Skip to content
Snippets Groups Projects
Select Git revision
  • f64122c1f6ade301585569863b4b3b18f6e4e332
  • drm-misc-templates default
  • wip/final/kci-gitlab-lava-v1
  • wip/vignesh/kci-lava-gitlab-runner
  • kci-gitlab-igt-v8
  • kci-gitlab-igt-v4
  • drm-misc-fixes-2024-10-02
  • drm-misc-next-2024-09-26
  • drm-misc-fixes-2024-09-26
  • drm-misc-next-2024-09-20
  • drm-misc-fixes-2024-09-12
  • drm-misc-fixes-2024-09-05
  • drm-misc-next-fixes-2024-09-05
  • drm-misc-fixes-2024-08-29
  • drm-misc-next-2024-08-29
  • drm-misc-next-2024-08-22
  • drm-misc-fixes-2024-08-22
  • drm-misc-next-2024-08-16
  • drm-misc-fixes-2024-08-15
  • drm-misc-next-2024-08-09
  • drm-misc-fixes-2024-08-08
  • drm-misc-next-2024-08-01
  • drm-misc-fixes-2024-08-01
  • drm-misc-next-fixes-2024-07-25
  • drm-misc-next-fixes-2024-07-19
  • drm-misc-next-fixes-2024-07-11
26 results

qxl_fb.c

Blame
  • intel_ringbuffer.c 59.34 KiB
    /*
     * Copyright © 2008-2010 Intel Corporation
     *
     * Permission is hereby granted, free of charge, to any person obtaining a
     * copy of this software and associated documentation files (the "Software"),
     * to deal in the Software without restriction, including without limitation
     * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     * and/or sell copies of the Software, and to permit persons to whom the
     * Software is furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice (including the next
     * paragraph) shall be included in all copies or substantial portions of the
     * Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     * IN THE SOFTWARE.
     *
     * Authors:
     *    Eric Anholt <eric@anholt.net>
     *    Zou Nan hai <nanhai.zou@intel.com>
     *    Xiang Hai hao<haihao.xiang@intel.com>
     *
     */
    
    #include <linux/log2.h>
    #include <drm/drmP.h>
    #include "i915_drv.h"
    #include <drm/i915_drm.h>
    #include "i915_trace.h"
    #include "intel_drv.h"
    
    /* Rough estimate of the typical request size, performing a flush,
     * set-context and then emitting the batch.
     */
    #define LEGACY_REQUEST_SIZE 200
    
    static unsigned int __intel_ring_space(unsigned int head,
    				       unsigned int tail,
    				       unsigned int size)
    {
    	/*
    	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
    	 * same cacheline, the Head Pointer must not be greater than the Tail
    	 * Pointer."
    	 */
    	GEM_BUG_ON(!is_power_of_2(size));
    	return (head - tail - CACHELINE_BYTES) & (size - 1);
    }
    
    unsigned int intel_ring_update_space(struct intel_ring *ring)
    {
    	unsigned int space;
    
    	space = __intel_ring_space(ring->head, ring->emit, ring->size);
    
    	ring->space = space;
    	return space;
    }
    
    static int
    gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 cmd, *cs;
    
    	cmd = MI_FLUSH;
    
    	if (mode & EMIT_INVALIDATE)
    		cmd |= MI_READ_FLUSH;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = cmd;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 cmd, *cs;
    
