Skip to content
Snippets Groups Projects
Select Git revision
  • ea7a5f90f103591f1f38dede52e731ec95ef3c55
  • linus-master default
  • kunit_is_love
  • kunit_drm
  • tonyk/futex_waitv
  • hidraw_rwlock
  • futex_waitv
  • futex2-dev
  • idle_sleep
  • futex2-proton
  • futex-tests
  • futex2
  • futex2-numa
  • fwm-5.11
  • cf-fix
  • tmpfs-ic
  • futex2-stable-5.11
  • futex2-stable
  • futex2-lpc
  • gaming
  • futex-fixes
21 results

timer-atmel-tcb.c

Blame
  • timer-atmel-tcb.c 12.62 KiB
    // SPDX-License-Identifier: GPL-2.0
    #include <linux/init.h>
    #include <linux/clocksource.h>
    #include <linux/clockchips.h>
    #include <linux/interrupt.h>
    #include <linux/irq.h>
    
    #include <linux/clk.h>
    #include <linux/err.h>
    #include <linux/ioport.h>
    #include <linux/io.h>
    #include <linux/of_address.h>
    #include <linux/of_irq.h>
    #include <linux/sched_clock.h>
    #include <linux/syscore_ops.h>
    #include <soc/at91/atmel_tcb.h>
    
    
    /*
     * We're configured to use a specific TC block, one that's not hooked
     * up to external hardware, to provide a time solution:
     *
     *   - Two channels combine to create a free-running 32 bit counter
     *     with a base rate of 5+ MHz, packaged as a clocksource (with
     *     resolution better than 200 nsec).
     *   - Some chips support 32 bit counter. A single channel is used for
     *     this 32 bit free-running counter. the second channel is not used.
     *
     *   - The third channel may be used to provide a 16-bit clockevent
     *     source, used in either periodic or oneshot mode.  This runs
     *     at 32 KiHZ, and can handle delays of up to two seconds.
     *
     * REVISIT behavior during system suspend states... we should disable
     * all clocks and save the power.  Easily done for clockevent devices,
     * but clocksources won't necessarily get the needed notifications.
     * For deeper system sleep states, this will be mandatory...
     */
    
    static void __iomem *tcaddr;
    static struct
    {
    	u32 cmr;
    	u32 imr;
    	u32 rc;
    	bool clken;
    } tcb_cache[3];
    static u32 bmr_cache;
    
    static u64 tc_get_cycles(struct clocksource *cs)
    {
    	unsigned long	flags;
    	u32		lower, upper;
    
    	raw_local_irq_save(flags);
    	do {
    		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
    		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
    	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
    
    	raw_local_irq_restore(flags);
    	return (upper << 16) | lower;
    }
    
    static u64 tc_get_cycles32(struct clocksource *cs)
    {
    	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
    }
    
    static void tc_clksrc_suspend(struct clocksource *cs)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
    		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
    		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
    		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
    		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
    					ATMEL_TC_CLKSTA);
    	}
    
    	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
    }
    
    static void tc_clksrc_resume(struct clocksource *cs)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
    		/* Restore registers for the channel, RA and RB are not used  */
    		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
    		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
    		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
    		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
    		/* Disable all the interrupts */
    		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
    		/* Reenable interrupts that were enabled before suspending */
    		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
    		/* Start the clock if it was used */
    		if (tcb_cache[i].clken)
    			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
    	}
    
    	/* Dual channel, chain channels */
    	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
    	/* Finally, trigger all the channels*/
    	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    }
    
    static struct clocksource clksrc = {
    	.rating         = 200,
    	.read           = tc_get_cycles,
    	.mask           = CLOCKSOURCE_MASK(32),
    	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
    	.suspend	= tc_clksrc_suspend,
    	.resume		= tc_clksrc_resume,
    };
    
    static u64 notrace tc_sched_clock_read(void)
    {
    	return tc_get_cycles(&clksrc);
    }
    
    static u64 notrace tc_sched_clock_read32(void)
    {
    	return tc_get_cycles32(&clksrc);
    }
    
    #ifdef CONFIG_GENERIC_CLOCKEVENTS
    
    struct tc_clkevt_device {
    	struct clock_event_device	clkevt;
    	struct clk			*clk;
    	void __iomem			*regs;
    };
    
    static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
    {
    	return container_of(clkevt, struct tc_clkevt_device, clkevt);
    }
    
    /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
     * because using one of the divided clocks would usually mean the
     * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
     *
     * A divided clock could be good for high resolution timers, since
     * 30.5 usec resolution can seem "low".
     */
    static u32 timer_clock;
    
    static int tc_shutdown(struct clock_event_device *d)
    {
    	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    	void __iomem		*regs = tcd->regs;
    
