Skip to content
Snippets Groups Projects
Select Git revision
  • a9143c5852a7a13d60ef685d27f9617f2a52338b
  • drm-misc-templates default
  • wip/final/kci-gitlab-lava-v1
  • wip/vignesh/kci-lava-gitlab-runner
  • kci-gitlab-igt-v8
  • kci-gitlab-igt-v4
  • drm-misc-fixes-2024-10-02
  • drm-misc-next-2024-09-26
  • drm-misc-fixes-2024-09-26
  • drm-misc-next-2024-09-20
  • drm-misc-fixes-2024-09-12
  • drm-misc-fixes-2024-09-05
  • drm-misc-next-fixes-2024-09-05
  • drm-misc-fixes-2024-08-29
  • drm-misc-next-2024-08-29
  • drm-misc-next-2024-08-22
  • drm-misc-fixes-2024-08-22
  • drm-misc-next-2024-08-16
  • drm-misc-fixes-2024-08-15
  • drm-misc-next-2024-08-09
  • drm-misc-fixes-2024-08-08
  • drm-misc-next-2024-08-01
  • drm-misc-fixes-2024-08-01
  • drm-misc-next-fixes-2024-07-25
  • drm-misc-next-fixes-2024-07-19
  • drm-misc-next-fixes-2024-07-11
26 results

drm_kunit_helpers.c

Blame
  • qla3xxx.c 101.10 KiB
    // SPDX-License-Identifier: GPL-2.0-or-later
    /*
     * QLogic QLA3xxx NIC HBA Driver
     * Copyright (c)  2003-2006 QLogic Corporation
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/kernel.h>
    #include <linux/types.h>
    #include <linux/module.h>
    #include <linux/list.h>
    #include <linux/pci.h>
    #include <linux/dma-mapping.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/dmapool.h>
    #include <linux/mempool.h>
    #include <linux/spinlock.h>
    #include <linux/kthread.h>
    #include <linux/interrupt.h>
    #include <linux/errno.h>
    #include <linux/ioport.h>
    #include <linux/ip.h>
    #include <linux/in.h>
    #include <linux/if_arp.h>
    #include <linux/if_ether.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/ethtool.h>
    #include <linux/skbuff.h>
    #include <linux/rtnetlink.h>
    #include <linux/if_vlan.h>
    #include <linux/delay.h>
    #include <linux/mm.h>
    #include <linux/prefetch.h>
    
    #include "qla3xxx.h"
    
    #define DRV_NAME	"qla3xxx"
    #define DRV_STRING	"QLogic ISP3XXX Network Driver"
    #define DRV_VERSION	"v2.03.00-k5"
    
    static const char ql3xxx_driver_name[] = DRV_NAME;
    static const char ql3xxx_driver_version[] = DRV_VERSION;
    
    #define TIMED_OUT_MSG							\
    "Timed out waiting for management port to get free before issuing command\n"
    
    MODULE_AUTHOR("QLogic Corporation");
    MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
    MODULE_LICENSE("GPL");
    MODULE_VERSION(DRV_VERSION);
    
    static const u32 default_msg
        = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
        | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
    
    static int debug = -1;		/* defaults above */
    module_param(debug, int, 0);
    MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
    
    static int msi;
    module_param(msi, int, 0);
    MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
    
    static const struct pci_device_id ql3xxx_pci_tbl[] = {
    	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
    	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
    	/* required last entry */
    	{0,}
    };
    
    MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
    
    /*
     *  These are the known PHY's which are used
     */
    enum PHY_DEVICE_TYPE {
       PHY_TYPE_UNKNOWN   = 0,
       PHY_VITESSE_VSC8211,
       PHY_AGERE_ET1011C,
       MAX_PHY_DEV_TYPES
    };
    
    struct PHY_DEVICE_INFO {
    	const enum PHY_DEVICE_TYPE	phyDevice;
    	const u32		phyIdOUI;
    	const u16		phyIdModel;
    	const char		*name;
    };
    
    static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
    	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
    	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
    	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
    };
    
    
    /*
     * Caller must take hw_lock.
     */
    static int ql_sem_spinlock(struct ql3_adapter *qdev,
    			    u32 sem_mask, u32 sem_bits)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	u32 value;
    	unsigned int seconds = 3;
    
    	do {
    		writel((sem_mask | sem_bits),
    		       &port_regs->CommonRegs.semaphoreReg);
    		value = readl(&port_regs->CommonRegs.semaphoreReg);
    		if ((value & (sem_mask >> 16)) == sem_bits)
    			return 0;
    		ssleep(1);
    	} while (--seconds);
    	return -1;
    }
    
    static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
    	readl(&port_regs->CommonRegs.semaphoreReg);
    }
    
    static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	u32 value;
    
    	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
    	value = readl(&port_regs->CommonRegs.semaphoreReg);
    	return ((value & (sem_mask >> 16)) == sem_bits);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
    {
    	int i = 0;
    
    	do {
    		if (ql_sem_lock(qdev,
    				QL_DRVR_SEM_MASK,
    				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
    				 * 2) << 1)) {
    			netdev_printk(KERN_DEBUG, qdev->ndev,
    				      "driver lock acquired\n");
    			return 1;
    		}
    		ssleep(1);
    	} while (++i < 10);
    
    	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
    	return 0;
    }
    
    static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	writel(((ISP_CONTROL_NP_MASK << 16) | page),
    			&port_regs->CommonRegs.ispControlStatus);
    	readl(&port_regs->CommonRegs.ispControlStatus);
    	qdev->current_page = page;
    }
    
    static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
    {
    	u32 value;
    	unsigned long hw_flags;
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	value = readl(reg);
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    	return value;
    }
    
    static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
    {
    	return readl(reg);
    }
    
    static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
    {
    	u32 value;
    	unsigned long hw_flags;
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    
    	if (qdev->current_page != 0)
    		ql_set_register_page(qdev, 0);
    	value = readl(reg);
    
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	return value;
    }
    
    static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
    {
    	if (qdev->current_page != 0)
    		ql_set_register_page(qdev, 0);
    	return readl(reg);
    }
    
    static void ql_write_common_reg_l(struct ql3_adapter *qdev,
    				u32 __iomem *reg, u32 value)
    {
    	unsigned long hw_flags;
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	writel(value, reg);
    	readl(reg);
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    }
    
    static void ql_write_common_reg(struct ql3_adapter *qdev,
    				u32 __iomem *reg, u32 value)
    {
    	writel(value, reg);
    	readl(reg);
    }
    
    static void ql_write_nvram_reg(struct ql3_adapter *qdev,
    				u32 __iomem *reg, u32 value)
    {
    	writel(value, reg);
    	readl(reg);
    	udelay(1);
    }
    
    static void ql_write_page0_reg(struct ql3_adapter *qdev,
    			       u32 __iomem *reg, u32 value)
    {
    	if (qdev->current_page != 0)
    		ql_set_register_page(qdev, 0);
    	writel(value, reg);
    	readl(reg);
    }
    
    /*
     * Caller holds hw_lock. Only called during init.
     */
    static void ql_write_page1_reg(struct ql3_adapter *qdev,
    			       u32 __iomem *reg, u32 value)
    {
    	if (qdev->current_page != 1)
    		ql_set_register_page(qdev, 1);
    	writel(value, reg);
    	readl(reg);
    }
    
    /*
     * Caller holds hw_lock. Only called during init.
     */
    static void ql_write_page2_reg(struct ql3_adapter *qdev,
    			       u32 __iomem *reg, u32 value)
    {
    	if (qdev->current_page != 2)
    		ql_set_register_page(qdev, 2);
    	writel(value, reg);
    	readl(reg);
    }
    
    static void ql_disable_interrupts(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
    			    (ISP_IMR_ENABLE_INT << 16));
    
    }
    
    static void ql_enable_interrupts(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
    			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
    
    }
    
    static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
    					    struct ql_rcv_buf_cb *lrg_buf_cb)
    {
    	dma_addr_t map;
    	int err;
    	lrg_buf_cb->next = NULL;
    
    	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
    		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
    	} else {
    		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
    		qdev->lrg_buf_free_tail = lrg_buf_cb;
    	}
    
    	if (!lrg_buf_cb->skb) {
    		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
    						   qdev->lrg_buffer_len);
    		if (unlikely(!lrg_buf_cb->skb)) {
    			qdev->lrg_buf_skb_check++;
    		} else {
    			/*
    			 * We save some space to copy the ethhdr from first
    			 * buffer
    			 */
    			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
    			map = pci_map_single(qdev->pdev,
    					     lrg_buf_cb->skb->data,
    					     qdev->lrg_buffer_len -
    					     QL_HEADER_SPACE,
    					     PCI_DMA_FROMDEVICE);
    			err = pci_dma_mapping_error(qdev->pdev, map);
    			if (err) {
    				netdev_err(qdev->ndev,
    					   "PCI mapping failed with error: %d\n",
    					   err);
    				dev_kfree_skb(lrg_buf_cb->skb);
    				lrg_buf_cb->skb = NULL;
    
    				qdev->lrg_buf_skb_check++;
    				return;
    			}
    
    			lrg_buf_cb->buf_phy_addr_low =
    			    cpu_to_le32(LS_64BITS(map));
    			lrg_buf_cb->buf_phy_addr_high =
    			    cpu_to_le32(MS_64BITS(map));
    			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
    			dma_unmap_len_set(lrg_buf_cb, maplen,
    					  qdev->lrg_buffer_len -
    					  QL_HEADER_SPACE);
    		}
    	}
    
    	qdev->lrg_buf_free_count++;
    }
    
    static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
    							   *qdev)
    {
    	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
    
    	if (lrg_buf_cb != NULL) {
    		qdev->lrg_buf_free_head = lrg_buf_cb->next;
    		if (qdev->lrg_buf_free_head == NULL)
    			qdev->lrg_buf_free_tail = NULL;
    		qdev->lrg_buf_free_count--;
    	}
    
    	return lrg_buf_cb;
    }
    
    static u32 addrBits = EEPROM_NO_ADDR_BITS;
    static u32 dataBits = EEPROM_NO_DATA_BITS;
    
    static void fm93c56a_deselect(struct ql3_adapter *qdev);
    static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
    			    unsigned short *value);
    
    /*
     * Caller holds hw_lock.
     */
    static void fm93c56a_select(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
    
    	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
    	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
    {
    	int i;
    	u32 mask;
    	u32 dataBit;
    	u32 previousBit;
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
    
    	/* Clock in a zero, then do the start bit */
    	ql_write_nvram_reg(qdev, spir,
    			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    			    AUBURN_EEPROM_DO_1));
    	ql_write_nvram_reg(qdev, spir,
    			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
    	ql_write_nvram_reg(qdev, spir,
    			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
    
    	mask = 1 << (FM93C56A_CMD_BITS - 1);
    	/* Force the previous data bit to be different */
    	previousBit = 0xffff;
    	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
    		dataBit = (cmd & mask)
    			? AUBURN_EEPROM_DO_1
    			: AUBURN_EEPROM_DO_0;
    		if (previousBit != dataBit) {
    			/* If the bit changed, change the DO state to match */
    			ql_write_nvram_reg(qdev, spir,
    					   (ISP_NVRAM_MASK |
    					    qdev->eeprom_cmd_data | dataBit));
    			previousBit = dataBit;
    		}
    		ql_write_nvram_reg(qdev, spir,
    				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				    dataBit | AUBURN_EEPROM_CLK_RISE));
    		ql_write_nvram_reg(qdev, spir,
    				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				    dataBit | AUBURN_EEPROM_CLK_FALL));
    		cmd = cmd << 1;
    	}
    
    	mask = 1 << (addrBits - 1);
    	/* Force the previous data bit to be different */
    	previousBit = 0xffff;
    	for (i = 0; i < addrBits; i++) {
    		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
    			: AUBURN_EEPROM_DO_0;
    		if (previousBit != dataBit) {
    			/*
    			 * If the bit changed, then change the DO state to
    			 * match
    			 */
    			ql_write_nvram_reg(qdev, spir,
    					   (ISP_NVRAM_MASK |
    					    qdev->eeprom_cmd_data | dataBit));
    			previousBit = dataBit;
    		}
    		ql_write_nvram_reg(qdev, spir,
    				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				    dataBit | AUBURN_EEPROM_CLK_RISE));
    		ql_write_nvram_reg(qdev, spir,
    				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				    dataBit | AUBURN_EEPROM_CLK_FALL));
    		eepromAddr = eepromAddr << 1;
    	}
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void fm93c56a_deselect(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
    
    	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
    	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
    {
    	int i;
    	u32 data = 0;
    	u32 dataBit;
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
    
