css should be a valid one */
    		memcg = *ptr;
    		if (mem_cgroup_is_root(memcg))
    			goto done;
    		if (consume_stock(memcg, nr_pages))
    			goto done;
    		css_get(&memcg->css);
    	} else {
    		struct task_struct *p;
    
    		rcu_read_lock();
    		p = rcu_dereference(mm->owner);
    		/*
    		 * Because we don't have task_lock(), "p" can exit.
    		 * In that case, "memcg" can point to root or p can be NULL with
    		 * race with swapoff. Then, we have small risk of mis-accouning.
    		 * But such kind of mis-account by race always happens because
    		 * we don't have cgroup_mutex(). It's overkill and we allo that
    		 * small race, here.
    		 * (*) swapoff at el will charge against mm-struct not against
    		 * task-struct. So, mm->owner can be NULL.
    		 */
    		memcg = mem_cgroup_from_task(p);
    		if (!memcg)
    			memcg = root_mem_cgroup;
    		if (mem_cgroup_is_root(memcg)) {
    			rcu_read_unlock();
    			goto done;
    		}
    		if (consume_stock(memcg, nr_pages)) {
    			/*
    			 * It seems dagerous to access memcg without css_get().
    			 * But considering how consume_stok works, it's not
    			 * necessary. If consume_stock success, some charges
    			 * from this memcg are cached on this cpu. So, we
    			 * don't need to call css_get()/css_tryget() before
    			 * calling consume_stock().
    			 */
    			rcu_read_unlock();
    			goto done;
    		}
    		/* after here, we may be blocked. we need to get refcnt */
    		if (!css_tryget(&memcg->css)) {
    			rcu_read_unlock();
    			goto again;
    		}
    		rcu_read_unlock();
    	}
    
    	do {
    		bool invoke_oom = oom && !nr_oom_retries;
    
    		/* If killed, bypass charge */
    		if (fatal_signal_pending(current)) {
    			css_put(&memcg->css);
    			goto bypass;
    		}
    
    		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
    					   nr_pages, invoke_oom);
    		switch (ret) {
    		case CHARGE_OK:
    			break;
    		case CHARGE_RETRY: /* not in OOM situation but retry */
    			batch = nr_pages;
    			css_put(&memcg->css);
    			memcg = NULL;
    			goto again;
    		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
    			css_put(&memcg->css);
    			goto nomem;
    		case CHARGE_NOMEM: /* OOM routine works */
    			if (!oom || invoke_oom) {
    				css_put(&memcg->css);
    				goto nomem;
    			}
    			nr_oom_retries--;
    			break;
    		}
    	} while (ret != CHARGE_OK);
    
    	if (batch > nr_pages)
    		refill_stock(memcg, batch - nr_pages);
    	css_put(&memcg->css);
    done:
    	*ptr = memcg;
    	return 0;
    nomem:
    	*ptr = NULL;
    	if (gfp_mask & __GFP_NOFAIL)
    		return 0;
    	return -ENOMEM;
    bypass:
    	*ptr = root_mem_cgroup;
    	return -EINTR;
    }
    
    /*
     * Somemtimes we have to undo a charge we got by try_charge().
     * This function is for that and do uncharge, put css's refcnt.
     * gotten by try_charge().
     */
    static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
    				       unsigned int nr_pages)
    {
    	if (!mem_cgroup_is_root(memcg)) {
    		unsigned long bytes = nr_pages * PAGE_SIZE;
    
    		res_counter_uncharge(&memcg->res, bytes);
    		if (do_swap_account)
    			res_counter_uncharge(&memcg->memsw, bytes);
    	}
    }
    
    /*
     * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
     * This is useful when moving usage to parent cgroup.
     */
    static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
    					unsigned int nr_pages)
    {
    	unsigned long bytes = nr_pages * PAGE_SIZE;
    
    	if (mem_cgroup_is_root(memcg))
    		return;
    
    	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
    	if (do_swap_account)
    		res_counter_uncharge_until(&memcg->memsw,
    						memcg->memsw.parent, bytes);
    }
    
    /*
     * A helper function to get mem_cgroup from ID. must be called under
     * rcu_read_lock().  The caller is responsible for calling css_tryget if
     * the mem_cgroup is used for charging. (dropping refcnt from swap can be
     * called against removed memcg.)
     */
    static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
    {
    	struct cgroup_subsys_state *css;
    
    	/* ID 0 is unused ID */
    	if (!id)
    		return NULL;
    	css = css_lookup(&mem_cgroup_subsys, id);
    	if (!css)
    		return NULL;
    	return mem_cgroup_from_css(css);
    }
    
    struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
    {
    	struct mem_cgroup *memcg = NULL;
    	struct page_cgroup *pc;
    	unsigned short id;
    	swp_entry_t ent;
    
    	VM_BUG_ON(!PageLocked(page));
    
    	pc = lookup_page_cgroup(page);
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    		if (memcg && !css_tryget(&memcg->css))
    			memcg = NULL;
    	} else if (PageSwapCache(page)) {
    		ent.val = page_private(page);
    		id = lookup_swap_cgroup_id(ent);
    		rcu_read_lock();
    		memcg = mem_cgroup_lookup(id);
    		if (memcg && !css_tryget(&memcg->css))
    			memcg = NULL;
    		rcu_read_unlock();
    	}
    	unlock_page_cgroup(pc);
    	return memcg;
    }
    
    static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
    				       struct page *page,
    				       unsigned int nr_pages,
    				       enum charge_type ctype,
    				       bool lrucare)
    {
    	struct page_cgroup *pc = lookup_page_cgroup(page);
    	struct zone *uninitialized_var(zone);
    	struct lruvec *lruvec;
    	bool was_on_lru = false;
    	bool anon;
    
    	lock_page_cgroup(pc);
    	VM_BUG_ON(PageCgroupUsed(pc));
    	/*
    	 * we don't need page_cgroup_lock about tail pages, becase they are not
    	 * accessed by any other context at this point.
    	 */
    
    	/*
    	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
    	 * may already be on some other mem_cgroup's LRU.  Take care of it.
    	 */
    	if (lrucare) {
    		zone = page_zone(page);
    		spin_lock_irq(&zone->lru_lock);
    		if (PageLRU(page)) {
    			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
    			ClearPageLRU(page);
    			del_page_from_lru_list(page, lruvec, page_lru(page));
    			was_on_lru = true;
    		}
    	}
    
    	pc->mem_cgroup = memcg;
    	/*
    	 * We access a page_cgroup asynchronously without lock_page_cgroup().
    	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
    	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
    	 * before USED bit, we need memory barrier here.
    	 * See mem_cgroup_add_lru_list(), etc.
    	 */
    	smp_wmb();
    	SetPageCgroupUsed(pc);
    
    	if (lrucare) {
    		if (was_on_lru) {
    			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
    			VM_BUG_ON(PageLRU(page));
    			SetPageLRU(page);
    			add_page_to_lru_list(page, lruvec, page_lru(page));
    		}
    		spin_unlock_irq(&zone->lru_lock);
    	}
    
    	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
    		anon = true;
    	else
    		anon = false;
    
    	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
    	unlock_page_cgroup(pc);
    
    	/*
    	 * "charge_statistics" updated event counter. Then, check it.
    	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
    	 * if they exceeds softlimit.
    	 */
    	memcg_check_events(memcg, page);
    }
    
    static DEFINE_MUTEX(set_limit_mutex);
    
    #ifdef CONFIG_MEMCG_KMEM
    static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
    {
    	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
    		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
    }
    
    /*
     * This is a bit cumbersome, but it is rarely used and avoids a backpointer
     * in the memcg_cache_params struct.
     */
    static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
    {
    	struct kmem_cache *cachep;
    
    	VM_BUG_ON(p->is_root_cache);
    	cachep = p->root_cache;
    	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
    }
    
    #ifdef CONFIG_SLABINFO
    static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
    				    struct cftype *cft, struct seq_file *m)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct memcg_cache_params *params;
    
    	if (!memcg_can_account_kmem(memcg))
    		return -EIO;
    
    	print_slabinfo_header(m);
    
    	mutex_lock(&memcg->slab_caches_mutex);
    	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
    		cache_show(memcg_params_to_cache(params), m);
    	mutex_unlock(&memcg->slab_caches_mutex);
    
    	return 0;
    }
    #endif
    
    static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
    {
    	struct res_counter *fail_res;
    	struct mem_cgroup *_memcg;
    	int ret = 0;
    	bool may_oom;
    
    	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
    	if (ret)
    		return ret;
    
    	/*
    	 * Conditions under which we can wait for the oom_killer. Those are
    	 * the same conditions tested by the core page allocator
    	 */
    	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
    
    	_memcg = memcg;
    	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
    				      &_memcg, may_oom);
    
    	if (ret == -EINTR)  {
    		/*
    		 * __mem_cgroup_try_charge() chosed to bypass to root due to
    		 * OOM kill or fatal signal.  Since our only options are to
    		 * either fail the allocation or charge it to this cgroup, do
    		 * it as a temporary condition. But we can't fail. From a
    		 * kmem/slab perspective, the cache has already been selected,
    		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
    		 * our minds.
    		 *
    		 * This condition will only trigger if the task entered
    		 * memcg_charge_kmem in a sane state, but was OOM-killed during
    		 * __mem_cgroup_try_charge() above. Tasks that were already
    		 * dying when the allocation triggers should have been already
    		 * directed to the root cgroup in memcontrol.h
    		 */
    		res_counter_charge_nofail(&memcg->res, size, &fail_res);
    		if (do_swap_account)
    			res_counter_charge_nofail(&memcg->memsw, size,
    						  &fail_res);
    		ret = 0;
    	} else if (ret)
    		res_counter_uncharge(&memcg->kmem, size);
    
    	return ret;
    }
    
    static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
    {
    	res_counter_uncharge(&memcg->res, size);
    	if (do_swap_account)
    		res_counter_uncharge(&memcg->memsw, size);
    
    	/* Not down to 0 */
    	if (res_counter_uncharge(&memcg->kmem, size))
    		return;
    
    	/*
    	 * Releases a reference taken in kmem_cgroup_css_offline in case
    	 * this last uncharge is racing with the offlining code or it is
    	 * outliving the memcg existence.
    	 *
    	 * The memory barrier imposed by test&clear is paired with the
    	 * explicit one in memcg_kmem_mark_dead().
    	 */
    	if (memcg_kmem_test_and_clear_dead(memcg))
    		css_put(&memcg->css);
    }
    
    void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
    {
    	if (!memcg)
    		return;
    
    	mutex_lock(&memcg->slab_caches_mutex);
    	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
    	mutex_unlock(&memcg->slab_caches_mutex);
    }
    
    /*
     * helper for acessing a memcg's index. It will be used as an index in the
     * child cache array in kmem_cache, and also to derive its name. This function
     * will return -1 when this is not a kmem-limited memcg.
     */
    int memcg_cache_id(struct mem_cgroup *memcg)
    {
    	return memcg ? memcg->kmemcg_id : -1;
    }
    
    /*
     * This ends up being protected by the set_limit mutex, during normal
     * operation, because that is its main call site.
     *
     * But when we create a new cache, we can call this as well if its parent
     * is kmem-limited. That will have to hold set_limit_mutex as well.
     */
    int memcg_update_cache_sizes(struct mem_cgroup *memcg)
    {
    	int num, ret;
    
    	num = ida_simple_get(&kmem_limited_groups,
    				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
    	if (num < 0)
    		return num;
    	/*
    	 * After this point, kmem_accounted (that we test atomically in
    	 * the beginning of this conditional), is no longer 0. This
    	 * guarantees only one process will set the following boolean
    	 * to true. We don't need test_and_set because we're protected
    	 * by the set_limit_mutex anyway.
    	 */
    	memcg_kmem_set_activated(memcg);
    
    	ret = memcg_update_all_caches(num+1);
    	if (ret) {
    		ida_simple_remove(&kmem_limited_groups, num);
    		memcg_kmem_clear_activated(memcg);
    		return ret;
    	}
    
    	memcg->kmemcg_id = num;
    	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
    	mutex_init(&memcg->slab_caches_mutex);
    	return 0;
    }
    
    static size_t memcg_caches_array_size(int num_groups)
    {
    	ssize_t size;
    	if (num_groups <= 0)
    		return 0;
    
    	size = 2 * num_groups;
    	if (size < MEMCG_CACHES_MIN_SIZE)
    		size = MEMCG_CACHES_MIN_SIZE;
    	else if (size > MEMCG_CACHES_MAX_SIZE)
    		size = MEMCG_CACHES_MAX_SIZE;
    
    	return size;
    }
    
    /*
     * We should update the current array size iff all caches updates succeed. This
     * can only be done from the slab side. The slab mutex needs to be held when
     * calling this.
     */
    void memcg_update_array_size(int num)
    {
    	if (num > memcg_limited_groups_array_size)
    		memcg_limited_groups_array_size = memcg_caches_array_size(num);
    }
    
    static void kmem_cache_destroy_work_func(struct work_struct *w);
    
    int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
    {
    	struct memcg_cache_params *cur_params = s->memcg_params;
    
    	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
    
    	if (num_groups > memcg_limited_groups_array_size) {
    		int i;
    		ssize_t size = memcg_caches_array_size(num_groups);
    
    		size *= sizeof(void *);
    		size += offsetof(struct memcg_cache_params, memcg_caches);
    
    		s->memcg_params = kzalloc(size, GFP_KERNEL);
    		if (!s->memcg_params) {
    			s->memcg_params = cur_params;
    			return -ENOMEM;
    		}
    
    		s->memcg_params->is_root_cache = true;
    
    		/*
    		 * There is the chance it will be bigger than
    		 * memcg_limited_groups_array_size, if we failed an allocation
    		 * in a cache, in which case all caches updated before it, will
    		 * have a bigger array.
    		 *
    		 * But if that is the case, the data after
    		 * memcg_limited_groups_array_size is certainly unused
    		 */
    		for (i = 0; i < memcg_limited_groups_array_size; i++) {
    			if (!cur_params->memcg_caches[i])
    				continue;
    			s->memcg_params->memcg_caches[i] =
    						cur_params->memcg_caches[i];
    		}
    