    	/*
    	 * read/write caches:
    	 *
    	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
    	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
    	 * also flushed at 2d versus 3d pipeline switches.
    	 *
    	 * read-only caches:
    	 *
    	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
    	 * MI_READ_FLUSH is set, and is always flushed on 965.
    	 *
    	 * I915_GEM_DOMAIN_COMMAND may not exist?
    	 *
    	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
    	 * invalidated when MI_EXE_FLUSH is set.
    	 *
    	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
    	 * invalidated with every MI_FLUSH.
    	 *
    	 * TLBs:
    	 *
    	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
    	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
    	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
    	 * are flushed at any MI_FLUSH.
    	 */
    
    	cmd = MI_FLUSH;
    	if (mode & EMIT_INVALIDATE) {
    		cmd |= MI_EXE_FLUSH;
    		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
    			cmd |= MI_INVALIDATE_ISP;
    	}
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = cmd;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    /**
     * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
     * implementing two workarounds on gen6.  From section 1.4.7.1
     * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
     *
     * [DevSNB-C+{W/A}] Before any depth stall flush (including those
     * produced by non-pipelined state commands), software needs to first
     * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
     * 0.
     *
     * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
     * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
     *
     * And the workaround for these two requires this workaround first:
     *
     * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
     * BEFORE the pipe-control with a post-sync op and no write-cache
     * flushes.
     *
     * And this last workaround is tricky because of the requirements on
     * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
     * volume 2 part 1:
     *
     *     "1 of the following must also be set:
     *      - Render Target Cache Flush Enable ([12] of DW1)
     *      - Depth Cache Flush Enable ([0] of DW1)
     *      - Stall at Pixel Scoreboard ([1] of DW1)
     *      - Depth Stall ([13] of DW1)
     *      - Post-Sync Operation ([13] of DW1)
     *      - Notify Enable ([8] of DW1)"
     *
     * The cache flushes require the workaround flush that triggered this
     * one, so we can't use it.  Depth stall would trigger the same.
     * Post-sync nonzero is what triggered this second workaround, so we
     * can't use that one either.  Notify enable is IRQs, which aren't
     * really our business.  That leaves only stall at scoreboard.
     */
    static int
    intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
    {
    	u32 scratch_addr =
    		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 6);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(5);
    	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
    	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
    	*cs++ = 0; /* low dword */
    	*cs++ = 0; /* high dword */
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	cs = intel_ring_begin(req, 6);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(5);
    	*cs++ = PIPE_CONTROL_QW_WRITE;
    	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
    	*cs++ = 0;
    	*cs++ = 0;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 scratch_addr =
    		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
    	u32 *cs, flags = 0;
    	int ret;
    
    	/* Force SNB workarounds for PIPE_CONTROL flushes */
    	ret = intel_emit_post_sync_nonzero_flush(req);
    	if (ret)
    		return ret;
    
    	/* Just flush everything.  Experiments have shown that reducing the
    	 * number of bits based on the write domains has little performance
    	 * impact.
    	 */
    	if (mode & EMIT_FLUSH) {
    		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
    		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
    		/*
    		 * Ensure that any following seqno writes only happen
    		 * when the render cache is indeed flushed.
    		 */
    		flags |= PIPE_CONTROL_CS_STALL;
    	}
    	if (mode & EMIT_INVALIDATE) {
    		flags |= PIPE_CONTROL_TLB_INVALIDATE;
    		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
    		/*
    		 * TLB invalidate requires a post-sync write.
    		 */
    		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
    	}
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(4);
    	*cs++ = flags;
    	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
    	*cs++ = 0;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(4);
    	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
    	*cs++ = 0;
    	*cs++ = 0;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 scratch_addr =
    		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
    	u32 *cs, flags = 0;
    
    	/*
    	 * Ensure that any following seqno writes only happen when the render
    	 * cache is indeed flushed.
    	 *
    	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
    	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
    	 * don't try to be clever and just set it unconditionally.
    	 */
    	flags |= PIPE_CONTROL_CS_STALL;
    
    	/* Just flush everything.  Experiments have shown that reducing the
    	 * number of bits based on the write domains has little performance
    	 * impact.
    	 */
    	if (mode & EMIT_FLUSH) {
    		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
    		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
    		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
    		flags |= PIPE_CONTROL_FLUSH_ENABLE;
    	}
    	if (mode & EMIT_INVALIDATE) {
    		flags |= PIPE_CONTROL_TLB_INVALIDATE;
    		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
    		/*
    		 * TLB invalidate requires a post-sync write.
    		 */
    		flags |= PIPE_CONTROL_QW_WRITE;
    		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
    
