Skip to content
Snippets Groups Projects
Select Git revision
  • b848914ce39589d89ee0078a6d1ef452b464729e
  • linus-master default
  • kunit_is_love
  • kunit_drm
  • tonyk/futex_waitv
  • hidraw_rwlock
  • futex_waitv
  • futex2-dev
  • idle_sleep
  • futex2-proton
  • futex-tests
  • futex2
  • futex2-numa
  • fwm-5.11
  • cf-fix
  • tmpfs-ic
  • futex2-stable-5.11
  • futex2-stable
  • futex2-lpc
  • gaming
  • futex-fixes
21 results

trace_stack.c

Blame
  • dax.c 47.08 KiB
    /*
     * fs/dax.c - Direct Access filesystem code
     * Copyright (c) 2013-2014 Intel Corporation
     * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
     * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms and conditions of the GNU General Public License,
     * version 2, as published by the Free Software Foundation.
     *
     * This program is distributed in the hope it will be useful, but WITHOUT
     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     * more details.
     */
    
    #include <linux/atomic.h>
    #include <linux/blkdev.h>
    #include <linux/buffer_head.h>
    #include <linux/dax.h>
    #include <linux/fs.h>
    #include <linux/genhd.h>
    #include <linux/highmem.h>
    #include <linux/memcontrol.h>
    #include <linux/mm.h>
    #include <linux/mutex.h>
    #include <linux/pagevec.h>
    #include <linux/sched.h>
    #include <linux/sched/signal.h>
    #include <linux/uio.h>
    #include <linux/vmstat.h>
    #include <linux/pfn_t.h>
    #include <linux/sizes.h>
    #include <linux/mmu_notifier.h>
    #include <linux/iomap.h>
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/fs_dax.h>
    
    /* We choose 4096 entries - same as per-zone page wait tables */
    #define DAX_WAIT_TABLE_BITS 12
    #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
    
    /* The 'colour' (ie low bits) within a PMD of a page offset.  */
    #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
    #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
    
    static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
    
    static int __init init_dax_wait_table(void)
    {
    	int i;
    
    	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
    		init_waitqueue_head(wait_table + i);
    	return 0;
    }
    fs_initcall(init_dax_wait_table);
    
    /*
     * We use lowest available bit in exceptional entry for locking, one bit for
     * the entry size (PMD) and two more to tell us if the entry is a zero page or
     * an empty entry that is just used for locking.  In total four special bits.
     *
     * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
     * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
     * block allocation.
     */
    #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
    #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
    #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
    #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
    #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
    
    static unsigned long dax_radix_pfn(void *entry)
    {
    	return (unsigned long)entry >> RADIX_DAX_SHIFT;
    }
    
    static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
    {
    	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
    			(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
    }
    
    static unsigned int dax_radix_order(void *entry)
    {
    	if ((unsigned long)entry & RADIX_DAX_PMD)
    		return PMD_SHIFT - PAGE_SHIFT;
    	return 0;
    }
    
    static int dax_is_pmd_entry(void *entry)
    {
    	return (unsigned long)entry & RADIX_DAX_PMD;
    }
    
    static int dax_is_pte_entry(void *entry)
    {
    	return !((unsigned long)entry & RADIX_DAX_PMD);
    }
    
    static int dax_is_zero_entry(void *entry)
    {
    	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
    }
    
    static int dax_is_empty_entry(void *entry)
    {
    	return (unsigned long)entry & RADIX_DAX_EMPTY;
    }
    
    /*
     * DAX radix tree locking
     */
    struct exceptional_entry_key {
    	struct address_space *mapping;
    	pgoff_t entry_start;
    };
    
    struct wait_exceptional_entry_queue {
    	wait_queue_entry_t wait;
    	struct exceptional_entry_key key;
    };
    
    static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
    		pgoff_t index, void *entry, struct exceptional_entry_key *key)
    {
    	unsigned long hash;
    
    	/*
    	 * If 'entry' is a PMD, align the 'index' that we use for the wait
    	 * queue to the start of that PMD.  This ensures that all offsets in
    	 * the range covered by the PMD map to the same bit lock.
    	 */
    	if (dax_is_pmd_entry(entry))
    		index &= ~PG_PMD_COLOUR;
    
    	key->mapping = mapping;
    	key->entry_start = index;
    
    	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
    	return wait_table + hash;
    }
    
    static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
    				       int sync, void *keyp)
    {
    	struct exceptional_entry_key *key = keyp;
    	struct wait_exceptional_entry_queue *ewait =
    		container_of(wait, struct wait_exceptional_entry_queue, wait);
    
    	if (key->mapping != ewait->key.mapping ||
    	    key->entry_start != ewait->key.entry_start)
    		return 0;
    	return autoremove_wake_function(wait, mode, sync, NULL);
    }
    
    /*
     * @entry may no longer be the entry at the index in the mapping.
     * The important information it's conveying is whether the entry at
     * this index used to be a PMD entry.
     */
    static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
    		pgoff_t index, void *entry, bool wake_all)
    {
    	struct exceptional_entry_key key;
    	wait_queue_head_t *wq;
    
    	wq = dax_entry_waitqueue(mapping, index, entry, &key);
    
    	/*
    	 * Checking for locked entry and prepare_to_wait_exclusive() happens
    	 * under the i_pages lock, ditto for entry handling in our callers.
    	 * So at this point all tasks that could have seen our entry locked
    	 * must be in the waitqueue and the following check will see them.
    	 */
    	if (waitqueue_active(wq))
    		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
    }
    
    /*
     * Check whether the given slot is locked.  Must be called with the i_pages
     * lock held.
     */
    static inline int slot_locked(struct address_space *mapping, void **slot)
    {
    	unsigned long entry = (unsigned long)
    		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
    	return entry & RADIX_DAX_ENTRY_LOCK;
    }
    
    /*
     * Mark the given slot as locked.  Must be called with the i_pages lock held.
     */
    static inline void *lock_slot(struct address_space *mapping, void **slot)
    {
    	unsigned long entry = (unsigned long)
    		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
    
    	entry |= RADIX_DAX_ENTRY_LOCK;
    	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
    	return (void *)entry;
    }
    
    /*
     * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
     */
    static inline void *unlock_slot(struct address_space *mapping, void **slot)
    {
    	unsigned long entry = (unsigned long)
    		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
    
    	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
    	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
    	return (void *)entry;
    }
    