    		/*
    		 * Ideally, we would wait until all caches succeed, and only
    		 * then free the old one. But this is not worth the extra
    		 * pointer per-cache we'd have to have for this.
    		 *
    		 * It is not a big deal if some caches are left with a size
    		 * bigger than the others. And all updates will reset this
    		 * anyway.
    		 */
    		kfree(cur_params);
    	}
    	return 0;
    }
    
    int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
    			 struct kmem_cache *root_cache)
    {
    	size_t size;
    
    	if (!memcg_kmem_enabled())
    		return 0;
    
    	if (!memcg) {
    		size = offsetof(struct memcg_cache_params, memcg_caches);
    		size += memcg_limited_groups_array_size * sizeof(void *);
    	} else
    		size = sizeof(struct memcg_cache_params);
    
    	s->memcg_params = kzalloc(size, GFP_KERNEL);
    	if (!s->memcg_params)
    		return -ENOMEM;
    
    	if (memcg) {
    		s->memcg_params->memcg = memcg;
    		s->memcg_params->root_cache = root_cache;
    		INIT_WORK(&s->memcg_params->destroy,
    				kmem_cache_destroy_work_func);
    	} else
    		s->memcg_params->is_root_cache = true;
    
    	return 0;
    }
    
    void memcg_release_cache(struct kmem_cache *s)
    {
    	struct kmem_cache *root;
    	struct mem_cgroup *memcg;
    	int id;
    
    	/*
    	 * This happens, for instance, when a root cache goes away before we
    	 * add any memcg.
    	 */
    	if (!s->memcg_params)
    		return;
    
    	if (s->memcg_params->is_root_cache)
    		goto out;
    
    	memcg = s->memcg_params->memcg;
    	id  = memcg_cache_id(memcg);
    
    	root = s->memcg_params->root_cache;
    	root->memcg_params->memcg_caches[id] = NULL;
    
    	mutex_lock(&memcg->slab_caches_mutex);
    	list_del(&s->memcg_params->list);
    	mutex_unlock(&memcg->slab_caches_mutex);
    
    	css_put(&memcg->css);
    out:
    	kfree(s->memcg_params);
    }
    
    /*
     * During the creation a new cache, we need to disable our accounting mechanism
     * altogether. This is true even if we are not creating, but rather just
     * enqueing new caches to be created.
     *
     * This is because that process will trigger allocations; some visible, like
     * explicit kmallocs to auxiliary data structures, name strings and internal
     * cache structures; some well concealed, like INIT_WORK() that can allocate
     * objects during debug.
     *
     * If any allocation happens during memcg_kmem_get_cache, we will recurse back
     * to it. This may not be a bounded recursion: since the first cache creation
     * failed to complete (waiting on the allocation), we'll just try to create the
     * cache again, failing at the same point.
     *
     * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
     * memcg_kmem_skip_account. So we enclose anything that might allocate memory
     * inside the following two functions.
     */
    static inline void memcg_stop_kmem_account(void)
    {
    	VM_BUG_ON(!current->mm);
    	current->memcg_kmem_skip_account++;
    }
    
    static inline void memcg_resume_kmem_account(void)
    {
    	VM_BUG_ON(!current->mm);
    	current->memcg_kmem_skip_account--;
    }
    
    static void kmem_cache_destroy_work_func(struct work_struct *w)
    {
    	struct kmem_cache *cachep;
    	struct memcg_cache_params *p;
    
    	p = container_of(w, struct memcg_cache_params, destroy);
    
    	cachep = memcg_params_to_cache(p);
    
    	/*
    	 * If we get down to 0 after shrink, we could delete right away.
    	 * However, memcg_release_pages() already puts us back in the workqueue
    	 * in that case. If we proceed deleting, we'll get a dangling
    	 * reference, and removing the object from the workqueue in that case
    	 * is unnecessary complication. We are not a fast path.
    	 *
    	 * Note that this case is fundamentally different from racing with
    	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
    	 * kmem_cache_shrink, not only we would be reinserting a dead cache
    	 * into the queue, but doing so from inside the worker racing to
    	 * destroy it.
    	 *
    	 * So if we aren't down to zero, we'll just schedule a worker and try
    	 * again
    	 */
    	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
    		kmem_cache_shrink(cachep);
    		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
    			return;
    	} else
    		kmem_cache_destroy(cachep);
    }
    
    void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
    {
    	if (!cachep->memcg_params->dead)
    		return;
    
    	/*
    	 * There are many ways in which we can get here.
    	 *
    	 * We can get to a memory-pressure situation while the delayed work is
    	 * still pending to run. The vmscan shrinkers can then release all
    	 * cache memory and get us to destruction. If this is the case, we'll
    	 * be executed twice, which is a bug (the second time will execute over
    	 * bogus data). In this case, cancelling the work should be fine.
    	 *
    	 * But we can also get here from the worker itself, if
    	 * kmem_cache_shrink is enough to shake all the remaining objects and
    	 * get the page count to 0. In this case, we'll deadlock if we try to
    	 * cancel the work (the worker runs with an internal lock held, which
    	 * is the same lock we would hold for cancel_work_sync().)
    	 *
    	 * Since we can't possibly know who got us here, just refrain from
    	 * running if there is already work pending
    	 */
    	if (work_pending(&cachep->memcg_params->destroy))
    		return;
    	/*
    	 * We have to defer the actual destroying to a workqueue, because
    	 * we might currently be in a context that cannot sleep.
    	 */
    	schedule_work(&cachep->memcg_params->destroy);
    }
    
    /*
     * This lock protects updaters, not readers. We want readers to be as fast as
     * they can, and they will either see NULL or a valid cache value. Our model
     * allow them to see NULL, in which case the root memcg will be selected.
     *
     * We need this lock because multiple allocations to the same cache from a non
     * will span more than one worker. Only one of them can create the cache.
     */
    static DEFINE_MUTEX(memcg_cache_mutex);
    
    /*
     * Called with memcg_cache_mutex held
     */
    static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
    					 struct kmem_cache *s)
    {
    	struct kmem_cache *new;
    	static char *tmp_name = NULL;
    
    	lockdep_assert_held(&memcg_cache_mutex);
    
    	/*
    	 * kmem_cache_create_memcg duplicates the given name and
    	 * cgroup_name for this name requires RCU context.
    	 * This static temporary buffer is used to prevent from
    	 * pointless shortliving allocation.
    	 */
    	if (!tmp_name) {
    		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
    		if (!tmp_name)
    			return NULL;
    	}
    
    	rcu_read_lock();
    	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
    			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
    	rcu_read_unlock();
    
    	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
    				      (s->flags & ~SLAB_PANIC), s->ctor, s);
    
    	if (new)
    		new->allocflags |= __GFP_KMEMCG;
    
    	return new;
    }
    
    static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
    						  struct kmem_cache *cachep)
    {
    	struct kmem_cache *new_cachep;
    	int idx;
    
    	BUG_ON(!memcg_can_account_kmem(memcg));
    
    	idx = memcg_cache_id(memcg);
    
    	mutex_lock(&memcg_cache_mutex);
    	new_cachep = cachep->memcg_params->memcg_caches[idx];
    	if (new_cachep) {
    		css_put(&memcg->css);
    		goto out;
    	}
    
    	new_cachep = kmem_cache_dup(memcg, cachep);
    	if (new_cachep == NULL) {
    		new_cachep = cachep;
    		css_put(&memcg->css);
    		goto out;
    	}
    
    	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
    
    	cachep->memcg_params->memcg_caches[idx] = new_cachep;
    	/*
    	 * the readers won't lock, make sure everybody sees the updated value,
    	 * so they won't put stuff in the queue again for no reason
    	 */
    	wmb();
    out:
    	mutex_unlock(&memcg_cache_mutex);
    	return new_cachep;
    }
    
    void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
    {
    	struct kmem_cache *c;
    	int i;
    
    	if (!s->memcg_params)
    		return;
    	if (!s->memcg_params->is_root_cache)
    		return;
    
    	/*
    	 * If the cache is being destroyed, we trust that there is no one else
    	 * requesting objects from it. Even if there are, the sanity checks in
    	 * kmem_cache_destroy should caught this ill-case.
    	 *
    	 * Still, we don't want anyone else freeing memcg_caches under our
    	 * noses, which can happen if a new memcg comes to life. As usual,
    	 * we'll take the set_limit_mutex to protect ourselves against this.
    	 */
    	mutex_lock(&set_limit_mutex);
    	for (i = 0; i < memcg_limited_groups_array_size; i++) {
    		c = s->memcg_params->memcg_caches[i];
    		if (!c)
    			continue;
    
    		/*
    		 * We will now manually delete the caches, so to avoid races
    		 * we need to cancel all pending destruction workers and
    		 * proceed with destruction ourselves.
    		 *
    		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
    		 * and that could spawn the workers again: it is likely that
    		 * the cache still have active pages until this very moment.
    		 * This would lead us back to mem_cgroup_destroy_cache.
    		 *
    		 * But that will not execute at all if the "dead" flag is not
    		 * set, so flip it down to guarantee we are in control.
    		 */
    		c->memcg_params->dead = false;
    		cancel_work_sync(&c->memcg_params->destroy);
    		kmem_cache_destroy(c);
    	}
    	mutex_unlock(&set_limit_mutex);
    }
    
    struct create_work {
    	struct mem_cgroup *memcg;
    	struct kmem_cache *cachep;
    	struct work_struct work;
    };
    
    static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
    {
    	struct kmem_cache *cachep;
    	struct memcg_cache_params *params;
    
    	if (!memcg_kmem_is_active(memcg))
    		return;
    
    	mutex_lock(&memcg->slab_caches_mutex);
    	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
    		cachep = memcg_params_to_cache(params);
    		cachep->memcg_params->dead = true;
    		schedule_work(&cachep->memcg_params->destroy);
    	}
    	mutex_unlock(&memcg->slab_caches_mutex);
    }
    
    static void memcg_create_cache_work_func(struct work_struct *w)
    {
    	struct create_work *cw;
    
    	cw = container_of(w, struct create_work, work);
    	memcg_create_kmem_cache(cw->memcg, cw->cachep);
    	kfree(cw);
    }
    
    /*
     * Enqueue the creation of a per-memcg kmem_cache.
     */
    static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
    					 struct kmem_cache *cachep)
    {
    	struct create_work *cw;
    
    	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
    	if (cw == NULL) {
    		css_put(&memcg->css);
    		return;
    	}
    
    	cw->memcg = memcg;
    	cw->cachep = cachep;
    
    	INIT_WORK(&cw->work, memcg_create_cache_work_func);
    	schedule_work(&cw->work);
    }
    
    static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
    				       struct kmem_cache *cachep)
    {
    	/*
    	 * We need to stop accounting when we kmalloc, because if the
    	 * corresponding kmalloc cache is not yet created, the first allocation
    	 * in __memcg_create_cache_enqueue will recurse.
    	 *
    	 * However, it is better to enclose the whole function. Depending on
    	 * the debugging options enabled, INIT_WORK(), for instance, can
    	 * trigger an allocation. This too, will make us recurse. Because at
    	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
    	 * the safest choice is to do it like this, wrapping the whole function.
    	 */
    	memcg_stop_kmem_account();
    	__memcg_create_cache_enqueue(memcg, cachep);
    	memcg_resume_kmem_account();
    }
    /*
     * Return the kmem_cache we're supposed to use for a slab allocation.
     * We try to use the current memcg's version of the cache.
     *
     * If the cache does not exist yet, if we are the first user of it,
     * we either create it immediately, if possible, or create it asynchronously
     * in a workqueue.
     * In the latter case, we will let the current allocation go through with
     * the original cache.
     *
     * Can't be called in interrupt context or from kernel threads.
     * This function needs to be called with rcu_read_lock() held.
     */
    struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
    					  gfp_t gfp)
    {
    	struct mem_cgroup *memcg;
    	int idx;
    
    	VM_BUG_ON(!cachep->memcg_params);
    	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
    
    	if (!current->mm || current->memcg_kmem_skip_account)
    		return cachep;
    
    	rcu_read_lock();
    	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
    
    	if (!memcg_can_account_kmem(memcg))
    		goto out;
    
    	idx = memcg_cache_id(memcg);
    
    	/*
    	 * barrier to mare sure we're always seeing the up to date value.  The
    	 * code updating memcg_caches will issue a write barrier to match this.
    	 */
    	read_barrier_depends();
    	if (likely(cachep->memcg_params->memcg_caches[idx])) {
    		cachep = cachep->memcg_params->memcg_caches[idx];
    		goto out;
    	}
    
    	/* The corresponding put will be done in the workqueue. */
    	if (!css_tryget(&memcg->css))
    		goto out;
    	rcu_read_unlock();
    
    	/*
    	 * If we are in a safe context (can wait, and not in interrupt
    	 * context), we could be be predictable and return right away.
    	 * This would guarantee that the allocation being performed
    	 * already belongs in the new cache.
    	 *
    	 * However, there are some clashes that can arrive from locking.
    	 * For instance, because we acquire the slab_mutex while doing
    	 * kmem_cache_dup, this means no further allocation could happen
    	 * with the slab_mutex held.
    	 *
    	 * Also, because cache creation issue get_online_cpus(), this
    	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
    	 * that ends up reversed during cpu hotplug. (cpuset allocates
    	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
    	 * better to defer everything.
    	 */
    	memcg_create_cache_enqueue(memcg, cachep);
    	return cachep;
    out:
    	rcu_read_unlock();
    	return cachep;
    }
    EXPORT_SYMBOL(__memcg_kmem_get_cache);
    
    /*
     * We need to verify if the allocation against current->mm->owner's memcg is
     * possible for the given order. But the page is not allocated yet, so we'll
     * need a further commit step to do the final arrangements.
     *
     * It is possible for the task to switch cgroups in this mean time, so at
     * commit time, we can't rely on task conversion any longer.  We'll then use
     * the handle argument to return to the caller which cgroup we should commit
     * against. We could also return the memcg directly and avoid the pointer
     * passing, but a boolean return value gives better semantics considering
     * the compiled-out case as well.
     *
     * Returning true means the allocation is possible.
     */
    bool
    __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
    {
    	struct mem_cgroup *memcg;
    	int ret;
    
    	*_memcg = NULL;
    
    	/*
    	 * Disabling accounting is only relevant for some specific memcg
    	 * internal allocations. Therefore we would initially not have such
    	 * check here, since direct calls to the page allocator that are marked
    	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
    	 * concerned with cache allocations, and by having this test at
    	 * memcg_kmem_get_cache, we are already able to relay the allocation to
    	 * the root cache and bypass the memcg cache altogether.
    	 *
    	 * There is one exception, though: the SLUB allocator does not create
    	 * large order caches, but rather service large kmallocs directly from
    	 * the page allocator. Therefore, the following sequence when backed by
    	 * the SLUB allocator:
    	 *
    	 *	memcg_stop_kmem_account();
    	 *	kmalloc(<large_number>)
    	 *	memcg_resume_kmem_account();
    	 *
    	 * would effectively ignore the fact that we should skip accounting,
    	 * since it will drive us directly to this function without passing
    	 * through the cache selector memcg_kmem_get_cache. Such large
    	 * allocations are extremely rare but can happen, for instance, for the
    	 * cache arrays. We bring this test here.
    	 */
    	if (!current->mm || current->memcg_kmem_skip_account)
    		return true;
    
    	memcg = try_get_mem_cgroup_from_mm(current->mm);
    
