Skip to content
Snippets Groups Projects
Select Git revision
  • b7fd68ab1538e3adb665670414bea440f399fda9
  • drm-misc-templates default
  • wip/final/kci-gitlab-lava-v1
  • wip/vignesh/kci-lava-gitlab-runner
  • kci-gitlab-igt-v8
  • kci-gitlab-igt-v4
  • drm-misc-fixes-2024-10-02
  • drm-misc-next-2024-09-26
  • drm-misc-fixes-2024-09-26
  • drm-misc-next-2024-09-20
  • drm-misc-fixes-2024-09-12
  • drm-misc-fixes-2024-09-05
  • drm-misc-next-fixes-2024-09-05
  • drm-misc-fixes-2024-08-29
  • drm-misc-next-2024-08-29
  • drm-misc-next-2024-08-22
  • drm-misc-fixes-2024-08-22
  • drm-misc-next-2024-08-16
  • drm-misc-fixes-2024-08-15
  • drm-misc-next-2024-08-09
  • drm-misc-fixes-2024-08-08
  • drm-misc-next-2024-08-01
  • drm-misc-fixes-2024-08-01
  • drm-misc-next-fixes-2024-07-25
  • drm-misc-next-fixes-2024-07-19
  • drm-misc-next-fixes-2024-07-11
26 results

drm_gem.c

Blame
  • dma-mapping.c 51.38 KiB
    /*
     *  linux/arch/arm/mm/dma-mapping.c
     *
     *  Copyright (C) 2000-2004 Russell King
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     *  DMA uncached mapping support.
     */
    #include <linux/module.h>
    #include <linux/mm.h>
    #include <linux/gfp.h>
    #include <linux/errno.h>
    #include <linux/list.h>
    #include <linux/init.h>
    #include <linux/device.h>
    #include <linux/dma-mapping.h>
    #include <linux/dma-contiguous.h>
    #include <linux/highmem.h>
    #include <linux/memblock.h>
    #include <linux/slab.h>
    #include <linux/iommu.h>
    #include <linux/io.h>
    #include <linux/vmalloc.h>
    #include <linux/sizes.h>
    
    #include <asm/memory.h>
    #include <asm/highmem.h>
    #include <asm/cacheflush.h>
    #include <asm/tlbflush.h>
    #include <asm/mach/arch.h>
    #include <asm/dma-iommu.h>
    #include <asm/mach/map.h>
    #include <asm/system_info.h>
    #include <asm/dma-contiguous.h>
    
    #include "mm.h"
    
    /*
     * The DMA API is built upon the notion of "buffer ownership".  A buffer
     * is either exclusively owned by the CPU (and therefore may be accessed
     * by it) or exclusively owned by the DMA device.  These helper functions
     * represent the transitions between these two ownership states.
     *
     * Note, however, that on later ARMs, this notion does not work due to
     * speculative prefetches.  We model our approach on the assumption that
     * the CPU does do speculative prefetches, which means we clean caches
     * before transfers and delay cache invalidation until transfer completion.
     *
     */
    static void __dma_page_cpu_to_dev(struct page *, unsigned long,
    		size_t, enum dma_data_direction);
    static void __dma_page_dev_to_cpu(struct page *, unsigned long,
    		size_t, enum dma_data_direction);
    
    /**
     * arm_dma_map_page - map a portion of a page for streaming DMA
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @page: page that buffer resides in
     * @offset: offset into page for start of buffer
     * @size: size of buffer to map
     * @dir: DMA transfer direction
     *
     * Ensure that any data held in the cache is appropriately discarded
     * or written back.
     *
     * The device owns this memory once this call has completed.  The CPU
     * can regain ownership by calling dma_unmap_page().
     */
    static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
    	     unsigned long offset, size_t size, enum dma_data_direction dir,
    	     struct dma_attrs *attrs)
    {
    	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    		__dma_page_cpu_to_dev(page, offset, size, dir);
    	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
    }
    
    static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
    	     unsigned long offset, size_t size, enum dma_data_direction dir,
    	     struct dma_attrs *attrs)
    {
    	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
    }
    
    /**
     * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @handle: DMA address of buffer
     * @size: size of buffer (same as passed to dma_map_page)
     * @dir: DMA transfer direction (same as passed to dma_map_page)
     *
     * Unmap a page streaming mode DMA translation.  The handle and size
     * must match what was provided in the previous dma_map_page() call.
     * All other usages are undefined.
     *
     * After this call, reads by the CPU to the buffer are guaranteed to see
     * whatever the device wrote there.
     */
    static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
    		size_t size, enum dma_data_direction dir,
    		struct dma_attrs *attrs)
    {
    	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
    				      handle & ~PAGE_MASK, size, dir);
    }
    
    static void arm_dma_sync_single_for_cpu(struct device *dev,
    		dma_addr_t handle, size_t size, enum dma_data_direction dir)
    {
    	unsigned int offset = handle & (PAGE_SIZE - 1);
    	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
    	__dma_page_dev_to_cpu(page, offset, size, dir);
    }
    
    static void arm_dma_sync_single_for_device(struct device *dev,
    		dma_addr_t handle, size_t size, enum dma_data_direction dir)
    {
    	unsigned int offset = handle & (PAGE_SIZE - 1);
    	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
    	__dma_page_cpu_to_dev(page, offset, size, dir);
    }
    
    struct dma_map_ops arm_dma_ops = {
    	.alloc			= arm_dma_alloc,
    	.free			= arm_dma_free,
    	.mmap			= arm_dma_mmap,
    	.get_sgtable		= arm_dma_get_sgtable,
    	.map_page		= arm_dma_map_page,
    	.unmap_page		= arm_dma_unmap_page,
    	.map_sg			= arm_dma_map_sg,
    	.unmap_sg		= arm_dma_unmap_sg,
    	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
    	.sync_single_for_device	= arm_dma_sync_single_for_device,
    	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
    	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
    	.set_dma_mask		= arm_dma_set_mask,
    };
    EXPORT_SYMBOL(arm_dma_ops);
    
    static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
    	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
    static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
    				  dma_addr_t handle, struct dma_attrs *attrs);
    
    struct dma_map_ops arm_coherent_dma_ops = {
    	.alloc			= arm_coherent_dma_alloc,
    	.free			= arm_coherent_dma_free,
    	.mmap			= arm_dma_mmap,
    	.get_sgtable		= arm_dma_get_sgtable,
    	.map_page		= arm_coherent_dma_map_page,
    	.map_sg			= arm_dma_map_sg,
    	.set_dma_mask		= arm_dma_set_mask,
    };
    EXPORT_SYMBOL(arm_coherent_dma_ops);
    
    static u64 get_coherent_dma_mask(struct device *dev)
    {
    	u64 mask = (u64)arm_dma_limit;
    
    	if (dev) {
    		mask = dev->coherent_dma_mask;
    