    		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
    
    		/* Workaround: we must issue a pipe_control with CS-stall bit
    		 * set before a pipe_control command that has the state cache
    		 * invalidate bit set. */
    		gen7_render_ring_cs_stall_wa(req);
    	}
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(4);
    	*cs++ = flags;
    	*cs++ = scratch_addr;
    	*cs++ = 0;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 flags;
    	u32 *cs;
    
    	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	flags = PIPE_CONTROL_CS_STALL;
    
    	if (mode & EMIT_FLUSH) {
    		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
    		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
    		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
    		flags |= PIPE_CONTROL_FLUSH_ENABLE;
    	}
    	if (mode & EMIT_INVALIDATE) {
    		flags |= PIPE_CONTROL_TLB_INVALIDATE;
    		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
    		flags |= PIPE_CONTROL_QW_WRITE;
    		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
    
    		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
    		cs = gen8_emit_pipe_control(cs,
    					    PIPE_CONTROL_CS_STALL |
    					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
    					    0);
    	}
    
    	cs = gen8_emit_pipe_control(cs, flags,
    				    i915_ggtt_offset(req->engine->scratch) +
    				    2 * CACHELINE_BYTES);
    
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    	u32 addr;
    
    	addr = dev_priv->status_page_dmah->busaddr;
    	if (INTEL_GEN(dev_priv) >= 4)
    		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
    	I915_WRITE(HWS_PGA, addr);
    }
    
    static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    	i915_reg_t mmio;
    
    	/* The ring status page addresses are no longer next to the rest of
    	 * the ring registers as of gen7.
    	 */
    	if (IS_GEN7(dev_priv)) {
    		switch (engine->id) {
    		case RCS:
    			mmio = RENDER_HWS_PGA_GEN7;
    			break;
    		case BCS:
    			mmio = BLT_HWS_PGA_GEN7;
    			break;
    		/*
    		 * VCS2 actually doesn't exist on Gen7. Only shut up
    		 * gcc switch check warning
    		 */
    		case VCS2:
    		case VCS:
    			mmio = BSD_HWS_PGA_GEN7;
    			break;
    		case VECS:
    			mmio = VEBOX_HWS_PGA_GEN7;
    			break;
    		}
    	} else if (IS_GEN6(dev_priv)) {
    		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
    	} else {
    		/* XXX: gen8 returns to sanity */
    		mmio = RING_HWS_PGA(engine->mmio_base);
    	}
    
    	I915_WRITE(mmio, engine->status_page.ggtt_offset);
    	POSTING_READ(mmio);
    
    	/*
    	 * Flush the TLB for this page
    	 *
    	 * FIXME: These two bits have disappeared on gen8, so a question
    	 * arises: do we still need this and if so how should we go about
    	 * invalidating the TLB?
    	 */
    	if (IS_GEN(dev_priv, 6, 7)) {
    		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
    
    		/* ring should be idle before issuing a sync flush*/
    		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
    
    		I915_WRITE(reg,
    			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
    					      INSTPM_SYNC_FLUSH));
    		if (intel_wait_for_register(dev_priv,
    					    reg, INSTPM_SYNC_FLUSH, 0,
    					    1000))
    			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
    				  engine->name);
    	}
    }
    
    static bool stop_ring(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	if (INTEL_GEN(dev_priv) > 2) {
    		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
    		if (intel_wait_for_register(dev_priv,
    					    RING_MI_MODE(engine->mmio_base),
    					    MODE_IDLE,
    					    MODE_IDLE,
    					    1000)) {
    			DRM_ERROR("%s : timed out trying to stop ring\n",
    				  engine->name);
    			/* Sometimes we observe that the idle flag is not
    			 * set even though the ring is empty. So double
    			 * check before giving up.
    			 */
    			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
    				return false;
    		}
    	}
    