    	/*
    	 * very rare case described in mem_cgroup_from_task. Unfortunately there
    	 * isn't much we can do without complicating this too much, and it would
    	 * be gfp-dependent anyway. Just let it go
    	 */
    	if (unlikely(!memcg))
    		return true;
    
    	if (!memcg_can_account_kmem(memcg)) {
    		css_put(&memcg->css);
    		return true;
    	}
    
    	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
    	if (!ret)
    		*_memcg = memcg;
    
    	css_put(&memcg->css);
    	return (ret == 0);
    }
    
    void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
    			      int order)
    {
    	struct page_cgroup *pc;
    
    	VM_BUG_ON(mem_cgroup_is_root(memcg));
    
    	/* The page allocation failed. Revert */
    	if (!page) {
    		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
    		return;
    	}
    
    	pc = lookup_page_cgroup(page);
    	lock_page_cgroup(pc);
    	pc->mem_cgroup = memcg;
    	SetPageCgroupUsed(pc);
    	unlock_page_cgroup(pc);
    }
    
    void __memcg_kmem_uncharge_pages(struct page *page, int order)
    {
    	struct mem_cgroup *memcg = NULL;
    	struct page_cgroup *pc;
    
    
    	pc = lookup_page_cgroup(page);
    	/*
    	 * Fast unlocked return. Theoretically might have changed, have to
    	 * check again after locking.
    	 */
    	if (!PageCgroupUsed(pc))
    		return;
    
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    		ClearPageCgroupUsed(pc);
    	}
    	unlock_page_cgroup(pc);
    
    	/*
    	 * We trust that only if there is a memcg associated with the page, it
    	 * is a valid allocation
    	 */
    	if (!memcg)
    		return;
    
    	VM_BUG_ON(mem_cgroup_is_root(memcg));
    	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
    }
    #else
    static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
    {
    }
    #endif /* CONFIG_MEMCG_KMEM */
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    
    #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
    /*
     * Because tail pages are not marked as "used", set it. We're under
     * zone->lru_lock, 'splitting on pmd' and compound_lock.
     * charge/uncharge will be never happen and move_account() is done under
     * compound_lock(), so we don't have to take care of races.
     */
    void mem_cgroup_split_huge_fixup(struct page *head)
    {
    	struct page_cgroup *head_pc = lookup_page_cgroup(head);
    	struct page_cgroup *pc;
    	struct mem_cgroup *memcg;
    	int i;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	memcg = head_pc->mem_cgroup;
    	for (i = 1; i < HPAGE_PMD_NR; i++) {
    		pc = head_pc + i;
    		pc->mem_cgroup = memcg;
    		smp_wmb();/* see __commit_charge() */
    		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
    	}
    	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
    		       HPAGE_PMD_NR);
    }
    #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    
    static inline
    void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
    					struct mem_cgroup *to,
    					unsigned int nr_pages,
    					enum mem_cgroup_stat_index idx)
    {
    	/* Update stat data for mem_cgroup */
    	preempt_disable();
    	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
    	__this_cpu_add(from->stat->count[idx], -nr_pages);
    	__this_cpu_add(to->stat->count[idx], nr_pages);
    	preempt_enable();
    }
    
    /**
     * mem_cgroup_move_account - move account of the page
     * @page: the page
     * @nr_pages: number of regular pages (>1 for huge pages)
     * @pc:	page_cgroup of the page.
     * @from: mem_cgroup which the page is moved from.
     * @to:	mem_cgroup which the page is moved to. @from != @to.
     *
     * The caller must confirm following.
     * - page is not on LRU (isolate_page() is useful.)
     * - compound_lock is held when nr_pages > 1
     *
     * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
     * from old cgroup.
     */
    static int mem_cgroup_move_account(struct page *page,
    				   unsigned int nr_pages,
    				   struct page_cgroup *pc,
    				   struct mem_cgroup *from,
    				   struct mem_cgroup *to)
    {
    	unsigned long flags;
    	int ret;
    	bool anon = PageAnon(page);
    
    	VM_BUG_ON(from == to);
    	VM_BUG_ON(PageLRU(page));
    	/*
    	 * The page is isolated from LRU. So, collapse function
    	 * will not handle this page. But page splitting can happen.
    	 * Do this check under compound_page_lock(). The caller should
    	 * hold it.
    	 */
    	ret = -EBUSY;
    	if (nr_pages > 1 && !PageTransHuge(page))
    		goto out;
    
    	lock_page_cgroup(pc);
    
    	ret = -EINVAL;
    	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
    		goto unlock;
    
    	move_lock_mem_cgroup(from, &flags);
    
    	if (!anon && page_mapped(page))
    		mem_cgroup_move_account_page_stat(from, to, nr_pages,
    			MEM_CGROUP_STAT_FILE_MAPPED);
    
    	if (PageWriteback(page))
    		mem_cgroup_move_account_page_stat(from, to, nr_pages,
    			MEM_CGROUP_STAT_WRITEBACK);
    
    	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
    
    	/* caller should have done css_get */
    	pc->mem_cgroup = to;
    	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
    	move_unlock_mem_cgroup(from, &flags);
    	ret = 0;
    unlock:
    	unlock_page_cgroup(pc);
    	/*
    	 * check events
    	 */
    	memcg_check_events(to, page);
    	memcg_check_events(from, page);
    out:
    	return ret;
    }
    
    /**
     * mem_cgroup_move_parent - moves page to the parent group
     * @page: the page to move
     * @pc: page_cgroup of the page
     * @child: page's cgroup
     *
     * move charges to its parent or the root cgroup if the group has no
     * parent (aka use_hierarchy==0).
     * Although this might fail (get_page_unless_zero, isolate_lru_page or
     * mem_cgroup_move_account fails) the failure is always temporary and
     * it signals a race with a page removal/uncharge or migration. In the
     * first case the page is on the way out and it will vanish from the LRU
     * on the next attempt and the call should be retried later.
     * Isolation from the LRU fails only if page has been isolated from
     * the LRU since we looked at it and that usually means either global
     * reclaim or migration going on. The page will either get back to the
     * LRU or vanish.
     * Finaly mem_cgroup_move_account fails only if the page got uncharged
     * (!PageCgroupUsed) or moved to a different group. The page will
     * disappear in the next attempt.
     */
    static int mem_cgroup_move_parent(struct page *page,
    				  struct page_cgroup *pc,
    				  struct mem_cgroup *child)
    {
    	struct mem_cgroup *parent;
    	unsigned int nr_pages;
    	unsigned long uninitialized_var(flags);
    	int ret;
    
    	VM_BUG_ON(mem_cgroup_is_root(child));
    
    	ret = -EBUSY;
    	if (!get_page_unless_zero(page))
    		goto out;
    	if (isolate_lru_page(page))
    		goto put;
    
    	nr_pages = hpage_nr_pages(page);
    
    	parent = parent_mem_cgroup(child);
    	/*
    	 * If no parent, move charges to root cgroup.
    	 */
    	if (!parent)
    		parent = root_mem_cgroup;
    
    	if (nr_pages > 1) {
    		VM_BUG_ON(!PageTransHuge(page));
    		flags = compound_lock_irqsave(page);
    	}
    
    	ret = mem_cgroup_move_account(page, nr_pages,
    				pc, child, parent);
    	if (!ret)
    		__mem_cgroup_cancel_local_charge(child, nr_pages);
    
    	if (nr_pages > 1)
    		compound_unlock_irqrestore(page, flags);
    	putback_lru_page(page);
    put:
    	put_page(page);
    out:
    	return ret;
    }
    
    /*
     * Charge the memory controller for page usage.
     * Return
     * 0 if the charge was successful
     * < 0 if the cgroup is over its limit
     */
    static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask, enum charge_type ctype)
    {
    	struct mem_cgroup *memcg = NULL;
    	unsigned int nr_pages = 1;
    	bool oom = true;
    	int ret;
    
    	if (PageTransHuge(page)) {
    		nr_pages <<= compound_order(page);
    		VM_BUG_ON(!PageTransHuge(page));
    		/*
    		 * Never OOM-kill a process for a huge page.  The
    		 * fault handler will fall back to regular pages.
    		 */
    		oom = false;
    	}
    
    	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
    	if (ret == -ENOMEM)
    		return ret;
    	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
    	return 0;
    }
    
    int mem_cgroup_newpage_charge(struct page *page,
    			      struct mm_struct *mm, gfp_t gfp_mask)
    {
    	if (mem_cgroup_disabled())
    		return 0;
    	VM_BUG_ON(page_mapped(page));
    	VM_BUG_ON(page->mapping && !PageAnon(page));
    	VM_BUG_ON(!mm);
    	return mem_cgroup_charge_common(page, mm, gfp_mask,
    					MEM_CGROUP_CHARGE_TYPE_ANON);
    }
    
    /*
     * While swap-in, try_charge -> commit or cancel, the page is locked.
     * And when try_charge() successfully returns, one refcnt to memcg without
     * struct page_cgroup is acquired. This refcnt will be consumed by
     * "commit()" or removed by "cancel()"
     */
    static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
    					  struct page *page,
    					  gfp_t mask,
    					  struct mem_cgroup **memcgp)
    {
    	struct mem_cgroup *memcg;
    	struct page_cgroup *pc;
    	int ret;
    
    	pc = lookup_page_cgroup(page);
    	/*
    	 * Every swap fault against a single page tries to charge the
    	 * page, bail as early as possible.  shmem_unuse() encounters
    	 * already charged pages, too.  The USED bit is protected by
    	 * the page lock, which serializes swap cache removal, which
    	 * in turn serializes uncharging.
    	 */
    	if (PageCgroupUsed(pc))
    		return 0;
    	if (!do_swap_account)
    		goto charge_cur_mm;
    	memcg = try_get_mem_cgroup_from_page(page);
    	if (!memcg)
    		goto charge_cur_mm;
    	*memcgp = memcg;
    	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
    	css_put(&memcg->css);
    	if (ret == -EINTR)
    		ret = 0;
    	return ret;
    charge_cur_mm:
    	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
    	if (ret == -EINTR)
    		ret = 0;
    	return ret;
    }
    
    int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
    				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
    {
    	*memcgp = NULL;
    	if (mem_cgroup_disabled())
    		return 0;
    	/*
    	 * A racing thread's fault, or swapoff, may have already
    	 * updated the pte, and even removed page from swap cache: in
    	 * those cases unuse_pte()'s pte_same() test will fail; but
    	 * there's also a KSM case which does need to charge the page.
    	 */
    	if (!PageSwapCache(page)) {
    		int ret;
    
    		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
    		if (ret == -EINTR)
    			ret = 0;
    		return ret;
    	}
    	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
    }
    
    void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
    {
    	if (mem_cgroup_disabled())
    		return;
    	if (!memcg)
    		return;
    	__mem_cgroup_cancel_charge(memcg, 1);
    }
    
    static void
    __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
    					enum charge_type ctype)
    {
    	if (mem_cgroup_disabled())
    		return;
    	if (!memcg)
    		return;
    
    	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
    	/*
    	 * Now swap is on-memory. This means this page may be
    	 * counted both as mem and swap....double count.
    	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
    	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
    	 * may call delete_from_swap_cache() before reach here.
    	 */
    	if (do_swap_account && PageSwapCache(page)) {
    		swp_entry_t ent = {.val = page_private(page)};
    		mem_cgroup_uncharge_swap(ent);
    	}
    }
    
    void mem_cgroup_commit_charge_swapin(struct page *page,
    				     struct mem_cgroup *memcg)
    {
    	__mem_cgroup_commit_charge_swapin(page, memcg,
    					  MEM_CGROUP_CHARGE_TYPE_ANON);
    }
    
    int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask)
    {
    	struct mem_cgroup *memcg = NULL;
    	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
    	int ret;
    
    	if (mem_cgroup_disabled())
    		return 0;
    	if (PageCompound(page))
    		return 0;
    
    	if (!PageSwapCache(page))
    		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
    	else { /* page is swapcache/shmem */
    		ret = __mem_cgroup_try_charge_swapin(mm, page,
    						     gfp_mask, &memcg);
    		if (!ret)
    			__mem_cgroup_commit_charge_swapin(page, memcg, type);
    	}
    	return ret;
    }
    
    static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
    				   unsigned int nr_pages,
    				   const enum charge_type ctype)
    {
    	struct memcg_batch_info *batch = NULL;
    	bool uncharge_memsw = true;
    
    	/* If swapout, usage of swap doesn't decrease */
    	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
    		uncharge_memsw = false;
    
    	batch = &current->memcg_batch;
    	/*
    	 * In usual, we do css_get() when we remember memcg pointer.
    	 * But in this case, we keep res->usage until end of a series of
    	 * uncharges. Then, it's ok to ignore memcg's refcnt.
    	 */
    	if (!batch->memcg)
    		batch->memcg = memcg;
    	/*
    	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
    	 * In those cases, all pages freed continuously can be expected to be in
    	 * the same cgroup and we have chance to coalesce uncharges.
    	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
    	 * because we want to do uncharge as soon as possible.
    	 */
    
    	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
    		goto direct_uncharge;
    
    	if (nr_pages > 1)
    		goto direct_uncharge;
    
    	/*
    	 * In typical case, batch->memcg == mem. This means we can
    	 * merge a series of uncharges to an uncharge of res_counter.
    	 * If not, we uncharge res_counter ony by one.
    	 */
    	if (batch->memcg != memcg)
    		goto direct_uncharge;
    	/* remember freed charge and uncharge it later */
    	batch->nr_pages++;
    	if (uncharge_memsw)
    		batch->memsw_nr_pages++;
    	return;
    direct_uncharge:
    	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
    	if (uncharge_memsw)
    		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
    	if (unlikely(batch->memcg != memcg))
    		memcg_oom_recover(memcg);
    }
    