    		/*
    		 * Sanity check the DMA mask - it must be non-zero, and
    		 * must be able to be satisfied by a DMA allocation.
    		 */
    		if (mask == 0) {
    			dev_warn(dev, "coherent DMA mask is unset\n");
    			return 0;
    		}
    
    		if ((~mask) & (u64)arm_dma_limit) {
    			dev_warn(dev, "coherent DMA mask %#llx is smaller "
    				 "than system GFP_DMA mask %#llx\n",
    				 mask, (u64)arm_dma_limit);
    			return 0;
    		}
    	}
    
    	return mask;
    }
    
    static void __dma_clear_buffer(struct page *page, size_t size)
    {
    	/*
    	 * Ensure that the allocated pages are zeroed, and that any data
    	 * lurking in the kernel direct-mapped region is invalidated.
    	 */
    	if (PageHighMem(page)) {
    		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
    		phys_addr_t end = base + size;
    		while (size > 0) {
    			void *ptr = kmap_atomic(page);
    			memset(ptr, 0, PAGE_SIZE);
    			dmac_flush_range(ptr, ptr + PAGE_SIZE);
    			kunmap_atomic(ptr);
    			page++;
    			size -= PAGE_SIZE;
    		}
    		outer_flush_range(base, end);
    	} else {
    		void *ptr = page_address(page);
    		memset(ptr, 0, size);
    		dmac_flush_range(ptr, ptr + size);
    		outer_flush_range(__pa(ptr), __pa(ptr) + size);
    	}
    }
    
    /*
     * Allocate a DMA buffer for 'dev' of size 'size' using the
     * specified gfp mask.  Note that 'size' must be page aligned.
     */
    static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
    {
    	unsigned long order = get_order(size);
    	struct page *page, *p, *e;
    
    	page = alloc_pages(gfp, order);
    	if (!page)
    		return NULL;
    
    	/*
    	 * Now split the huge page and free the excess pages
    	 */
    	split_page(page, order);
    	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
    		__free_page(p);
    
    	__dma_clear_buffer(page, size);
    
    	return page;
    }
    
    /*
     * Free a DMA buffer.  'size' must be page aligned.
     */
    static void __dma_free_buffer(struct page *page, size_t size)
    {
    	struct page *e = page + (size >> PAGE_SHIFT);
    
    	while (page < e) {
    		__free_page(page);
    		page++;
    	}
    }
    
    #ifdef CONFIG_MMU
    #ifdef CONFIG_HUGETLB_PAGE
    #warning ARM Coherent DMA allocator does not (yet) support huge TLB
    #endif
    
    static void *__alloc_from_contiguous(struct device *dev, size_t size,
    				     pgprot_t prot, struct page **ret_page,
    				     const void *caller);
    
    static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
    				 pgprot_t prot, struct page **ret_page,
    				 const void *caller);
    
    static void *
    __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
    	const void *caller)
    {
    	struct vm_struct *area;
    	unsigned long addr;
    
    	/*
    	 * DMA allocation can be mapped to user space, so lets
    	 * set VM_USERMAP flags too.
    	 */
    	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
    				  caller);
    	if (!area)
    		return NULL;
    	addr = (unsigned long)area->addr;
    	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
    
    	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
    		vunmap((void *)addr);
    		return NULL;
    	}
    	return (void *)addr;
    }
    
    static void __dma_free_remap(void *cpu_addr, size_t size)
    {
    	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
    	struct vm_struct *area = find_vm_area(cpu_addr);
    	if (!area || (area->flags & flags) != flags) {
    		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
    		return;
    	}
    	unmap_kernel_range((unsigned long)cpu_addr, size);
    	vunmap(cpu_addr);
    }
    
    #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
    
    struct dma_pool {
    	size_t size;
    	spinlock_t lock;
    	unsigned long *bitmap;
    	unsigned long nr_pages;
    	void *vaddr;
    	struct page **pages;
    };
    
    static struct dma_pool atomic_pool = {
    	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
    };
    
    static int __init early_coherent_pool(char *p)
    {
    	atomic_pool.size = memparse(p, &p);
    	return 0;
    }
    early_param("coherent_pool", early_coherent_pool);
    
    void __init init_dma_coherent_pool_size(unsigned long size)
    {
    	/*
    	 * Catch any attempt to set the pool size too late.
    	 */
    	BUG_ON(atomic_pool.vaddr);
    
    	/*
    	 * Set architecture specific coherent pool size only if
    	 * it has not been changed by kernel command line parameter.
    	 */
    	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
    		atomic_pool.size = size;
    }
    
    /*
     * Initialise the coherent pool for atomic allocations.
     */
    static int __init atomic_pool_init(void)
    {
    	struct dma_pool *pool = &atomic_pool;
    	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
    	gfp_t gfp = GFP_KERNEL | GFP_DMA;
    	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
    	unsigned long *bitmap;
    	struct page *page;
    	struct page **pages;
    	void *ptr;
    	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
    
    	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
    	if (!bitmap)
    		goto no_bitmap;
    
    	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
    	if (!pages)
    		goto no_pages;
    
    	if (IS_ENABLED(CONFIG_DMA_CMA))
    		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
    					      atomic_pool_init);
    	else
    		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
    					   atomic_pool_init);
    	if (ptr) {
    		int i;
    
    		for (i = 0; i < nr_pages; i++)
    			pages[i] = page + i;
    
    		spin_lock_init(&pool->lock);
    		pool->vaddr = ptr;
    		pool->pages = pages;
    		pool->bitmap = bitmap;
    		pool->nr_pages = nr_pages;
    		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
    		       (unsigned)pool->size / 1024);
    		return 0;
    	}
    
    	kfree(pages);
    no_pages:
    	kfree(bitmap);
    no_bitmap:
    	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
    	       (unsigned)pool->size / 1024);
    	return -ENOMEM;
    }
    /*
     * CMA is activated by core_initcall, so we must be called after it.
     */
    postcore_initcall(atomic_pool_init);
    
    struct dma_contig_early_reserve {
    	phys_addr_t base;
    	unsigned long size;
    };
    
    static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
    
    static int dma_mmu_remap_num __initdata;
    
    void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
    {
    	dma_mmu_remap[dma_mmu_remap_num].base = base;
    	dma_mmu_remap[dma_mmu_remap_num].size = size;
    	dma_mmu_remap_num++;
    }
    
    void __init dma_contiguous_remap(void)
    {
    	int i;
    	for (i = 0; i < dma_mmu_remap_num; i++) {
    		phys_addr_t start = dma_mmu_remap[i].base;
    		phys_addr_t end = start + dma_mmu_remap[i].size;
    		struct map_desc map;
    		unsigned long addr;
    
    		if (end > arm_lowmem_limit)
    			end = arm_lowmem_limit;
    		if (start >= end)
    			continue;
    
    		map.pfn = __phys_to_pfn(start);
    		map.virtual = __phys_to_virt(start);
    		map.length = end - start;
    		map.type = MT_MEMORY_DMA_READY;
    