    	/* Read the data bits */
    	/* The first bit is a dummy.  Clock right over it. */
    	for (i = 0; i < dataBits; i++) {
    		ql_write_nvram_reg(qdev, spir,
    				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				   AUBURN_EEPROM_CLK_RISE);
    		ql_write_nvram_reg(qdev, spir,
    				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
    				   AUBURN_EEPROM_CLK_FALL);
    		dataBit = (ql_read_common_reg(qdev, spir) &
    			   AUBURN_EEPROM_DI_1) ? 1 : 0;
    		data = (data << 1) | dataBit;
    	}
    	*value = (u16)data;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void eeprom_readword(struct ql3_adapter *qdev,
    			    u32 eepromAddr, unsigned short *value)
    {
    	fm93c56a_select(qdev);
    	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
    	fm93c56a_datain(qdev, value);
    	fm93c56a_deselect(qdev);
    }
    
    static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
    {
    	__le16 *p = (__le16 *)ndev->dev_addr;
    	p[0] = cpu_to_le16(addr[0]);
    	p[1] = cpu_to_le16(addr[1]);
    	p[2] = cpu_to_le16(addr[2]);
    }
    
    static int ql_get_nvram_params(struct ql3_adapter *qdev)
    {
    	u16 *pEEPROMData;
    	u16 checksum = 0;
    	u32 index;
    	unsigned long hw_flags;
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    
    	pEEPROMData = (u16 *)&qdev->nvram_data;
    	qdev->eeprom_cmd_data = 0;
    	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
    			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 10)) {
    		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    		return -1;
    	}
    
    	for (index = 0; index < EEPROM_SIZE; index++) {
    		eeprom_readword(qdev, index, pEEPROMData);
    		checksum += *pEEPROMData;
    		pEEPROMData++;
    	}
    	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
    
    	if (checksum != 0) {
    		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
    			   checksum);
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    		return -1;
    	}
    
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	return checksum;
    }
    
    static const u32 PHYAddr[2] = {
    	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
    };
    
    static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 temp;
    	int count = 1000;
    
    	while (count) {
    		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
    		if (!(temp & MAC_MII_STATUS_BSY))
    			return 0;
    		udelay(10);
    		count--;
    	}
    	return -1;
    }
    
    static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 scanControl;
    
    	if (qdev->numPorts > 1) {
    		/* Auto scan will cycle through multiple ports */
    		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
    	} else {
    		scanControl = MAC_MII_CONTROL_SC;
    	}
    
    	/*
    	 * Scan register 1 of PHY/PETBI,
    	 * Set up to scan both devices
    	 * The autoscan starts from the first register, completes
    	 * the last one before rolling over to the first
    	 */
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   PHYAddr[0] | MII_SCAN_REGISTER);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   (scanControl) |
    			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
    }
    
    static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
    {
    	u8 ret;
    	struct ql3xxx_port_registers __iomem *port_regs =
    					qdev->mem_map_registers;
    
    	/* See if scan mode is enabled before we turn it off */
    	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
    	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
    		/* Scan is enabled */
    		ret = 1;
    	} else {
    		/* Scan is disabled */
    		ret = 0;
    	}
    
    	/*
    	 * When disabling scan mode you must first change the MII register
    	 * address
    	 */
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   PHYAddr[0] | MII_SCAN_REGISTER);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
    			     MAC_MII_CONTROL_RC) << 16));
    
    	return ret;
    }
    
    static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
    			       u16 regAddr, u16 value, u32 phyAddr)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u8 scanWasEnabled;
    
    	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
    
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   phyAddr | regAddr);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
    
    	/* Wait for write to complete 9/10/04 SJP */
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	if (scanWasEnabled)
    		ql_mii_enable_scan_mode(qdev);
    
    	return 0;
    }
    
    static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
    			      u16 *value, u32 phyAddr)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u8 scanWasEnabled;
    	u32 temp;
    
    	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
    
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   phyAddr | regAddr);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   (MAC_MII_CONTROL_RC << 16));
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
    
    	/* Wait for the read to complete */
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
    	*value = (u16) temp;
    
    	if (scanWasEnabled)
    		ql_mii_enable_scan_mode(qdev);
    
    	return 0;
    }
    
    static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    
    	ql_mii_disable_scan_mode(qdev);
    
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   qdev->PHYAddr | regAddr);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
    
    	/* Wait for write to complete. */
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	ql_mii_enable_scan_mode(qdev);
    
    	return 0;
    }
    
    static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
    {
    	u32 temp;
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    
    	ql_mii_disable_scan_mode(qdev);
    
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
    			   qdev->PHYAddr | regAddr);
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   (MAC_MII_CONTROL_RC << 16));
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
    
    	/* Wait for the read to complete */
    	if (ql_wait_for_mii_ready(qdev)) {
    		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
    		return -1;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
    	*value = (u16) temp;
    
    	ql_mii_enable_scan_mode(qdev);
    
    	return 0;
    }
    
    static void ql_petbi_reset(struct ql3_adapter *qdev)
    {
    	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
    }
    
    static void ql_petbi_start_neg(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	/* Enable Auto-negotiation sense */
    	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
    	reg |= PETBI_TBI_AUTO_SENSE;
    	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
    
    	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
    			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
    
    	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
    			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
    			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
    
    }
    
    static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
    {
    	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
    			    PHYAddr[qdev->mac_index]);
    }
    
    static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	/* Enable Auto-negotiation sense */
    	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
    			   PHYAddr[qdev->mac_index]);
    	reg |= PETBI_TBI_AUTO_SENSE;
    	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
    			    PHYAddr[qdev->mac_index]);
    
    	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
    			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
    			    PHYAddr[qdev->mac_index]);
    
    	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
    			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
    			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
    			    PHYAddr[qdev->mac_index]);
    }
    
    static void ql_petbi_init(struct ql3_adapter *qdev)
    {
    	ql_petbi_reset(qdev);
    	ql_petbi_start_neg(qdev);
    }
    
    static void ql_petbi_init_ex(struct ql3_adapter *qdev)
    {
    	ql_petbi_reset_ex(qdev);
    	ql_petbi_start_neg_ex(qdev);
    }
    
    static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
    		return 0;
    
    	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
    }
    
    static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
    {
    	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
    	/* power down device bit 11 = 1 */
    	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
    	/* enable diagnostic mode bit 2 = 1 */
    	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
    	/* 1000MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
    	/* 1000MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
    	/* 100MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
    	/* 100MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
    	/* 10MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
    	/* 10MB amplitude adjust (see Agere errata) */
    	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
    	/* point to hidden reg 0x2806 */
    	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
    	/* Write new PHYAD w/bit 5 set */
    	ql_mii_write_reg_ex(qdev, 0x11,
    			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
    	/*
    	 * Disable diagnostic mode bit 2 = 0
    	 * Power up device bit 11 = 0
    	 * Link up (on) and activity (blink)
    	 */
    	ql_mii_write_reg(qdev, 0x12, 0x840a);
    	ql_mii_write_reg(qdev, 0x00, 0x1140);
    	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
    }
    
    static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
    				       u16 phyIdReg0, u16 phyIdReg1)
    {
    	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
    	u32   oui;
    	u16   model;
    	int i;
    
    	if (phyIdReg0 == 0xffff)
    		return result;
    
    	if (phyIdReg1 == 0xffff)
    		return result;
    
    	/* oui is split between two registers */
    	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
    
    	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
    
    	/* Scan table for this PHY */
    	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
    		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
    		    (model == PHY_DEVICES[i].phyIdModel)) {
    			netdev_info(qdev->ndev, "Phy: %s\n",
    				    PHY_DEVICES[i].name);
    			result = PHY_DEVICES[i].phyDevice;
    			break;
    		}
    	}
    
    	return result;
    }
    
    static int ql_phy_get_speed(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	switch (qdev->phyType) {
    	case PHY_AGERE_ET1011C: {
    		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
    			return 0;
    
    		reg = (reg >> 8) & 3;
    		break;
    	}
    	default:
    		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
    			return 0;
    
    		reg = (((reg & 0x18) >> 3) & 3);
    	}
    
    	switch (reg) {
    	case 2:
    		return SPEED_1000;
    	case 1:
    		return SPEED_100;
    	case 0:
    		return SPEED_10;
    	default:
    		return -1;
    	}
    }
    
    static int ql_is_full_dup(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	switch (qdev->phyType) {
    	case PHY_AGERE_ET1011C: {
    		if (ql_mii_read_reg(qdev, 0x1A, &reg))
    			return 0;
    
    		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
    	}
    	case PHY_VITESSE_VSC8211:
    	default: {
    		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
    			return 0;
    		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
    	}
    	}
    }
    
    static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
    {
    	u16 reg;
    
    	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
    		return 0;
    
    	return (reg & PHY_NEG_PAUSE) != 0;
    }
    
    static int PHY_Setup(struct ql3_adapter *qdev)
    {
    	u16   reg1;
    	u16   reg2;
    	bool  agereAddrChangeNeeded = false;
    	u32 miiAddr = 0;
    	int err;
    
    	/*  Determine the PHY we are using by reading the ID's */
    	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
    	if (err != 0) {
    		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
    		return err;
    	}
    
    	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
    	if (err != 0) {
    		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
    		return err;
    	}
    
    	/*  Check if we have a Agere PHY */
    	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
    
    		/* Determine which MII address we should be using
    		   determined by the index of the card */
    		if (qdev->mac_index == 0)
    			miiAddr = MII_AGERE_ADDR_1;
    		else
    			miiAddr = MII_AGERE_ADDR_2;
    
    		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
    		if (err != 0) {
    			netdev_err(qdev->ndev,
    				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
    			return err;
    		}
    
    		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
    		if (err != 0) {
    			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
    			return err;
    		}
    
    		/*  We need to remember to initialize the Agere PHY */
    		agereAddrChangeNeeded = true;
    	}
    
    	/*  Determine the particular PHY we have on board to apply
    	    PHY specific initializations */
    	qdev->phyType = getPhyType(qdev, reg1, reg2);
    
    	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
    		/* need this here so address gets changed */
    		phyAgereSpecificInit(qdev, miiAddr);
    	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
    		netdev_err(qdev->ndev, "PHY is unknown\n");
    		return -EIO;
    	}
    
    	return 0;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 value;
    
    	if (enable)
    		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
    	else
    		value = (MAC_CONFIG_REG_PE << 16);
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
    	else
    		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 value;
    
    	if (enable)
    		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
    	else
    		value = (MAC_CONFIG_REG_SR << 16);
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
    	else
    		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 value;
    
    	if (enable)
    		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
    	else
    		value = (MAC_CONFIG_REG_GM << 16);
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
    	else
    		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 value;
    
    	if (enable)
    		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
    	else
    		value = (MAC_CONFIG_REG_FD << 16);
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
    	else
    		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 value;
    
    	if (enable)
    		value =
    		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
    		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
    	else
    		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
    	else
    		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_is_fiber(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = PORT_STATUS_SM0;
    		break;
    	case 1:
    		bitToCheck = PORT_STATUS_SM1;
    		break;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	return (temp & bitToCheck) != 0;
    }
    
    static int ql_is_auto_cfg(struct ql3_adapter *qdev)
    {
    	u16 reg;
    	ql_mii_read_reg(qdev, 0x00, &reg);
    	return (reg & 0x1000) != 0;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = PORT_STATUS_AC0;
    		break;
    	case 1:
    		bitToCheck = PORT_STATUS_AC1;
    		break;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	if (temp & bitToCheck) {
    		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
    		return 1;
    	}
    	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
    	return 0;
    }
    