    /*
     * Lookup entry in radix tree, wait for it to become unlocked if it is
     * exceptional entry and return it. The caller must call
     * put_unlocked_mapping_entry() when he decided not to lock the entry or
     * put_locked_mapping_entry() when he locked the entry and now wants to
     * unlock it.
     *
     * Must be called with the i_pages lock held.
     */
    static void *get_unlocked_mapping_entry(struct address_space *mapping,
    					pgoff_t index, void ***slotp)
    {
    	void *entry, **slot;
    	struct wait_exceptional_entry_queue ewait;
    	wait_queue_head_t *wq;
    
    	init_wait(&ewait.wait);
    	ewait.wait.func = wake_exceptional_entry_func;
    
    	for (;;) {
    		entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
    					  &slot);
    		if (!entry ||
    		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
    		    !slot_locked(mapping, slot)) {
    			if (slotp)
    				*slotp = slot;
    			return entry;
    		}
    
    		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
    		prepare_to_wait_exclusive(wq, &ewait.wait,
    					  TASK_UNINTERRUPTIBLE);
    		xa_unlock_irq(&mapping->i_pages);
    		schedule();
    		finish_wait(wq, &ewait.wait);
    		xa_lock_irq(&mapping->i_pages);
    	}
    }
    
    static void dax_unlock_mapping_entry(struct address_space *mapping,
    				     pgoff_t index)
    {
    	void *entry, **slot;
    
    	xa_lock_irq(&mapping->i_pages);
    	entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
    	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
    			 !slot_locked(mapping, slot))) {
    		xa_unlock_irq(&mapping->i_pages);
    		return;
    	}
    	unlock_slot(mapping, slot);
    	xa_unlock_irq(&mapping->i_pages);
    	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
    }
    
    static void put_locked_mapping_entry(struct address_space *mapping,
    		pgoff_t index)
    {
    	dax_unlock_mapping_entry(mapping, index);
    }
    
    /*
     * Called when we are done with radix tree entry we looked up via
     * get_unlocked_mapping_entry() and which we didn't lock in the end.
     */
    static void put_unlocked_mapping_entry(struct address_space *mapping,
    				       pgoff_t index, void *entry)
    {
    	if (!entry)
    		return;
    
    	/* We have to wake up next waiter for the radix tree entry lock */
    	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
    }
    
    static unsigned long dax_entry_size(void *entry)
    {
    	if (dax_is_zero_entry(entry))
    		return 0;
    	else if (dax_is_empty_entry(entry))
    		return 0;
    	else if (dax_is_pmd_entry(entry))
    		return PMD_SIZE;
    	else
    		return PAGE_SIZE;
    }
    
    static unsigned long dax_radix_end_pfn(void *entry)
    {
    	return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
    }
    
    /*
     * Iterate through all mapped pfns represented by an entry, i.e. skip
     * 'empty' and 'zero' entries.
     */
    #define for_each_mapped_pfn(entry, pfn) \
    	for (pfn = dax_radix_pfn(entry); \
    			pfn < dax_radix_end_pfn(entry); pfn++)
    
    static void dax_associate_entry(void *entry, struct address_space *mapping)
    {
    	unsigned long pfn;
    
    	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    		return;
    
    	for_each_mapped_pfn(entry, pfn) {
    		struct page *page = pfn_to_page(pfn);
    
    		WARN_ON_ONCE(page->mapping);
    		page->mapping = mapping;
    	}
    }
    
    static void dax_disassociate_entry(void *entry, struct address_space *mapping,
    		bool trunc)
    {
    	unsigned long pfn;
    
    	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    		return;
    
    	for_each_mapped_pfn(entry, pfn) {
    		struct page *page = pfn_to_page(pfn);
    
    		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
    		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
    		page->mapping = NULL;
    	}
    }
    
    static struct page *dax_busy_page(void *entry)
    {
    	unsigned long pfn;
    
    	for_each_mapped_pfn(entry, pfn) {
    		struct page *page = pfn_to_page(pfn);
    
    		if (page_ref_count(page) > 1)
    			return page;
    	}
    	return NULL;
    }
    
    /*
     * Find radix tree entry at given index. If it points to an exceptional entry,
     * return it with the radix tree entry locked. If the radix tree doesn't
     * contain given index, create an empty exceptional entry for the index and
     * return with it locked.
     *
     * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
     * either return that locked entry or will return an error.  This error will
     * happen if there are any 4k entries within the 2MiB range that we are
     * requesting.
     *
     * We always favor 4k entries over 2MiB entries. There isn't a flow where we
     * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
     * insertion will fail if it finds any 4k entries already in the tree, and a
     * 4k insertion will cause an existing 2MiB entry to be unmapped and
     * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
     * well as 2MiB empty entries.
     *
     * The exception to this downgrade path is for 2MiB DAX PMD entries that have
     * real storage backing them.  We will leave these real 2MiB DAX entries in
     * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
     *
     * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
     * persistent memory the benefit is doubtful. We can add that later if we can
     * show it helps.
     */
    static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
    		unsigned long size_flag)
    {
    	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
    	void *entry, **slot;
    
    restart:
    	xa_lock_irq(&mapping->i_pages);
    	entry = get_unlocked_mapping_entry(mapping, index, &slot);
    
    	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
    		entry = ERR_PTR(-EIO);
    		goto out_unlock;
    	}
    
    	if (entry) {
    		if (size_flag & RADIX_DAX_PMD) {
    			if (dax_is_pte_entry(entry)) {
    				put_unlocked_mapping_entry(mapping, index,
    						entry);
    				entry = ERR_PTR(-EEXIST);
    				goto out_unlock;
    			}
    		} else { /* trying to grab a PTE entry */
    			if (dax_is_pmd_entry(entry) &&
    			    (dax_is_zero_entry(entry) ||
    			     dax_is_empty_entry(entry))) {
    				pmd_downgrade = true;
    			}
    		}
    	}
    