    		/*
    		 * Clear previous low-memory mapping
    		 */
    		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
    		     addr += PMD_SIZE)
    			pmd_clear(pmd_off_k(addr));
    
    		iotable_init(&map, 1);
    	}
    }
    
    static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
    			    void *data)
    {
    	struct page *page = virt_to_page(addr);
    	pgprot_t prot = *(pgprot_t *)data;
    
    	set_pte_ext(pte, mk_pte(page, prot), 0);
    	return 0;
    }
    
    static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
    {
    	unsigned long start = (unsigned long) page_address(page);
    	unsigned end = start + size;
    
    	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
    	flush_tlb_kernel_range(start, end);
    }
    
    static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
    				 pgprot_t prot, struct page **ret_page,
    				 const void *caller)
    {
    	struct page *page;
    	void *ptr;
    	page = __dma_alloc_buffer(dev, size, gfp);
    	if (!page)
    		return NULL;
    
    	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
    	if (!ptr) {
    		__dma_free_buffer(page, size);
    		return NULL;
    	}
    
    	*ret_page = page;
    	return ptr;
    }
    
    static void *__alloc_from_pool(size_t size, struct page **ret_page)
    {
    	struct dma_pool *pool = &atomic_pool;
    	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	unsigned int pageno;
    	unsigned long flags;
    	void *ptr = NULL;
    	unsigned long align_mask;
    
    	if (!pool->vaddr) {
    		WARN(1, "coherent pool not initialised!\n");
    		return NULL;
    	}
    
    	/*
    	 * Align the region allocation - allocations from pool are rather
    	 * small, so align them to their order in pages, minimum is a page
    	 * size. This helps reduce fragmentation of the DMA space.
    	 */
    	align_mask = (1 << get_order(size)) - 1;
    
    	spin_lock_irqsave(&pool->lock, flags);
    	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
    					    0, count, align_mask);
    	if (pageno < pool->nr_pages) {
    		bitmap_set(pool->bitmap, pageno, count);
    		ptr = pool->vaddr + PAGE_SIZE * pageno;
    		*ret_page = pool->pages[pageno];
    	} else {
    		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
    			    "Please increase it with coherent_pool= kernel parameter!\n",
    			    (unsigned)pool->size / 1024);
    	}
    	spin_unlock_irqrestore(&pool->lock, flags);
    
    	return ptr;
    }
    
    static bool __in_atomic_pool(void *start, size_t size)
    {
    	struct dma_pool *pool = &atomic_pool;
    	void *end = start + size;
    	void *pool_start = pool->vaddr;
    	void *pool_end = pool->vaddr + pool->size;
    
    	if (start < pool_start || start >= pool_end)
    		return false;
    
    	if (end <= pool_end)
    		return true;
    
    	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
    	     start, end - 1, pool_start, pool_end - 1);
    
    	return false;
    }
    
    static int __free_from_pool(void *start, size_t size)
    {
    	struct dma_pool *pool = &atomic_pool;
    	unsigned long pageno, count;
    	unsigned long flags;
    
    	if (!__in_atomic_pool(start, size))
    		return 0;
    
    	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
    	count = size >> PAGE_SHIFT;
    
    	spin_lock_irqsave(&pool->lock, flags);
    	bitmap_clear(pool->bitmap, pageno, count);
    	spin_unlock_irqrestore(&pool->lock, flags);
    
    	return 1;
    }
    
    static void *__alloc_from_contiguous(struct device *dev, size_t size,
    				     pgprot_t prot, struct page **ret_page,
    				     const void *caller)
    {
    	unsigned long order = get_order(size);
    	size_t count = size >> PAGE_SHIFT;
    	struct page *page;
    	void *ptr;
    
    	page = dma_alloc_from_contiguous(dev, count, order);
    	if (!page)
    		return NULL;
    
    	__dma_clear_buffer(page, size);
    
    	if (PageHighMem(page)) {
    		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
    		if (!ptr) {
    			dma_release_from_contiguous(dev, page, count);
    			return NULL;
    		}
    	} else {
    		__dma_remap(page, size, prot);
    		ptr = page_address(page);
    	}
    	*ret_page = page;
    	return ptr;
    }
    
    static void __free_from_contiguous(struct device *dev, struct page *page,
    				   void *cpu_addr, size_t size)
    {
    	if (PageHighMem(page))
    		__dma_free_remap(cpu_addr, size);
    	else
    		__dma_remap(page, size, pgprot_kernel);
    	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
    }
    
    static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
    {
    	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
    			    pgprot_writecombine(prot) :
    			    pgprot_dmacoherent(prot);
    	return prot;
    }
    
    #define nommu() 0
    
    #else	/* !CONFIG_MMU */
    
    #define nommu() 1
    
    #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
    #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
    #define __alloc_from_pool(size, ret_page)			NULL
    #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
    #define __free_from_pool(cpu_addr, size)			0
    #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
    #define __dma_free_remap(cpu_addr, size)			do { } while (0)
    
    #endif	/* CONFIG_MMU */
    
    static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
    				   struct page **ret_page)
    {
    	struct page *page;
    	page = __dma_alloc_buffer(dev, size, gfp);
    	if (!page)
    		return NULL;
    
    	*ret_page = page;
    	return page_address(page);
    }
    
    
    
    static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
    			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
    {
    	u64 mask = get_coherent_dma_mask(dev);
    	struct page *page = NULL;
    	void *addr;
    
    #ifdef CONFIG_DMA_API_DEBUG
    	u64 limit = (mask + 1) & ~mask;
    	if (limit && size >= limit) {
    		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
    			size, mask);
    		return NULL;
    	}
    #endif
    
    	if (!mask)
    		return NULL;
    
    	if (mask < 0xffffffffULL)
    		gfp |= GFP_DMA;
    
    	/*
    	 * Following is a work-around (a.k.a. hack) to prevent pages
    	 * with __GFP_COMP being passed to split_page() which cannot
    	 * handle them.  The real problem is that this flag probably
    	 * should be 0 on ARM as it is not supported on this
    	 * platform; see CONFIG_HUGETLBFS.
    	 */
    	gfp &= ~(__GFP_COMP);
    