    /*
     *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
     */
    static int ql_is_neg_pause(struct ql3_adapter *qdev)
    {
    	if (ql_is_fiber(qdev))
    		return ql_is_petbi_neg_pause(qdev);
    	else
    		return ql_is_phy_neg_pause(qdev);
    }
    
    static int ql_auto_neg_error(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = PORT_STATUS_AE0;
    		break;
    	case 1:
    		bitToCheck = PORT_STATUS_AE1;
    		break;
    	}
    	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	return (temp & bitToCheck) != 0;
    }
    
    static u32 ql_get_link_speed(struct ql3_adapter *qdev)
    {
    	if (ql_is_fiber(qdev))
    		return SPEED_1000;
    	else
    		return ql_phy_get_speed(qdev);
    }
    
    static int ql_is_link_full_dup(struct ql3_adapter *qdev)
    {
    	if (ql_is_fiber(qdev))
    		return 1;
    	else
    		return ql_is_full_dup(qdev);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_link_down_detect(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = ISP_CONTROL_LINK_DN_0;
    		break;
    	case 1:
    		bitToCheck = ISP_CONTROL_LINK_DN_1;
    		break;
    	}
    
    	temp =
    	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
    	return (temp & bitToCheck) != 0;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    
    	switch (qdev->mac_index) {
    	case 0:
    		ql_write_common_reg(qdev,
    				    &port_regs->CommonRegs.ispControlStatus,
    				    (ISP_CONTROL_LINK_DN_0) |
    				    (ISP_CONTROL_LINK_DN_0 << 16));
    		break;
    
    	case 1:
    		ql_write_common_reg(qdev,
    				    &port_regs->CommonRegs.ispControlStatus,
    				    (ISP_CONTROL_LINK_DN_1) |
    				    (ISP_CONTROL_LINK_DN_1 << 16));
    		break;
    
    	default:
    		return 1;
    	}
    
    	return 0;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = PORT_STATUS_F1_ENABLED;
    		break;
    	case 1:
    		bitToCheck = PORT_STATUS_F3_ENABLED;
    		break;
    	default:
    		break;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	if (temp & bitToCheck) {
    		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
    			     "not link master\n");
    		return 0;
    	}
    
    	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
    	return 1;
    }
    
    static void ql_phy_reset_ex(struct ql3_adapter *qdev)
    {
    	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
    			    PHYAddr[qdev->mac_index]);
    }
    
    static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
    {
    	u16 reg;
    	u16 portConfiguration;
    
    	if (qdev->phyType == PHY_AGERE_ET1011C)
    		ql_mii_write_reg(qdev, 0x13, 0x0000);
    					/* turn off external loopback */
    
    	if (qdev->mac_index == 0)
    		portConfiguration =
    			qdev->nvram_data.macCfg_port0.portConfiguration;
    	else
    		portConfiguration =
    			qdev->nvram_data.macCfg_port1.portConfiguration;
    
    	/*  Some HBA's in the field are set to 0 and they need to
    	    be reinterpreted with a default value */
    	if (portConfiguration == 0)
    		portConfiguration = PORT_CONFIG_DEFAULT;
    
    	/* Set the 1000 advertisements */
    	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
    			   PHYAddr[qdev->mac_index]);
    	reg &= ~PHY_GIG_ALL_PARAMS;
    
    	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
    		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
    			reg |= PHY_GIG_ADV_1000F;
    		else
    			reg |= PHY_GIG_ADV_1000H;
    	}
    
    	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
    			    PHYAddr[qdev->mac_index]);
    
    	/* Set the 10/100 & pause negotiation advertisements */
    	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
    			   PHYAddr[qdev->mac_index]);
    	reg &= ~PHY_NEG_ALL_PARAMS;
    
    	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
    		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
    
    	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
    		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
    			reg |= PHY_NEG_ADV_100F;
    
    		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
    			reg |= PHY_NEG_ADV_10F;
    	}
    
    	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
    		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
    			reg |= PHY_NEG_ADV_100H;
    
    		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
    			reg |= PHY_NEG_ADV_10H;
    	}
    
    	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
    		reg |= 1;
    
    	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
    			    PHYAddr[qdev->mac_index]);
    
    	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
    
    	ql_mii_write_reg_ex(qdev, CONTROL_REG,
    			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
    			    PHYAddr[qdev->mac_index]);
    }
    
    static void ql_phy_init_ex(struct ql3_adapter *qdev)
    {
    	ql_phy_reset_ex(qdev);
    	PHY_Setup(qdev);
    	ql_phy_start_neg_ex(qdev);
    }
    
    /*
     * Caller holds hw_lock.
     */
    static u32 ql_get_link_state(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	u32 bitToCheck = 0;
    	u32 temp, linkState;
    
    	switch (qdev->mac_index) {
    	case 0:
    		bitToCheck = PORT_STATUS_UP0;
    		break;
    	case 1:
    		bitToCheck = PORT_STATUS_UP1;
    		break;
    	}
    
    	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	if (temp & bitToCheck)
    		linkState = LS_UP;
    	else
    		linkState = LS_DOWN;
    
    	return linkState;
    }
    
    static int ql_port_start(struct ql3_adapter *qdev)
    {
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 7)) {
    		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
    		return -1;
    	}
    
    	if (ql_is_fiber(qdev)) {
    		ql_petbi_init(qdev);
    	} else {
    		/* Copper port */
    		ql_phy_init_ex(qdev);
    	}
    
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	return 0;
    }
    
    static int ql_finish_auto_neg(struct ql3_adapter *qdev)
    {
    
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 7))
    		return -1;
    
    	if (!ql_auto_neg_error(qdev)) {
    		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
    			/* configure the MAC */
    			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
    				     "Configuring link\n");
    			ql_mac_cfg_soft_reset(qdev, 1);
    			ql_mac_cfg_gig(qdev,
    				       (ql_get_link_speed
    					(qdev) ==
    					SPEED_1000));
    			ql_mac_cfg_full_dup(qdev,
    					    ql_is_link_full_dup
    					    (qdev));
    			ql_mac_cfg_pause(qdev,
    					 ql_is_neg_pause
    					 (qdev));
    			ql_mac_cfg_soft_reset(qdev, 0);
    
    			/* enable the MAC */
    			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
    				     "Enabling mac\n");
    			ql_mac_enable(qdev, 1);
    		}
    
    		qdev->port_link_state = LS_UP;
    		netif_start_queue(qdev->ndev);
    		netif_carrier_on(qdev->ndev);
    		netif_info(qdev, link, qdev->ndev,
    			   "Link is up at %d Mbps, %s duplex\n",
    			   ql_get_link_speed(qdev),
    			   ql_is_link_full_dup(qdev) ? "full" : "half");
    
    	} else {	/* Remote error detected */
    
    		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
    			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
    				     "Remote error detected. Calling ql_port_start()\n");
    			/*
    			 * ql_port_start() is shared code and needs
    			 * to lock the PHY on it's own.
    			 */
    			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    			if (ql_port_start(qdev))	/* Restart port */
    				return -1;
    			return 0;
    		}
    	}
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	return 0;
    }
    
    static void ql_link_state_machine_work(struct work_struct *work)
    {
    	struct ql3_adapter *qdev =
    		container_of(work, struct ql3_adapter, link_state_work.work);
    
    	u32 curr_link_state;
    	unsigned long hw_flags;
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    
    	curr_link_state = ql_get_link_state(qdev);
    
    	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
    		netif_info(qdev, link, qdev->ndev,
    			   "Reset in progress, skip processing link state\n");
    
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    		/* Restart timer on 2 second interval. */
    		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
    
    		return;
    	}
    
    	switch (qdev->port_link_state) {
    	default:
    		if (test_bit(QL_LINK_MASTER, &qdev->flags))
    			ql_port_start(qdev);
    		qdev->port_link_state = LS_DOWN;
    		fallthrough;
    
    	case LS_DOWN:
    		if (curr_link_state == LS_UP) {
    			netif_info(qdev, link, qdev->ndev, "Link is up\n");
    			if (ql_is_auto_neg_complete(qdev))
    				ql_finish_auto_neg(qdev);
    
    			if (qdev->port_link_state == LS_UP)
    				ql_link_down_detect_clear(qdev);
    
    			qdev->port_link_state = LS_UP;
    		}
    		break;
    
    	case LS_UP:
    		/*
    		 * See if the link is currently down or went down and came
    		 * back up
    		 */
    		if (curr_link_state == LS_DOWN) {
    			netif_info(qdev, link, qdev->ndev, "Link is down\n");
    			qdev->port_link_state = LS_DOWN;
    		}
    		if (ql_link_down_detect(qdev))
    			qdev->port_link_state = LS_DOWN;
    		break;
    	}
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    	/* Restart timer on 2 second interval. */
    	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
    }
    
    /*
     * Caller must take hw_lock and QL_PHY_GIO_SEM.
     */
    static void ql_get_phy_owner(struct ql3_adapter *qdev)
    {
    	if (ql_this_adapter_controls_port(qdev))
    		set_bit(QL_LINK_MASTER, &qdev->flags);
    	else
    		clear_bit(QL_LINK_MASTER, &qdev->flags);
    }
    
    /*
     * Caller must take hw_lock and QL_PHY_GIO_SEM.
     */
    static void ql_init_scan_mode(struct ql3_adapter *qdev)
    {
    	ql_mii_enable_scan_mode(qdev);
    
    	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
    		if (ql_this_adapter_controls_port(qdev))
    			ql_petbi_init_ex(qdev);
    	} else {
    		if (ql_this_adapter_controls_port(qdev))
    			ql_phy_init_ex(qdev);
    	}
    }
    
    /*
     * MII_Setup needs to be called before taking the PHY out of reset
     * so that the management interface clock speed can be set properly.
     * It would be better if we had a way to disable MDC until after the
     * PHY is out of reset, but we don't have that capability.
     */
    static int ql_mii_setup(struct ql3_adapter *qdev)
    {
    	u32 reg;
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 7))
    		return -1;
    
    	if (qdev->device_id == QL3032_DEVICE_ID)
    		ql_write_page0_reg(qdev,
    			&port_regs->macMIIMgmtControlReg, 0x0f00000);
    
    	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
    	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
    
    	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
    			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
    
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	return 0;
    }
    
    #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
    				 SUPPORTED_FIBRE |		\
    				 SUPPORTED_Autoneg)
    #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
    				 SUPPORTED_10baseT_Full |	\
    				 SUPPORTED_100baseT_Half |	\
    				 SUPPORTED_100baseT_Full |	\
    				 SUPPORTED_1000baseT_Half |	\
    				 SUPPORTED_1000baseT_Full |	\
    				 SUPPORTED_Autoneg |		\
    				 SUPPORTED_TP)			\
    
    static u32 ql_supported_modes(struct ql3_adapter *qdev)
    {
    	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
    		return SUPPORTED_OPTICAL_MODES;
    
    	return SUPPORTED_TP_MODES;
    }
    
    static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
    {
    	int status;
    	unsigned long hw_flags;
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    			    (QL_RESOURCE_BITS_BASE_CODE |
    			     (qdev->mac_index) * 2) << 7)) {
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    		return 0;
    	}
    	status = ql_is_auto_cfg(qdev);
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	return status;
    }
    
    static u32 ql_get_speed(struct ql3_adapter *qdev)
    {
    	u32 status;
    	unsigned long hw_flags;
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    			    (QL_RESOURCE_BITS_BASE_CODE |
    			     (qdev->mac_index) * 2) << 7)) {
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    		return 0;
    	}
    	status = ql_get_link_speed(qdev);
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	return status;
    }
    
    static int ql_get_full_dup(struct ql3_adapter *qdev)
    {
    	int status;
    	unsigned long hw_flags;
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    			    (QL_RESOURCE_BITS_BASE_CODE |
    			     (qdev->mac_index) * 2) << 7)) {
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    		return 0;
    	}
    	status = ql_is_link_full_dup(qdev);
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	return status;
    }
    
    static int ql_get_link_ksettings(struct net_device *ndev,
    				 struct ethtool_link_ksettings *cmd)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	u32 supported, advertising;
    
    	supported = ql_supported_modes(qdev);
    
    	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
    		cmd->base.port = PORT_FIBRE;
    	} else {
    		cmd->base.port = PORT_TP;
    		cmd->base.phy_address = qdev->PHYAddr;
    	}
    	advertising = ql_supported_modes(qdev);
    	cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
    	cmd->base.speed = ql_get_speed(qdev);
    	cmd->base.duplex = ql_get_full_dup(qdev);
    