    /*
     * uncharge if !page_mapped(page)
     */
    static struct mem_cgroup *
    __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
    			     bool end_migration)
    {
    	struct mem_cgroup *memcg = NULL;
    	unsigned int nr_pages = 1;
    	struct page_cgroup *pc;
    	bool anon;
    
    	if (mem_cgroup_disabled())
    		return NULL;
    
    	if (PageTransHuge(page)) {
    		nr_pages <<= compound_order(page);
    		VM_BUG_ON(!PageTransHuge(page));
    	}
    	/*
    	 * Check if our page_cgroup is valid
    	 */
    	pc = lookup_page_cgroup(page);
    	if (unlikely(!PageCgroupUsed(pc)))
    		return NULL;
    
    	lock_page_cgroup(pc);
    
    	memcg = pc->mem_cgroup;
    
    	if (!PageCgroupUsed(pc))
    		goto unlock_out;
    
    	anon = PageAnon(page);
    
    	switch (ctype) {
    	case MEM_CGROUP_CHARGE_TYPE_ANON:
    		/*
    		 * Generally PageAnon tells if it's the anon statistics to be
    		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
    		 * used before page reached the stage of being marked PageAnon.
    		 */
    		anon = true;
    		/* fallthrough */
    	case MEM_CGROUP_CHARGE_TYPE_DROP:
    		/* See mem_cgroup_prepare_migration() */
    		if (page_mapped(page))
    			goto unlock_out;
    		/*
    		 * Pages under migration may not be uncharged.  But
    		 * end_migration() /must/ be the one uncharging the
    		 * unused post-migration page and so it has to call
    		 * here with the migration bit still set.  See the
    		 * res_counter handling below.
    		 */
    		if (!end_migration && PageCgroupMigration(pc))
    			goto unlock_out;
    		break;
    	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
    		if (!PageAnon(page)) {	/* Shared memory */
    			if (page->mapping && !page_is_file_cache(page))
    				goto unlock_out;
    		} else if (page_mapped(page)) /* Anon */
    				goto unlock_out;
    		break;
    	default:
    		break;
    	}
    
    	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
    
    	ClearPageCgroupUsed(pc);
    	/*
    	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
    	 * freed from LRU. This is safe because uncharged page is expected not
    	 * to be reused (freed soon). Exception is SwapCache, it's handled by
    	 * special functions.
    	 */
    
    	unlock_page_cgroup(pc);
    	/*
    	 * even after unlock, we have memcg->res.usage here and this memcg
    	 * will never be freed, so it's safe to call css_get().
    	 */
    	memcg_check_events(memcg, page);
    	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
    		mem_cgroup_swap_statistics(memcg, true);
    		css_get(&memcg->css);
    	}
    	/*
    	 * Migration does not charge the res_counter for the
    	 * replacement page, so leave it alone when phasing out the
    	 * page that is unused after the migration.
    	 */
    	if (!end_migration && !mem_cgroup_is_root(memcg))
    		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
    
    	return memcg;
    
    unlock_out:
    	unlock_page_cgroup(pc);
    	return NULL;
    }
    
    void mem_cgroup_uncharge_page(struct page *page)
    {
    	/* early check. */
    	if (page_mapped(page))
    		return;
    	VM_BUG_ON(page->mapping && !PageAnon(page));
    	/*
    	 * If the page is in swap cache, uncharge should be deferred
    	 * to the swap path, which also properly accounts swap usage
    	 * and handles memcg lifetime.
    	 *
    	 * Note that this check is not stable and reclaim may add the
    	 * page to swap cache at any time after this.  However, if the
    	 * page is not in swap cache by the time page->mapcount hits
    	 * 0, there won't be any page table references to the swap
    	 * slot, and reclaim will free it and not actually write the
    	 * page to disk.
    	 */
    	if (PageSwapCache(page))
    		return;
    	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
    }
    
    void mem_cgroup_uncharge_cache_page(struct page *page)
    {
    	VM_BUG_ON(page_mapped(page));
    	VM_BUG_ON(page->mapping);
    	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
    }
    
    /*
     * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
     * In that cases, pages are freed continuously and we can expect pages
     * are in the same memcg. All these calls itself limits the number of
     * pages freed at once, then uncharge_start/end() is called properly.
     * This may be called prural(2) times in a context,
     */
    
    void mem_cgroup_uncharge_start(void)
    {
    	current->memcg_batch.do_batch++;
    	/* We can do nest. */
    	if (current->memcg_batch.do_batch == 1) {
    		current->memcg_batch.memcg = NULL;
    		current->memcg_batch.nr_pages = 0;
    		current->memcg_batch.memsw_nr_pages = 0;
    	}
    }
    
    void mem_cgroup_uncharge_end(void)
    {
    	struct memcg_batch_info *batch = &current->memcg_batch;
    
    	if (!batch->do_batch)
    		return;
    
    	batch->do_batch--;
    	if (batch->do_batch) /* If stacked, do nothing. */
    		return;
    
    	if (!batch->memcg)
    		return;
    	/*
    	 * This "batch->memcg" is valid without any css_get/put etc...
    	 * bacause we hide charges behind us.
    	 */
    	if (batch->nr_pages)
    		res_counter_uncharge(&batch->memcg->res,
    				     batch->nr_pages * PAGE_SIZE);
    	if (batch->memsw_nr_pages)
    		res_counter_uncharge(&batch->memcg->memsw,
    				     batch->memsw_nr_pages * PAGE_SIZE);
    	memcg_oom_recover(batch->memcg);
    	/* forget this pointer (for sanity check) */
    	batch->memcg = NULL;
    }
    
    #ifdef CONFIG_SWAP
    /*
     * called after __delete_from_swap_cache() and drop "page" account.
     * memcg information is recorded to swap_cgroup of "ent"
     */
    void
    mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
    {
    	struct mem_cgroup *memcg;
    	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
    
    	if (!swapout) /* this was a swap cache but the swap is unused ! */
    		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
    
    	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
    
    	/*
    	 * record memcg information,  if swapout && memcg != NULL,
    	 * css_get() was called in uncharge().
    	 */
    	if (do_swap_account && swapout && memcg)
    		swap_cgroup_record(ent, css_id(&memcg->css));
    }
    #endif
    
    #ifdef CONFIG_MEMCG_SWAP
    /*
     * called from swap_entry_free(). remove record in swap_cgroup and
     * uncharge "memsw" account.
     */
    void mem_cgroup_uncharge_swap(swp_entry_t ent)
    {
    	struct mem_cgroup *memcg;
    	unsigned short id;
    
    	if (!do_swap_account)
    		return;
    
    	id = swap_cgroup_record(ent, 0);
    	rcu_read_lock();
    	memcg = mem_cgroup_lookup(id);
    	if (memcg) {
    		/*
    		 * We uncharge this because swap is freed.
    		 * This memcg can be obsolete one. We avoid calling css_tryget
    		 */
    		if (!mem_cgroup_is_root(memcg))
    			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
    		mem_cgroup_swap_statistics(memcg, false);
    		css_put(&memcg->css);
    	}
    	rcu_read_unlock();
    }
    
    /**
     * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
     * @entry: swap entry to be moved
     * @from:  mem_cgroup which the entry is moved from
     * @to:  mem_cgroup which the entry is moved to
     *
     * It succeeds only when the swap_cgroup's record for this entry is the same
     * as the mem_cgroup's id of @from.
     *
     * Returns 0 on success, -EINVAL on failure.
     *
     * The caller must have charged to @to, IOW, called res_counter_charge() about
     * both res and memsw, and called css_get().
     */
    static int mem_cgroup_move_swap_account(swp_entry_t entry,
    				struct mem_cgroup *from, struct mem_cgroup *to)
    {
    	unsigned short old_id, new_id;
    
    	old_id = css_id(&from->css);
    	new_id = css_id(&to->css);
    
    	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
    		mem_cgroup_swap_statistics(from, false);
    		mem_cgroup_swap_statistics(to, true);
    		/*
    		 * This function is only called from task migration context now.
    		 * It postpones res_counter and refcount handling till the end
    		 * of task migration(mem_cgroup_clear_mc()) for performance
    		 * improvement. But we cannot postpone css_get(to)  because if
    		 * the process that has been moved to @to does swap-in, the
    		 * refcount of @to might be decreased to 0.
    		 *
    		 * We are in attach() phase, so the cgroup is guaranteed to be
    		 * alive, so we can just call css_get().
    		 */
    		css_get(&to->css);
    		return 0;
    	}
    	return -EINVAL;
    }
    #else
    static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
    				struct mem_cgroup *from, struct mem_cgroup *to)
    {
    	return -EINVAL;
    }
    #endif
    
    /*
     * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
     * page belongs to.
     */
    void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
    				  struct mem_cgroup **memcgp)
    {
    	struct mem_cgroup *memcg = NULL;
    	unsigned int nr_pages = 1;
    	struct page_cgroup *pc;
    	enum charge_type ctype;
    
    	*memcgp = NULL;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	if (PageTransHuge(page))
    		nr_pages <<= compound_order(page);
    
    	pc = lookup_page_cgroup(page);
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    		css_get(&memcg->css);
    		/*
    		 * At migrating an anonymous page, its mapcount goes down
    		 * to 0 and uncharge() will be called. But, even if it's fully
    		 * unmapped, migration may fail and this page has to be
    		 * charged again. We set MIGRATION flag here and delay uncharge
    		 * until end_migration() is called
    		 *
    		 * Corner Case Thinking
    		 * A)
    		 * When the old page was mapped as Anon and it's unmap-and-freed
    		 * while migration was ongoing.
    		 * If unmap finds the old page, uncharge() of it will be delayed
    		 * until end_migration(). If unmap finds a new page, it's
    		 * uncharged when it make mapcount to be 1->0. If unmap code
    		 * finds swap_migration_entry, the new page will not be mapped
    		 * and end_migration() will find it(mapcount==0).
    		 *
    		 * B)
    		 * When the old page was mapped but migraion fails, the kernel
    		 * remaps it. A charge for it is kept by MIGRATION flag even
    		 * if mapcount goes down to 0. We can do remap successfully
    		 * without charging it again.
    		 *
    		 * C)
    		 * The "old" page is under lock_page() until the end of
    		 * migration, so, the old page itself will not be swapped-out.
    		 * If the new page is swapped out before end_migraton, our
    		 * hook to usual swap-out path will catch the event.
    		 */
    		if (PageAnon(page))
    			SetPageCgroupMigration(pc);
    	}
    	unlock_page_cgroup(pc);
    	/*
    	 * If the page is not charged at this point,
    	 * we return here.
    	 */
    	if (!memcg)
    		return;
    
    	*memcgp = memcg;
    	/*
    	 * We charge new page before it's used/mapped. So, even if unlock_page()
    	 * is called before end_migration, we can catch all events on this new
    	 * page. In the case new page is migrated but not remapped, new page's
    	 * mapcount will be finally 0 and we call uncharge in end_migration().
    	 */
    	if (PageAnon(page))
    		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
    	else
    		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
    	/*
    	 * The page is committed to the memcg, but it's not actually
    	 * charged to the res_counter since we plan on replacing the
    	 * old one and only one page is going to be left afterwards.
    	 */
    	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
    }
    
    /* remove redundant charge if migration failed*/
    void mem_cgroup_end_migration(struct mem_cgroup *memcg,
    	struct page *oldpage, struct page *newpage, bool migration_ok)
    {
    	struct page *used, *unused;
    	struct page_cgroup *pc;
    	bool anon;
    
    	if (!memcg)
    		return;
    
    	if (!migration_ok) {
    		used = oldpage;
    		unused = newpage;
    	} else {
    		used = newpage;
    		unused = oldpage;
    	}
    	anon = PageAnon(used);
    	__mem_cgroup_uncharge_common(unused,
    				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
    				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
    				     true);
    	css_put(&memcg->css);
    	/*
    	 * We disallowed uncharge of pages under migration because mapcount
    	 * of the page goes down to zero, temporarly.
    	 * Clear the flag and check the page should be charged.
    	 */
    	pc = lookup_page_cgroup(oldpage);
    	lock_page_cgroup(pc);
    	ClearPageCgroupMigration(pc);
    	unlock_page_cgroup(pc);
    
    	/*
    	 * If a page is a file cache, radix-tree replacement is very atomic
    	 * and we can skip this check. When it was an Anon page, its mapcount
    	 * goes down to 0. But because we added MIGRATION flage, it's not
    	 * uncharged yet. There are several case but page->mapcount check
    	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
    	 * check. (see prepare_charge() also)
    	 */
    	if (anon)
    		mem_cgroup_uncharge_page(used);
    }
    
    /*
     * At replace page cache, newpage is not under any memcg but it's on
     * LRU. So, this function doesn't touch res_counter but handles LRU
     * in correct way. Both pages are locked so we cannot race with uncharge.
     */
    void mem_cgroup_replace_page_cache(struct page *oldpage,
    				  struct page *newpage)
    {
    	struct mem_cgroup *memcg = NULL;
    	struct page_cgroup *pc;
    	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	pc = lookup_page_cgroup(oldpage);
    	/* fix accounting on old pages */
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
    		ClearPageCgroupUsed(pc);
    	}
    	unlock_page_cgroup(pc);
    
    	/*
    	 * When called from shmem_replace_page(), in some cases the
    	 * oldpage has already been charged, and in some cases not.
    	 */
    	if (!memcg)
    		return;
    	/*
    	 * Even if newpage->mapping was NULL before starting replacement,
    	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
    	 * LRU while we overwrite pc->mem_cgroup.
    	 */
    	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
    }
    
    #ifdef CONFIG_DEBUG_VM
    static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup(page);
    	/*
    	 * Can be NULL while feeding pages into the page allocator for
    	 * the first time, i.e. during boot or memory hotplug;
    	 * or when mem_cgroup_disabled().
    	 */
    	if (likely(pc) && PageCgroupUsed(pc))
    		return pc;
    	return NULL;
    }
    
    bool mem_cgroup_bad_page_check(struct page *page)
    {
    	if (mem_cgroup_disabled())
    		return false;
    
    	return lookup_page_cgroup_used(page) != NULL;
    }
    
    void mem_cgroup_print_bad_page(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup_used(page);
    	if (pc) {
    		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
    			 pc, pc->flags, pc->mem_cgroup);
    	}
    }
    #endif
    
    static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
    				unsigned long long val)
    {
    	int retry_count;
    	u64 memswlimit, memlimit;
    	int ret = 0;
    	int children = mem_cgroup_count_children(memcg);
    	u64 curusage, oldusage;
    	int enlarge;
    
    	/*
    	 * For keeping hierarchical_reclaim simple, how long we should retry
    	 * is depends on callers. We set our retry-count to be function
    	 * of # of children which we should visit in this loop.
    	 */
    	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
    
    	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    
    	enlarge = 0;
    	while (retry_count) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
    		 */
    		mutex_lock(&set_limit_mutex);
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    			break;
    		}
    
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit < val)
    			enlarge = 1;
    
    		ret = res_counter_set_limit(&memcg->res, val);
    		if (!ret) {
    			if (memswlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_SHRINK);
    		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    		/* Usage is reduced ? */
    		if (curusage >= oldusage)
    			retry_count--;
    		else
    			oldusage = curusage;
    	}
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    	return ret;
    }
    
    static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
    					unsigned long long val)
    {
    	int retry_count;
    	u64 memlimit, memswlimit, oldusage, curusage;
    	int children = mem_cgroup_count_children(memcg);
    	int ret = -EBUSY;
    	int enlarge = 0;
    