    	*handle = DMA_ERROR_CODE;
    	size = PAGE_ALIGN(size);
    
    	if (is_coherent || nommu())
    		addr = __alloc_simple_buffer(dev, size, gfp, &page);
    	else if (!(gfp & __GFP_WAIT))
    		addr = __alloc_from_pool(size, &page);
    	else if (!IS_ENABLED(CONFIG_DMA_CMA))
    		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
    	else
    		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
    
    	if (addr)
    		*handle = pfn_to_dma(dev, page_to_pfn(page));
    
    	return addr;
    }
    
    /*
     * Allocate DMA-coherent memory space and return both the kernel remapped
     * virtual and bus address for that space.
     */
    void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
    		    gfp_t gfp, struct dma_attrs *attrs)
    {
    	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
    	void *memory;
    
    	if (dma_alloc_from_coherent(dev, size, handle, &memory))
    		return memory;
    
    	return __dma_alloc(dev, size, handle, gfp, prot, false,
    			   __builtin_return_address(0));
    }
    
    static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
    	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
    {
    	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
    	void *memory;
    
    	if (dma_alloc_from_coherent(dev, size, handle, &memory))
    		return memory;
    
    	return __dma_alloc(dev, size, handle, gfp, prot, true,
    			   __builtin_return_address(0));
    }
    
    /*
     * Create userspace mapping for the DMA-coherent memory.
     */
    int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
    		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
    		 struct dma_attrs *attrs)
    {
    	int ret = -ENXIO;
    #ifdef CONFIG_MMU
    	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
    	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	unsigned long pfn = dma_to_pfn(dev, dma_addr);
    	unsigned long off = vma->vm_pgoff;
    
    	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
    
    	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
    		return ret;
    
    	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
    		ret = remap_pfn_range(vma, vma->vm_start,
    				      pfn + off,
    				      vma->vm_end - vma->vm_start,
    				      vma->vm_page_prot);
    	}
    #endif	/* CONFIG_MMU */
    
    	return ret;
    }
    
    /*
     * Free a buffer as defined by the above mapping.
     */
    static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
    			   dma_addr_t handle, struct dma_attrs *attrs,
    			   bool is_coherent)
    {
    	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
    
    	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
    		return;
    
    	size = PAGE_ALIGN(size);
    
    	if (is_coherent || nommu()) {
    		__dma_free_buffer(page, size);
    	} else if (__free_from_pool(cpu_addr, size)) {
    		return;
    	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
    		__dma_free_remap(cpu_addr, size);
    		__dma_free_buffer(page, size);
    	} else {
    		/*
    		 * Non-atomic allocations cannot be freed with IRQs disabled
    		 */
    		WARN_ON(irqs_disabled());
    		__free_from_contiguous(dev, page, cpu_addr, size);
    	}
    }
    
    void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
    		  dma_addr_t handle, struct dma_attrs *attrs)
    {
    	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
    }
    
    static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
    				  dma_addr_t handle, struct dma_attrs *attrs)
    {
    	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
    }
    
    int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
    		 void *cpu_addr, dma_addr_t handle, size_t size,
    		 struct dma_attrs *attrs)
    {
    	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
    	int ret;
    
    	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
    	if (unlikely(ret))
    		return ret;
    
    	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
    	return 0;
    }
    
    static void dma_cache_maint_page(struct page *page, unsigned long offset,
    	size_t size, enum dma_data_direction dir,
    	void (*op)(const void *, size_t, int))
    {
    	unsigned long pfn;
    	size_t left = size;
    
    	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
    	offset %= PAGE_SIZE;
    
    	/*
    	 * A single sg entry may refer to multiple physically contiguous
    	 * pages.  But we still need to process highmem pages individually.
    	 * If highmem is not configured then the bulk of this loop gets
    	 * optimized out.
    	 */
    	do {
    		size_t len = left;
    		void *vaddr;
    
    		page = pfn_to_page(pfn);
    
    		if (PageHighMem(page)) {
    			if (len + offset > PAGE_SIZE)
    				len = PAGE_SIZE - offset;
    
    			if (cache_is_vipt_nonaliasing()) {
    				vaddr = kmap_atomic(page);
    				op(vaddr + offset, len, dir);
    				kunmap_atomic(vaddr);
    			} else {
    				vaddr = kmap_high_get(page);
    				if (vaddr) {
    					op(vaddr + offset, len, dir);
    					kunmap_high(page);
    				}
    			}
    		} else {
    			vaddr = page_address(page) + offset;
    			op(vaddr, len, dir);
    		}
    		offset = 0;
    		pfn++;
    		left -= len;
    	} while (left);
    }
    
    /*
     * Make an area consistent for devices.
     * Note: Drivers should NOT use this function directly, as it will break
     * platforms with CONFIG_DMABOUNCE.
     * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
     */
    static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
    	size_t size, enum dma_data_direction dir)
    {
    	unsigned long paddr;
    
    	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
    
    	paddr = page_to_phys(page) + off;
    	if (dir == DMA_FROM_DEVICE) {
    		outer_inv_range(paddr, paddr + size);
    	} else {
    		outer_clean_range(paddr, paddr + size);
    	}
    	/* FIXME: non-speculating: flush on bidirectional mappings? */
    }
    
    static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
    	size_t size, enum dma_data_direction dir)
    {
    	unsigned long paddr = page_to_phys(page) + off;
    
    	/* FIXME: non-speculating: not required */
    	/* don't bother invalidating if DMA to device */
    	if (dir != DMA_TO_DEVICE)
    		outer_inv_range(paddr, paddr + size);
    
    	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
    
    	/*
    	 * Mark the D-cache clean for these pages to avoid extra flushing.
    	 */
    	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
    		unsigned long pfn;
    		size_t left = size;
    
    		pfn = page_to_pfn(page) + off / PAGE_SIZE;
    		off %= PAGE_SIZE;
    		if (off) {
    			pfn++;
    			left -= PAGE_SIZE - off;
    		}
    		while (left >= PAGE_SIZE) {
    			page = pfn_to_page(pfn++);
    			set_bit(PG_dcache_clean, &page->flags);
    			left -= PAGE_SIZE;
    		}
    	}
    }
    
    /**
     * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @sg: list of buffers
     * @nents: number of buffers to map
     * @dir: DMA transfer direction
     *
     * Map a set of buffers described by scatterlist in streaming mode for DMA.
     * This is the scatter-gather version of the dma_map_single interface.
     * Here the scatter gather list elements are each tagged with the
     * appropriate dma address and length.  They are obtained via
     * sg_dma_{address,length}.
     *
     * Device ownership issues as mentioned for dma_map_single are the same
     * here.
     */
    int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
    		enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	struct dma_map_ops *ops = get_dma_ops(dev);
    	struct scatterlist *s;
    	int i, j;
    
    	for_each_sg(sg, s, nents, i) {
    #ifdef CONFIG_NEED_SG_DMA_LENGTH
    		s->dma_length = s->length;
    #endif
    		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
    						s->length, dir, attrs);
    		if (dma_mapping_error(dev, s->dma_address))
    			goto bad_mapping;
    	}
    	return nents;
    
     bad_mapping:
    	for_each_sg(sg, s, i, j)
    		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
    	return 0;
    }
    