    	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
    						supported);
    	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
    						advertising);
    
    	return 0;
    }
    
    static void ql_get_drvinfo(struct net_device *ndev,
    			   struct ethtool_drvinfo *drvinfo)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
    	strlcpy(drvinfo->version, ql3xxx_driver_version,
    		sizeof(drvinfo->version));
    	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
    		sizeof(drvinfo->bus_info));
    }
    
    static u32 ql_get_msglevel(struct net_device *ndev)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	return qdev->msg_enable;
    }
    
    static void ql_set_msglevel(struct net_device *ndev, u32 value)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	qdev->msg_enable = value;
    }
    
    static void ql_get_pauseparam(struct net_device *ndev,
    			      struct ethtool_pauseparam *pause)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	u32 reg;
    	if (qdev->mac_index == 0)
    		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
    	else
    		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
    
    	pause->autoneg  = ql_get_auto_cfg_status(qdev);
    	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
    	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
    }
    
    static const struct ethtool_ops ql3xxx_ethtool_ops = {
    	.get_drvinfo = ql_get_drvinfo,
    	.get_link = ethtool_op_get_link,
    	.get_msglevel = ql_get_msglevel,
    	.set_msglevel = ql_set_msglevel,
    	.get_pauseparam = ql_get_pauseparam,
    	.get_link_ksettings = ql_get_link_ksettings,
    };
    
    static int ql_populate_free_queue(struct ql3_adapter *qdev)
    {
    	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
    	dma_addr_t map;
    	int err;
    
    	while (lrg_buf_cb) {
    		if (!lrg_buf_cb->skb) {
    			lrg_buf_cb->skb =
    				netdev_alloc_skb(qdev->ndev,
    						 qdev->lrg_buffer_len);
    			if (unlikely(!lrg_buf_cb->skb)) {
    				netdev_printk(KERN_DEBUG, qdev->ndev,
    					      "Failed netdev_alloc_skb()\n");
    				break;
    			} else {
    				/*
    				 * We save some space to copy the ethhdr from
    				 * first buffer
    				 */
    				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
    				map = pci_map_single(qdev->pdev,
    						     lrg_buf_cb->skb->data,
    						     qdev->lrg_buffer_len -
    						     QL_HEADER_SPACE,
    						     PCI_DMA_FROMDEVICE);
    
    				err = pci_dma_mapping_error(qdev->pdev, map);
    				if (err) {
    					netdev_err(qdev->ndev,
    						   "PCI mapping failed with error: %d\n",
    						   err);
    					dev_kfree_skb(lrg_buf_cb->skb);
    					lrg_buf_cb->skb = NULL;
    					break;
    				}
    
    
    				lrg_buf_cb->buf_phy_addr_low =
    					cpu_to_le32(LS_64BITS(map));
    				lrg_buf_cb->buf_phy_addr_high =
    					cpu_to_le32(MS_64BITS(map));
    				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
    				dma_unmap_len_set(lrg_buf_cb, maplen,
    						  qdev->lrg_buffer_len -
    						  QL_HEADER_SPACE);
    				--qdev->lrg_buf_skb_check;
    				if (!qdev->lrg_buf_skb_check)
    					return 1;
    			}
    		}
    		lrg_buf_cb = lrg_buf_cb->next;
    	}
    	return 0;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	if (qdev->small_buf_release_cnt >= 16) {
    		while (qdev->small_buf_release_cnt >= 16) {
    			qdev->small_buf_q_producer_index++;
    
    			if (qdev->small_buf_q_producer_index ==
    			    NUM_SBUFQ_ENTRIES)
    				qdev->small_buf_q_producer_index = 0;
    			qdev->small_buf_release_cnt -= 8;
    		}
    		wmb();
    		writel_relaxed(qdev->small_buf_q_producer_index,
    			       &port_regs->CommonRegs.rxSmallQProducerIndex);
    	}
    }
    
    /*
     * Caller holds hw_lock.
     */
    static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
    {
    	struct bufq_addr_element *lrg_buf_q_ele;
    	int i;
    	struct ql_rcv_buf_cb *lrg_buf_cb;
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    
    	if ((qdev->lrg_buf_free_count >= 8) &&
    	    (qdev->lrg_buf_release_cnt >= 16)) {
    
    		if (qdev->lrg_buf_skb_check)
    			if (!ql_populate_free_queue(qdev))
    				return;
    
    		lrg_buf_q_ele = qdev->lrg_buf_next_free;
    
    		while ((qdev->lrg_buf_release_cnt >= 16) &&
    		       (qdev->lrg_buf_free_count >= 8)) {
    
    			for (i = 0; i < 8; i++) {
    				lrg_buf_cb =
    				    ql_get_from_lrg_buf_free_list(qdev);
    				lrg_buf_q_ele->addr_high =
    				    lrg_buf_cb->buf_phy_addr_high;
    				lrg_buf_q_ele->addr_low =
    				    lrg_buf_cb->buf_phy_addr_low;
    				lrg_buf_q_ele++;
    
    				qdev->lrg_buf_release_cnt--;
    			}
    
    			qdev->lrg_buf_q_producer_index++;
    
    			if (qdev->lrg_buf_q_producer_index ==
    			    qdev->num_lbufq_entries)
    				qdev->lrg_buf_q_producer_index = 0;
    
    			if (qdev->lrg_buf_q_producer_index ==
    			    (qdev->num_lbufq_entries - 1)) {
    				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
    			}
    		}
    		wmb();
    		qdev->lrg_buf_next_free = lrg_buf_q_ele;
    		writel(qdev->lrg_buf_q_producer_index,
    			&port_regs->CommonRegs.rxLargeQProducerIndex);
    	}
    }
    
    static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
    				   struct ob_mac_iocb_rsp *mac_rsp)
    {
    	struct ql_tx_buf_cb *tx_cb;
    	int i;
    
    	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
    		netdev_warn(qdev->ndev,
    			    "Frame too short but it was padded and sent\n");
    	}
    
    	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
    
    	/*  Check the transmit response flags for any errors */
    	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
    		netdev_err(qdev->ndev,
    			   "Frame too short to be legal, frame not sent\n");
    
    		qdev->ndev->stats.tx_errors++;
    		goto frame_not_sent;
    	}
    
    	if (tx_cb->seg_count == 0) {
    		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
    			   mac_rsp->transaction_id);
    
    		qdev->ndev->stats.tx_errors++;
    		goto invalid_seg_count;
    	}
    
    	pci_unmap_single(qdev->pdev,
    			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
    			 dma_unmap_len(&tx_cb->map[0], maplen),
    			 PCI_DMA_TODEVICE);
    	tx_cb->seg_count--;
    	if (tx_cb->seg_count) {
    		for (i = 1; i < tx_cb->seg_count; i++) {
    			pci_unmap_page(qdev->pdev,
    				       dma_unmap_addr(&tx_cb->map[i],
    						      mapaddr),
    				       dma_unmap_len(&tx_cb->map[i], maplen),
    				       PCI_DMA_TODEVICE);
    		}
    	}
    	qdev->ndev->stats.tx_packets++;
    	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
    
    frame_not_sent:
    	dev_kfree_skb_irq(tx_cb->skb);
    	tx_cb->skb = NULL;
    
    invalid_seg_count:
    	atomic_inc(&qdev->tx_count);
    }
    
    static void ql_get_sbuf(struct ql3_adapter *qdev)
    {
    	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
    		qdev->small_buf_index = 0;
    	qdev->small_buf_release_cnt++;
    }
    
    static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
    {
    	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
    	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
    	qdev->lrg_buf_release_cnt++;
    	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
    		qdev->lrg_buf_index = 0;
    	return lrg_buf_cb;
    }
    
    /*
     * The difference between 3022 and 3032 for inbound completions:
     * 3022 uses two buffers per completion.  The first buffer contains
     * (some) header info, the second the remainder of the headers plus
     * the data.  For this chip we reserve some space at the top of the
     * receive buffer so that the header info in buffer one can be
     * prepended to the buffer two.  Buffer two is the sent up while
     * buffer one is returned to the hardware to be reused.
     * 3032 receives all of it's data and headers in one buffer for a
     * simpler process.  3032 also supports checksum verification as
     * can be seen in ql_process_macip_rx_intr().
     */
    static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
    				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
    {
    	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
    	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
    	struct sk_buff *skb;
    	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
    
    	/*
    	 * Get the inbound address list (small buffer).
    	 */
    	ql_get_sbuf(qdev);
    
    	if (qdev->device_id == QL3022_DEVICE_ID)
    		lrg_buf_cb1 = ql_get_lbuf(qdev);
    
    	/* start of second buffer */
    	lrg_buf_cb2 = ql_get_lbuf(qdev);
    	skb = lrg_buf_cb2->skb;
    
    	qdev->ndev->stats.rx_packets++;
    	qdev->ndev->stats.rx_bytes += length;
    
    	skb_put(skb, length);
    	pci_unmap_single(qdev->pdev,
    			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
    			 dma_unmap_len(lrg_buf_cb2, maplen),
    			 PCI_DMA_FROMDEVICE);
    	prefetch(skb->data);
    	skb_checksum_none_assert(skb);
    	skb->protocol = eth_type_trans(skb, qdev->ndev);
    
    	napi_gro_receive(&qdev->napi, skb);
    	lrg_buf_cb2->skb = NULL;
    
    	if (qdev->device_id == QL3022_DEVICE_ID)
    		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
    	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
    }
    
    static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
    				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
    {
    	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
    	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
    	struct sk_buff *skb1 = NULL, *skb2;
    	struct net_device *ndev = qdev->ndev;
    	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
    	u16 size = 0;
    
    	/*
    	 * Get the inbound address list (small buffer).
    	 */
    
    	ql_get_sbuf(qdev);
    
    	if (qdev->device_id == QL3022_DEVICE_ID) {
    		/* start of first buffer on 3022 */
    		lrg_buf_cb1 = ql_get_lbuf(qdev);
    		skb1 = lrg_buf_cb1->skb;
    		size = ETH_HLEN;
    		if (*((u16 *) skb1->data) != 0xFFFF)
    			size += VLAN_ETH_HLEN - ETH_HLEN;
    	}
    
    	/* start of second buffer */
    	lrg_buf_cb2 = ql_get_lbuf(qdev);
    	skb2 = lrg_buf_cb2->skb;
    
    	skb_put(skb2, length);	/* Just the second buffer length here. */
    	pci_unmap_single(qdev->pdev,
    			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
    			 dma_unmap_len(lrg_buf_cb2, maplen),
    			 PCI_DMA_FROMDEVICE);
    	prefetch(skb2->data);
    
    	skb_checksum_none_assert(skb2);
    	if (qdev->device_id == QL3022_DEVICE_ID) {
    		/*
    		 * Copy the ethhdr from first buffer to second. This
    		 * is necessary for 3022 IP completions.
    		 */
    		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
    						 skb_push(skb2, size), size);
    	} else {
    		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
    		if (checksum &
    			(IB_IP_IOCB_RSP_3032_ICE |
    			 IB_IP_IOCB_RSP_3032_CE)) {
    			netdev_err(ndev,
    				   "%s: Bad checksum for this %s packet, checksum = %x\n",
    				   __func__,
    				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
    				    "TCP" : "UDP"), checksum);
    		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
    				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
    				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
    			skb2->ip_summed = CHECKSUM_UNNECESSARY;
    		}
    	}
    	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
    
    	napi_gro_receive(&qdev->napi, skb2);
    	ndev->stats.rx_packets++;
    	ndev->stats.rx_bytes += length;
    	lrg_buf_cb2->skb = NULL;
    
    	if (qdev->device_id == QL3022_DEVICE_ID)
    		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
    	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
    }
    
    static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
    {
    	struct net_rsp_iocb *net_rsp;
    	struct net_device *ndev = qdev->ndev;
    	int work_done = 0;
    
    	/* While there are entries in the completion queue. */
    	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
    		qdev->rsp_consumer_index) && (work_done < budget)) {
    
    		net_rsp = qdev->rsp_current;
    		rmb();
    		/*
    		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
    		 * if the inbound completion is for a VLAN.
    		 */
    		if (qdev->device_id == QL3032_DEVICE_ID)
    			net_rsp->opcode &= 0x7f;
    		switch (net_rsp->opcode) {
    
    		case OPCODE_OB_MAC_IOCB_FN0:
    		case OPCODE_OB_MAC_IOCB_FN2:
    			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
    					       net_rsp);
    			break;
    
    		case OPCODE_IB_MAC_IOCB:
    		case OPCODE_IB_3032_MAC_IOCB:
    			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
    					       net_rsp);
    			work_done++;
    			break;
    
    		case OPCODE_IB_IP_IOCB:
    		case OPCODE_IB_3032_IP_IOCB:
    			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
    						 net_rsp);
    			work_done++;
    			break;
    		default: {
    			u32 *tmp = (u32 *)net_rsp;
    			netdev_err(ndev,
    				   "Hit default case, not handled!\n"
    				   "	dropping the packet, opcode = %x\n"
    				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
    				   net_rsp->opcode,
    				   (unsigned long int)tmp[0],
    				   (unsigned long int)tmp[1],
    				   (unsigned long int)tmp[2],
    				   (unsigned long int)tmp[3]);
    		}
    		}
    
    		qdev->rsp_consumer_index++;
    
    		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
    			qdev->rsp_consumer_index = 0;
    			qdev->rsp_current = qdev->rsp_q_virt_addr;
    		} else {
    			qdev->rsp_current++;
    		}
    