    	/* see mem_cgroup_resize_res_limit */
    	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
    	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    	while (retry_count) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
    		 */
    		mutex_lock(&set_limit_mutex);
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit > val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    			break;
    		}
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val)
    			enlarge = 1;
    		ret = res_counter_set_limit(&memcg->memsw, val);
    		if (!ret) {
    			if (memlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_NOSWAP |
    				   MEM_CGROUP_RECLAIM_SHRINK);
    		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    		/* Usage is reduced ? */
    		if (curusage >= oldusage)
    			retry_count--;
    		else
    			oldusage = curusage;
    	}
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    	return ret;
    }
    
    unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
    					    gfp_t gfp_mask,
    					    unsigned long *total_scanned)
    {
    	unsigned long nr_reclaimed = 0;
    	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
    	unsigned long reclaimed;
    	int loop = 0;
    	struct mem_cgroup_tree_per_zone *mctz;
    	unsigned long long excess;
    	unsigned long nr_scanned;
    
    	if (order > 0)
    		return 0;
    
    	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
    	/*
    	 * This loop can run a while, specially if mem_cgroup's continuously
    	 * keep exceeding their soft limit and putting the system under
    	 * pressure
    	 */
    	do {
    		if (next_mz)
    			mz = next_mz;
    		else
    			mz = mem_cgroup_largest_soft_limit_node(mctz);
    		if (!mz)
    			break;
    
    		nr_scanned = 0;
    		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
    						    gfp_mask, &nr_scanned);
    		nr_reclaimed += reclaimed;
    		*total_scanned += nr_scanned;
    		spin_lock(&mctz->lock);
    
    		/*
    		 * If we failed to reclaim anything from this memory cgroup
    		 * it is time to move on to the next cgroup
    		 */
    		next_mz = NULL;
    		if (!reclaimed) {
    			do {
    				/*
    				 * Loop until we find yet another one.
    				 *
    				 * By the time we get the soft_limit lock
    				 * again, someone might have aded the
    				 * group back on the RB tree. Iterate to
    				 * make sure we get a different mem.
    				 * mem_cgroup_largest_soft_limit_node returns
    				 * NULL if no other cgroup is present on
    				 * the tree
    				 */
    				next_mz =
    				__mem_cgroup_largest_soft_limit_node(mctz);
    				if (next_mz == mz)
    					css_put(&next_mz->memcg->css);
    				else /* next_mz == NULL or other memcg */
    					break;
    			} while (1);
    		}
    		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
    		excess = res_counter_soft_limit_excess(&mz->memcg->res);
    		/*
    		 * One school of thought says that we should not add
    		 * back the node to the tree if reclaim returns 0.
    		 * But our reclaim could return 0, simply because due
    		 * to priority we are exposing a smaller subset of
    		 * memory to reclaim from. Consider this as a longer
    		 * term TODO.
    		 */
    		/* If excess == 0, no tree ops */
    		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
    		spin_unlock(&mctz->lock);
    		css_put(&mz->memcg->css);
    		loop++;
    		/*
    		 * Could not reclaim anything and there are no more
    		 * mem cgroups to try or we seem to be looping without
    		 * reclaiming anything.
    		 */
    		if (!nr_reclaimed &&
    			(next_mz == NULL ||
    			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
    			break;
    	} while (!nr_reclaimed);
    	if (next_mz)
    		css_put(&next_mz->memcg->css);
    	return nr_reclaimed;
    }
    
    /**
     * mem_cgroup_force_empty_list - clears LRU of a group
     * @memcg: group to clear
     * @node: NUMA node
     * @zid: zone id
     * @lru: lru to to clear
     *
     * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
     * reclaim the pages page themselves - pages are moved to the parent (or root)
     * group.
     */
    static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
    				int node, int zid, enum lru_list lru)
    {
    	struct lruvec *lruvec;
    	unsigned long flags;
    	struct list_head *list;
    	struct page *busy;
    	struct zone *zone;
    
    	zone = &NODE_DATA(node)->node_zones[zid];
    	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
    	list = &lruvec->lists[lru];
    
    	busy = NULL;
    	do {
    		struct page_cgroup *pc;
    		struct page *page;
    
    		spin_lock_irqsave(&zone->lru_lock, flags);
    		if (list_empty(list)) {
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    			break;
    		}
    		page = list_entry(list->prev, struct page, lru);
    		if (busy == page) {
    			list_move(&page->lru, list);
    			busy = NULL;
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    			continue;
    		}
    		spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		pc = lookup_page_cgroup(page);
    
    		if (mem_cgroup_move_parent(page, pc, memcg)) {
    			/* found lock contention or "pc" is obsolete. */
    			busy = page;
    			cond_resched();
    		} else
    			busy = NULL;
    	} while (!list_empty(list));
    }
    
    /*
     * make mem_cgroup's charge to be 0 if there is no task by moving
     * all the charges and pages to the parent.
     * This enables deleting this mem_cgroup.
     *
     * Caller is responsible for holding css reference on the memcg.
     */
    static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
    {
    	int node, zid;
    	u64 usage;
    
    	do {
    		/* This is for making all *used* pages to be on LRU. */
    		lru_add_drain_all();
    		drain_all_stock_sync(memcg);
    		mem_cgroup_start_move(memcg);
    		for_each_node_state(node, N_MEMORY) {
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				enum lru_list lru;
    				for_each_lru(lru) {
    					mem_cgroup_force_empty_list(memcg,
    							node, zid, lru);
    				}
    			}
    		}
    		mem_cgroup_end_move(memcg);
    		memcg_oom_recover(memcg);
    		cond_resched();
    
    		/*
    		 * Kernel memory may not necessarily be trackable to a specific
    		 * process. So they are not migrated, and therefore we can't
    		 * expect their value to drop to 0 here.
    		 * Having res filled up with kmem only is enough.
    		 *
    		 * This is a safety check because mem_cgroup_force_empty_list
    		 * could have raced with mem_cgroup_replace_page_cache callers
    		 * so the lru seemed empty but the page could have been added
    		 * right after the check. RES_USAGE should be safe as we always
    		 * charge before adding to the LRU.
    		 */
    		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
    			res_counter_read_u64(&memcg->kmem, RES_USAGE);
    	} while (usage > 0);
    }
    
    /*
     * This mainly exists for tests during the setting of set of use_hierarchy.
     * Since this is the very setting we are changing, the current hierarchy value
     * is meaningless
     */
    static inline bool __memcg_has_children(struct mem_cgroup *memcg)
    {
    	struct cgroup_subsys_state *pos;
    
    	/* bounce at first found */
    	css_for_each_child(pos, &memcg->css)
    		return true;
    	return false;
    }
    
    /*
     * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
     * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
     * from mem_cgroup_count_children(), in the sense that we don't really care how
     * many children we have; we only need to know if we have any.  It also counts
     * any memcg without hierarchy as infertile.
     */
    static inline bool memcg_has_children(struct mem_cgroup *memcg)
    {
    	return memcg->use_hierarchy && __memcg_has_children(memcg);
    }
    
    /*
     * Reclaims as many pages from the given memcg as possible and moves
     * the rest to the parent.
     *
     * Caller is responsible for holding css reference for memcg.
     */
    static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
    {
    	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    	struct cgroup *cgrp = memcg->css.cgroup;
    
    	/* returns EBUSY if there is a task or if we come here twice. */
    	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
    		return -EBUSY;
    
    	/* we call try-to-free pages for make this cgroup empty */
    	lru_add_drain_all();
    	/* try to free all pages in this cgroup */
    	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
    		int progress;
    
    		if (signal_pending(current))
    			return -EINTR;
    
    		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
    						false);
    		if (!progress) {
    			nr_retries--;
    			/* maybe some writeback is necessary */
    			congestion_wait(BLK_RW_ASYNC, HZ/10);
    		}
    
    	}
    	lru_add_drain();
    	mem_cgroup_reparent_charges(memcg);
    
    	return 0;
    }
    
    static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
    					unsigned int event)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	if (mem_cgroup_is_root(memcg))
    		return -EINVAL;
    	return mem_cgroup_force_empty(memcg);
    }
    
    static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
    				     struct cftype *cft)
    {
    	return mem_cgroup_from_css(css)->use_hierarchy;
    }
    
    static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
    				      struct cftype *cft, u64 val)
    {
    	int retval = 0;
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
    
    	mutex_lock(&memcg_create_mutex);
    
    	if (memcg->use_hierarchy == val)
    		goto out;
    
    	/*
    	 * If parent's use_hierarchy is set, we can't make any modifications
    	 * in the child subtrees. If it is unset, then the change can
    	 * occur, provided the current cgroup has no children.
    	 *
    	 * For the root cgroup, parent_mem is NULL, we allow value to be
    	 * set if there are no children.
    	 */
    	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
    				(val == 1 || val == 0)) {
    		if (!__memcg_has_children(memcg))
    			memcg->use_hierarchy = val;
    		else
    			retval = -EBUSY;
    	} else
    		retval = -EINVAL;
    
    out:
    	mutex_unlock(&memcg_create_mutex);
    
    	return retval;
    }
    
    
    static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
    					       enum mem_cgroup_stat_index idx)
    {
    	struct mem_cgroup *iter;
    	long val = 0;
    
    	/* Per-cpu values can be negative, use a signed accumulator */
    	for_each_mem_cgroup_tree(iter, memcg)
    		val += mem_cgroup_read_stat(iter, idx);
    
    	if (val < 0) /* race ? */
    		val = 0;
    	return val;
    }
    
    static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
    {
    	u64 val;
    
    	if (!mem_cgroup_is_root(memcg)) {
    		if (!swap)
    			return res_counter_read_u64(&memcg->res, RES_USAGE);
    		else
    			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
    	}
    
    	/*
    	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
    	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
    	 */
    	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
    	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
    
    	if (swap)
    		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
    
    	return val << PAGE_SHIFT;
    }
    
    static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
    			       struct cftype *cft, struct file *file,
    			       char __user *buf, size_t nbytes, loff_t *ppos)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	char str[64];
    	u64 val;
    	int name, len;
    	enum res_type type;
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    	switch (type) {
    	case _MEM:
    		if (name == RES_USAGE)
    			val = mem_cgroup_usage(memcg, false);
    		else
    			val = res_counter_read_u64(&memcg->res, name);
    		break;
    	case _MEMSWAP:
    		if (name == RES_USAGE)
    			val = mem_cgroup_usage(memcg, true);
    		else
    			val = res_counter_read_u64(&memcg->memsw, name);
    		break;
    	case _KMEM:
    		val = res_counter_read_u64(&memcg->kmem, name);
    		break;
    	default:
    		BUG();
    	}
    
    	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
    	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
    }
    
    static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
    {
    	int ret = -EINVAL;
    #ifdef CONFIG_MEMCG_KMEM
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	/*
    	 * For simplicity, we won't allow this to be disabled.  It also can't
    	 * be changed if the cgroup has children already, or if tasks had
    	 * already joined.
    	 *
    	 * If tasks join before we set the limit, a person looking at
    	 * kmem.usage_in_bytes will have no way to determine when it took
    	 * place, which makes the value quite meaningless.
    	 *
    	 * After it first became limited, changes in the value of the limit are
    	 * of course permitted.
    	 */
    	mutex_lock(&memcg_create_mutex);
    	mutex_lock(&set_limit_mutex);
    	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
    		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
    			ret = -EBUSY;
    			goto out;
    		}
    		ret = res_counter_set_limit(&memcg->kmem, val);
    		VM_BUG_ON(ret);
    
    		ret = memcg_update_cache_sizes(memcg);
    		if (ret) {
    			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
    			goto out;
    		}
    		static_key_slow_inc(&memcg_kmem_enabled_key);
    		/*
    		 * setting the active bit after the inc will guarantee no one
    		 * starts accounting before all call sites are patched
    		 */
    		memcg_kmem_set_active(memcg);
    	} else
    		ret = res_counter_set_limit(&memcg->kmem, val);
    out:
    	mutex_unlock(&set_limit_mutex);
    	mutex_unlock(&memcg_create_mutex);
    #endif
    	return ret;
    }
    
    #ifdef CONFIG_MEMCG_KMEM
    static int memcg_propagate_kmem(struct mem_cgroup *memcg)
    {
    	int ret = 0;
    	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
    	if (!parent)
    		goto out;
    
    	memcg->kmem_account_flags = parent->kmem_account_flags;
    	/*
    	 * When that happen, we need to disable the static branch only on those
    	 * memcgs that enabled it. To achieve this, we would be forced to
    	 * complicate the code by keeping track of which memcgs were the ones
    	 * that actually enabled limits, and which ones got it from its
    	 * parents.
    	 *
    	 * It is a lot simpler just to do static_key_slow_inc() on every child
    	 * that is accounted.
    	 */
    	if (!memcg_kmem_is_active(memcg))
    		goto out;
    
    	/*
    	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
    	 * memcg is active already. If the later initialization fails then the
    	 * cgroup core triggers the cleanup so we do not have to do it here.
    	 */
    	static_key_slow_inc(&memcg_kmem_enabled_key);
    
    	mutex_lock(&set_limit_mutex);
    	memcg_stop_kmem_account();
    	ret = memcg_update_cache_sizes(memcg);
    	memcg_resume_kmem_account();
    	mutex_unlock(&set_limit_mutex);
    out:
    	return ret;
    }
    #endif /* CONFIG_MEMCG_KMEM */
    
    /*
     * The user of this function is...
     * RES_LIMIT.
     */
    static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
    			    const char *buffer)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	enum res_type type;
    	int name;
    	unsigned long long val;
    	int ret;
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    	switch (name) {
    	case RES_LIMIT:
    		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
    			ret = -EINVAL;
    			break;
    		}
    		/* This function does all necessary parse...reuse it */
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    		if (ret)
    			break;
    		if (type == _MEM)
    			ret = mem_cgroup_resize_limit(memcg, val);
    		else if (type == _MEMSWAP)
    			ret = mem_cgroup_resize_memsw_limit(memcg, val);
    		else if (type == _KMEM)
    			ret = memcg_update_kmem_limit(css, val);
    		else
    			return -EINVAL;
    		break;
    	case RES_SOFT_LIMIT:
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    		if (ret)
    			break;
    		/*
    		 * For memsw, soft limits are hard to implement in terms
    		 * of semantics, for now, we support soft limits for
    		 * control without swap
    		 */
    		if (type == _MEM)
    			ret = res_counter_set_soft_limit(&memcg->res, val);
    		else
    			ret = -EINVAL;
    		break;
    	default:
    		ret = -EINVAL; /* should be BUG() ? */
    		break;
    	}
    	return ret;
    }
    
    static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
    		unsigned long long *mem_limit, unsigned long long *memsw_limit)
    {
    	unsigned long long min_limit, min_memsw_limit, tmp;
    