    /**
     * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @sg: list of buffers
     * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     *
     * Unmap a set of streaming mode DMA translations.  Again, CPU access
     * rules concerning calls here are the same as for dma_unmap_single().
     */
    void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
    		enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	struct dma_map_ops *ops = get_dma_ops(dev);
    	struct scatterlist *s;
    
    	int i;
    
    	for_each_sg(sg, s, nents, i)
    		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
    }
    
    /**
     * arm_dma_sync_sg_for_cpu
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @sg: list of buffers
     * @nents: number of buffers to map (returned from dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     */
    void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
    			int nents, enum dma_data_direction dir)
    {
    	struct dma_map_ops *ops = get_dma_ops(dev);
    	struct scatterlist *s;
    	int i;
    
    	for_each_sg(sg, s, nents, i)
    		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
    					 dir);
    }
    
    /**
     * arm_dma_sync_sg_for_device
     * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
     * @sg: list of buffers
     * @nents: number of buffers to map (returned from dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     */
    void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
    			int nents, enum dma_data_direction dir)
    {
    	struct dma_map_ops *ops = get_dma_ops(dev);
    	struct scatterlist *s;
    	int i;
    
    	for_each_sg(sg, s, nents, i)
    		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
    					    dir);
    }
    
    /*
     * Return whether the given device DMA address mask can be supported
     * properly.  For example, if your device can only drive the low 24-bits
     * during bus mastering, then you would pass 0x00ffffff as the mask
     * to this function.
     */
    int dma_supported(struct device *dev, u64 mask)
    {
    	if (mask < (u64)arm_dma_limit)
    		return 0;
    	return 1;
    }
    EXPORT_SYMBOL(dma_supported);
    
    int arm_dma_set_mask(struct device *dev, u64 dma_mask)
    {
    	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
    		return -EIO;
    
    	*dev->dma_mask = dma_mask;
    
    	return 0;
    }
    
    #define PREALLOC_DMA_DEBUG_ENTRIES	4096
    
    static int __init dma_debug_do_init(void)
    {
    	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
    	return 0;
    }
    fs_initcall(dma_debug_do_init);
    
    #ifdef CONFIG_ARM_DMA_USE_IOMMU
    
    /* IOMMU */
    
    static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
    				      size_t size)
    {
    	unsigned int order = get_order(size);
    	unsigned int align = 0;
    	unsigned int count, start;
    	unsigned long flags;
    
    	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
    		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
    
    	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
    		 (1 << mapping->order) - 1) >> mapping->order;
    
    	if (order > mapping->order)
    		align = (1 << (order - mapping->order)) - 1;
    
    	spin_lock_irqsave(&mapping->lock, flags);
    	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
    					   count, align);
    	if (start > mapping->bits) {
    		spin_unlock_irqrestore(&mapping->lock, flags);
    		return DMA_ERROR_CODE;
    	}
    
    	bitmap_set(mapping->bitmap, start, count);
    	spin_unlock_irqrestore(&mapping->lock, flags);
    
    	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
    }
    
    static inline void __free_iova(struct dma_iommu_mapping *mapping,
    			       dma_addr_t addr, size_t size)
    {
    	unsigned int start = (addr - mapping->base) >>
    			     (mapping->order + PAGE_SHIFT);
    	unsigned int count = ((size >> PAGE_SHIFT) +
    			      (1 << mapping->order) - 1) >> mapping->order;
    	unsigned long flags;
    
    	spin_lock_irqsave(&mapping->lock, flags);
    	bitmap_clear(mapping->bitmap, start, count);
    	spin_unlock_irqrestore(&mapping->lock, flags);
    }
    
    static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
    					  gfp_t gfp, struct dma_attrs *attrs)
    {
    	struct page **pages;
    	int count = size >> PAGE_SHIFT;
    	int array_size = count * sizeof(struct page *);
    	int i = 0;
    
    	if (array_size <= PAGE_SIZE)
    		pages = kzalloc(array_size, gfp);
    	else
    		pages = vzalloc(array_size);
    	if (!pages)
    		return NULL;
    
    	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
    	{
    		unsigned long order = get_order(size);
    		struct page *page;
    
    		page = dma_alloc_from_contiguous(dev, count, order);
    		if (!page)
    			goto error;
    
    		__dma_clear_buffer(page, size);
    
    		for (i = 0; i < count; i++)
    			pages[i] = page + i;
    
    		return pages;
    	}
    
    	/*
    	 * IOMMU can map any pages, so himem can also be used here
    	 */
    	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
    
    	while (count) {
    		int j, order = __fls(count);
    
    		pages[i] = alloc_pages(gfp, order);
    		while (!pages[i] && order)
    			pages[i] = alloc_pages(gfp, --order);
    		if (!pages[i])
    			goto error;
    
    		if (order) {
    			split_page(pages[i], order);
    			j = 1 << order;
    			while (--j)
    				pages[i + j] = pages[i] + j;
    		}
    
    		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
    		i += 1 << order;
    		count -= 1 << order;
    	}
    
    	return pages;
    error:
    	while (i--)
    		if (pages[i])
    			__free_pages(pages[i], 0);
    	if (array_size <= PAGE_SIZE)
    		kfree(pages);
    	else
    		vfree(pages);
    	return NULL;
    }
    
    static int __iommu_free_buffer(struct device *dev, struct page **pages,
    			       size_t size, struct dma_attrs *attrs)
    {
    	int count = size >> PAGE_SHIFT;
    	int array_size = count * sizeof(struct page *);
    	int i;
    
    	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
    		dma_release_from_contiguous(dev, pages[0], count);
    	} else {
    		for (i = 0; i < count; i++)
    			if (pages[i])
    				__free_pages(pages[i], 0);
    	}
    
    	if (array_size <= PAGE_SIZE)
    		kfree(pages);
    	else
    		vfree(pages);
    	return 0;
    }
    
    /*
     * Create a CPU mapping for a specified pages
     */
    static void *
    __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
    		    const void *caller)
    {
    	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	struct vm_struct *area;
    	unsigned long p;
    