    	}
    
    	return work_done;
    }
    
    static int ql_poll(struct napi_struct *napi, int budget)
    {
    	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	int work_done;
    
    	work_done = ql_tx_rx_clean(qdev, budget);
    
    	if (work_done < budget && napi_complete_done(napi, work_done)) {
    		unsigned long flags;
    
    		spin_lock_irqsave(&qdev->hw_lock, flags);
    		ql_update_small_bufq_prod_index(qdev);
    		ql_update_lrg_bufq_prod_index(qdev);
    		writel(qdev->rsp_consumer_index,
    			    &port_regs->CommonRegs.rspQConsumerIndex);
    		spin_unlock_irqrestore(&qdev->hw_lock, flags);
    
    		ql_enable_interrupts(qdev);
    	}
    	return work_done;
    }
    
    static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
    {
    
    	struct net_device *ndev = dev_id;
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	u32 value;
    	int handled = 1;
    	u32 var;
    
    	value = ql_read_common_reg_l(qdev,
    				     &port_regs->CommonRegs.ispControlStatus);
    
    	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
    		spin_lock(&qdev->adapter_lock);
    		netif_stop_queue(qdev->ndev);
    		netif_carrier_off(qdev->ndev);
    		ql_disable_interrupts(qdev);
    		qdev->port_link_state = LS_DOWN;
    		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
    
    		if (value & ISP_CONTROL_FE) {
    			/*
    			 * Chip Fatal Error.
    			 */
    			var =
    			    ql_read_page0_reg_l(qdev,
    					      &port_regs->PortFatalErrStatus);
    			netdev_warn(ndev,
    				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
    				    var);
    			set_bit(QL_RESET_START, &qdev->flags) ;
    		} else {
    			/*
    			 * Soft Reset Requested.
    			 */
    			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
    			netdev_err(ndev,
    				   "Another function issued a reset to the chip. ISR value = %x\n",
    				   value);
    		}
    		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
    		spin_unlock(&qdev->adapter_lock);
    	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
    		ql_disable_interrupts(qdev);
    		if (likely(napi_schedule_prep(&qdev->napi)))
    			__napi_schedule(&qdev->napi);
    	} else
    		return IRQ_NONE;
    
    	return IRQ_RETVAL(handled);
    }
    
    /*
     * Get the total number of segments needed for the given number of fragments.
     * This is necessary because outbound address lists (OAL) will be used when
     * more than two frags are given.  Each address list has 5 addr/len pairs.
     * The 5th pair in each OAL is used to  point to the next OAL if more frags
     * are coming.  That is why the frags:segment count ratio is not linear.
     */
    static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
    {
    	if (qdev->device_id == QL3022_DEVICE_ID)
    		return 1;
    
    	if (frags <= 2)
    		return frags + 1;
    	else if (frags <= 6)
    		return frags + 2;
    	else if (frags <= 10)
    		return frags + 3;
    	else if (frags <= 14)
    		return frags + 4;
    	else if (frags <= 18)
    		return frags + 5;
    	return -1;
    }
    
    static void ql_hw_csum_setup(const struct sk_buff *skb,
    			     struct ob_mac_iocb_req *mac_iocb_ptr)
    {
    	const struct iphdr *ip = ip_hdr(skb);
    
    	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
    	mac_iocb_ptr->ip_hdr_len = ip->ihl;
    
    	if (ip->protocol == IPPROTO_TCP) {
    		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
    			OB_3032MAC_IOCB_REQ_IC;
    	} else {
    		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
    			OB_3032MAC_IOCB_REQ_IC;
    	}
    
    }
    
    /*
     * Map the buffers for this transmit.
     * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
     */
    static int ql_send_map(struct ql3_adapter *qdev,
    				struct ob_mac_iocb_req *mac_iocb_ptr,
    				struct ql_tx_buf_cb *tx_cb,
    				struct sk_buff *skb)
    {
    	struct oal *oal;
    	struct oal_entry *oal_entry;
    	int len = skb_headlen(skb);
    	dma_addr_t map;
    	int err;
    	int completed_segs, i;
    	int seg_cnt, seg = 0;
    	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
    
    	seg_cnt = tx_cb->seg_count;
    	/*
    	 * Map the skb buffer first.
    	 */
    	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
    
    	err = pci_dma_mapping_error(qdev->pdev, map);
    	if (err) {
    		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
    			   err);
    
    		return NETDEV_TX_BUSY;
    	}
    
    	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
    	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
    	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
    	oal_entry->len = cpu_to_le32(len);
    	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
    	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
    	seg++;
    
    	if (seg_cnt == 1) {
    		/* Terminate the last segment. */
    		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
    		return NETDEV_TX_OK;
    	}
    	oal = tx_cb->oal;
    	for (completed_segs = 0;
    	     completed_segs < frag_cnt;
    	     completed_segs++, seg++) {
    		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
    		oal_entry++;
    		/*
    		 * Check for continuation requirements.
    		 * It's strange but necessary.
    		 * Continuation entry points to outbound address list.
    		 */
    		if ((seg == 2 && seg_cnt > 3) ||
    		    (seg == 7 && seg_cnt > 8) ||
    		    (seg == 12 && seg_cnt > 13) ||
    		    (seg == 17 && seg_cnt > 18)) {
    			map = pci_map_single(qdev->pdev, oal,
    					     sizeof(struct oal),
    					     PCI_DMA_TODEVICE);
    
    			err = pci_dma_mapping_error(qdev->pdev, map);
    			if (err) {
    				netdev_err(qdev->ndev,
    					   "PCI mapping outbound address list with error: %d\n",
    					   err);
    				goto map_error;
    			}
    
    			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
    			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
    			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
    						     OAL_CONT_ENTRY);
    			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
    			dma_unmap_len_set(&tx_cb->map[seg], maplen,
    					  sizeof(struct oal));
    			oal_entry = (struct oal_entry *)oal;
    			oal++;
    			seg++;
    		}
    
    		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
    				       DMA_TO_DEVICE);
    
    		err = dma_mapping_error(&qdev->pdev->dev, map);
    		if (err) {
    			netdev_err(qdev->ndev,
    				   "PCI mapping frags failed with error: %d\n",
    				   err);
    			goto map_error;
    		}
    
    		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
    		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
    		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
    		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
    		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
    		}
    	/* Terminate the last segment. */
    	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
    	return NETDEV_TX_OK;
    
    map_error:
    	/* A PCI mapping failed and now we will need to back out
    	 * We need to traverse through the oal's and associated pages which
    	 * have been mapped and now we must unmap them to clean up properly
    	 */
    
    	seg = 1;
    	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
    	oal = tx_cb->oal;
    	for (i = 0; i < completed_segs; i++, seg++) {
    		oal_entry++;
    
    		/*
    		 * Check for continuation requirements.
    		 * It's strange but necessary.
    		 */
    
    		if ((seg == 2 && seg_cnt > 3) ||
    		    (seg == 7 && seg_cnt > 8) ||
    		    (seg == 12 && seg_cnt > 13) ||
    		    (seg == 17 && seg_cnt > 18)) {
    			pci_unmap_single(qdev->pdev,
    				dma_unmap_addr(&tx_cb->map[seg], mapaddr),
    				dma_unmap_len(&tx_cb->map[seg], maplen),
    				 PCI_DMA_TODEVICE);
    			oal++;
    			seg++;
    		}
    
    		pci_unmap_page(qdev->pdev,
    			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
    			       dma_unmap_len(&tx_cb->map[seg], maplen),
    			       PCI_DMA_TODEVICE);
    	}
    
    	pci_unmap_single(qdev->pdev,
    			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
    			 dma_unmap_addr(&tx_cb->map[0], maplen),
    			 PCI_DMA_TODEVICE);
    
    	return NETDEV_TX_BUSY;
    
    }
    
    /*
     * The difference between 3022 and 3032 sends:
     * 3022 only supports a simple single segment transmission.
     * 3032 supports checksumming and scatter/gather lists (fragments).
     * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
     * in the IOCB plus a chain of outbound address lists (OAL) that
     * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
     * will be used to point to an OAL when more ALP entries are required.
     * The IOCB is always the top of the chain followed by one or more
     * OALs (when necessary).
     */
    static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
    			       struct net_device *ndev)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	struct ql_tx_buf_cb *tx_cb;
    	u32 tot_len = skb->len;
    	struct ob_mac_iocb_req *mac_iocb_ptr;
    
    	if (unlikely(atomic_read(&qdev->tx_count) < 2))
    		return NETDEV_TX_BUSY;
    
    	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
    	tx_cb->seg_count = ql_get_seg_count(qdev,
    					     skb_shinfo(skb)->nr_frags);
    	if (tx_cb->seg_count == -1) {
    		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
    		return NETDEV_TX_OK;
    	}
    
    	mac_iocb_ptr = tx_cb->queue_entry;
    	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
    	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
    	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
    	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
    	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
    	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
    	tx_cb->skb = skb;
    	if (qdev->device_id == QL3032_DEVICE_ID &&
    	    skb->ip_summed == CHECKSUM_PARTIAL)
    		ql_hw_csum_setup(skb, mac_iocb_ptr);
    
    	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
    		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
    		return NETDEV_TX_BUSY;
    	}
    
    	wmb();
    	qdev->req_producer_index++;
    	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
    		qdev->req_producer_index = 0;
    	wmb();
    	ql_write_common_reg_l(qdev,
    			    &port_regs->CommonRegs.reqQProducerIndex,
    			    qdev->req_producer_index);
    
    	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
    		     "tx queued, slot %d, len %d\n",
    		     qdev->req_producer_index, skb->len);
    
    	atomic_dec(&qdev->tx_count);
    	return NETDEV_TX_OK;
    }
    
    static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
    {
    	qdev->req_q_size =
    	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
    
    	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
    
    	/* The barrier is required to ensure request and response queue
    	 * addr writes to the registers.
    	 */
    	wmb();
    
    	qdev->req_q_virt_addr =
    	    pci_alloc_consistent(qdev->pdev,
    				 (size_t) qdev->req_q_size,
    				 &qdev->req_q_phy_addr);
    
    	if ((qdev->req_q_virt_addr == NULL) ||
    	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
    		netdev_err(qdev->ndev, "reqQ failed\n");
    		return -ENOMEM;
    	}
    
    	qdev->rsp_q_virt_addr =
    	    pci_alloc_consistent(qdev->pdev,
    				 (size_t) qdev->rsp_q_size,
    				 &qdev->rsp_q_phy_addr);
    
    	if ((qdev->rsp_q_virt_addr == NULL) ||
    	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
    		netdev_err(qdev->ndev, "rspQ allocation failed\n");
    		pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
    				    qdev->req_q_virt_addr,
    				    qdev->req_q_phy_addr);
    		return -ENOMEM;
    	}
    
    	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
    
    	return 0;
    }
    
    static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
    {
    	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
    		netdev_info(qdev->ndev, "Already done\n");
    		return;
    	}
    
    	pci_free_consistent(qdev->pdev,
    			    qdev->req_q_size,
    			    qdev->req_q_virt_addr, qdev->req_q_phy_addr);
    
    	qdev->req_q_virt_addr = NULL;
    
    	pci_free_consistent(qdev->pdev,
    			    qdev->rsp_q_size,
    			    qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
    
    	qdev->rsp_q_virt_addr = NULL;
    
    	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
    }
    
    static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
    {
    	/* Create Large Buffer Queue */
    	qdev->lrg_buf_q_size =
    		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
    	if (qdev->lrg_buf_q_size < PAGE_SIZE)
    		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
    	else
    		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
    
    	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
    				      sizeof(struct ql_rcv_buf_cb),
    				      GFP_KERNEL);
    	if (qdev->lrg_buf == NULL)
    		return -ENOMEM;
    
    	qdev->lrg_buf_q_alloc_virt_addr =
    		pci_alloc_consistent(qdev->pdev,
    				     qdev->lrg_buf_q_alloc_size,
    				     &qdev->lrg_buf_q_alloc_phy_addr);
    
    	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
    		netdev_err(qdev->ndev, "lBufQ failed\n");
    		return -ENOMEM;
    	}
    	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
    	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
    
    	/* Create Small Buffer Queue */
    	qdev->small_buf_q_size =
    		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
    	if (qdev->small_buf_q_size < PAGE_SIZE)
    		qdev->small_buf_q_alloc_size = PAGE_SIZE;
    	else
    		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
    
    	qdev->small_buf_q_alloc_virt_addr =
    		pci_alloc_consistent(qdev->pdev,
    				     qdev->small_buf_q_alloc_size,
    				     &qdev->small_buf_q_alloc_phy_addr);
    
    	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
    		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
    		pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
    				    qdev->lrg_buf_q_alloc_virt_addr,
    				    qdev->lrg_buf_q_alloc_phy_addr);
    		return -ENOMEM;
    	}
    