    	I915_WRITE_CTL(engine, 0);
    	I915_WRITE_HEAD(engine, 0);
    	I915_WRITE_TAIL(engine, 0);
    
    	if (INTEL_GEN(dev_priv) > 2) {
    		(void)I915_READ_CTL(engine);
    		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
    	}
    
    	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
    }
    
    static int init_ring_common(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    	struct intel_ring *ring = engine->buffer;
    	int ret = 0;
    
    	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
    
    	if (!stop_ring(engine)) {
    		/* G45 ring initialization often fails to reset head to zero */
    		DRM_DEBUG_KMS("%s head not reset to zero "
    			      "ctl %08x head %08x tail %08x start %08x\n",
    			      engine->name,
    			      I915_READ_CTL(engine),
    			      I915_READ_HEAD(engine),
    			      I915_READ_TAIL(engine),
    			      I915_READ_START(engine));
    
    		if (!stop_ring(engine)) {
    			DRM_ERROR("failed to set %s head to zero "
    				  "ctl %08x head %08x tail %08x start %08x\n",
    				  engine->name,
    				  I915_READ_CTL(engine),
    				  I915_READ_HEAD(engine),
    				  I915_READ_TAIL(engine),
    				  I915_READ_START(engine));
    			ret = -EIO;
    			goto out;
    		}
    	}
    
    	if (HWS_NEEDS_PHYSICAL(dev_priv))
    		ring_setup_phys_status_page(engine);
    	else
    		intel_ring_setup_status_page(engine);
    
    	intel_engine_reset_breadcrumbs(engine);
    
    	/* Enforce ordering by reading HEAD register back */
    	I915_READ_HEAD(engine);
    
    	/* Initialize the ring. This must happen _after_ we've cleared the ring
    	 * registers with the above sequence (the readback of the HEAD registers
    	 * also enforces ordering), otherwise the hw might lose the new ring
    	 * register values. */
    	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
    
    	/* WaClearRingBufHeadRegAtInit:ctg,elk */
    	if (I915_READ_HEAD(engine))
    		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
    			  engine->name, I915_READ_HEAD(engine));
    
    	intel_ring_update_space(ring);
    	I915_WRITE_HEAD(engine, ring->head);
    	I915_WRITE_TAIL(engine, ring->tail);
    	(void)I915_READ_TAIL(engine);
    
    	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
    
    	/* If the head is still not zero, the ring is dead */
    	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
    				    RING_VALID, RING_VALID,
    				    50)) {
    		DRM_ERROR("%s initialization failed "
    			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
    			  engine->name,
    			  I915_READ_CTL(engine),
    			  I915_READ_CTL(engine) & RING_VALID,
    			  I915_READ_HEAD(engine), ring->head,
    			  I915_READ_TAIL(engine), ring->tail,
    			  I915_READ_START(engine),
    			  i915_ggtt_offset(ring->vma));
    		ret = -EIO;
    		goto out;
    	}
    
    	intel_engine_init_hangcheck(engine);
    
    out:
    	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
    
    	return ret;
    }
    
    static void reset_ring_common(struct intel_engine_cs *engine,
    			      struct drm_i915_gem_request *request)
    {
    	/* Try to restore the logical GPU state to match the continuation
    	 * of the request queue. If we skip the context/PD restore, then
    	 * the next request may try to execute assuming that its context
    	 * is valid and loaded on the GPU and so may try to access invalid
    	 * memory, prompting repeated GPU hangs.
    	 *
    	 * If the request was guilty, we still restore the logical state
    	 * in case the next request requires it (e.g. the aliasing ppgtt),
    	 * but skip over the hung batch.
    	 *
    	 * If the request was innocent, we try to replay the request with
    	 * the restored context.
    	 */
    	if (request) {
    		struct drm_i915_private *dev_priv = request->i915;
    		struct intel_context *ce = &request->ctx->engine[engine->id];
    		struct i915_hw_ppgtt *ppgtt;
    