    	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
    				  caller);
    	if (!area)
    		return NULL;
    
    	area->pages = pages;
    	area->nr_pages = nr_pages;
    	p = (unsigned long)area->addr;
    
    	for (i = 0; i < nr_pages; i++) {
    		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
    		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
    			goto err;
    		p += PAGE_SIZE;
    	}
    	return area->addr;
    err:
    	unmap_kernel_range((unsigned long)area->addr, size);
    	vunmap(area->addr);
    	return NULL;
    }
    
    /*
     * Create a mapping in device IO address space for specified pages
     */
    static dma_addr_t
    __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	dma_addr_t dma_addr, iova;
    	int i, ret = DMA_ERROR_CODE;
    
    	dma_addr = __alloc_iova(mapping, size);
    	if (dma_addr == DMA_ERROR_CODE)
    		return dma_addr;
    
    	iova = dma_addr;
    	for (i = 0; i < count; ) {
    		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
    		phys_addr_t phys = page_to_phys(pages[i]);
    		unsigned int len, j;
    
    		for (j = i + 1; j < count; j++, next_pfn++)
    			if (page_to_pfn(pages[j]) != next_pfn)
    				break;
    
    		len = (j - i) << PAGE_SHIFT;
    		ret = iommu_map(mapping->domain, iova, phys, len,
    				IOMMU_READ|IOMMU_WRITE);
    		if (ret < 0)
    			goto fail;
    		iova += len;
    		i = j;
    	}
    	return dma_addr;
    fail:
    	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
    	__free_iova(mapping, dma_addr, size);
    	return DMA_ERROR_CODE;
    }
    
    static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    
    	/*
    	 * add optional in-page offset from iova to size and align
    	 * result to page size
    	 */
    	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
    	iova &= PAGE_MASK;
    
    	iommu_unmap(mapping->domain, iova, size);
    	__free_iova(mapping, iova, size);
    	return 0;
    }
    
    static struct page **__atomic_get_pages(void *addr)
    {
    	struct dma_pool *pool = &atomic_pool;
    	struct page **pages = pool->pages;
    	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
    
    	return pages + offs;
    }
    
    static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
    {
    	struct vm_struct *area;
    
    	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
    		return __atomic_get_pages(cpu_addr);
    
    	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
    		return cpu_addr;
    
    	area = find_vm_area(cpu_addr);
    	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
    		return area->pages;
    	return NULL;
    }
    
    static void *__iommu_alloc_atomic(struct device *dev, size_t size,
    				  dma_addr_t *handle)
    {
    	struct page *page;
    	void *addr;
    
    	addr = __alloc_from_pool(size, &page);
    	if (!addr)
    		return NULL;
    
    	*handle = __iommu_create_mapping(dev, &page, size);
    	if (*handle == DMA_ERROR_CODE)
    		goto err_mapping;
    
    	return addr;
    
    err_mapping:
    	__free_from_pool(addr, size);
    	return NULL;
    }
    
    static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
    				dma_addr_t handle, size_t size)
    {
    	__iommu_remove_mapping(dev, handle, size);
    	__free_from_pool(cpu_addr, size);
    }
    
    static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
    	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
    {
    	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
    	struct page **pages;
    	void *addr = NULL;
    
    	*handle = DMA_ERROR_CODE;
    	size = PAGE_ALIGN(size);
    
    	if (gfp & GFP_ATOMIC)
    		return __iommu_alloc_atomic(dev, size, handle);
    
    	/*
    	 * Following is a work-around (a.k.a. hack) to prevent pages
    	 * with __GFP_COMP being passed to split_page() which cannot
    	 * handle them.  The real problem is that this flag probably
    	 * should be 0 on ARM as it is not supported on this
    	 * platform; see CONFIG_HUGETLBFS.
    	 */
    	gfp &= ~(__GFP_COMP);
    
    	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
    	if (!pages)
    		return NULL;
    
    	*handle = __iommu_create_mapping(dev, pages, size);
    	if (*handle == DMA_ERROR_CODE)
    		goto err_buffer;
    
    	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
    		return pages;
    
    	addr = __iommu_alloc_remap(pages, size, gfp, prot,
    				   __builtin_return_address(0));
    	if (!addr)
    		goto err_mapping;
    
    	return addr;
    
    err_mapping:
    	__iommu_remove_mapping(dev, *handle, size);
    err_buffer:
    	__iommu_free_buffer(dev, pages, size, attrs);
    	return NULL;
    }
    
    static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
    		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
    		    struct dma_attrs *attrs)
    {
    	unsigned long uaddr = vma->vm_start;
    	unsigned long usize = vma->vm_end - vma->vm_start;
    	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
    
    	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
    
    	if (!pages)
    		return -ENXIO;
    
    	do {
    		int ret = vm_insert_page(vma, uaddr, *pages++);
    		if (ret) {
    			pr_err("Remapping memory failed: %d\n", ret);
    			return ret;
    		}
    		uaddr += PAGE_SIZE;
    		usize -= PAGE_SIZE;
    	} while (usize > 0);
    
    	return 0;
    }
    
    /*
     * free a page as defined by the above mapping.
     * Must not be called with IRQs disabled.
     */
    void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
    			  dma_addr_t handle, struct dma_attrs *attrs)
    {
    	struct page **pages;
    	size = PAGE_ALIGN(size);
    
    	if (__in_atomic_pool(cpu_addr, size)) {
    		__iommu_free_atomic(dev, cpu_addr, handle, size);
    		return;
    	}
    
    	pages = __iommu_get_pages(cpu_addr, attrs);
    	if (!pages) {
    		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
    		return;
    	}
    
    	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
    		unmap_kernel_range((unsigned long)cpu_addr, size);
    		vunmap(cpu_addr);
    	}
    
    	__iommu_remove_mapping(dev, handle, size);
    	__iommu_free_buffer(dev, pages, size, attrs);
    }
    
    static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
    				 void *cpu_addr, dma_addr_t dma_addr,
    				 size_t size, struct dma_attrs *attrs)
    {
    	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
    
    	if (!pages)
    		return -ENXIO;
    
    	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
    					 GFP_KERNEL);
    }
    
    static int __dma_direction_to_prot(enum dma_data_direction dir)
    {
    	int prot;
    
    	switch (dir) {
    	case DMA_BIDIRECTIONAL:
    		prot = IOMMU_READ | IOMMU_WRITE;
    		break;
    	case DMA_TO_DEVICE:
    		prot = IOMMU_READ;
    		break;
    	case DMA_FROM_DEVICE:
    		prot = IOMMU_WRITE;
    		break;
    	default:
    		prot = 0;
    	}
    
    	return prot;
    }
    
    /*
     * Map a part of the scatter-gather list into contiguous io address space
     */
    static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
    			  size_t size, dma_addr_t *handle,
    			  enum dma_data_direction dir, struct dma_attrs *attrs,
    			  bool is_coherent)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t iova, iova_base;
    	int ret = 0;
    	unsigned int count;
    	struct scatterlist *s;
    	int prot;
    
    	size = PAGE_ALIGN(size);
    	*handle = DMA_ERROR_CODE;
    
    	iova_base = iova = __alloc_iova(mapping, size);
    	if (iova == DMA_ERROR_CODE)
    		return -ENOMEM;
    