    	/* No entry for given index? Make sure radix tree is big enough. */
    	if (!entry || pmd_downgrade) {
    		int err;
    
    		if (pmd_downgrade) {
    			/*
    			 * Make sure 'entry' remains valid while we drop
    			 * the i_pages lock.
    			 */
    			entry = lock_slot(mapping, slot);
    		}
    
    		xa_unlock_irq(&mapping->i_pages);
    		/*
    		 * Besides huge zero pages the only other thing that gets
    		 * downgraded are empty entries which don't need to be
    		 * unmapped.
    		 */
    		if (pmd_downgrade && dax_is_zero_entry(entry))
    			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
    							PG_PMD_NR, false);
    
    		err = radix_tree_preload(
    				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
    		if (err) {
    			if (pmd_downgrade)
    				put_locked_mapping_entry(mapping, index);
    			return ERR_PTR(err);
    		}
    		xa_lock_irq(&mapping->i_pages);
    
    		if (!entry) {
    			/*
    			 * We needed to drop the i_pages lock while calling
    			 * radix_tree_preload() and we didn't have an entry to
    			 * lock.  See if another thread inserted an entry at
    			 * our index during this time.
    			 */
    			entry = __radix_tree_lookup(&mapping->i_pages, index,
    					NULL, &slot);
    			if (entry) {
    				radix_tree_preload_end();
    				xa_unlock_irq(&mapping->i_pages);
    				goto restart;
    			}
    		}
    
    		if (pmd_downgrade) {
    			dax_disassociate_entry(entry, mapping, false);
    			radix_tree_delete(&mapping->i_pages, index);
    			mapping->nrexceptional--;
    			dax_wake_mapping_entry_waiter(mapping, index, entry,
    					true);
    		}
    
    		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
    
    		err = __radix_tree_insert(&mapping->i_pages, index,
    				dax_radix_order(entry), entry);
    		radix_tree_preload_end();
    		if (err) {
    			xa_unlock_irq(&mapping->i_pages);
    			/*
    			 * Our insertion of a DAX entry failed, most likely
    			 * because we were inserting a PMD entry and it
    			 * collided with a PTE sized entry at a different
    			 * index in the PMD range.  We haven't inserted
    			 * anything into the radix tree and have no waiters to
    			 * wake.
    			 */
    			return ERR_PTR(err);
    		}
    		/* Good, we have inserted empty locked entry into the tree. */
    		mapping->nrexceptional++;
    		xa_unlock_irq(&mapping->i_pages);
    		return entry;
    	}
    	entry = lock_slot(mapping, slot);
     out_unlock:
    	xa_unlock_irq(&mapping->i_pages);
    	return entry;
    }
    
    /**
     * dax_layout_busy_page - find first pinned page in @mapping
     * @mapping: address space to scan for a page with ref count > 1
     *
     * DAX requires ZONE_DEVICE mapped pages. These pages are never
     * 'onlined' to the page allocator so they are considered idle when
     * page->count == 1. A filesystem uses this interface to determine if
     * any page in the mapping is busy, i.e. for DMA, or other
     * get_user_pages() usages.
     *
     * It is expected that the filesystem is holding locks to block the
     * establishment of new mappings in this address_space. I.e. it expects
     * to be able to run unmap_mapping_range() and subsequently not race
     * mapping_mapped() becoming true.
     */
    struct page *dax_layout_busy_page(struct address_space *mapping)
    {
    	pgoff_t	indices[PAGEVEC_SIZE];
    	struct page *page = NULL;
    	struct pagevec pvec;
    	pgoff_t	index, end;
    	unsigned i;
    
    	/*
    	 * In the 'limited' case get_user_pages() for dax is disabled.
    	 */
    	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    		return NULL;
    
    	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
    		return NULL;
    
    	pagevec_init(&pvec);
    	index = 0;
    	end = -1;
    
    	/*
    	 * If we race get_user_pages_fast() here either we'll see the
    	 * elevated page count in the pagevec_lookup and wait, or
    	 * get_user_pages_fast() will see that the page it took a reference
    	 * against is no longer mapped in the page tables and bail to the
    	 * get_user_pages() slow path.  The slow path is protected by
    	 * pte_lock() and pmd_lock(). New references are not taken without
    	 * holding those locks, and unmap_mapping_range() will not zero the
    	 * pte or pmd without holding the respective lock, so we are
    	 * guaranteed to either see new references or prevent new
    	 * references from being established.
    	 */
    	unmap_mapping_range(mapping, 0, 0, 1);
    
    	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
    				min(end - index, (pgoff_t)PAGEVEC_SIZE),
    				indices)) {
    		for (i = 0; i < pagevec_count(&pvec); i++) {
    			struct page *pvec_ent = pvec.pages[i];
    			void *entry;
    
    			index = indices[i];
    			if (index >= end)
    				break;
    
    			if (!radix_tree_exceptional_entry(pvec_ent))
    				continue;
    
    			xa_lock_irq(&mapping->i_pages);
    			entry = get_unlocked_mapping_entry(mapping, index, NULL);
    			if (entry)
    				page = dax_busy_page(entry);
    			put_unlocked_mapping_entry(mapping, index, entry);
    			xa_unlock_irq(&mapping->i_pages);
    			if (page)
    				break;
    		}
    		pagevec_remove_exceptionals(&pvec);
    		pagevec_release(&pvec);
    		index++;
    
    		if (page)
    			break;
    	}
    	return page;
    }
    EXPORT_SYMBOL_GPL(dax_layout_busy_page);
    
    static int __dax_invalidate_mapping_entry(struct address_space *mapping,
    					  pgoff_t index, bool trunc)
    {
    	int ret = 0;
    	void *entry;
    	struct radix_tree_root *pages = &mapping->i_pages;
    
    	xa_lock_irq(pages);
    	entry = get_unlocked_mapping_entry(mapping, index, NULL);
    	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
    		goto out;
    	if (!trunc &&
    	    (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
    	     radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
    		goto out;
    	dax_disassociate_entry(entry, mapping, trunc);
    	radix_tree_delete(pages, index);
    	mapping->nrexceptional--;
    	ret = 1;
    out:
    	put_unlocked_mapping_entry(mapping, index, entry);
    	xa_unlock_irq(pages);
    	return ret;
    }
    /*
     * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
     * entry to get unlocked before deleting it.
     */
    int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
    {
    	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
    
    	/*
    	 * This gets called from truncate / punch_hole path. As such, the caller
    	 * must hold locks protecting against concurrent modifications of the
    	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
    	 * caller has seen exceptional entry for this index, we better find it
    	 * at that index as well...
    	 */
    	WARN_ON_ONCE(!ret);
    	return ret;
    }
    