    	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
    	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
    	if (!clockevent_state_detached(d))
    		clk_disable(tcd->clk);
    
    	return 0;
    }
    
    static int tc_set_oneshot(struct clock_event_device *d)
    {
    	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    	void __iomem		*regs = tcd->regs;
    
    	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
    		tc_shutdown(d);
    
    	clk_enable(tcd->clk);
    
    	/* slow clock, count up to RC, then irq and stop */
    	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
    		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
    	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
    
    	/* set_next_event() configures and starts the timer */
    	return 0;
    }
    
    static int tc_set_periodic(struct clock_event_device *d)
    {
    	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    	void __iomem		*regs = tcd->regs;
    
    	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
    		tc_shutdown(d);
    
    	/* By not making the gentime core emulate periodic mode on top
    	 * of oneshot, we get lower overhead and improved accuracy.
    	 */
    	clk_enable(tcd->clk);
    
    	/* slow clock, count up to RC, then irq and restart */
    	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
    		     regs + ATMEL_TC_REG(2, CMR));
    	writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
    
    	/* Enable clock and interrupts on RC compare */
    	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
    
    	/* go go gadget! */
    	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
    		     ATMEL_TC_REG(2, CCR));
    	return 0;
    }
    
    static int tc_next_event(unsigned long delta, struct clock_event_device *d)
    {
    	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
    
    	/* go go gadget! */
    	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
    			tcaddr + ATMEL_TC_REG(2, CCR));
    	return 0;
    }
    
    static struct tc_clkevt_device clkevt = {
    	.clkevt	= {
    		.features		= CLOCK_EVT_FEAT_PERIODIC |
    					  CLOCK_EVT_FEAT_ONESHOT,
    		/* Should be lower than at91rm9200's system timer */
    		.rating			= 125,
    		.set_next_event		= tc_next_event,
    		.set_state_shutdown	= tc_shutdown,
    		.set_state_periodic	= tc_set_periodic,
    		.set_state_oneshot	= tc_set_oneshot,
    	},
    };
    
    static irqreturn_t ch2_irq(int irq, void *handle)
    {
    	struct tc_clkevt_device	*dev = handle;
    	unsigned int		sr;
    
    	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
    	if (sr & ATMEL_TC_CPCS) {
    		dev->clkevt.event_handler(&dev->clkevt);
    		return IRQ_HANDLED;
    	}
    
    	return IRQ_NONE;
    }
    
    static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
    {
    	int ret;
    	struct clk *t2_clk = tc->clk[2];
    	int irq = tc->irq[2];
    
    	ret = clk_prepare_enable(tc->slow_clk);
    	if (ret)
    		return ret;
    
    	/* try to enable t2 clk to avoid future errors in mode change */
    	ret = clk_prepare_enable(t2_clk);
    	if (ret) {
    		clk_disable_unprepare(tc->slow_clk);
    		return ret;
    	}
    
    	clk_disable(t2_clk);
    
    	clkevt.regs = tc->regs;
    	clkevt.clk = t2_clk;
    
    	timer_clock = clk32k_divisor_idx;
    
    	clkevt.clkevt.cpumask = cpumask_of(0);
    
    	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
    	if (ret) {
    		clk_unprepare(t2_clk);
    		clk_disable_unprepare(tc->slow_clk);
    		return ret;
    	}
    
    	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
    
    	return ret;
    }
    
    #else /* !CONFIG_GENERIC_CLOCKEVENTS */
    
    static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
    {
    	/* NOTHING */
    	return 0;
    }
    
    #endif
    
    static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
    {
    	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
    	writel(mck_divisor_idx			/* likely divide-by-8 */
    			| ATMEL_TC_WAVE
    			| ATMEL_TC_WAVESEL_UP		/* free-run */
    			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
    			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
    			tcaddr + ATMEL_TC_REG(0, CMR));
    	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
    	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
    	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
    	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
    
    	/* channel 1:  waveform mode, input TIOA0 */
    	writel(ATMEL_TC_XC1			/* input: TIOA0 */
    			| ATMEL_TC_WAVE
    			| ATMEL_TC_WAVESEL_UP,		/* free-run */
    			tcaddr + ATMEL_TC_REG(1, CMR));
    	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
    	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
    
    	/* chain channel 0 to channel 1*/
    	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
    	/* then reset all the timers */
    	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    }
    
    static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
    {
    	/* channel 0:  waveform mode, input mclk/8 */
    	writel(mck_divisor_idx			/* likely divide-by-8 */
    			| ATMEL_TC_WAVE
    			| ATMEL_TC_WAVESEL_UP,		/* free-run */
    			tcaddr + ATMEL_TC_REG(0, CMR));
    	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
    	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
    