    		/* FIXME consider gen8 reset */
    
    		if (ce->state) {
    			I915_WRITE(CCID,
    				   i915_ggtt_offset(ce->state) |
    				   BIT(8) /* must be set! */ |
    				   CCID_EXTENDED_STATE_SAVE |
    				   CCID_EXTENDED_STATE_RESTORE |
    				   CCID_EN);
    		}
    
    		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
    		if (ppgtt) {
    			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
    
    			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
    			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
    
    			/* Wait for the PD reload to complete */
    			if (intel_wait_for_register(dev_priv,
    						    RING_PP_DIR_BASE(engine),
    						    BIT(0), 0,
    						    10))
    				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
    
    			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
    		}
    
    		/* If the rq hung, jump to its breadcrumb and skip the batch */
    		if (request->fence.error == -EIO)
    			request->ring->head = request->postfix;
    	} else {
    		engine->legacy_active_context = NULL;
    	}
    }
    
    static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
    {
    	int ret;
    
    	ret = intel_ring_workarounds_emit(req);
    	if (ret != 0)
    		return ret;
    
    	ret = i915_gem_render_state_emit(req);
    	if (ret)
    		return ret;
    
    	return 0;
    }
    
    static int init_render_ring(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    	int ret = init_ring_common(engine);
    	if (ret)
    		return ret;
    
    	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
    	if (IS_GEN(dev_priv, 4, 6))
    		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
    
    	/* We need to disable the AsyncFlip performance optimisations in order
    	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
    	 * programmed to '1' on all products.
    	 *
    	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
    	 */
    	if (IS_GEN(dev_priv, 6, 7))
    		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
    
    	/* Required for the hardware to program scanline values for waiting */
    	/* WaEnableFlushTlbInvalidationMode:snb */
    	if (IS_GEN6(dev_priv))
    		I915_WRITE(GFX_MODE,
    			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
    
    	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
    	if (IS_GEN7(dev_priv))
    		I915_WRITE(GFX_MODE_GEN7,
    			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
    			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
    
    	if (IS_GEN6(dev_priv)) {
    		/* From the Sandybridge PRM, volume 1 part 3, page 24:
    		 * "If this bit is set, STCunit will have LRA as replacement
    		 *  policy. [...] This bit must be reset.  LRA replacement
    		 *  policy is not supported."
    		 */
    		I915_WRITE(CACHE_MODE_0,
    			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
    	}
    
    	if (IS_GEN(dev_priv, 6, 7))
    		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
    
    	if (INTEL_INFO(dev_priv)->gen >= 6)
    		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
    
    	return init_workarounds_ring(engine);
    }
    
    static void render_ring_cleanup(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	i915_vma_unpin_and_release(&dev_priv->semaphore);
    }
    
    static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
    {
    	struct drm_i915_private *dev_priv = req->i915;
    	struct intel_engine_cs *waiter;
    	enum intel_engine_id id;
    
    	for_each_engine(waiter, dev_priv, id) {
    		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
    		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
    			continue;
    
    		*cs++ = GFX_OP_PIPE_CONTROL(6);
    		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
    			PIPE_CONTROL_CS_STALL;
    		*cs++ = lower_32_bits(gtt_offset);
    		*cs++ = upper_32_bits(gtt_offset);
    		*cs++ = req->global_seqno;
    		*cs++ = 0;
    		*cs++ = MI_SEMAPHORE_SIGNAL |
    			MI_SEMAPHORE_TARGET(waiter->hw_id);
    		*cs++ = 0;
    	}
    
    	return cs;
    }
    
    static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
    {
    	struct drm_i915_private *dev_priv = req->i915;
    	struct intel_engine_cs *waiter;
    	enum intel_engine_id id;
    
    	for_each_engine(waiter, dev_priv, id) {
    		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
    		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
    			continue;
    