    /*
     * Invalidate exceptional DAX entry if it is clean.
     */
    int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
    				      pgoff_t index)
    {
    	return __dax_invalidate_mapping_entry(mapping, index, false);
    }
    
    static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
    		sector_t sector, size_t size, struct page *to,
    		unsigned long vaddr)
    {
    	void *vto, *kaddr;
    	pgoff_t pgoff;
    	pfn_t pfn;
    	long rc;
    	int id;
    
    	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
    	if (rc)
    		return rc;
    
    	id = dax_read_lock();
    	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
    	if (rc < 0) {
    		dax_read_unlock(id);
    		return rc;
    	}
    	vto = kmap_atomic(to);
    	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
    	kunmap_atomic(vto);
    	dax_read_unlock(id);
    	return 0;
    }
    
    /*
     * By this point grab_mapping_entry() has ensured that we have a locked entry
     * of the appropriate size so we don't have to worry about downgrading PMDs to
     * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
     * already in the tree, we will skip the insertion and just dirty the PMD as
     * appropriate.
     */
    static void *dax_insert_mapping_entry(struct address_space *mapping,
    				      struct vm_fault *vmf,
    				      void *entry, pfn_t pfn_t,
    				      unsigned long flags, bool dirty)
    {
    	struct radix_tree_root *pages = &mapping->i_pages;
    	unsigned long pfn = pfn_t_to_pfn(pfn_t);
    	pgoff_t index = vmf->pgoff;
    	void *new_entry;
    
    	if (dirty)
    		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    
    	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
    		/* we are replacing a zero page with block mapping */
    		if (dax_is_pmd_entry(entry))
    			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
    							PG_PMD_NR, false);
    		else /* pte entry */
    			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
    	}
    
    	xa_lock_irq(pages);
    	new_entry = dax_radix_locked_entry(pfn, flags);
    	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
    		dax_disassociate_entry(entry, mapping, false);
    		dax_associate_entry(new_entry, mapping);
    	}
    
    	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
    		/*
    		 * Only swap our new entry into the radix tree if the current
    		 * entry is a zero page or an empty entry.  If a normal PTE or
    		 * PMD entry is already in the tree, we leave it alone.  This
    		 * means that if we are trying to insert a PTE and the
    		 * existing entry is a PMD, we will just leave the PMD in the
    		 * tree and dirty it if necessary.
    		 */
    		struct radix_tree_node *node;
    		void **slot;
    		void *ret;
    
    		ret = __radix_tree_lookup(pages, index, &node, &slot);
    		WARN_ON_ONCE(ret != entry);
    		__radix_tree_replace(pages, node, slot,
    				     new_entry, NULL);
    		entry = new_entry;
    	}
    
    	if (dirty)
    		radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
    
    	xa_unlock_irq(pages);
    	return entry;
    }
    
    static inline unsigned long
    pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
    {
    	unsigned long address;
    
    	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
    	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
    	return address;
    }
    
    /* Walk all mappings of a given index of a file and writeprotect them */
    static void dax_mapping_entry_mkclean(struct address_space *mapping,
    				      pgoff_t index, unsigned long pfn)
    {
    	struct vm_area_struct *vma;
    	pte_t pte, *ptep = NULL;
    	pmd_t *pmdp = NULL;
    	spinlock_t *ptl;
    
    	i_mmap_lock_read(mapping);
    	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
    		unsigned long address, start, end;
    
    		cond_resched();
    
    		if (!(vma->vm_flags & VM_SHARED))
    			continue;
    
    		address = pgoff_address(index, vma);
    
    		/*
    		 * Note because we provide start/end to follow_pte_pmd it will
    		 * call mmu_notifier_invalidate_range_start() on our behalf
    		 * before taking any lock.
    		 */
    		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
    			continue;
    
    		/*
    		 * No need to call mmu_notifier_invalidate_range() as we are
    		 * downgrading page table protection not changing it to point
    		 * to a new page.
    		 *
    		 * See Documentation/vm/mmu_notifier.txt
    		 */
    		if (pmdp) {
    #ifdef CONFIG_FS_DAX_PMD
    			pmd_t pmd;
    
    			if (pfn != pmd_pfn(*pmdp))
    				goto unlock_pmd;
    			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
    				goto unlock_pmd;
    
    			flush_cache_page(vma, address, pfn);
    			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
    			pmd = pmd_wrprotect(pmd);
    			pmd = pmd_mkclean(pmd);
    			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
    unlock_pmd:
    #endif
    			spin_unlock(ptl);
    		} else {
    			if (pfn != pte_pfn(*ptep))
    				goto unlock_pte;
    			if (!pte_dirty(*ptep) && !pte_write(*ptep))
    				goto unlock_pte;
    
    			flush_cache_page(vma, address, pfn);
    			pte = ptep_clear_flush(vma, address, ptep);
    			pte = pte_wrprotect(pte);
    			pte = pte_mkclean(pte);
    			set_pte_at(vma->vm_mm, address, ptep, pte);
    unlock_pte:
    			pte_unmap_unlock(ptep, ptl);
    		}
    
    		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
    	}
    	i_mmap_unlock_read(mapping);
    }
    
    static int dax_writeback_one(struct dax_device *dax_dev,
    		struct address_space *mapping, pgoff_t index, void *entry)
    {
    	struct radix_tree_root *pages = &mapping->i_pages;
    	void *entry2, **slot;
    	unsigned long pfn;
    	long ret = 0;
    	size_t size;
    
    	/*
    	 * A page got tagged dirty in DAX mapping? Something is seriously
    	 * wrong.
    	 */
    	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
    		return -EIO;
    
    	xa_lock_irq(pages);
    	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
    	/* Entry got punched out / reallocated? */
    	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
    		goto put_unlocked;
    	/*
    	 * Entry got reallocated elsewhere? No need to writeback. We have to
    	 * compare pfns as we must not bail out due to difference in lockbit
    	 * or entry type.
    	 */
    	if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
    		goto put_unlocked;
    	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
    				dax_is_zero_entry(entry))) {
    		ret = -EIO;
    		goto put_unlocked;
    	}
    
    	/* Another fsync thread may have already written back this entry */
    	if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
    		goto put_unlocked;
    	/* Lock the entry to serialize with page faults */
    	entry = lock_slot(mapping, slot);
    	/*
    	 * We can clear the tag now but we have to be careful so that concurrent
    	 * dax_writeback_one() calls for the same index cannot finish before we
    	 * actually flush the caches. This is achieved as the calls will look
    	 * at the entry only under the i_pages lock and once they do that
    	 * they will see the entry locked and wait for it to unlock.
    	 */
    	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
    	xa_unlock_irq(pages);
    