    	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
    		phys_addr_t phys = page_to_phys(sg_page(s));
    		unsigned int len = PAGE_ALIGN(s->offset + s->length);
    
    		if (!is_coherent &&
    			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
    
    		prot = __dma_direction_to_prot(dir);
    
    		ret = iommu_map(mapping->domain, iova, phys, len, prot);
    		if (ret < 0)
    			goto fail;
    		count += len >> PAGE_SHIFT;
    		iova += len;
    	}
    	*handle = iova_base;
    
    	return 0;
    fail:
    	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
    	__free_iova(mapping, iova_base, size);
    	return ret;
    }
    
    static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
    		     enum dma_data_direction dir, struct dma_attrs *attrs,
    		     bool is_coherent)
    {
    	struct scatterlist *s = sg, *dma = sg, *start = sg;
    	int i, count = 0;
    	unsigned int offset = s->offset;
    	unsigned int size = s->offset + s->length;
    	unsigned int max = dma_get_max_seg_size(dev);
    
    	for (i = 1; i < nents; i++) {
    		s = sg_next(s);
    
    		s->dma_address = DMA_ERROR_CODE;
    		s->dma_length = 0;
    
    		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
    			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
    			    dir, attrs, is_coherent) < 0)
    				goto bad_mapping;
    
    			dma->dma_address += offset;
    			dma->dma_length = size - offset;
    
    			size = offset = s->offset;
    			start = s;
    			dma = sg_next(dma);
    			count += 1;
    		}
    		size += s->length;
    	}
    	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
    		is_coherent) < 0)
    		goto bad_mapping;
    
    	dma->dma_address += offset;
    	dma->dma_length = size - offset;
    
    	return count+1;
    
    bad_mapping:
    	for_each_sg(sg, s, count, i)
    		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
    	return 0;
    }
    
    /**
     * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to map
     * @dir: DMA transfer direction
     *
     * Map a set of i/o coherent buffers described by scatterlist in streaming
     * mode for DMA. The scatter gather list elements are merged together (if
     * possible) and tagged with the appropriate dma address and length. They are
     * obtained via sg_dma_{address,length}.
     */
    int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
    		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
    }
    
    /**
     * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to map
     * @dir: DMA transfer direction
     *
     * Map a set of buffers described by scatterlist in streaming mode for DMA.
     * The scatter gather list elements are merged together (if possible) and
     * tagged with the appropriate dma address and length. They are obtained via
     * sg_dma_{address,length}.
     */
    int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
    		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
    }
    
    static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
    		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
    		bool is_coherent)
    {
    	struct scatterlist *s;
    	int i;
    
    	for_each_sg(sg, s, nents, i) {
    		if (sg_dma_len(s))
    			__iommu_remove_mapping(dev, sg_dma_address(s),
    					       sg_dma_len(s));
    		if (!is_coherent &&
    		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    			__dma_page_dev_to_cpu(sg_page(s), s->offset,
    					      s->length, dir);
    	}
    }
    
    /**
     * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     *
     * Unmap a set of streaming mode DMA translations.  Again, CPU access
     * rules concerning calls here are the same as for dma_unmap_single().
     */
    void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
    		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
    }
    
    /**
     * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     *
     * Unmap a set of streaming mode DMA translations.  Again, CPU access
     * rules concerning calls here are the same as for dma_unmap_single().
     */
    void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
    			enum dma_data_direction dir, struct dma_attrs *attrs)
    {
    	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
    }
    
    /**
     * arm_iommu_sync_sg_for_cpu
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to map (returned from dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     */
    void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
    			int nents, enum dma_data_direction dir)
    {
    	struct scatterlist *s;
    	int i;
    
    	for_each_sg(sg, s, nents, i)
    		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
    
    }
    
    /**
     * arm_iommu_sync_sg_for_device
     * @dev: valid struct device pointer
     * @sg: list of buffers
     * @nents: number of buffers to map (returned from dma_map_sg)
     * @dir: DMA transfer direction (same as was passed to dma_map_sg)
     */
    void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
    			int nents, enum dma_data_direction dir)
    {
    	struct scatterlist *s;
    	int i;
    
    	for_each_sg(sg, s, nents, i)
    		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
    }
    
    
    /**
     * arm_coherent_iommu_map_page
     * @dev: valid struct device pointer
     * @page: page that buffer resides in
     * @offset: offset into page for start of buffer
     * @size: size of buffer to map
     * @dir: DMA transfer direction
     *
     * Coherent IOMMU aware version of arm_dma_map_page()
     */
    static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
    	     unsigned long offset, size_t size, enum dma_data_direction dir,
    	     struct dma_attrs *attrs)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t dma_addr;
    	int ret, prot, len = PAGE_ALIGN(size + offset);
    
    	dma_addr = __alloc_iova(mapping, len);
    	if (dma_addr == DMA_ERROR_CODE)
    		return dma_addr;
    
    	prot = __dma_direction_to_prot(dir);
    
    	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
    	if (ret < 0)
    		goto fail;
    
    	return dma_addr + offset;
    fail:
    	__free_iova(mapping, dma_addr, len);
    	return DMA_ERROR_CODE;
    }
    
    /**
     * arm_iommu_map_page
     * @dev: valid struct device pointer
     * @page: page that buffer resides in
     * @offset: offset into page for start of buffer
     * @size: size of buffer to map
     * @dir: DMA transfer direction
     *
     * IOMMU aware version of arm_dma_map_page()
     */
    static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
    	     unsigned long offset, size_t size, enum dma_data_direction dir,
    	     struct dma_attrs *attrs)
    {
    	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    		__dma_page_cpu_to_dev(page, offset, size, dir);
    
    	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
    }
    
    /**
     * arm_coherent_iommu_unmap_page
     * @dev: valid struct device pointer
     * @handle: DMA address of buffer
     * @size: size of buffer (same as passed to dma_map_page)
     * @dir: DMA transfer direction (same as passed to dma_map_page)
     *
     * Coherent IOMMU aware version of arm_dma_unmap_page()
     */
    static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
    		size_t size, enum dma_data_direction dir,
    		struct dma_attrs *attrs)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t iova = handle & PAGE_MASK;
    	int offset = handle & ~PAGE_MASK;
    	int len = PAGE_ALIGN(size + offset);
    
    	if (!iova)
    		return;
    
    	iommu_unmap(mapping->domain, iova, len);
    	__free_iova(mapping, iova, len);
    }
    