    	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    	if (!memcg->use_hierarchy)
    		goto out;
    
    	while (css_parent(&memcg->css)) {
    		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
    		if (!memcg->use_hierarchy)
    			break;
    		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		min_limit = min(min_limit, tmp);
    		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		min_memsw_limit = min(min_memsw_limit, tmp);
    	}
    out:
    	*mem_limit = min_limit;
    	*memsw_limit = min_memsw_limit;
    }
    
    static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	int name;
    	enum res_type type;
    
    	type = MEMFILE_TYPE(event);
    	name = MEMFILE_ATTR(event);
    
    	switch (name) {
    	case RES_MAX_USAGE:
    		if (type == _MEM)
    			res_counter_reset_max(&memcg->res);
    		else if (type == _MEMSWAP)
    			res_counter_reset_max(&memcg->memsw);
    		else if (type == _KMEM)
    			res_counter_reset_max(&memcg->kmem);
    		else
    			return -EINVAL;
    		break;
    	case RES_FAILCNT:
    		if (type == _MEM)
    			res_counter_reset_failcnt(&memcg->res);
    		else if (type == _MEMSWAP)
    			res_counter_reset_failcnt(&memcg->memsw);
    		else if (type == _KMEM)
    			res_counter_reset_failcnt(&memcg->kmem);
    		else
    			return -EINVAL;
    		break;
    	}
    
    	return 0;
    }
    
    static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
    					struct cftype *cft)
    {
    	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
    }
    
    #ifdef CONFIG_MMU
    static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
    					struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	if (val >= (1 << NR_MOVE_TYPE))
    		return -EINVAL;
    
    	/*
    	 * No kind of locking is needed in here, because ->can_attach() will
    	 * check this value once in the beginning of the process, and then carry
    	 * on with stale data. This means that changes to this value will only
    	 * affect task migrations starting after the change.
    	 */
    	memcg->move_charge_at_immigrate = val;
    	return 0;
    }
    #else
    static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
    					struct cftype *cft, u64 val)
    {
    	return -ENOSYS;
    }
    #endif
    
    #ifdef CONFIG_NUMA
    static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
    				struct cftype *cft, struct seq_file *m)
    {
    	int nid;
    	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
    	unsigned long node_nr;
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
    	seq_printf(m, "total=%lu", total_nr);
    	for_each_node_state(nid, N_MEMORY) {
    		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
    	seq_printf(m, "file=%lu", file_nr);
    	for_each_node_state(nid, N_MEMORY) {
    		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
    				LRU_ALL_FILE);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
    	seq_printf(m, "anon=%lu", anon_nr);
    	for_each_node_state(nid, N_MEMORY) {
    		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
    				LRU_ALL_ANON);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
    	seq_printf(m, "unevictable=%lu", unevictable_nr);
    	for_each_node_state(nid, N_MEMORY) {
    		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
    				BIT(LRU_UNEVICTABLE));
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    	return 0;
    }
    #endif /* CONFIG_NUMA */
    
    static inline void mem_cgroup_lru_names_not_uptodate(void)
    {
    	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
    }
    
    static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
    				 struct seq_file *m)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *mi;
    	unsigned int i;
    
    	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
    			continue;
    		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
    			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
    	}
    
    	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
    		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
    			   mem_cgroup_read_events(memcg, i));
    
    	for (i = 0; i < NR_LRU_LISTS; i++)
    		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
    			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
    
    	/* Hierarchical information */
    	{
    		unsigned long long limit, memsw_limit;
    		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
    		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
    		if (do_swap_account)
    			seq_printf(m, "hierarchical_memsw_limit %llu\n",
    				   memsw_limit);
    	}
    
    	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    		long long val = 0;
    
    		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
    			continue;
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
    		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
    	}
    
    	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
    		unsigned long long val = 0;
    
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_read_events(mi, i);
    		seq_printf(m, "total_%s %llu\n",
    			   mem_cgroup_events_names[i], val);
    	}
    
    	for (i = 0; i < NR_LRU_LISTS; i++) {
    		unsigned long long val = 0;
    
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
    		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
    	}
    
    #ifdef CONFIG_DEBUG_VM
    	{
    		int nid, zid;
    		struct mem_cgroup_per_zone *mz;
    		struct zone_reclaim_stat *rstat;
    		unsigned long recent_rotated[2] = {0, 0};
    		unsigned long recent_scanned[2] = {0, 0};
    
    		for_each_online_node(nid)
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
    				rstat = &mz->lruvec.reclaim_stat;
    
    				recent_rotated[0] += rstat->recent_rotated[0];
    				recent_rotated[1] += rstat->recent_rotated[1];
    				recent_scanned[0] += rstat->recent_scanned[0];
    				recent_scanned[1] += rstat->recent_scanned[1];
    			}
    		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
    		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
    		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
    		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
    	}
    #endif
    
    	return 0;
    }
    
    static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
    				      struct cftype *cft)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	return mem_cgroup_swappiness(memcg);
    }
    
    static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
    				       struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
    
    	if (val > 100 || !parent)
    		return -EINVAL;
    
    	mutex_lock(&memcg_create_mutex);
    
    	/* If under hierarchy, only empty-root can set this value */
    	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
    		mutex_unlock(&memcg_create_mutex);
    		return -EINVAL;
    	}
    
    	memcg->swappiness = val;
    
    	mutex_unlock(&memcg_create_mutex);
    
    	return 0;
    }
    
    static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
    {
    	struct mem_cgroup_threshold_ary *t;
    	u64 usage;
    	int i;
    
    	rcu_read_lock();
    	if (!swap)
    		t = rcu_dereference(memcg->thresholds.primary);
    	else
    		t = rcu_dereference(memcg->memsw_thresholds.primary);
    
    	if (!t)
    		goto unlock;
    
    	usage = mem_cgroup_usage(memcg, swap);
    
    	/*
    	 * current_threshold points to threshold just below or equal to usage.
    	 * If it's not true, a threshold was crossed after last
    	 * call of __mem_cgroup_threshold().
    	 */
    	i = t->current_threshold;
    
    	/*
    	 * Iterate backward over array of thresholds starting from
    	 * current_threshold and check if a threshold is crossed.
    	 * If none of thresholds below usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* i = current_threshold + 1 */
    	i++;
    
    	/*
    	 * Iterate forward over array of thresholds starting from
    	 * current_threshold+1 and check if a threshold is crossed.
    	 * If none of thresholds above usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* Update current_threshold */
    	t->current_threshold = i - 1;
    unlock:
    	rcu_read_unlock();
    }
    
    static void mem_cgroup_threshold(struct mem_cgroup *memcg)
    {
    	while (memcg) {
    		__mem_cgroup_threshold(memcg, false);
    		if (do_swap_account)
    			__mem_cgroup_threshold(memcg, true);
    
    		memcg = parent_mem_cgroup(memcg);
    	}
    }
    
    static int compare_thresholds(const void *a, const void *b)
    {
    	const struct mem_cgroup_threshold *_a = a;
    	const struct mem_cgroup_threshold *_b = b;
    
    	if (_a->threshold > _b->threshold)
    		return 1;
    
    	if (_a->threshold < _b->threshold)
    		return -1;
    
    	return 0;
    }
    
    static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_eventfd_list *ev;
    
    	list_for_each_entry(ev, &memcg->oom_notify, list)
    		eventfd_signal(ev->eventfd, 1);
    	return 0;
    }
    
    static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		mem_cgroup_oom_notify_cb(iter);
    }
    
    static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
    	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    	enum res_type type = MEMFILE_TYPE(cft->private);
    	u64 threshold, usage;
    	int i, size, ret;
    
    	ret = res_counter_memparse_write_strategy(args, &threshold);
    	if (ret)
    		return ret;
    
    	mutex_lock(&memcg->thresholds_lock);
    
    	if (type == _MEM)
    		thresholds = &memcg->thresholds;
    	else if (type == _MEMSWAP)
    		thresholds = &memcg->memsw_thresholds;
    	else
    		BUG();
    
    	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
    
    	/* Check if a threshold crossed before adding a new one */
    	if (thresholds->primary)
    		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
    
    	/* Allocate memory for new array of thresholds */
    	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
    			GFP_KERNEL);
    	if (!new) {
    		ret = -ENOMEM;
    		goto unlock;
    	}
    	new->size = size;
    
    	/* Copy thresholds (if any) to new array */
    	if (thresholds->primary) {
    		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
    				sizeof(struct mem_cgroup_threshold));
    	}
    
    	/* Add new threshold */
    	new->entries[size - 1].eventfd = eventfd;
    	new->entries[size - 1].threshold = threshold;
    
    	/* Sort thresholds. Registering of new threshold isn't time-critical */
    	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
    			compare_thresholds, NULL);
    
    	/* Find current threshold */
    	new->current_threshold = -1;
    	for (i = 0; i < size; i++) {
    		if (new->entries[i].threshold <= usage) {
    			/*
    			 * new->current_threshold will not be used until
    			 * rcu_assign_pointer(), so it's safe to increment
    			 * it here.
    			 */
    			++new->current_threshold;
    		} else
    			break;
    	}
    
    	/* Free old spare buffer and save old primary buffer as spare */
    	kfree(thresholds->spare);
    	thresholds->spare = thresholds->primary;
    
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    	synchronize_rcu();
    
    unlock:
    	mutex_unlock(&memcg->thresholds_lock);
    
    	return ret;
    }
    
    static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
    	struct cftype *cft, struct eventfd_ctx *eventfd)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    	enum res_type type = MEMFILE_TYPE(cft->private);
    	u64 usage;
    	int i, j, size;
    
    	mutex_lock(&memcg->thresholds_lock);
    	if (type == _MEM)
    		thresholds = &memcg->thresholds;
    	else if (type == _MEMSWAP)
    		thresholds = &memcg->memsw_thresholds;
    	else
    		BUG();
    
    	if (!thresholds->primary)
    		goto unlock;
    
    	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
    
    	/* Check if a threshold crossed before removing */
    	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    	/* Calculate new number of threshold */
    	size = 0;
    	for (i = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd != eventfd)
    			size++;
    	}
    
    	new = thresholds->spare;
    
    	/* Set thresholds array to NULL if we don't have thresholds */
    	if (!size) {
    		kfree(new);
    		new = NULL;
    		goto swap_buffers;
    	}
    
    	new->size = size;
    
    	/* Copy thresholds and find current threshold */
    	new->current_threshold = -1;
    	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd == eventfd)
    			continue;
    
    		new->entries[j] = thresholds->primary->entries[i];
    		if (new->entries[j].threshold <= usage) {
    			/*
    			 * new->current_threshold will not be used
    			 * until rcu_assign_pointer(), so it's safe to increment
    			 * it here.
    			 */
    			++new->current_threshold;
    		}
    		j++;
    	}
    
    swap_buffers:
    	/* Swap primary and spare array */
    	thresholds->spare = thresholds->primary;
    	/* If all events are unregistered, free the spare array */
    	if (!new) {
    		kfree(thresholds->spare);
    		thresholds->spare = NULL;
    	}
    
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    	synchronize_rcu();
    unlock:
    	mutex_unlock(&memcg->thresholds_lock);
    }
    
    static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
    	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_eventfd_list *event;
    	enum res_type type = MEMFILE_TYPE(cft->private);
    
    	BUG_ON(type != _OOM_TYPE);
    	event = kmalloc(sizeof(*event),	GFP_KERNEL);
    	if (!event)
    		return -ENOMEM;
    
    	spin_lock(&memcg_oom_lock);
    
    	event->eventfd = eventfd;
    	list_add(&event->list, &memcg->oom_notify);
    
    	/* already in OOM ? */
    	if (atomic_read(&memcg->under_oom))
    		eventfd_signal(eventfd, 1);
    	spin_unlock(&memcg_oom_lock);
    
    	return 0;
    }
    
    static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
    	struct cftype *cft, struct eventfd_ctx *eventfd)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_eventfd_list *ev, *tmp;
    	enum res_type type = MEMFILE_TYPE(cft->private);
    
    	BUG_ON(type != _OOM_TYPE);
    
    	spin_lock(&memcg_oom_lock);
    
    	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
    		if (ev->eventfd == eventfd) {
    			list_del(&ev->list);
    			kfree(ev);
    		}
    	}
    
    	spin_unlock(&memcg_oom_lock);
    }
    
    static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
    	struct cftype *cft,  struct cgroup_map_cb *cb)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
    
    	if (atomic_read(&memcg->under_oom))
    		cb->fill(cb, "under_oom", 1);
    	else
    		cb->fill(cb, "under_oom", 0);
    	return 0;
    }
    
    static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
    	struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
    
    	/* cannot set to root cgroup and only 0 and 1 are allowed */
    	if (!parent || !((val == 0) || (val == 1)))
    		return -EINVAL;
    
    	mutex_lock(&memcg_create_mutex);
    	/* oom-kill-disable is a flag for subhierarchy. */
    	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
    		mutex_unlock(&memcg_create_mutex);
    		return -EINVAL;
    	}
    	memcg->oom_kill_disable = val;
    	if (!val)
    		memcg_oom_recover(memcg);
    	mutex_unlock(&memcg_create_mutex);
    	return 0;
    }
    
    #ifdef CONFIG_MEMCG_KMEM
    static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
    {
    	int ret;
    
    	memcg->kmemcg_id = -1;
    	ret = memcg_propagate_kmem(memcg);
    	if (ret)
    		return ret;
    
    	return mem_cgroup_sockets_init(memcg, ss);
    }
    
    static void memcg_destroy_kmem(struct mem_cgroup *memcg)
    {
    	mem_cgroup_sockets_destroy(memcg);
    }
    
    static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
    {
    	if (!memcg_kmem_is_active(memcg))
    		return;
    
    	/*
    	 * kmem charges can outlive the cgroup. In the case of slab
    	 * pages, for instance, a page contain objects from various
    	 * processes. As we prevent from taking a reference for every
    	 * such allocation we have to be careful when doing uncharge
    	 * (see memcg_uncharge_kmem) and here during offlining.
    	 *
    	 * The idea is that that only the _last_ uncharge which sees
    	 * the dead memcg will drop the last reference. An additional
    	 * reference is taken here before the group is marked dead
    	 * which is then paired with css_put during uncharge resp. here.
    	 *
    	 * Although this might sound strange as this path is called from
    	 * css_offline() when the referencemight have dropped down to 0
    	 * and shouldn't be incremented anymore (css_tryget would fail)
    	 * we do not have other options because of the kmem allocations
    	 * lifetime.
    	 */
    	css_get(&memcg->css);
    
    	memcg_kmem_mark_dead(memcg);
    