    	/*
    	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
    	 * in the middle of a PMD, the 'index' we are given will be aligned to
    	 * the start index of the PMD, as will the pfn we pull from 'entry'.
    	 * This allows us to flush for PMD_SIZE and not have to worry about
    	 * partial PMD writebacks.
    	 */
    	pfn = dax_radix_pfn(entry);
    	size = PAGE_SIZE << dax_radix_order(entry);
    
    	dax_mapping_entry_mkclean(mapping, index, pfn);
    	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
    	/*
    	 * After we have flushed the cache, we can clear the dirty tag. There
    	 * cannot be new dirty data in the pfn after the flush has completed as
    	 * the pfn mappings are writeprotected and fault waits for mapping
    	 * entry lock.
    	 */
    	xa_lock_irq(pages);
    	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
    	xa_unlock_irq(pages);
    	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
    	put_locked_mapping_entry(mapping, index);
    	return ret;
    
     put_unlocked:
    	put_unlocked_mapping_entry(mapping, index, entry2);
    	xa_unlock_irq(pages);
    	return ret;
    }
    
    /*
     * Flush the mapping to the persistent domain within the byte range of [start,
     * end]. This is required by data integrity operations to ensure file data is
     * on persistent storage prior to completion of the operation.
     */
    int dax_writeback_mapping_range(struct address_space *mapping,
    		struct block_device *bdev, struct writeback_control *wbc)
    {
    	struct inode *inode = mapping->host;
    	pgoff_t start_index, end_index;
    	pgoff_t indices[PAGEVEC_SIZE];
    	struct dax_device *dax_dev;
    	struct pagevec pvec;
    	bool done = false;
    	int i, ret = 0;
    
    	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
    		return -EIO;
    
    	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
    		return 0;
    
    	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
    	if (!dax_dev)
    		return -EIO;
    
    	start_index = wbc->range_start >> PAGE_SHIFT;
    	end_index = wbc->range_end >> PAGE_SHIFT;
    
    	trace_dax_writeback_range(inode, start_index, end_index);
    
    	tag_pages_for_writeback(mapping, start_index, end_index);
    
    	pagevec_init(&pvec);
    	while (!done) {
    		pvec.nr = find_get_entries_tag(mapping, start_index,
    				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
    				pvec.pages, indices);
    
    		if (pvec.nr == 0)
    			break;
    
    		for (i = 0; i < pvec.nr; i++) {
    			if (indices[i] > end_index) {
    				done = true;
    				break;
    			}
    
    			ret = dax_writeback_one(dax_dev, mapping, indices[i],
    					pvec.pages[i]);
    			if (ret < 0) {
    				mapping_set_error(mapping, ret);
    				goto out;
    			}
    		}
    		start_index = indices[pvec.nr - 1] + 1;
    	}
    out:
    	put_dax(dax_dev);
    	trace_dax_writeback_range_done(inode, start_index, end_index);
    	return (ret < 0 ? ret : 0);
    }
    EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
    
    static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
    {
    	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
    }
    
    static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
    			 pfn_t *pfnp)
    {
    	const sector_t sector = dax_iomap_sector(iomap, pos);
    	pgoff_t pgoff;
    	void *kaddr;
    	int id, rc;
    	long length;
    
    	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
    	if (rc)
    		return rc;
    	id = dax_read_lock();
    	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
    				   &kaddr, pfnp);
    	if (length < 0) {
    		rc = length;
    		goto out;
    	}
    	rc = -EINVAL;
    	if (PFN_PHYS(length) < size)
    		goto out;
    	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
    		goto out;
    	/* For larger pages we need devmap */
    	if (length > 1 && !pfn_t_devmap(*pfnp))
    		goto out;
    	rc = 0;
    out:
    	dax_read_unlock(id);
    	return rc;
    }
    
    /*
     * The user has performed a load from a hole in the file.  Allocating a new
     * page in the file would cause excessive storage usage for workloads with
     * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
     * If this page is ever written to we will re-fault and change the mapping to
     * point to real DAX storage instead.
     */
    static int dax_load_hole(struct address_space *mapping, void *entry,
    			 struct vm_fault *vmf)
    {
    	struct inode *inode = mapping->host;
    	unsigned long vaddr = vmf->address;
    	int ret = VM_FAULT_NOPAGE;
    	struct page *zero_page;
    	void *entry2;
    	pfn_t pfn;
    
    	zero_page = ZERO_PAGE(0);
    	if (unlikely(!zero_page)) {
    		ret = VM_FAULT_OOM;
    		goto out;
    	}
    
    	pfn = page_to_pfn_t(zero_page);
    	entry2 = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
    			RADIX_DAX_ZERO_PAGE, false);
    	if (IS_ERR(entry2)) {
    		ret = VM_FAULT_SIGBUS;
    		goto out;
    	}
    
    	vm_insert_mixed(vmf->vma, vaddr, pfn);
    out:
    	trace_dax_load_hole(inode, vmf, ret);
    	return ret;
    }
    
    static bool dax_range_is_aligned(struct block_device *bdev,
    				 unsigned int offset, unsigned int length)
    {
    	unsigned short sector_size = bdev_logical_block_size(bdev);
    
    	if (!IS_ALIGNED(offset, sector_size))
    		return false;
    	if (!IS_ALIGNED(length, sector_size))
    		return false;
    
    	return true;
    }
    
    int __dax_zero_page_range(struct block_device *bdev,
    		struct dax_device *dax_dev, sector_t sector,
    		unsigned int offset, unsigned int size)
    {
    	if (dax_range_is_aligned(bdev, offset, size)) {
    		sector_t start_sector = sector + (offset >> 9);
    
    		return blkdev_issue_zeroout(bdev, start_sector,
    				size >> 9, GFP_NOFS, 0);
    	} else {
    		pgoff_t pgoff;
    		long rc, id;
    		void *kaddr;
    		pfn_t pfn;
    