    		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
    		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
    		*cs++ = upper_32_bits(gtt_offset);
    		*cs++ = req->global_seqno;
    		*cs++ = MI_SEMAPHORE_SIGNAL |
    			MI_SEMAPHORE_TARGET(waiter->hw_id);
    		*cs++ = 0;
    	}
    
    	return cs;
    }
    
    static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
    {
    	struct drm_i915_private *dev_priv = req->i915;
    	struct intel_engine_cs *engine;
    	enum intel_engine_id id;
    	int num_rings = 0;
    
    	for_each_engine(engine, dev_priv, id) {
    		i915_reg_t mbox_reg;
    
    		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
    			continue;
    
    		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
    		if (i915_mmio_reg_valid(mbox_reg)) {
    			*cs++ = MI_LOAD_REGISTER_IMM(1);
    			*cs++ = i915_mmio_reg_offset(mbox_reg);
    			*cs++ = req->global_seqno;
    			num_rings++;
    		}
    	}
    	if (num_rings & 1)
    		*cs++ = MI_NOOP;
    
    	return cs;
    }
    
    static void i9xx_submit_request(struct drm_i915_gem_request *request)
    {
    	struct drm_i915_private *dev_priv = request->i915;
    
    	i915_gem_request_submit(request);
    
    	I915_WRITE_TAIL(request->engine,
    			intel_ring_set_tail(request->ring, request->tail));
    }
    
    static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
    {
    	*cs++ = MI_STORE_DWORD_INDEX;
    	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
    	*cs++ = req->global_seqno;
    	*cs++ = MI_USER_INTERRUPT;
    
    	req->tail = intel_ring_offset(req, cs);
    	assert_ring_tail_valid(req->ring, req->tail);
    }
    
    static const int i9xx_emit_breadcrumb_sz = 4;
    
    /**
     * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
     *
     * @request - request to write to the ring
     *
     * Update the mailbox registers in the *other* rings with the current seqno.
     * This acts like a signal in the canonical semaphore.
     */
    static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
    {
    	return i9xx_emit_breadcrumb(req,
    				    req->engine->semaphore.signal(req, cs));
    }
    
    static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
    					u32 *cs)
    {
    	struct intel_engine_cs *engine = req->engine;
    
    	if (engine->semaphore.signal)
    		cs = engine->semaphore.signal(req, cs);
    
    	*cs++ = GFX_OP_PIPE_CONTROL(6);
    	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
    		PIPE_CONTROL_QW_WRITE;
    	*cs++ = intel_hws_seqno_address(engine);
    	*cs++ = 0;
    	*cs++ = req->global_seqno;
    	/* We're thrashing one dword of HWS. */
    	*cs++ = 0;
    	*cs++ = MI_USER_INTERRUPT;
    	*cs++ = MI_NOOP;
    
    	req->tail = intel_ring_offset(req, cs);
    	assert_ring_tail_valid(req->ring, req->tail);
    }
    
    static const int gen8_render_emit_breadcrumb_sz = 8;
    
    /**
     * intel_ring_sync - sync the waiter to the signaller on seqno
     *
     * @waiter - ring that is waiting
     * @signaller - ring which has, or will signal
     * @seqno - seqno which the waiter will block on
     */
    
    static int
    gen8_ring_sync_to(struct drm_i915_gem_request *req,
    		  struct drm_i915_gem_request *signal)
    {
    	struct drm_i915_private *dev_priv = req->i915;
    	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
    	struct i915_hw_ppgtt *ppgtt;
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
    		MI_SEMAPHORE_SAD_GTE_SDD;
    	*cs++ = signal->global_seqno;
    	*cs++ = lower_32_bits(offset);
    	*cs++ = upper_32_bits(offset);
    	intel_ring_advance(req, cs);
    