    	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
    	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
    	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
    	return 0;
    }
    
    static void ql_free_buffer_queues(struct ql3_adapter *qdev)
    {
    	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
    		netdev_info(qdev->ndev, "Already done\n");
    		return;
    	}
    	kfree(qdev->lrg_buf);
    	pci_free_consistent(qdev->pdev,
    			    qdev->lrg_buf_q_alloc_size,
    			    qdev->lrg_buf_q_alloc_virt_addr,
    			    qdev->lrg_buf_q_alloc_phy_addr);
    
    	qdev->lrg_buf_q_virt_addr = NULL;
    
    	pci_free_consistent(qdev->pdev,
    			    qdev->small_buf_q_alloc_size,
    			    qdev->small_buf_q_alloc_virt_addr,
    			    qdev->small_buf_q_alloc_phy_addr);
    
    	qdev->small_buf_q_virt_addr = NULL;
    
    	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
    }
    
    static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
    {
    	int i;
    	struct bufq_addr_element *small_buf_q_entry;
    
    	/* Currently we allocate on one of memory and use it for smallbuffers */
    	qdev->small_buf_total_size =
    		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
    		 QL_SMALL_BUFFER_SIZE);
    
    	qdev->small_buf_virt_addr =
    		pci_alloc_consistent(qdev->pdev,
    				     qdev->small_buf_total_size,
    				     &qdev->small_buf_phy_addr);
    
    	if (qdev->small_buf_virt_addr == NULL) {
    		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
    		return -ENOMEM;
    	}
    
    	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
    	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
    
    	small_buf_q_entry = qdev->small_buf_q_virt_addr;
    
    	/* Initialize the small buffer queue. */
    	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
    		small_buf_q_entry->addr_high =
    		    cpu_to_le32(qdev->small_buf_phy_addr_high);
    		small_buf_q_entry->addr_low =
    		    cpu_to_le32(qdev->small_buf_phy_addr_low +
    				(i * QL_SMALL_BUFFER_SIZE));
    		small_buf_q_entry++;
    	}
    	qdev->small_buf_index = 0;
    	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
    	return 0;
    }
    
    static void ql_free_small_buffers(struct ql3_adapter *qdev)
    {
    	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
    		netdev_info(qdev->ndev, "Already done\n");
    		return;
    	}
    	if (qdev->small_buf_virt_addr != NULL) {
    		pci_free_consistent(qdev->pdev,
    				    qdev->small_buf_total_size,
    				    qdev->small_buf_virt_addr,
    				    qdev->small_buf_phy_addr);
    
    		qdev->small_buf_virt_addr = NULL;
    	}
    }
    
    static void ql_free_large_buffers(struct ql3_adapter *qdev)
    {
    	int i = 0;
    	struct ql_rcv_buf_cb *lrg_buf_cb;
    
    	for (i = 0; i < qdev->num_large_buffers; i++) {
    		lrg_buf_cb = &qdev->lrg_buf[i];
    		if (lrg_buf_cb->skb) {
    			dev_kfree_skb(lrg_buf_cb->skb);
    			pci_unmap_single(qdev->pdev,
    					 dma_unmap_addr(lrg_buf_cb, mapaddr),
    					 dma_unmap_len(lrg_buf_cb, maplen),
    					 PCI_DMA_FROMDEVICE);
    			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
    		} else {
    			break;
    		}
    	}
    }
    
    static void ql_init_large_buffers(struct ql3_adapter *qdev)
    {
    	int i;
    	struct ql_rcv_buf_cb *lrg_buf_cb;
    	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
    
    	for (i = 0; i < qdev->num_large_buffers; i++) {
    		lrg_buf_cb = &qdev->lrg_buf[i];
    		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
    		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
    		buf_addr_ele++;
    	}
    	qdev->lrg_buf_index = 0;
    	qdev->lrg_buf_skb_check = 0;
    }
    
    static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
    {
    	int i;
    	struct ql_rcv_buf_cb *lrg_buf_cb;
    	struct sk_buff *skb;
    	dma_addr_t map;
    	int err;
    
    	for (i = 0; i < qdev->num_large_buffers; i++) {
    		lrg_buf_cb = &qdev->lrg_buf[i];
    		memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
    
    		skb = netdev_alloc_skb(qdev->ndev,
    				       qdev->lrg_buffer_len);
    		if (unlikely(!skb)) {
    			/* Better luck next round */
    			netdev_err(qdev->ndev,
    				   "large buff alloc failed for %d bytes at index %d\n",
    				   qdev->lrg_buffer_len * 2, i);
    			ql_free_large_buffers(qdev);
    			return -ENOMEM;
    		} else {
    			lrg_buf_cb->index = i;
    			/*
    			 * We save some space to copy the ethhdr from first
    			 * buffer
    			 */
    			skb_reserve(skb, QL_HEADER_SPACE);
    			map = pci_map_single(qdev->pdev,
    					     skb->data,
    					     qdev->lrg_buffer_len -
    					     QL_HEADER_SPACE,
    					     PCI_DMA_FROMDEVICE);
    
    			err = pci_dma_mapping_error(qdev->pdev, map);
    			if (err) {
    				netdev_err(qdev->ndev,
    					   "PCI mapping failed with error: %d\n",
    					   err);
    				dev_kfree_skb_irq(skb);
    				ql_free_large_buffers(qdev);
    				return -ENOMEM;
    			}
    
    			lrg_buf_cb->skb = skb;
    			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
    			dma_unmap_len_set(lrg_buf_cb, maplen,
    					  qdev->lrg_buffer_len -
    					  QL_HEADER_SPACE);
    			lrg_buf_cb->buf_phy_addr_low =
    			    cpu_to_le32(LS_64BITS(map));
    			lrg_buf_cb->buf_phy_addr_high =
    			    cpu_to_le32(MS_64BITS(map));
    		}
    	}
    	return 0;
    }
    
    static void ql_free_send_free_list(struct ql3_adapter *qdev)
    {
    	struct ql_tx_buf_cb *tx_cb;
    	int i;
    
    	tx_cb = &qdev->tx_buf[0];
    	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
    		kfree(tx_cb->oal);
    		tx_cb->oal = NULL;
    		tx_cb++;
    	}
    }
    
    static int ql_create_send_free_list(struct ql3_adapter *qdev)
    {
    	struct ql_tx_buf_cb *tx_cb;
    	int i;
    	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
    
    	/* Create free list of transmit buffers */
    	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
    
    		tx_cb = &qdev->tx_buf[i];
    		tx_cb->skb = NULL;
    		tx_cb->queue_entry = req_q_curr;
    		req_q_curr++;
    		tx_cb->oal = kmalloc(512, GFP_KERNEL);
    		if (tx_cb->oal == NULL)
    			return -ENOMEM;
    	}
    	return 0;
    }
    
    static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
    {
    	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
    		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
    		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
    	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
    		/*
    		 * Bigger buffers, so less of them.
    		 */
    		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
    		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
    	} else {
    		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
    			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
    		return -ENOMEM;
    	}
    	qdev->num_large_buffers =
    		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
    	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
    	qdev->max_frame_size =
    		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
    
    	/*
    	 * First allocate a page of shared memory and use it for shadow
    	 * locations of Network Request Queue Consumer Address Register and
    	 * Network Completion Queue Producer Index Register
    	 */
    	qdev->shadow_reg_virt_addr =
    		pci_alloc_consistent(qdev->pdev,
    				     PAGE_SIZE, &qdev->shadow_reg_phy_addr);
    
    	if (qdev->shadow_reg_virt_addr != NULL) {
    		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
    		qdev->req_consumer_index_phy_addr_high =
    			MS_64BITS(qdev->shadow_reg_phy_addr);
    		qdev->req_consumer_index_phy_addr_low =
    			LS_64BITS(qdev->shadow_reg_phy_addr);
    
    		qdev->prsp_producer_index =
    			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
    		qdev->rsp_producer_index_phy_addr_high =
    			qdev->req_consumer_index_phy_addr_high;
    		qdev->rsp_producer_index_phy_addr_low =
    			qdev->req_consumer_index_phy_addr_low + 8;
    	} else {
    		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
    		return -ENOMEM;
    	}
    
    	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
    		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
    		goto err_req_rsp;
    	}
    
    	if (ql_alloc_buffer_queues(qdev) != 0) {
    		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
    		goto err_buffer_queues;
    	}
    
    	if (ql_alloc_small_buffers(qdev) != 0) {
    		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
    		goto err_small_buffers;
    	}
    
    	if (ql_alloc_large_buffers(qdev) != 0) {
    		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
    		goto err_small_buffers;
    	}
    
    	/* Initialize the large buffer queue. */
    	ql_init_large_buffers(qdev);
    	if (ql_create_send_free_list(qdev))
    		goto err_free_list;
    
    	qdev->rsp_current = qdev->rsp_q_virt_addr;
    
    	return 0;
    err_free_list:
    	ql_free_send_free_list(qdev);
    err_small_buffers:
    	ql_free_buffer_queues(qdev);
    err_buffer_queues:
    	ql_free_net_req_rsp_queues(qdev);
    err_req_rsp:
    	pci_free_consistent(qdev->pdev,
    			    PAGE_SIZE,
    			    qdev->shadow_reg_virt_addr,
    			    qdev->shadow_reg_phy_addr);
    
    	return -ENOMEM;
    }
    
    static void ql_free_mem_resources(struct ql3_adapter *qdev)
    {
    	ql_free_send_free_list(qdev);
    	ql_free_large_buffers(qdev);
    	ql_free_small_buffers(qdev);
    	ql_free_buffer_queues(qdev);
    	ql_free_net_req_rsp_queues(qdev);
    	if (qdev->shadow_reg_virt_addr != NULL) {
    		pci_free_consistent(qdev->pdev,
    				    PAGE_SIZE,
    				    qdev->shadow_reg_virt_addr,
    				    qdev->shadow_reg_phy_addr);
    		qdev->shadow_reg_virt_addr = NULL;
    	}
    }
    
    static int ql_init_misc_registers(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_local_ram_registers __iomem *local_ram =
    	    (void __iomem *)qdev->mem_map_registers;
    
    	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
    			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 4))
    		return -1;
    
    	ql_write_page2_reg(qdev,
    			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
    
    	ql_write_page2_reg(qdev,
    			   &local_ram->maxBufletCount,
    			   qdev->nvram_data.bufletCount);
    
    	ql_write_page2_reg(qdev,
    			   &local_ram->freeBufletThresholdLow,
    			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
    			   (qdev->nvram_data.tcpWindowThreshold0));
    
    	ql_write_page2_reg(qdev,
    			   &local_ram->freeBufletThresholdHigh,
    			   qdev->nvram_data.tcpWindowThreshold50);
    
    	ql_write_page2_reg(qdev,
    			   &local_ram->ipHashTableBase,
    			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
    			   qdev->nvram_data.ipHashTableBaseLo);
    	ql_write_page2_reg(qdev,
    			   &local_ram->ipHashTableCount,
    			   qdev->nvram_data.ipHashTableSize);
    	ql_write_page2_reg(qdev,
    			   &local_ram->tcpHashTableBase,
    			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
    			   qdev->nvram_data.tcpHashTableBaseLo);
    	ql_write_page2_reg(qdev,
    			   &local_ram->tcpHashTableCount,
    			   qdev->nvram_data.tcpHashTableSize);
    	ql_write_page2_reg(qdev,
    			   &local_ram->ncbBase,
    			   (qdev->nvram_data.ncbTableBaseHi << 16) |
    			   qdev->nvram_data.ncbTableBaseLo);
    	ql_write_page2_reg(qdev,
    			   &local_ram->maxNcbCount,
    			   qdev->nvram_data.ncbTableSize);
    	ql_write_page2_reg(qdev,
    			   &local_ram->drbBase,
    			   (qdev->nvram_data.drbTableBaseHi << 16) |
    			   qdev->nvram_data.drbTableBaseLo);
    	ql_write_page2_reg(qdev,
    			   &local_ram->maxDrbCount,
    			   qdev->nvram_data.drbTableSize);
    	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
    	return 0;
    }
    
    static int ql_adapter_initialize(struct ql3_adapter *qdev)
    {
    	u32 value;
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
    	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
    		(void __iomem *)port_regs;
    	u32 delay = 10;
    	int status = 0;
    
    	if (ql_mii_setup(qdev))
    		return -1;
    
    	/* Bring out PHY out of reset */
    	ql_write_common_reg(qdev, spir,
    			    (ISP_SERIAL_PORT_IF_WE |
    			     (ISP_SERIAL_PORT_IF_WE << 16)));
    	/* Give the PHY time to come out of reset. */
    	mdelay(100);
    	qdev->port_link_state = LS_DOWN;
    	netif_carrier_off(qdev->ndev);
    