    		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
    		if (rc)
    			return rc;
    
    		id = dax_read_lock();
    		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
    				&pfn);
    		if (rc < 0) {
    			dax_read_unlock(id);
    			return rc;
    		}
    		memset(kaddr + offset, 0, size);
    		dax_flush(dax_dev, kaddr + offset, size);
    		dax_read_unlock(id);
    	}
    	return 0;
    }
    EXPORT_SYMBOL_GPL(__dax_zero_page_range);
    
    static loff_t
    dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
    		struct iomap *iomap)
    {
    	struct block_device *bdev = iomap->bdev;
    	struct dax_device *dax_dev = iomap->dax_dev;
    	struct iov_iter *iter = data;
    	loff_t end = pos + length, done = 0;
    	ssize_t ret = 0;
    	int id;
    
    	if (iov_iter_rw(iter) == READ) {
    		end = min(end, i_size_read(inode));
    		if (pos >= end)
    			return 0;
    
    		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
    			return iov_iter_zero(min(length, end - pos), iter);
    	}
    
    	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
    		return -EIO;
    
    	/*
    	 * Write can allocate block for an area which has a hole page mapped
    	 * into page tables. We have to tear down these mappings so that data
    	 * written by write(2) is visible in mmap.
    	 */
    	if (iomap->flags & IOMAP_F_NEW) {
    		invalidate_inode_pages2_range(inode->i_mapping,
    					      pos >> PAGE_SHIFT,
    					      (end - 1) >> PAGE_SHIFT);
    	}
    
    	id = dax_read_lock();
    	while (pos < end) {
    		unsigned offset = pos & (PAGE_SIZE - 1);
    		const size_t size = ALIGN(length + offset, PAGE_SIZE);
    		const sector_t sector = dax_iomap_sector(iomap, pos);
    		ssize_t map_len;
    		pgoff_t pgoff;
    		void *kaddr;
    		pfn_t pfn;
    
    		if (fatal_signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
    		if (ret)
    			break;
    
    		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
    				&kaddr, &pfn);
    		if (map_len < 0) {
    			ret = map_len;
    			break;
    		}
    
    		map_len = PFN_PHYS(map_len);
    		kaddr += offset;
    		map_len -= offset;
    		if (map_len > end - pos)
    			map_len = end - pos;
    
    		/*
    		 * The userspace address for the memory copy has already been
    		 * validated via access_ok() in either vfs_read() or
    		 * vfs_write(), depending on which operation we are doing.
    		 */
    		if (iov_iter_rw(iter) == WRITE)
    			map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
    					map_len, iter);
    		else
    			map_len = copy_to_iter(kaddr, map_len, iter);
    		if (map_len <= 0) {
    			ret = map_len ? map_len : -EFAULT;
    			break;
    		}
    
    		pos += map_len;
    		length -= map_len;
    		done += map_len;
    	}
    	dax_read_unlock(id);
    
    	return done ? done : ret;
    }
    
    /**
     * dax_iomap_rw - Perform I/O to a DAX file
     * @iocb:	The control block for this I/O
     * @iter:	The addresses to do I/O from or to
     * @ops:	iomap ops passed from the file system
     *
     * This function performs read and write operations to directly mapped
     * persistent memory.  The callers needs to take care of read/write exclusion
     * and evicting any page cache pages in the region under I/O.
     */
    ssize_t
    dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
    		const struct iomap_ops *ops)
    {
    	struct address_space *mapping = iocb->ki_filp->f_mapping;
    	struct inode *inode = mapping->host;
    	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
    	unsigned flags = 0;
    
    	if (iov_iter_rw(iter) == WRITE) {
    		lockdep_assert_held_exclusive(&inode->i_rwsem);
    		flags |= IOMAP_WRITE;
    	} else {
    		lockdep_assert_held(&inode->i_rwsem);
    	}
    
    	while (iov_iter_count(iter)) {
    		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
    				iter, dax_iomap_actor);
    		if (ret <= 0)
    			break;
    		pos += ret;
    		done += ret;
    	}
    
    	iocb->ki_pos += done;
    	return done ? done : ret;
    }
    EXPORT_SYMBOL_GPL(dax_iomap_rw);
    
    static int dax_fault_return(int error)
    {
    	if (error == 0)
    		return VM_FAULT_NOPAGE;
    	if (error == -ENOMEM)
    		return VM_FAULT_OOM;
    	return VM_FAULT_SIGBUS;
    }
    
    /*
     * MAP_SYNC on a dax mapping guarantees dirty metadata is
     * flushed on write-faults (non-cow), but not read-faults.
     */
    static bool dax_fault_is_synchronous(unsigned long flags,
    		struct vm_area_struct *vma, struct iomap *iomap)
    {
    	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
    		&& (iomap->flags & IOMAP_F_DIRTY);
    }
    
    static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
    			       int *iomap_errp, const struct iomap_ops *ops)
    {
    	struct vm_area_struct *vma = vmf->vma;
    	struct address_space *mapping = vma->vm_file->f_mapping;
    	struct inode *inode = mapping->host;
    	unsigned long vaddr = vmf->address;
    	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
    	struct iomap iomap = { 0 };
    	unsigned flags = IOMAP_FAULT;
    	int error, major = 0;
    	bool write = vmf->flags & FAULT_FLAG_WRITE;
    	bool sync;
    	int vmf_ret = 0;
    	void *entry;
    	pfn_t pfn;
    
    	trace_dax_pte_fault(inode, vmf, vmf_ret);
    	/*
    	 * Check whether offset isn't beyond end of file now. Caller is supposed
    	 * to hold locks serializing us with truncate / punch hole so this is
    	 * a reliable test.
    	 */
    	if (pos >= i_size_read(inode)) {
    		vmf_ret = VM_FAULT_SIGBUS;
    		goto out;
    	}
    
    	if (write && !vmf->cow_page)
    		flags |= IOMAP_WRITE;
    
    	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
    	if (IS_ERR(entry)) {
    		vmf_ret = dax_fault_return(PTR_ERR(entry));
    		goto out;
    	}
    
    	/*
    	 * It is possible, particularly with mixed reads & writes to private
    	 * mappings, that we have raced with a PMD fault that overlaps with
    	 * the PTE we need to set up.  If so just return and the fault will be
    	 * retried.
    	 */
    	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
    		vmf_ret = VM_FAULT_NOPAGE;
    		goto unlock_entry;
    	}
    