    /**
     * arm_iommu_unmap_page
     * @dev: valid struct device pointer
     * @handle: DMA address of buffer
     * @size: size of buffer (same as passed to dma_map_page)
     * @dir: DMA transfer direction (same as passed to dma_map_page)
     *
     * IOMMU aware version of arm_dma_unmap_page()
     */
    static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
    		size_t size, enum dma_data_direction dir,
    		struct dma_attrs *attrs)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t iova = handle & PAGE_MASK;
    	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
    	int offset = handle & ~PAGE_MASK;
    	int len = PAGE_ALIGN(size + offset);
    
    	if (!iova)
    		return;
    
    	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
    		__dma_page_dev_to_cpu(page, offset, size, dir);
    
    	iommu_unmap(mapping->domain, iova, len);
    	__free_iova(mapping, iova, len);
    }
    
    static void arm_iommu_sync_single_for_cpu(struct device *dev,
    		dma_addr_t handle, size_t size, enum dma_data_direction dir)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t iova = handle & PAGE_MASK;
    	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
    	unsigned int offset = handle & ~PAGE_MASK;
    
    	if (!iova)
    		return;
    
    	__dma_page_dev_to_cpu(page, offset, size, dir);
    }
    
    static void arm_iommu_sync_single_for_device(struct device *dev,
    		dma_addr_t handle, size_t size, enum dma_data_direction dir)
    {
    	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
    	dma_addr_t iova = handle & PAGE_MASK;
    	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
    	unsigned int offset = handle & ~PAGE_MASK;
    
    	if (!iova)
    		return;
    
    	__dma_page_cpu_to_dev(page, offset, size, dir);
    }
    
    struct dma_map_ops iommu_ops = {
    	.alloc		= arm_iommu_alloc_attrs,
    	.free		= arm_iommu_free_attrs,
    	.mmap		= arm_iommu_mmap_attrs,
    	.get_sgtable	= arm_iommu_get_sgtable,
    
    	.map_page		= arm_iommu_map_page,
    	.unmap_page		= arm_iommu_unmap_page,
    	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
    	.sync_single_for_device	= arm_iommu_sync_single_for_device,
    
    	.map_sg			= arm_iommu_map_sg,
    	.unmap_sg		= arm_iommu_unmap_sg,
    	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
    	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
    
    	.set_dma_mask		= arm_dma_set_mask,
    };
    
    struct dma_map_ops iommu_coherent_ops = {
    	.alloc		= arm_iommu_alloc_attrs,
    	.free		= arm_iommu_free_attrs,
    	.mmap		= arm_iommu_mmap_attrs,
    	.get_sgtable	= arm_iommu_get_sgtable,
    
    	.map_page	= arm_coherent_iommu_map_page,
    	.unmap_page	= arm_coherent_iommu_unmap_page,
    
    	.map_sg		= arm_coherent_iommu_map_sg,
    	.unmap_sg	= arm_coherent_iommu_unmap_sg,
    
    	.set_dma_mask	= arm_dma_set_mask,
    };
    
    /**
     * arm_iommu_create_mapping
     * @bus: pointer to the bus holding the client device (for IOMMU calls)
     * @base: start address of the valid IO address space
     * @size: size of the valid IO address space
     * @order: accuracy of the IO addresses allocations
     *
     * Creates a mapping structure which holds information about used/unused
     * IO address ranges, which is required to perform memory allocation and
     * mapping with IOMMU aware functions.
     *
     * The client device need to be attached to the mapping with
     * arm_iommu_attach_device function.
     */
    struct dma_iommu_mapping *
    arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
    			 int order)
    {
    	unsigned int count = size >> (PAGE_SHIFT + order);
    	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
    	struct dma_iommu_mapping *mapping;
    	int err = -ENOMEM;
    
    	if (!count)
    		return ERR_PTR(-EINVAL);
    
    	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
    	if (!mapping)
    		goto err;
    
    	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
    	if (!mapping->bitmap)
    		goto err2;
    
    	mapping->base = base;
    	mapping->bits = BITS_PER_BYTE * bitmap_size;
    	mapping->order = order;
    	spin_lock_init(&mapping->lock);
    
    	mapping->domain = iommu_domain_alloc(bus);
    	if (!mapping->domain)
    		goto err3;
    
    	kref_init(&mapping->kref);
    	return mapping;
    err3:
    	kfree(mapping->bitmap);
    err2:
    	kfree(mapping);
    err:
    	return ERR_PTR(err);
    }
    EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
    
    static void release_iommu_mapping(struct kref *kref)
    {
    	struct dma_iommu_mapping *mapping =
    		container_of(kref, struct dma_iommu_mapping, kref);
    
    	iommu_domain_free(mapping->domain);
    	kfree(mapping->bitmap);
    	kfree(mapping);
    }
    
    void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
    {
    	if (mapping)
    		kref_put(&mapping->kref, release_iommu_mapping);
    }
    EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
    
    /**
     * arm_iommu_attach_device
     * @dev: valid struct device pointer
     * @mapping: io address space mapping structure (returned from
     *	arm_iommu_create_mapping)
     *
     * Attaches specified io address space mapping to the provided device,
     * this replaces the dma operations (dma_map_ops pointer) with the
     * IOMMU aware version. More than one client might be attached to
     * the same io address space mapping.
     */
    int arm_iommu_attach_device(struct device *dev,
    			    struct dma_iommu_mapping *mapping)
    {
    	int err;
    
    	err = iommu_attach_device(mapping->domain, dev);
    	if (err)
    		return err;
    
    	kref_get(&mapping->kref);
    	dev->archdata.mapping = mapping;
    	set_dma_ops(dev, &iommu_ops);
    
    	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
    	return 0;
    }
    EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
    
    /**
     * arm_iommu_detach_device
     * @dev: valid struct device pointer
     *
     * Detaches the provided device from a previously attached map.
     * This voids the dma operations (dma_map_ops pointer)
     */
    void arm_iommu_detach_device(struct device *dev)
    {
    	struct dma_iommu_mapping *mapping;
    
    	mapping = to_dma_iommu_mapping(dev);
    	if (!mapping) {
    		dev_warn(dev, "Not attached\n");
    		return;
    	}
    
    	iommu_detach_device(mapping->domain, dev);
    	kref_put(&mapping->kref, release_iommu_mapping);
    	dev->archdata.mapping = NULL;
    	set_dma_ops(dev, NULL);
    
    	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
    }
    EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
    
    #endif