    	/* V2 chip fix for ARS-39168. */
    	ql_write_common_reg(qdev, spir,
    			    (ISP_SERIAL_PORT_IF_SDE |
    			     (ISP_SERIAL_PORT_IF_SDE << 16)));
    
    	/* Request Queue Registers */
    	*((u32 *)(qdev->preq_consumer_index)) = 0;
    	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
    	qdev->req_producer_index = 0;
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->reqConsumerIndexAddrHigh,
    			   qdev->req_consumer_index_phy_addr_high);
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->reqConsumerIndexAddrLow,
    			   qdev->req_consumer_index_phy_addr_low);
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->reqBaseAddrHigh,
    			   MS_64BITS(qdev->req_q_phy_addr));
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->reqBaseAddrLow,
    			   LS_64BITS(qdev->req_q_phy_addr));
    	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
    
    	/* Response Queue Registers */
    	*((__le16 *) (qdev->prsp_producer_index)) = 0;
    	qdev->rsp_consumer_index = 0;
    	qdev->rsp_current = qdev->rsp_q_virt_addr;
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rspProducerIndexAddrHigh,
    			   qdev->rsp_producer_index_phy_addr_high);
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rspProducerIndexAddrLow,
    			   qdev->rsp_producer_index_phy_addr_low);
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rspBaseAddrHigh,
    			   MS_64BITS(qdev->rsp_q_phy_addr));
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rspBaseAddrLow,
    			   LS_64BITS(qdev->rsp_q_phy_addr));
    
    	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
    
    	/* Large Buffer Queue */
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxLargeQBaseAddrHigh,
    			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxLargeQBaseAddrLow,
    			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxLargeQLength,
    			   qdev->num_lbufq_entries);
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxLargeBufferLength,
    			   qdev->lrg_buffer_len);
    
    	/* Small Buffer Queue */
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxSmallQBaseAddrHigh,
    			   MS_64BITS(qdev->small_buf_q_phy_addr));
    
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxSmallQBaseAddrLow,
    			   LS_64BITS(qdev->small_buf_q_phy_addr));
    
    	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
    	ql_write_page1_reg(qdev,
    			   &hmem_regs->rxSmallBufferLength,
    			   QL_SMALL_BUFFER_SIZE);
    
    	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
    	qdev->small_buf_release_cnt = 8;
    	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
    	qdev->lrg_buf_release_cnt = 8;
    	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
    	qdev->small_buf_index = 0;
    	qdev->lrg_buf_index = 0;
    	qdev->lrg_buf_free_count = 0;
    	qdev->lrg_buf_free_head = NULL;
    	qdev->lrg_buf_free_tail = NULL;
    
    	ql_write_common_reg(qdev,
    			    &port_regs->CommonRegs.
    			    rxSmallQProducerIndex,
    			    qdev->small_buf_q_producer_index);
    	ql_write_common_reg(qdev,
    			    &port_regs->CommonRegs.
    			    rxLargeQProducerIndex,
    			    qdev->lrg_buf_q_producer_index);
    
    	/*
    	 * Find out if the chip has already been initialized.  If it has, then
    	 * we skip some of the initialization.
    	 */
    	clear_bit(QL_LINK_MASTER, &qdev->flags);
    	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	if ((value & PORT_STATUS_IC) == 0) {
    
    		/* Chip has not been configured yet, so let it rip. */
    		if (ql_init_misc_registers(qdev)) {
    			status = -1;
    			goto out;
    		}
    
    		value = qdev->nvram_data.tcpMaxWindowSize;
    		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
    
    		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
    
    		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
    				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
    				 * 2) << 13)) {
    			status = -1;
    			goto out;
    		}
    		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
    		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
    				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
    				     16) | (INTERNAL_CHIP_SD |
    					    INTERNAL_CHIP_WE)));
    		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
    	}
    
    	if (qdev->mac_index)
    		ql_write_page0_reg(qdev,
    				   &port_regs->mac1MaxFrameLengthReg,
    				   qdev->max_frame_size);
    	else
    		ql_write_page0_reg(qdev,
    					   &port_regs->mac0MaxFrameLengthReg,
    					   qdev->max_frame_size);
    
    	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
    			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
    			 2) << 7)) {
    		status = -1;
    		goto out;
    	}
    
    	PHY_Setup(qdev);
    	ql_init_scan_mode(qdev);
    	ql_get_phy_owner(qdev);
    
    	/* Load the MAC Configuration */
    
    	/* Program lower 32 bits of the MAC address */
    	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
    			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
    	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
    			   ((qdev->ndev->dev_addr[2] << 24)
    			    | (qdev->ndev->dev_addr[3] << 16)
    			    | (qdev->ndev->dev_addr[4] << 8)
    			    | qdev->ndev->dev_addr[5]));
    
    	/* Program top 16 bits of the MAC address */
    	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
    			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
    	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
    			   ((qdev->ndev->dev_addr[0] << 8)
    			    | qdev->ndev->dev_addr[1]));
    
    	/* Enable Primary MAC */
    	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
    			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
    			    MAC_ADDR_INDIRECT_PTR_REG_PE));
    
    	/* Clear Primary and Secondary IP addresses */
    	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
    			   ((IP_ADDR_INDEX_REG_MASK << 16) |
    			    (qdev->mac_index << 2)));
    	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
    
    	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
    			   ((IP_ADDR_INDEX_REG_MASK << 16) |
    			    ((qdev->mac_index << 2) + 1)));
    	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
    
    	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
    
    	/* Indicate Configuration Complete */
    	ql_write_page0_reg(qdev,
    			   &port_regs->portControl,
    			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
    
    	do {
    		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
    		if (value & PORT_STATUS_IC)
    			break;
    		spin_unlock_irq(&qdev->hw_lock);
    		msleep(500);
    		spin_lock_irq(&qdev->hw_lock);
    	} while (--delay);
    
    	if (delay == 0) {
    		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
    		status = -1;
    		goto out;
    	}
    
    	/* Enable Ethernet Function */
    	if (qdev->device_id == QL3032_DEVICE_ID) {
    		value =
    		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
    		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
    			QL3032_PORT_CONTROL_ET);
    		ql_write_page0_reg(qdev, &port_regs->functionControl,
    				   ((value << 16) | value));
    	} else {
    		value =
    		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
    		     PORT_CONTROL_HH);
    		ql_write_page0_reg(qdev, &port_regs->portControl,
    				   ((value << 16) | value));
    	}
    
    
    out:
    	return status;
    }
    
    /*
     * Caller holds hw_lock.
     */
    static int ql_adapter_reset(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	int status = 0;
    	u16 value;
    	int max_wait_time;
    
    	set_bit(QL_RESET_ACTIVE, &qdev->flags);
    	clear_bit(QL_RESET_DONE, &qdev->flags);
    
    	/*
    	 * Issue soft reset to chip.
    	 */
    	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
    	ql_write_common_reg(qdev,
    			    &port_regs->CommonRegs.ispControlStatus,
    			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
    
    	/* Wait 3 seconds for reset to complete. */
    	netdev_printk(KERN_DEBUG, qdev->ndev,
    		      "Wait 10 milliseconds for reset to complete\n");
    
    	/* Wait until the firmware tells us the Soft Reset is done */
    	max_wait_time = 5;
    	do {
    		value =
    		    ql_read_common_reg(qdev,
    				       &port_regs->CommonRegs.ispControlStatus);
    		if ((value & ISP_CONTROL_SR) == 0)
    			break;
    
    		ssleep(1);
    	} while ((--max_wait_time));
    
    	/*
    	 * Also, make sure that the Network Reset Interrupt bit has been
    	 * cleared after the soft reset has taken place.
    	 */
    	value =
    	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
    	if (value & ISP_CONTROL_RI) {
    		netdev_printk(KERN_DEBUG, qdev->ndev,
    			      "clearing RI after reset\n");
    		ql_write_common_reg(qdev,
    				    &port_regs->CommonRegs.
    				    ispControlStatus,
    				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
    	}
    
    	if (max_wait_time == 0) {
    		/* Issue Force Soft Reset */
    		ql_write_common_reg(qdev,
    				    &port_regs->CommonRegs.
    				    ispControlStatus,
    				    ((ISP_CONTROL_FSR << 16) |
    				     ISP_CONTROL_FSR));
    		/*
    		 * Wait until the firmware tells us the Force Soft Reset is
    		 * done
    		 */
    		max_wait_time = 5;
    		do {
    			value = ql_read_common_reg(qdev,
    						   &port_regs->CommonRegs.
    						   ispControlStatus);
    			if ((value & ISP_CONTROL_FSR) == 0)
    				break;
    			ssleep(1);
    		} while ((--max_wait_time));
    	}
    	if (max_wait_time == 0)
    		status = 1;
    
    	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
    	set_bit(QL_RESET_DONE, &qdev->flags);
    	return status;
    }
    
    static void ql_set_mac_info(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	u32 value, port_status;
    	u8 func_number;
    
    	/* Get the function number */
    	value =
    	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
    	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
    	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
    	switch (value & ISP_CONTROL_FN_MASK) {
    	case ISP_CONTROL_FN0_NET:
    		qdev->mac_index = 0;
    		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
    		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
    		qdev->PHYAddr = PORT0_PHY_ADDRESS;
    		if (port_status & PORT_STATUS_SM0)
    			set_bit(QL_LINK_OPTICAL, &qdev->flags);
    		else
    			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
    		break;
    
    	case ISP_CONTROL_FN1_NET:
    		qdev->mac_index = 1;
    		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
    		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
    		qdev->PHYAddr = PORT1_PHY_ADDRESS;
    		if (port_status & PORT_STATUS_SM1)
    			set_bit(QL_LINK_OPTICAL, &qdev->flags);
    		else
    			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
    		break;
    
    	case ISP_CONTROL_FN0_SCSI:
    	case ISP_CONTROL_FN1_SCSI:
    	default:
    		netdev_printk(KERN_DEBUG, qdev->ndev,
    			      "Invalid function number, ispControlStatus = 0x%x\n",
    			      value);
    		break;
    	}
    	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
    }
    
    static void ql_display_dev_info(struct net_device *ndev)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	struct pci_dev *pdev = qdev->pdev;
    
    	netdev_info(ndev,
    		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
    		    DRV_NAME, qdev->index, qdev->chip_rev_id,
    		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
    		    qdev->pci_slot);
    	netdev_info(ndev, "%s Interface\n",
    		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
    
    	/*
    	 * Print PCI bus width/type.
    	 */
    	netdev_info(ndev, "Bus interface is %s %s\n",
    		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
    		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
    
    	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
    		    qdev->mem_map_registers);
    	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
    
    	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
    }
    
    static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
    {
    	struct net_device *ndev = qdev->ndev;
    	int retval = 0;
    
    	netif_stop_queue(ndev);
    	netif_carrier_off(ndev);
    
    	clear_bit(QL_ADAPTER_UP, &qdev->flags);
    	clear_bit(QL_LINK_MASTER, &qdev->flags);
    
    	ql_disable_interrupts(qdev);
    
    	free_irq(qdev->pdev->irq, ndev);
    
    	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
    		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
    		clear_bit(QL_MSI_ENABLED, &qdev->flags);
    		pci_disable_msi(qdev->pdev);
    	}
    
    	del_timer_sync(&qdev->adapter_timer);
    
    	napi_disable(&qdev->napi);
    
    	if (do_reset) {
    		int soft_reset;
    		unsigned long hw_flags;
    
    		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    		if (ql_wait_for_drvr_lock(qdev)) {
    			soft_reset = ql_adapter_reset(qdev);
    			if (soft_reset) {
    				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
    					   qdev->index);
    			}
    			netdev_err(ndev,
    				   "Releasing driver lock via chip reset\n");
    		} else {
    			netdev_err(ndev,
    				   "Could not acquire driver lock to do reset!\n");
    			retval = -1;
    		}
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	}
    	ql_free_mem_resources(qdev);
    	return retval;
    }
    
    static int ql_adapter_up(struct ql3_adapter *qdev)
    {
    	struct net_device *ndev = qdev->ndev;
    	int err;
    	unsigned long irq_flags = IRQF_SHARED;
    	unsigned long hw_flags;
    
    	if (ql_alloc_mem_resources(qdev)) {
    		netdev_err(ndev, "Unable to  allocate buffers\n");
    		return -ENOMEM;
    	}
    
    	if (qdev->msi) {
    		if (pci_enable_msi(qdev->pdev)) {
    			netdev_err(ndev,
    				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
    			qdev->msi = 0;
    		} else {
    			netdev_info(ndev, "MSI Enabled...\n");
    			set_bit(QL_MSI_ENABLED, &qdev->flags);
    			irq_flags &= ~IRQF_SHARED;
    		}
    	}
    