    	/* When the !RCS engines idle waiting upon a semaphore, they lose their
    	 * pagetables and we must reload them before executing the batch.
    	 * We do this on the i915_switch_context() following the wait and
    	 * before the dispatch.
    	 */
    	ppgtt = req->ctx->ppgtt;
    	if (ppgtt && req->engine->id != RCS)
    		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
    	return 0;
    }
    
    static int
    gen6_ring_sync_to(struct drm_i915_gem_request *req,
    		  struct drm_i915_gem_request *signal)
    {
    	u32 dw1 = MI_SEMAPHORE_MBOX |
    		  MI_SEMAPHORE_COMPARE |
    		  MI_SEMAPHORE_REGISTER;
    	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
    	u32 *cs;
    
    	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = dw1 | wait_mbox;
    	/* Throughout all of the GEM code, seqno passed implies our current
    	 * seqno is >= the last seqno executed. However for hardware the
    	 * comparison is strictly greater than.
    	 */
    	*cs++ = signal->global_seqno - 1;
    	*cs++ = 0;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static void
    gen5_seqno_barrier(struct intel_engine_cs *engine)
    {
    	/* MI_STORE are internally buffered by the GPU and not flushed
    	 * either by MI_FLUSH or SyncFlush or any other combination of
    	 * MI commands.
    	 *
    	 * "Only the submission of the store operation is guaranteed.
    	 * The write result will be complete (coherent) some time later
    	 * (this is practically a finite period but there is no guaranteed
    	 * latency)."
    	 *
    	 * Empirically, we observe that we need a delay of at least 75us to
    	 * be sure that the seqno write is visible by the CPU.
    	 */
    	usleep_range(125, 250);
    }
    
    static void
    gen6_seqno_barrier(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	/* Workaround to force correct ordering between irq and seqno writes on
    	 * ivb (and maybe also on snb) by reading from a CS register (like
    	 * ACTHD) before reading the status page.
    	 *
    	 * Note that this effectively stalls the read by the time it takes to
    	 * do a memory transaction, which more or less ensures that the write
    	 * from the GPU has sufficient time to invalidate the CPU cacheline.
    	 * Alternatively we could delay the interrupt from the CS ring to give
    	 * the write time to land, but that would incur a delay after every
    	 * batch i.e. much more frequent than a delay when waiting for the
    	 * interrupt (with the same net latency).
    	 *
    	 * Also note that to prevent whole machine hangs on gen7, we have to
    	 * take the spinlock to guard against concurrent cacheline access.
    	 */
    	spin_lock_irq(&dev_priv->uncore.lock);
    	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
    	spin_unlock_irq(&dev_priv->uncore.lock);
    }
    
    static void
    gen5_irq_enable(struct intel_engine_cs *engine)
    {
    	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
    }
    
    static void
    gen5_irq_disable(struct intel_engine_cs *engine)
    {
    	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
    }
    
    static void
    i9xx_irq_enable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	dev_priv->irq_mask &= ~engine->irq_enable_mask;
    	I915_WRITE(IMR, dev_priv->irq_mask);
    	POSTING_READ_FW(RING_IMR(engine->mmio_base));
    }
    
    static void
    i9xx_irq_disable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	dev_priv->irq_mask |= engine->irq_enable_mask;
    	I915_WRITE(IMR, dev_priv->irq_mask);
    }
    
    static void
    i8xx_irq_enable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	dev_priv->irq_mask &= ~engine->irq_enable_mask;
    	I915_WRITE16(IMR, dev_priv->irq_mask);
    	POSTING_READ16(RING_IMR(engine->mmio_base));
    }
    
    static void
    i8xx_irq_disable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	dev_priv->irq_mask |= engine->irq_enable_mask;
    	I915_WRITE16(IMR, dev_priv->irq_mask);
    }
    
    static int
    bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_FLUSH;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    	return 0;
    }
    