    	/* then reset all the timers */
    	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    }
    
    static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
    
    static const struct of_device_id atmel_tcb_of_match[] = {
    	{ .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
    	{ .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
    	{ /* sentinel */ }
    };
    
    static int __init tcb_clksrc_init(struct device_node *node)
    {
    	struct atmel_tc tc;
    	struct clk *t0_clk;
    	const struct of_device_id *match;
    	u64 (*tc_sched_clock)(void);
    	u32 rate, divided_rate = 0;
    	int best_divisor_idx = -1;
    	int clk32k_divisor_idx = -1;
    	int bits;
    	int i;
    	int ret;
    
    	/* Protect against multiple calls */
    	if (tcaddr)
    		return 0;
    
    	tc.regs = of_iomap(node->parent, 0);
    	if (!tc.regs)
    		return -ENXIO;
    
    	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
    	if (IS_ERR(t0_clk))
    		return PTR_ERR(t0_clk);
    
    	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
    	if (IS_ERR(tc.slow_clk))
    		return PTR_ERR(tc.slow_clk);
    
    	tc.clk[0] = t0_clk;
    	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
    	if (IS_ERR(tc.clk[1]))
    		tc.clk[1] = t0_clk;
    	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
    	if (IS_ERR(tc.clk[2]))
    		tc.clk[2] = t0_clk;
    
    	tc.irq[2] = of_irq_get(node->parent, 2);
    	if (tc.irq[2] <= 0) {
    		tc.irq[2] = of_irq_get(node->parent, 0);
    		if (tc.irq[2] <= 0)
    			return -EINVAL;
    	}
    
    	match = of_match_node(atmel_tcb_of_match, node->parent);
    	bits = (uintptr_t)match->data;
    
    	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
    		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
    
    	ret = clk_prepare_enable(t0_clk);
    	if (ret) {
    		pr_debug("can't enable T0 clk\n");
    		return ret;
    	}
    
    	/* How fast will we be counting?  Pick something over 5 MHz.  */
    	rate = (u32) clk_get_rate(t0_clk);
    	for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
    		unsigned divisor = atmel_tcb_divisors[i];
    		unsigned tmp;
    
    		/* remember 32 KiHz clock for later */
    		if (!divisor) {
    			clk32k_divisor_idx = i;
    			continue;
    		}
    
    		tmp = rate / divisor;
    		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
    		if (best_divisor_idx > 0) {
    			if (tmp < 5 * 1000 * 1000)
    				continue;
    		}
    		divided_rate = tmp;
    		best_divisor_idx = i;
    	}
    
    	clksrc.name = kbasename(node->parent->full_name);
    	clkevt.clkevt.name = kbasename(node->parent->full_name);
    	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
    			((divided_rate % 1000000) + 500) / 1000);
    
    	tcaddr = tc.regs;
    
    	if (bits == 32) {
    		/* use apropriate function to read 32 bit counter */
    		clksrc.read = tc_get_cycles32;
    		/* setup ony channel 0 */
    		tcb_setup_single_chan(&tc, best_divisor_idx);
    		tc_sched_clock = tc_sched_clock_read32;
    	} else {
    		/* we have three clocks no matter what the
    		 * underlying platform supports.
    		 */
    		ret = clk_prepare_enable(tc.clk[1]);
    		if (ret) {
    			pr_debug("can't enable T1 clk\n");
    			goto err_disable_t0;
    		}
    		/* setup both channel 0 & 1 */
    		tcb_setup_dual_chan(&tc, best_divisor_idx);
    		tc_sched_clock = tc_sched_clock_read;
    	}
    
    	/* and away we go! */
    	ret = clocksource_register_hz(&clksrc, divided_rate);
    	if (ret)
    		goto err_disable_t1;
    
    	/* channel 2:  periodic and oneshot timer support */
    	ret = setup_clkevents(&tc, clk32k_divisor_idx);
    	if (ret)
    		goto err_unregister_clksrc;
    
    	sched_clock_register(tc_sched_clock, 32, divided_rate);
    
    	return 0;
    
    err_unregister_clksrc:
    	clocksource_unregister(&clksrc);
    
    err_disable_t1:
    	if (bits != 32)
    		clk_disable_unprepare(tc.clk[1]);
    
    err_disable_t0:
    	clk_disable_unprepare(t0_clk);
    
    	tcaddr = NULL;
    
    	return ret;
    }
    TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);