    	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
    			  irq_flags, ndev->name, ndev);
    	if (err) {
    		netdev_err(ndev,
    			   "Failed to reserve interrupt %d - already in use\n",
    			   qdev->pdev->irq);
    		goto err_irq;
    	}
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    
    	err = ql_wait_for_drvr_lock(qdev);
    	if (err) {
    		err = ql_adapter_initialize(qdev);
    		if (err) {
    			netdev_err(ndev, "Unable to initialize adapter\n");
    			goto err_init;
    		}
    		netdev_err(ndev, "Releasing driver lock\n");
    		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
    	} else {
    		netdev_err(ndev, "Could not acquire driver lock\n");
    		goto err_lock;
    	}
    
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    	set_bit(QL_ADAPTER_UP, &qdev->flags);
    
    	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
    
    	napi_enable(&qdev->napi);
    	ql_enable_interrupts(qdev);
    	return 0;
    
    err_init:
    	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
    err_lock:
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    	free_irq(qdev->pdev->irq, ndev);
    err_irq:
    	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
    		netdev_info(ndev, "calling pci_disable_msi()\n");
    		clear_bit(QL_MSI_ENABLED, &qdev->flags);
    		pci_disable_msi(qdev->pdev);
    	}
    	return err;
    }
    
    static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
    {
    	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
    		netdev_err(qdev->ndev,
    			   "Driver up/down cycle failed, closing device\n");
    		rtnl_lock();
    		dev_close(qdev->ndev);
    		rtnl_unlock();
    		return -1;
    	}
    	return 0;
    }
    
    static int ql3xxx_close(struct net_device *ndev)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    
    	/*
    	 * Wait for device to recover from a reset.
    	 * (Rarely happens, but possible.)
    	 */
    	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
    		msleep(50);
    
    	ql_adapter_down(qdev, QL_DO_RESET);
    	return 0;
    }
    
    static int ql3xxx_open(struct net_device *ndev)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	return ql_adapter_up(qdev);
    }
    
    static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    	struct ql3xxx_port_registers __iomem *port_regs =
    			qdev->mem_map_registers;
    	struct sockaddr *addr = p;
    	unsigned long hw_flags;
    
    	if (netif_running(ndev))
    		return -EBUSY;
    
    	if (!is_valid_ether_addr(addr->sa_data))
    		return -EADDRNOTAVAIL;
    
    	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
    
    	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    	/* Program lower 32 bits of the MAC address */
    	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
    			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
    	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
    			   ((ndev->dev_addr[2] << 24) | (ndev->
    							 dev_addr[3] << 16) |
    			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
    
    	/* Program top 16 bits of the MAC address */
    	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
    			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
    	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
    			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
    	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    	return 0;
    }
    
    static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
    {
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    
    	netdev_err(ndev, "Resetting...\n");
    	/*
    	 * Stop the queues, we've got a problem.
    	 */
    	netif_stop_queue(ndev);
    
    	/*
    	 * Wake up the worker to process this event.
    	 */
    	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
    }
    
    static void ql_reset_work(struct work_struct *work)
    {
    	struct ql3_adapter *qdev =
    		container_of(work, struct ql3_adapter, reset_work.work);
    	struct net_device *ndev = qdev->ndev;
    	u32 value;
    	struct ql_tx_buf_cb *tx_cb;
    	int max_wait_time, i;
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	unsigned long hw_flags;
    
    	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
    		clear_bit(QL_LINK_MASTER, &qdev->flags);
    
    		/*
    		 * Loop through the active list and return the skb.
    		 */
    		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
    			int j;
    			tx_cb = &qdev->tx_buf[i];
    			if (tx_cb->skb) {
    				netdev_printk(KERN_DEBUG, ndev,
    					      "Freeing lost SKB\n");
    				pci_unmap_single(qdev->pdev,
    					 dma_unmap_addr(&tx_cb->map[0],
    							mapaddr),
    					 dma_unmap_len(&tx_cb->map[0], maplen),
    					 PCI_DMA_TODEVICE);
    				for (j = 1; j < tx_cb->seg_count; j++) {
    					pci_unmap_page(qdev->pdev,
    					       dma_unmap_addr(&tx_cb->map[j],
    							      mapaddr),
    					       dma_unmap_len(&tx_cb->map[j],
    							     maplen),
    					       PCI_DMA_TODEVICE);
    				}
    				dev_kfree_skb(tx_cb->skb);
    				tx_cb->skb = NULL;
    			}
    		}
    
    		netdev_err(ndev, "Clearing NRI after reset\n");
    		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    		ql_write_common_reg(qdev,
    				    &port_regs->CommonRegs.
    				    ispControlStatus,
    				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
    		/*
    		 * Wait the for Soft Reset to Complete.
    		 */
    		max_wait_time = 10;
    		do {
    			value = ql_read_common_reg(qdev,
    						   &port_regs->CommonRegs.
    
    						   ispControlStatus);
    			if ((value & ISP_CONTROL_SR) == 0) {
    				netdev_printk(KERN_DEBUG, ndev,
    					      "reset completed\n");
    				break;
    			}
    
    			if (value & ISP_CONTROL_RI) {
    				netdev_printk(KERN_DEBUG, ndev,
    					      "clearing NRI after reset\n");
    				ql_write_common_reg(qdev,
    						    &port_regs->
    						    CommonRegs.
    						    ispControlStatus,
    						    ((ISP_CONTROL_RI <<
    						      16) | ISP_CONTROL_RI));
    			}
    
    			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    			ssleep(1);
    			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
    		} while (--max_wait_time);
    		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
    
    		if (value & ISP_CONTROL_SR) {
    
    			/*
    			 * Set the reset flags and clear the board again.
    			 * Nothing else to do...
    			 */
    			netdev_err(ndev,
    				   "Timed out waiting for reset to complete\n");
    			netdev_err(ndev, "Do a reset\n");
    			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
    			clear_bit(QL_RESET_START, &qdev->flags);
    			ql_cycle_adapter(qdev, QL_DO_RESET);
    			return;
    		}
    
    		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
    		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
    		clear_bit(QL_RESET_START, &qdev->flags);
    		ql_cycle_adapter(qdev, QL_NO_RESET);
    	}
    }
    
    static void ql_tx_timeout_work(struct work_struct *work)
    {
    	struct ql3_adapter *qdev =
    		container_of(work, struct ql3_adapter, tx_timeout_work.work);
    
    	ql_cycle_adapter(qdev, QL_DO_RESET);
    }
    
    static void ql_get_board_info(struct ql3_adapter *qdev)
    {
    	struct ql3xxx_port_registers __iomem *port_regs =
    		qdev->mem_map_registers;
    	u32 value;
    
    	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
    
    	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
    	if (value & PORT_STATUS_64)
    		qdev->pci_width = 64;
    	else
    		qdev->pci_width = 32;
    	if (value & PORT_STATUS_X)
    		qdev->pci_x = 1;
    	else
    		qdev->pci_x = 0;
    	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
    }
    
    static void ql3xxx_timer(struct timer_list *t)
    {
    	struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
    	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
    }
    
    static const struct net_device_ops ql3xxx_netdev_ops = {
    	.ndo_open		= ql3xxx_open,
    	.ndo_start_xmit		= ql3xxx_send,
    	.ndo_stop		= ql3xxx_close,
    	.ndo_validate_addr	= eth_validate_addr,
    	.ndo_set_mac_address	= ql3xxx_set_mac_address,
    	.ndo_tx_timeout		= ql3xxx_tx_timeout,
    };
    
    static int ql3xxx_probe(struct pci_dev *pdev,
    			const struct pci_device_id *pci_entry)
    {
    	struct net_device *ndev = NULL;
    	struct ql3_adapter *qdev = NULL;
    	static int cards_found;
    	int pci_using_dac, err;
    
    	err = pci_enable_device(pdev);
    	if (err) {
    		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
    		goto err_out;
    	}
    
    	err = pci_request_regions(pdev, DRV_NAME);
    	if (err) {
    		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
    		goto err_out_disable_pdev;
    	}
    
    	pci_set_master(pdev);
    
    	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
    		pci_using_dac = 1;
    		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
    	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
    		pci_using_dac = 0;
    		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
    	}
    
    	if (err) {
    		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
    		goto err_out_free_regions;
    	}
    
    	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
    	if (!ndev) {
    		err = -ENOMEM;
    		goto err_out_free_regions;
    	}
    
    	SET_NETDEV_DEV(ndev, &pdev->dev);
    
    	pci_set_drvdata(pdev, ndev);
    
    	qdev = netdev_priv(ndev);
    	qdev->index = cards_found;
    	qdev->ndev = ndev;
    	qdev->pdev = pdev;
    	qdev->device_id = pci_entry->device;
    	qdev->port_link_state = LS_DOWN;
    	if (msi)
    		qdev->msi = 1;
    
    	qdev->msg_enable = netif_msg_init(debug, default_msg);
    
    	if (pci_using_dac)
    		ndev->features |= NETIF_F_HIGHDMA;
    	if (qdev->device_id == QL3032_DEVICE_ID)
    		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
    
    	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
    	if (!qdev->mem_map_registers) {
    		pr_err("%s: cannot map device registers\n", pci_name(pdev));
    		err = -EIO;
    		goto err_out_free_ndev;
    	}
    
    	spin_lock_init(&qdev->adapter_lock);
    	spin_lock_init(&qdev->hw_lock);
    
    	/* Set driver entry points */
    	ndev->netdev_ops = &ql3xxx_netdev_ops;
    	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
    	ndev->watchdog_timeo = 5 * HZ;
    
    	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
    
    	ndev->irq = pdev->irq;
    
    	/* make sure the EEPROM is good */
    	if (ql_get_nvram_params(qdev)) {
    		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
    			 __func__, qdev->index);
    		err = -EIO;
    		goto err_out_iounmap;
    	}
    
    	ql_set_mac_info(qdev);
    
    	/* Validate and set parameters */
    	if (qdev->mac_index) {
    		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
    		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
    	} else {
    		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
    		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
    	}
    
    	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
    
    	/* Record PCI bus information. */
    	ql_get_board_info(qdev);
    
    	/*
    	 * Set the Maximum Memory Read Byte Count value. We do this to handle
    	 * jumbo frames.
    	 */
    	if (qdev->pci_x)
    		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
    
    	err = register_netdev(ndev);
    	if (err) {
    		pr_err("%s: cannot register net device\n", pci_name(pdev));
    		goto err_out_iounmap;
    	}
    
    	/* we're going to reset, so assume we have no link for now */
    
    	netif_carrier_off(ndev);
    	netif_stop_queue(ndev);
    
    	qdev->workqueue = create_singlethread_workqueue(ndev->name);
    	if (!qdev->workqueue) {
    		unregister_netdev(ndev);
    		err = -ENOMEM;
    		goto err_out_iounmap;
    	}
    
    	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
    	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
    	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
    
    	timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
    	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
    
    	if (!cards_found) {
    		pr_alert("%s\n", DRV_STRING);
    		pr_alert("Driver name: %s, Version: %s\n",
    			 DRV_NAME, DRV_VERSION);
    	}
    	ql_display_dev_info(ndev);
    
    	cards_found++;
    	return 0;
    
    err_out_iounmap:
    	iounmap(qdev->mem_map_registers);
    err_out_free_ndev:
    	free_netdev(ndev);
    err_out_free_regions:
    	pci_release_regions(pdev);
    err_out_disable_pdev:
    	pci_disable_device(pdev);
    err_out:
    	return err;
    }
    
    static void ql3xxx_remove(struct pci_dev *pdev)
    {
    	struct net_device *ndev = pci_get_drvdata(pdev);
    	struct ql3_adapter *qdev = netdev_priv(ndev);
    
    	unregister_netdev(ndev);
    
    	ql_disable_interrupts(qdev);
    
    	if (qdev->workqueue) {
    		cancel_delayed_work(&qdev->reset_work);
    		cancel_delayed_work(&qdev->tx_timeout_work);
    		destroy_workqueue(qdev->workqueue);
    		qdev->workqueue = NULL;
    	}
    
    	iounmap(qdev->mem_map_registers);
    	pci_release_regions(pdev);
    	free_netdev(ndev);
    }
    
    static struct pci_driver ql3xxx_driver = {
    
    	.name = DRV_NAME,
    	.id_table = ql3xxx_pci_tbl,
    	.probe = ql3xxx_probe,
    	.remove = ql3xxx_remove,
    };
    
    module_pci_driver(ql3xxx_driver);