    	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
    		return;
    
    	if (memcg_kmem_test_and_clear_dead(memcg))
    		css_put(&memcg->css);
    }
    #else
    static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
    {
    	return 0;
    }
    
    static void memcg_destroy_kmem(struct mem_cgroup *memcg)
    {
    }
    
    static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
    {
    }
    #endif
    
    static struct cftype mem_cgroup_files[] = {
    	{
    		.name = "usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
    		.read = mem_cgroup_read,
    		.register_event = mem_cgroup_usage_register_event,
    		.unregister_event = mem_cgroup_usage_unregister_event,
    	},
    	{
    		.name = "max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "soft_limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "failcnt",
    		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "stat",
    		.read_seq_string = memcg_stat_show,
    	},
    	{
    		.name = "force_empty",
    		.trigger = mem_cgroup_force_empty_write,
    	},
    	{
    		.name = "use_hierarchy",
    		.flags = CFTYPE_INSANE,
    		.write_u64 = mem_cgroup_hierarchy_write,
    		.read_u64 = mem_cgroup_hierarchy_read,
    	},
    	{
    		.name = "swappiness",
    		.read_u64 = mem_cgroup_swappiness_read,
    		.write_u64 = mem_cgroup_swappiness_write,
    	},
    	{
    		.name = "move_charge_at_immigrate",
    		.read_u64 = mem_cgroup_move_charge_read,
    		.write_u64 = mem_cgroup_move_charge_write,
    	},
    	{
    		.name = "oom_control",
    		.read_map = mem_cgroup_oom_control_read,
    		.write_u64 = mem_cgroup_oom_control_write,
    		.register_event = mem_cgroup_oom_register_event,
    		.unregister_event = mem_cgroup_oom_unregister_event,
    		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
    	},
    	{
    		.name = "pressure_level",
    		.register_event = vmpressure_register_event,
    		.unregister_event = vmpressure_unregister_event,
    	},
    #ifdef CONFIG_NUMA
    	{
    		.name = "numa_stat",
    		.read_seq_string = memcg_numa_stat_show,
    	},
    #endif
    #ifdef CONFIG_MEMCG_KMEM
    	{
    		.name = "kmem.limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "kmem.usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "kmem.failcnt",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "kmem.max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    #ifdef CONFIG_SLABINFO
    	{
    		.name = "kmem.slabinfo",
    		.read_seq_string = mem_cgroup_slabinfo_read,
    	},
    #endif
    #endif
    	{ },	/* terminate */
    };
    
    #ifdef CONFIG_MEMCG_SWAP
    static struct cftype memsw_cgroup_files[] = {
    	{
    		.name = "memsw.usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
    		.read = mem_cgroup_read,
    		.register_event = mem_cgroup_usage_register_event,
    		.unregister_event = mem_cgroup_usage_unregister_event,
    	},
    	{
    		.name = "memsw.max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "memsw.limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "memsw.failcnt",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
    		.trigger = mem_cgroup_reset,
    		.read = mem_cgroup_read,
    	},
    	{ },	/* terminate */
    };
    #endif
    static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
    {
    	struct mem_cgroup_per_node *pn;
    	struct mem_cgroup_per_zone *mz;
    	int zone, tmp = node;
    	/*
    	 * This routine is called against possible nodes.
    	 * But it's BUG to call kmalloc() against offline node.
    	 *
    	 * TODO: this routine can waste much memory for nodes which will
    	 *       never be onlined. It's better to use memory hotplug callback
    	 *       function.
    	 */
    	if (!node_state(node, N_NORMAL_MEMORY))
    		tmp = -1;
    	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
    	if (!pn)
    		return 1;
    
    	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    		mz = &pn->zoneinfo[zone];
    		lruvec_init(&mz->lruvec);
    		mz->usage_in_excess = 0;
    		mz->on_tree = false;
    		mz->memcg = memcg;
    	}
    	memcg->nodeinfo[node] = pn;
    	return 0;
    }
    
    static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
    {
    	kfree(memcg->nodeinfo[node]);
    }
    
    static struct mem_cgroup *mem_cgroup_alloc(void)
    {
    	struct mem_cgroup *memcg;
    	size_t size = memcg_size();
    
    	/* Can be very big if nr_node_ids is very big */
    	if (size < PAGE_SIZE)
    		memcg = kzalloc(size, GFP_KERNEL);
    	else
    		memcg = vzalloc(size);
    
    	if (!memcg)
    		return NULL;
    
    	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
    	if (!memcg->stat)
    		goto out_free;
    	spin_lock_init(&memcg->pcp_counter_lock);
    	return memcg;
    
    out_free:
    	if (size < PAGE_SIZE)
    		kfree(memcg);
    	else
    		vfree(memcg);
    	return NULL;
    }
    
    /*
     * At destroying mem_cgroup, references from swap_cgroup can remain.
     * (scanning all at force_empty is too costly...)
     *
     * Instead of clearing all references at force_empty, we remember
     * the number of reference from swap_cgroup and free mem_cgroup when
     * it goes down to 0.
     *
     * Removal of cgroup itself succeeds regardless of refs from swap.
     */
    
    static void __mem_cgroup_free(struct mem_cgroup *memcg)
    {
    	int node;
    	size_t size = memcg_size();
    
    	mem_cgroup_remove_from_trees(memcg);
    	free_css_id(&mem_cgroup_subsys, &memcg->css);
    
    	for_each_node(node)
    		free_mem_cgroup_per_zone_info(memcg, node);
    
    	free_percpu(memcg->stat);
    
    	/*
    	 * We need to make sure that (at least for now), the jump label
    	 * destruction code runs outside of the cgroup lock. This is because
    	 * get_online_cpus(), which is called from the static_branch update,
    	 * can't be called inside the cgroup_lock. cpusets are the ones
    	 * enforcing this dependency, so if they ever change, we might as well.
    	 *
    	 * schedule_work() will guarantee this happens. Be careful if you need
    	 * to move this code around, and make sure it is outside
    	 * the cgroup_lock.
    	 */
    	disarm_static_keys(memcg);
    	if (size < PAGE_SIZE)
    		kfree(memcg);
    	else
    		vfree(memcg);
    }
    
    /*
     * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
     */
    struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
    {
    	if (!memcg->res.parent)
    		return NULL;
    	return mem_cgroup_from_res_counter(memcg->res.parent, res);
    }
    EXPORT_SYMBOL(parent_mem_cgroup);
    
    static void __init mem_cgroup_soft_limit_tree_init(void)
    {
    	struct mem_cgroup_tree_per_node *rtpn;
    	struct mem_cgroup_tree_per_zone *rtpz;
    	int tmp, node, zone;
    
    	for_each_node(node) {
    		tmp = node;
    		if (!node_state(node, N_NORMAL_MEMORY))
    			tmp = -1;
    		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
    		BUG_ON(!rtpn);
    
    		soft_limit_tree.rb_tree_per_node[node] = rtpn;
    
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			rtpz = &rtpn->rb_tree_per_zone[zone];
    			rtpz->rb_root = RB_ROOT;
    			spin_lock_init(&rtpz->lock);
    		}
    	}
    }
    
    static struct cgroup_subsys_state * __ref
    mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
    {
    	struct mem_cgroup *memcg;
    	long error = -ENOMEM;
    	int node;
    
    	memcg = mem_cgroup_alloc();
    	if (!memcg)
    		return ERR_PTR(error);
    
    	for_each_node(node)
    		if (alloc_mem_cgroup_per_zone_info(memcg, node))
    			goto free_out;
    
    	/* root ? */
    	if (parent_css == NULL) {
    		root_mem_cgroup = memcg;
    		res_counter_init(&memcg->res, NULL);
    		res_counter_init(&memcg->memsw, NULL);
    		res_counter_init(&memcg->kmem, NULL);
    	}
    
    	memcg->last_scanned_node = MAX_NUMNODES;
    	INIT_LIST_HEAD(&memcg->oom_notify);
    	memcg->move_charge_at_immigrate = 0;
    	mutex_init(&memcg->thresholds_lock);
    	spin_lock_init(&memcg->move_lock);
    	vmpressure_init(&memcg->vmpressure);
    
    	return &memcg->css;
    
    free_out:
    	__mem_cgroup_free(memcg);
    	return ERR_PTR(error);
    }
    
    static int
    mem_cgroup_css_online(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
    	int error = 0;
    
    	if (!parent)
    		return 0;
    
    	mutex_lock(&memcg_create_mutex);
    
    	memcg->use_hierarchy = parent->use_hierarchy;
    	memcg->oom_kill_disable = parent->oom_kill_disable;
    	memcg->swappiness = mem_cgroup_swappiness(parent);
    
    	if (parent->use_hierarchy) {
    		res_counter_init(&memcg->res, &parent->res);
    		res_counter_init(&memcg->memsw, &parent->memsw);
    		res_counter_init(&memcg->kmem, &parent->kmem);
    
    		/*
    		 * No need to take a reference to the parent because cgroup
    		 * core guarantees its existence.
    		 */
    	} else {
    		res_counter_init(&memcg->res, NULL);
    		res_counter_init(&memcg->memsw, NULL);
    		res_counter_init(&memcg->kmem, NULL);
    		/*
    		 * Deeper hierachy with use_hierarchy == false doesn't make
    		 * much sense so let cgroup subsystem know about this
    		 * unfortunate state in our controller.
    		 */
    		if (parent != root_mem_cgroup)
    			mem_cgroup_subsys.broken_hierarchy = true;
    	}
    
    	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
    	mutex_unlock(&memcg_create_mutex);
    	return error;
    }
    
    /*
     * Announce all parents that a group from their hierarchy is gone.
     */
    static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *parent = memcg;
    
    	while ((parent = parent_mem_cgroup(parent)))
    		mem_cgroup_iter_invalidate(parent);
    
    	/*
    	 * if the root memcg is not hierarchical we have to check it
    	 * explicitely.
    	 */
    	if (!root_mem_cgroup->use_hierarchy)
    		mem_cgroup_iter_invalidate(root_mem_cgroup);
    }
    
    static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	kmem_cgroup_css_offline(memcg);
    
    	mem_cgroup_invalidate_reclaim_iterators(memcg);
    	mem_cgroup_reparent_charges(memcg);
    	mem_cgroup_destroy_all_caches(memcg);
    	vmpressure_cleanup(&memcg->vmpressure);
    }
    
    static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	memcg_destroy_kmem(memcg);
    	__mem_cgroup_free(memcg);
    }
    
    #ifdef CONFIG_MMU
    /* Handlers for move charge at task migration. */
    #define PRECHARGE_COUNT_AT_ONCE	256
    static int mem_cgroup_do_precharge(unsigned long count)
    {
    	int ret = 0;
    	int batch_count = PRECHARGE_COUNT_AT_ONCE;
    	struct mem_cgroup *memcg = mc.to;
    
    	if (mem_cgroup_is_root(memcg)) {
    		mc.precharge += count;
    		/* we don't need css_get for root */
    		return ret;
    	}
    	/* try to charge at once */
    	if (count > 1) {
    		struct res_counter *dummy;
    		/*
    		 * "memcg" cannot be under rmdir() because we've already checked
    		 * by cgroup_lock_live_cgroup() that it is not removed and we
    		 * are still under the same cgroup_mutex. So we can postpone
    		 * css_get().
    		 */
    		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
    			goto one_by_one;
    		if (do_swap_account && res_counter_charge(&memcg->memsw,
    						PAGE_SIZE * count, &dummy)) {
    			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
    			goto one_by_one;
    		}
    		mc.precharge += count;
    		return ret;
    	}
    one_by_one:
    	/* fall back to one by one charge */
    	while (count--) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		if (!batch_count--) {
    			batch_count = PRECHARGE_COUNT_AT_ONCE;
    			cond_resched();
    		}
    		ret = __mem_cgroup_try_charge(NULL,
    					GFP_KERNEL, 1, &memcg, false);
    		if (ret)
    			/* mem_cgroup_clear_mc() will do uncharge later */
    			return ret;
    		mc.precharge++;
    	}
    	return ret;
    }
    
    /**
     * get_mctgt_type - get target type of moving charge
     * @vma: the vma the pte to be checked belongs
     * @addr: the address corresponding to the pte to be checked
     * @ptent: the pte to be checked
     * @target: the pointer the target page or swap ent will be stored(can be NULL)
     *
     * Returns
     *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
     *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
     *     move charge. if @target is not NULL, the page is stored in target->page
     *     with extra refcnt got(Callers should handle it).
     *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
     *     target for charge migration. if @target is not NULL, the entry is stored
     *     in target->ent.
     *
     * Called with pte lock held.
     */
    union mc_target {
    	struct page	*page;
    	swp_entry_t	ent;
    };
    
    enum mc_target_type {
    	MC_TARGET_NONE = 0,
    	MC_TARGET_PAGE,
    	MC_TARGET_SWAP,
    };
    
    static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
    						unsigned long addr, pte_t ptent)
    {
    	struct page *page = vm_normal_page(vma, addr, ptent);
    
    	if (!page || !page_mapped(page))
    		return NULL;
    	if (PageAnon(page)) {
    		/* we don't move shared anon */
    		if (!move_anon())
    			return NULL;
    	} else if (!move_file())
    		/* we ignore mapcount for file pages */
    		return NULL;
    	if (!get_page_unless_zero(page))
    		return NULL;
    
    	return page;
    }
    
    #ifdef CONFIG_SWAP
    static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	struct page *page = NULL;
    	swp_entry_t ent = pte_to_swp_entry(ptent);
    
    	if (!move_anon() || non_swap_entry(ent))
    		return NULL;
    	/*
    	 * Because lookup_swap_cache() updates some statistics counter,
    	 * we call find_get_page() with swapper_space directly.
    	 */
    	page = find_get_page(swap_address_space(ent), ent.val);
    	if (do_swap_account)
    		entry->val = ent.val;
    
    	return page;
    }
    #else
    static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	return NULL;
    }
    #endif
    
    static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	struct page *page = NULL;
    	struct address_space *mapping;
    	pgoff_t pgoff;
    
    	if (!vma->vm_file) /* anonymous vma */
    		return NULL;
    	if (!move_file())
    		return NULL;
    
    	mapping = vma->vm_file->f_mapping;
    	if (pte_none(ptent))
    		pgoff = linear_page_index(vma, addr);
    	else /* pte_file(ptent) is true */
    		pgoff = pte_to_pgoff(ptent);
    
    	/* page is moved even if it's not RSS of this task(page-faulted). */
    	page = find_get_page(mapping, pgoff);
    