    	/*
    	 * Note that we don't bother to use iomap_apply here: DAX required
    	 * the file system block size to be equal the page size, which means
    	 * that we never have to deal with more than a single extent here.
    	 */
    	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
    	if (iomap_errp)
    		*iomap_errp = error;
    	if (error) {
    		vmf_ret = dax_fault_return(error);
    		goto unlock_entry;
    	}
    	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
    		error = -EIO;	/* fs corruption? */
    		goto error_finish_iomap;
    	}
    
    	if (vmf->cow_page) {
    		sector_t sector = dax_iomap_sector(&iomap, pos);
    
    		switch (iomap.type) {
    		case IOMAP_HOLE:
    		case IOMAP_UNWRITTEN:
    			clear_user_highpage(vmf->cow_page, vaddr);
    			break;
    		case IOMAP_MAPPED:
    			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
    					sector, PAGE_SIZE, vmf->cow_page, vaddr);
    			break;
    		default:
    			WARN_ON_ONCE(1);
    			error = -EIO;
    			break;
    		}
    
    		if (error)
    			goto error_finish_iomap;
    
    		__SetPageUptodate(vmf->cow_page);
    		vmf_ret = finish_fault(vmf);
    		if (!vmf_ret)
    			vmf_ret = VM_FAULT_DONE_COW;
    		goto finish_iomap;
    	}
    
    	sync = dax_fault_is_synchronous(flags, vma, &iomap);
    
    	switch (iomap.type) {
    	case IOMAP_MAPPED:
    		if (iomap.flags & IOMAP_F_NEW) {
    			count_vm_event(PGMAJFAULT);
    			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
    			major = VM_FAULT_MAJOR;
    		}
    		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
    		if (error < 0)
    			goto error_finish_iomap;
    
    		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
    						 0, write && !sync);
    		if (IS_ERR(entry)) {
    			error = PTR_ERR(entry);
    			goto error_finish_iomap;
    		}
    
    		/*
    		 * If we are doing synchronous page fault and inode needs fsync,
    		 * we can insert PTE into page tables only after that happens.
    		 * Skip insertion for now and return the pfn so that caller can
    		 * insert it after fsync is done.
    		 */
    		if (sync) {
    			if (WARN_ON_ONCE(!pfnp)) {
    				error = -EIO;
    				goto error_finish_iomap;
    			}
    			*pfnp = pfn;
    			vmf_ret = VM_FAULT_NEEDDSYNC | major;
    			goto finish_iomap;
    		}
    		trace_dax_insert_mapping(inode, vmf, entry);
    		if (write)
    			error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
    		else
    			error = vm_insert_mixed(vma, vaddr, pfn);
    
    		/* -EBUSY is fine, somebody else faulted on the same PTE */
    		if (error == -EBUSY)
    			error = 0;
    		break;
    	case IOMAP_UNWRITTEN:
    	case IOMAP_HOLE:
    		if (!write) {
    			vmf_ret = dax_load_hole(mapping, entry, vmf);
    			goto finish_iomap;
    		}
    		/*FALLTHRU*/
    	default:
    		WARN_ON_ONCE(1);
    		error = -EIO;
    		break;
    	}
    
     error_finish_iomap:
    	vmf_ret = dax_fault_return(error) | major;
     finish_iomap:
    	if (ops->iomap_end) {
    		int copied = PAGE_SIZE;
    
    		if (vmf_ret & VM_FAULT_ERROR)
    			copied = 0;
    		/*
    		 * The fault is done by now and there's no way back (other
    		 * thread may be already happily using PTE we have installed).
    		 * Just ignore error from ->iomap_end since we cannot do much
    		 * with it.
    		 */
    		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
    	}
     unlock_entry:
    	put_locked_mapping_entry(mapping, vmf->pgoff);
     out:
    	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
    	return vmf_ret;
    }
    
    #ifdef CONFIG_FS_DAX_PMD
    static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
    		void *entry)
    {
    	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
    	unsigned long pmd_addr = vmf->address & PMD_MASK;
    	struct inode *inode = mapping->host;
    	struct page *zero_page;
    	void *ret = NULL;
    	spinlock_t *ptl;
    	pmd_t pmd_entry;
    	pfn_t pfn;
    
    	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
    
    	if (unlikely(!zero_page))
    		goto fallback;
    
    	pfn = page_to_pfn_t(zero_page);
    	ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
    			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
    	if (IS_ERR(ret))
    		goto fallback;
    
    	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
    	if (!pmd_none(*(vmf->pmd))) {
    		spin_unlock(ptl);
    		goto fallback;
    	}
    
    	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
    	pmd_entry = pmd_mkhuge(pmd_entry);
    	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
    	spin_unlock(ptl);
    	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
    	return VM_FAULT_NOPAGE;
    
    fallback:
    	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
    	return VM_FAULT_FALLBACK;
    }
    
    static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
    			       const struct iomap_ops *ops)
    {
    	struct vm_area_struct *vma = vmf->vma;
    	struct address_space *mapping = vma->vm_file->f_mapping;
    	unsigned long pmd_addr = vmf->address & PMD_MASK;
    	bool write = vmf->flags & FAULT_FLAG_WRITE;
    	bool sync;
    	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
    	struct inode *inode = mapping->host;
    	int result = VM_FAULT_FALLBACK;
    	struct iomap iomap = { 0 };
    	pgoff_t max_pgoff, pgoff;
    	void *entry;
    	loff_t pos;
    	int error;
    	pfn_t pfn;
    
    	/*
    	 * Check whether offset isn't beyond end of file now. Caller is
    	 * supposed to hold locks serializing us with truncate / punch hole so
    	 * this is a reliable test.
    	 */
    	pgoff = linear_page_index(vma, pmd_addr);
    	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
    
    	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
    
    	/*
    	 * Make sure that the faulting address's PMD offset (color) matches
    	 * the PMD offset from the start of the file.  This is necessary so
    	 * that a PMD range in the page table overlaps exactly with a PMD
    	 * range in the radix tree.
    	 */
    	if ((vmf->pgoff & PG_PMD_COLOUR) !=
    	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
    		goto fallback;
    
    	/* Fall back to PTEs if we're going to COW */
    	if (write && !(vma->vm_flags & VM_SHARED))
    		goto fallback;
    
    	/* If the PMD would extend outside the VMA */
    	if (pmd_addr < vma->vm_start)
    		goto fallback;
    	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
    		goto fallback;
    
    	if (pgoff >= max_pgoff) {
    		result = VM_FAULT_SIGBUS;
    		goto out;
    	}
    
    	/* If the PMD would extend beyond the file size */
    	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
    		goto fallback;
    
    	/*
    	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
    	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
    	 * is already in the tree, for instance), it will return -EEXIST and
    	 * we just fall back to 4k entries.
    	 */
    	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
    	if (IS_ERR(entry))
    		goto fallback;
    
    	/*
    	 * It is possible, particularly with mixed reads & writes to private
    	 * mappings, that we have raced with a PTE fault that overlaps with
    	 * the PMD we need to set up.  If so just return and the fault will be
    	 * retried.
    	 */
    	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
    			!pmd_devmap(*vmf->pmd)) {
    		result = 0;
    		goto unlock_entry;
    	}
    
    	/*
    	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
    	 * setting up a mapping, so really we're using iomap_begin() as a way
    	 * to look up our filesystem block.
    	 */
    	pos = (loff_t)pgoff << PAGE_SHIFT;
    	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
    	if (error)
    		goto unlock_entry;
    
    	if (iomap.offset + iomap.length < pos + PMD_SIZE)
    		goto finish_iomap;
    
    	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
    
    	switch (iomap.type) {
    	case IOMAP_MAPPED:
    		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
    		if (error < 0)
    			goto finish_iomap;
    
    		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
    						RADIX_DAX_PMD, write && !sync);
    		if (IS_ERR(entry))
    			goto finish_iomap;
    
    		/*
    		 * If we are doing synchronous page fault and inode needs fsync,
    		 * we can insert PMD into page tables only after that happens.
    		 * Skip insertion for now and return the pfn so that caller can
    		 * insert it after fsync is done.
    		 */
    		if (sync) {
    			if (WARN_ON_ONCE(!pfnp))
    				goto finish_iomap;
    			*pfnp = pfn;
    			result = VM_FAULT_NEEDDSYNC;
    			goto finish_iomap;
    		}
    
    		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
    		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
    					    write);
    		break;
    	case IOMAP_UNWRITTEN:
    	case IOMAP_HOLE:
    		if (WARN_ON_ONCE(write))
    			break;
    		result = dax_pmd_load_hole(vmf, &iomap, entry);
    		break;
    	default:
    		WARN_ON_ONCE(1);
    		break;
    	}
    
     finish_iomap:
    	if (ops->iomap_end) {
    		int copied = PMD_SIZE;
    
    		if (result == VM_FAULT_FALLBACK)
    			copied = 0;
    		/*
    		 * The fault is done by now and there's no way back (other
    		 * thread may be already happily using PMD we have installed).
    		 * Just ignore error from ->iomap_end since we cannot do much
    		 * with it.
    		 */
    		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
    				&iomap);
    	}
     unlock_entry:
    	put_locked_mapping_entry(mapping, pgoff);
     fallback:
    	if (result == VM_FAULT_FALLBACK) {
    		split_huge_pmd(vma, vmf->pmd, vmf->address);
    		count_vm_event(THP_FAULT_FALLBACK);
    	}
    out:
    	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
    	return result;
    }
    #else
    static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
    			       const struct iomap_ops *ops)
    {
    	return VM_FAULT_FALLBACK;
    }
    #endif /* CONFIG_FS_DAX_PMD */
    
    /**
     * dax_iomap_fault - handle a page fault on a DAX file
     * @vmf: The description of the fault
     * @pe_size: Size of the page to fault in
     * @pfnp: PFN to insert for synchronous faults if fsync is required
     * @iomap_errp: Storage for detailed error code in case of error
     * @ops: Iomap ops passed from the file system
     *
     * When a page fault occurs, filesystems may call this helper in
     * their fault handler for DAX files. dax_iomap_fault() assumes the caller
     * has done all the necessary locking for page fault to proceed
     * successfully.
     */
    int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
    		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
    {
    	switch (pe_size) {
    	case PE_SIZE_PTE:
    		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
    	case PE_SIZE_PMD:
    		return dax_iomap_pmd_fault(vmf, pfnp, ops);
    	default:
    		return VM_FAULT_FALLBACK;
    	}
    }
    EXPORT_SYMBOL_GPL(dax_iomap_fault);
    
    /**
     * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
     * @vmf: The description of the fault
     * @pe_size: Size of entry to be inserted
     * @pfn: PFN to insert
     *
     * This function inserts writeable PTE or PMD entry into page tables for mmaped
     * DAX file.  It takes care of marking corresponding radix tree entry as dirty
     * as well.
     */
    static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
    				  enum page_entry_size pe_size,
    				  pfn_t pfn)
    {
    	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
    	void *entry, **slot;
    	pgoff_t index = vmf->pgoff;
    	int vmf_ret, error;
    
    	xa_lock_irq(&mapping->i_pages);
    	entry = get_unlocked_mapping_entry(mapping, index, &slot);
    	/* Did we race with someone splitting entry or so? */
    	if (!entry ||
    	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
    	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
    		put_unlocked_mapping_entry(mapping, index, entry);
    		xa_unlock_irq(&mapping->i_pages);
    		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
    						      VM_FAULT_NOPAGE);
    		return VM_FAULT_NOPAGE;
    	}
    	radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
    	entry = lock_slot(mapping, slot);
    	xa_unlock_irq(&mapping->i_pages);
    	switch (pe_size) {
    	case PE_SIZE_PTE:
    		error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
    		vmf_ret = dax_fault_return(error);
    		break;
    #ifdef CONFIG_FS_DAX_PMD
    	case PE_SIZE_PMD:
    		vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
    			pfn, true);
    		break;
    #endif
    	default:
    		vmf_ret = VM_FAULT_FALLBACK;
    	}
    	put_locked_mapping_entry(mapping, index);
    	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
    	return vmf_ret;
    }
    
    /**
     * dax_finish_sync_fault - finish synchronous page fault
     * @vmf: The description of the fault
     * @pe_size: Size of entry to be inserted
     * @pfn: PFN to insert
     *
     * This function ensures that the file range touched by the page fault is
     * stored persistently on the media and handles inserting of appropriate page
     * table entry.
     */
    int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
    			  pfn_t pfn)
    {
    	int err;
    	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
    	size_t len = 0;
    
    	if (pe_size == PE_SIZE_PTE)
    		len = PAGE_SIZE;
    	else if (pe_size == PE_SIZE_PMD)
    		len = PMD_SIZE;
    	else
    		WARN_ON_ONCE(1);
    	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
    	if (err)
    		return VM_FAULT_SIGBUS;
    	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
    }
    EXPORT_SYMBOL_GPL(dax_finish_sync_fault);