    #ifdef CONFIG_SWAP
    	/* shmem/tmpfs may report page out on swap: account for that too. */
    	if (radix_tree_exceptional_entry(page)) {
    		swp_entry_t swap = radix_to_swp_entry(page);
    		if (do_swap_account)
    			*entry = swap;
    		page = find_get_page(swap_address_space(swap), swap.val);
    	}
    #endif
    	return page;
    }
    
    static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
    		unsigned long addr, pte_t ptent, union mc_target *target)
    {
    	struct page *page = NULL;
    	struct page_cgroup *pc;
    	enum mc_target_type ret = MC_TARGET_NONE;
    	swp_entry_t ent = { .val = 0 };
    
    	if (pte_present(ptent))
    		page = mc_handle_present_pte(vma, addr, ptent);
    	else if (is_swap_pte(ptent))
    		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
    	else if (pte_none(ptent) || pte_file(ptent))
    		page = mc_handle_file_pte(vma, addr, ptent, &ent);
    
    	if (!page && !ent.val)
    		return ret;
    	if (page) {
    		pc = lookup_page_cgroup(page);
    		/*
    		 * Do only loose check w/o page_cgroup lock.
    		 * mem_cgroup_move_account() checks the pc is valid or not under
    		 * the lock.
    		 */
    		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
    			ret = MC_TARGET_PAGE;
    			if (target)
    				target->page = page;
    		}
    		if (!ret || !target)
    			put_page(page);
    	}
    	/* There is a swap entry and a page doesn't exist or isn't charged */
    	if (ent.val && !ret &&
    			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
    		ret = MC_TARGET_SWAP;
    		if (target)
    			target->ent = ent;
    	}
    	return ret;
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    /*
     * We don't consider swapping or file mapped pages because THP does not
     * support them for now.
     * Caller should make sure that pmd_trans_huge(pmd) is true.
     */
    static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
    		unsigned long addr, pmd_t pmd, union mc_target *target)
    {
    	struct page *page = NULL;
    	struct page_cgroup *pc;
    	enum mc_target_type ret = MC_TARGET_NONE;
    
    	page = pmd_page(pmd);
    	VM_BUG_ON(!page || !PageHead(page));
    	if (!move_anon())
    		return ret;
    	pc = lookup_page_cgroup(page);
    	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
    		ret = MC_TARGET_PAGE;
    		if (target) {
    			get_page(page);
    			target->page = page;
    		}
    	}
    	return ret;
    }
    #else
    static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
    		unsigned long addr, pmd_t pmd, union mc_target *target)
    {
    	return MC_TARGET_NONE;
    }
    #endif
    
    static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
    					unsigned long addr, unsigned long end,
    					struct mm_walk *walk)
    {
    	struct vm_area_struct *vma = walk->private;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	if (pmd_trans_huge_lock(pmd, vma) == 1) {
    		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
    			mc.precharge += HPAGE_PMD_NR;
    		spin_unlock(&vma->vm_mm->page_table_lock);
    		return 0;
    	}
    
    	if (pmd_trans_unstable(pmd))
    		return 0;
    	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    	for (; addr != end; pte++, addr += PAGE_SIZE)
    		if (get_mctgt_type(vma, addr, *pte, NULL))
    			mc.precharge++;	/* increment precharge temporarily */
    	pte_unmap_unlock(pte - 1, ptl);
    	cond_resched();
    
    	return 0;
    }
    
    static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
    {
    	unsigned long precharge;
    	struct vm_area_struct *vma;
    
    	down_read(&mm->mmap_sem);
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		struct mm_walk mem_cgroup_count_precharge_walk = {
    			.pmd_entry = mem_cgroup_count_precharge_pte_range,
    			.mm = mm,
    			.private = vma,
    		};
    		if (is_vm_hugetlb_page(vma))
    			continue;
    		walk_page_range(vma->vm_start, vma->vm_end,
    					&mem_cgroup_count_precharge_walk);
    	}
    	up_read(&mm->mmap_sem);
    
    	precharge = mc.precharge;
    	mc.precharge = 0;
    
    	return precharge;
    }
    
    static int mem_cgroup_precharge_mc(struct mm_struct *mm)
    {
    	unsigned long precharge = mem_cgroup_count_precharge(mm);
    
    	VM_BUG_ON(mc.moving_task);
    	mc.moving_task = current;
    	return mem_cgroup_do_precharge(precharge);
    }
    
    /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
    static void __mem_cgroup_clear_mc(void)
    {
    	struct mem_cgroup *from = mc.from;
    	struct mem_cgroup *to = mc.to;
    	int i;
    
    	/* we must uncharge all the leftover precharges from mc.to */
    	if (mc.precharge) {
    		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
    		mc.precharge = 0;
    	}
    	/*
    	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
    	 * we must uncharge here.
    	 */
    	if (mc.moved_charge) {
    		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
    		mc.moved_charge = 0;
    	}
    	/* we must fixup refcnts and charges */
    	if (mc.moved_swap) {
    		/* uncharge swap account from the old cgroup */
    		if (!mem_cgroup_is_root(mc.from))
    			res_counter_uncharge(&mc.from->memsw,
    						PAGE_SIZE * mc.moved_swap);
    
    		for (i = 0; i < mc.moved_swap; i++)
    			css_put(&mc.from->css);
    
    		if (!mem_cgroup_is_root(mc.to)) {
    			/*
    			 * we charged both to->res and to->memsw, so we should
    			 * uncharge to->res.
    			 */
    			res_counter_uncharge(&mc.to->res,
    						PAGE_SIZE * mc.moved_swap);
    		}
    		/* we've already done css_get(mc.to) */
    		mc.moved_swap = 0;
    	}
    	memcg_oom_recover(from);
    	memcg_oom_recover(to);
    	wake_up_all(&mc.waitq);
    }
    
    static void mem_cgroup_clear_mc(void)
    {
    	struct mem_cgroup *from = mc.from;
    
    	/*
    	 * we must clear moving_task before waking up waiters at the end of
    	 * task migration.
    	 */
    	mc.moving_task = NULL;
    	__mem_cgroup_clear_mc();
    	spin_lock(&mc.lock);
    	mc.from = NULL;
    	mc.to = NULL;
    	spin_unlock(&mc.lock);
    	mem_cgroup_end_move(from);
    }
    
    static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
    				 struct cgroup_taskset *tset)
    {
    	struct task_struct *p = cgroup_taskset_first(tset);
    	int ret = 0;
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	unsigned long move_charge_at_immigrate;
    
    	/*
    	 * We are now commited to this value whatever it is. Changes in this
    	 * tunable will only affect upcoming migrations, not the current one.
    	 * So we need to save it, and keep it going.
    	 */
    	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
    	if (move_charge_at_immigrate) {
    		struct mm_struct *mm;
    		struct mem_cgroup *from = mem_cgroup_from_task(p);
    
    		VM_BUG_ON(from == memcg);
    
    		mm = get_task_mm(p);
    		if (!mm)
    			return 0;
    		/* We move charges only when we move a owner of the mm */
    		if (mm->owner == p) {
    			VM_BUG_ON(mc.from);
    			VM_BUG_ON(mc.to);
    			VM_BUG_ON(mc.precharge);
    			VM_BUG_ON(mc.moved_charge);
    			VM_BUG_ON(mc.moved_swap);
    			mem_cgroup_start_move(from);
    			spin_lock(&mc.lock);
    			mc.from = from;
    			mc.to = memcg;
    			mc.immigrate_flags = move_charge_at_immigrate;
    			spin_unlock(&mc.lock);
    			/* We set mc.moving_task later */
    
    			ret = mem_cgroup_precharge_mc(mm);
    			if (ret)
    				mem_cgroup_clear_mc();
    		}
    		mmput(mm);
    	}
    	return ret;
    }
    
    static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
    				     struct cgroup_taskset *tset)
    {
    	mem_cgroup_clear_mc();
    }
    
    static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
    				unsigned long addr, unsigned long end,
    				struct mm_walk *walk)
    {
    	int ret = 0;
    	struct vm_area_struct *vma = walk->private;
    	pte_t *pte;
    	spinlock_t *ptl;
    	enum mc_target_type target_type;
    	union mc_target target;
    	struct page *page;
    	struct page_cgroup *pc;
    
    	/*
    	 * We don't take compound_lock() here but no race with splitting thp
    	 * happens because:
    	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
    	 *    under splitting, which means there's no concurrent thp split,
    	 *  - if another thread runs into split_huge_page() just after we
    	 *    entered this if-block, the thread must wait for page table lock
    	 *    to be unlocked in __split_huge_page_splitting(), where the main
    	 *    part of thp split is not executed yet.
    	 */
    	if (pmd_trans_huge_lock(pmd, vma) == 1) {
    		if (mc.precharge < HPAGE_PMD_NR) {
    			spin_unlock(&vma->vm_mm->page_table_lock);
    			return 0;
    		}
    		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
    		if (target_type == MC_TARGET_PAGE) {
    			page = target.page;
    			if (!isolate_lru_page(page)) {
    				pc = lookup_page_cgroup(page);
    				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
    							pc, mc.from, mc.to)) {
    					mc.precharge -= HPAGE_PMD_NR;
    					mc.moved_charge += HPAGE_PMD_NR;
    				}
    				putback_lru_page(page);
    			}
    			put_page(page);
    		}
    		spin_unlock(&vma->vm_mm->page_table_lock);
    		return 0;
    	}
    
    	if (pmd_trans_unstable(pmd))
    		return 0;
    retry:
    	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    	for (; addr != end; addr += PAGE_SIZE) {
    		pte_t ptent = *(pte++);
    		swp_entry_t ent;
    
    		if (!mc.precharge)
    			break;
    
    		switch (get_mctgt_type(vma, addr, ptent, &target)) {
    		case MC_TARGET_PAGE:
    			page = target.page;
    			if (isolate_lru_page(page))
    				goto put;
    			pc = lookup_page_cgroup(page);
    			if (!mem_cgroup_move_account(page, 1, pc,
    						     mc.from, mc.to)) {
    				mc.precharge--;
    				/* we uncharge from mc.from later. */
    				mc.moved_charge++;
    			}
    			putback_lru_page(page);
    put:			/* get_mctgt_type() gets the page */
    			put_page(page);
    			break;
    		case MC_TARGET_SWAP:
    			ent = target.ent;
    			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
    				mc.precharge--;
    				/* we fixup refcnts and charges later. */
    				mc.moved_swap++;
    			}
    			break;
    		default:
    			break;
    		}
    	}
    	pte_unmap_unlock(pte - 1, ptl);
    	cond_resched();
    
    	if (addr != end) {
    		/*
    		 * We have consumed all precharges we got in can_attach().
    		 * We try charge one by one, but don't do any additional
    		 * charges to mc.to if we have failed in charge once in attach()
    		 * phase.
    		 */
    		ret = mem_cgroup_do_precharge(1);
    		if (!ret)
    			goto retry;
    	}
    
    	return ret;
    }
    
    static void mem_cgroup_move_charge(struct mm_struct *mm)
    {
    	struct vm_area_struct *vma;
    
    	lru_add_drain_all();
    retry:
    	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
    		/*
    		 * Someone who are holding the mmap_sem might be waiting in
    		 * waitq. So we cancel all extra charges, wake up all waiters,
    		 * and retry. Because we cancel precharges, we might not be able
    		 * to move enough charges, but moving charge is a best-effort
    		 * feature anyway, so it wouldn't be a big problem.
    		 */
    		__mem_cgroup_clear_mc();
    		cond_resched();
    		goto retry;
    	}
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		int ret;
    		struct mm_walk mem_cgroup_move_charge_walk = {
    			.pmd_entry = mem_cgroup_move_charge_pte_range,
    			.mm = mm,
    			.private = vma,
    		};
    		if (is_vm_hugetlb_page(vma))
    			continue;
    		ret = walk_page_range(vma->vm_start, vma->vm_end,
    						&mem_cgroup_move_charge_walk);
    		if (ret)
    			/*
    			 * means we have consumed all precharges and failed in
    			 * doing additional charge. Just abandon here.
    			 */
    			break;
    	}
    	up_read(&mm->mmap_sem);
    }
    
    static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
    				 struct cgroup_taskset *tset)
    {
    	struct task_struct *p = cgroup_taskset_first(tset);
    	struct mm_struct *mm = get_task_mm(p);
    
    	if (mm) {
    		if (mc.to)
    			mem_cgroup_move_charge(mm);
    		mmput(mm);
    	}
    	if (mc.to)
    		mem_cgroup_clear_mc();
    }
    #else	/* !CONFIG_MMU */
    static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
    				 struct cgroup_taskset *tset)
    {
    	return 0;
    }
    static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
    				     struct cgroup_taskset *tset)
    {
    }
    static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
    				 struct cgroup_taskset *tset)
    {
    }
    #endif
    
    /*
     * Cgroup retains root cgroups across [un]mount cycles making it necessary
     * to verify sane_behavior flag on each mount attempt.
     */
    static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
    {
    	/*
    	 * use_hierarchy is forced with sane_behavior.  cgroup core
    	 * guarantees that @root doesn't have any children, so turning it
    	 * on for the root memcg is enough.
    	 */
    	if (cgroup_sane_behavior(root_css->cgroup))
    		mem_cgroup_from_css(root_css)->use_hierarchy = true;
    }
    
    struct cgroup_subsys mem_cgroup_subsys = {
    	.name = "memory",
    	.subsys_id = mem_cgroup_subsys_id,
    	.css_alloc = mem_cgroup_css_alloc,
    	.css_online = mem_cgroup_css_online,
    	.css_offline = mem_cgroup_css_offline,
    	.css_free = mem_cgroup_css_free,
    	.can_attach = mem_cgroup_can_attach,
    	.cancel_attach = mem_cgroup_cancel_attach,
    	.attach = mem_cgroup_move_task,
    	.bind = mem_cgroup_bind,
    	.base_cftypes = mem_cgroup_files,
    	.early_init = 0,
    	.use_id = 1,
    };
    
    #ifdef CONFIG_MEMCG_SWAP
    static int __init enable_swap_account(char *s)
    {
    	if (!strcmp(s, "1"))
    		really_do_swap_account = 1;
    	else if (!strcmp(s, "0"))
    		really_do_swap_account = 0;
    	return 1;
    }
    __setup("swapaccount=", enable_swap_account);
    
    static void __init memsw_file_init(void)
    {
    	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
    }
    
    static void __init enable_swap_cgroup(void)
    {
    	if (!mem_cgroup_disabled() && really_do_swap_account) {
    		do_swap_account = 1;
    		memsw_file_init();
    	}
    }
    
    #else
    static void __init enable_swap_cgroup(void)
    {
    }
    #endif
    
    /*
     * subsys_initcall() for memory controller.
     *
     * Some parts like hotcpu_notifier() have to be initialized from this context
     * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
     * everything that doesn't depend on a specific mem_cgroup structure should
     * be initialized from here.
     */
    static int __init mem_cgroup_init(void)
    {
    	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
    	enable_swap_cgroup();
    	mem_cgroup_soft_limit_tree_init();
    	memcg_stock_init();
    	return 0;
    }
    subsys_initcall(mem_cgroup_init);