    static void
    gen6_irq_enable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine,
    		       ~(engine->irq_enable_mask |
    			 engine->irq_keep_mask));
    	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
    }
    
    static void
    gen6_irq_disable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
    	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
    }
    
    static void
    hsw_vebox_irq_enable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
    	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
    }
    
    static void
    hsw_vebox_irq_disable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine, ~0);
    	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
    }
    
    static void
    gen8_irq_enable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine,
    		       ~(engine->irq_enable_mask |
    			 engine->irq_keep_mask));
    	POSTING_READ_FW(RING_IMR(engine->mmio_base));
    }
    
    static void
    gen8_irq_disable(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
    }
    
    static int
    i965_emit_bb_start(struct drm_i915_gem_request *req,
    		   u64 offset, u32 length,
    		   unsigned int dispatch_flags)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
    		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
    	*cs++ = offset;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
    #define I830_BATCH_LIMIT (256*1024)
    #define I830_TLB_ENTRIES (2)
    #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
    static int
    i830_emit_bb_start(struct drm_i915_gem_request *req,
    		   u64 offset, u32 len,
    		   unsigned int dispatch_flags)
    {
    	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
    
    	cs = intel_ring_begin(req, 6);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	/* Evict the invalid PTE TLBs */
    	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
    	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
    	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
    	*cs++ = cs_offset;
    	*cs++ = 0xdeadbeef;
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
    		if (len > I830_BATCH_LIMIT)
    			return -ENOSPC;
    
    		cs = intel_ring_begin(req, 6 + 2);
    		if (IS_ERR(cs))
    			return PTR_ERR(cs);
    
    		/* Blit the batch (which has now all relocs applied) to the
    		 * stable batch scratch bo area (so that the CS never
    		 * stumbles over its tlb invalidation bug) ...
    		 */
    		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
    		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
    		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
    		*cs++ = cs_offset;
    		*cs++ = 4096;
    		*cs++ = offset;
    
    		*cs++ = MI_FLUSH;
    		*cs++ = MI_NOOP;
    		intel_ring_advance(req, cs);
    
    		/* ... and execute it. */
    		offset = cs_offset;
    	}
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
    	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
    		MI_BATCH_NON_SECURE);
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    i915_emit_bb_start(struct drm_i915_gem_request *req,
    		   u64 offset, u32 len,
    		   unsigned int dispatch_flags)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
    	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
    		MI_BATCH_NON_SECURE);
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static void cleanup_phys_status_page(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	if (!dev_priv->status_page_dmah)
    		return;
    
    	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
    	engine->status_page.page_addr = NULL;
    }
    
    static void cleanup_status_page(struct intel_engine_cs *engine)
    {
    	struct i915_vma *vma;
    	struct drm_i915_gem_object *obj;
    
    	vma = fetch_and_zero(&engine->status_page.vma);
    	if (!vma)
    		return;
    
    	obj = vma->obj;
    
    	i915_vma_unpin(vma);
    	i915_vma_close(vma);
    
    	i915_gem_object_unpin_map(obj);
    	__i915_gem_object_release_unless_active(obj);
    }
    
    static int init_status_page(struct intel_engine_cs *engine)
    {
    	struct drm_i915_gem_object *obj;
    	struct i915_vma *vma;
    	unsigned int flags;
    	void *vaddr;
    	int ret;
    
    	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
    	if (IS_ERR(obj)) {
    		DRM_ERROR("Failed to allocate status page\n");
    		return PTR_ERR(obj);
    	}
    
    	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
    	if (ret)
    		goto err;
    
    	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
    	if (IS_ERR(vma)) {
    		ret = PTR_ERR(vma);
    		goto err;
    	}
    
    	flags = PIN_GLOBAL;
    	if (!HAS_LLC(engine->i915))
    		/* On g33, we cannot place HWS above 256MiB, so
    		 * restrict its pinning to the low mappable arena.
    		 * Though this restriction is not documented for
    		 * gen4, gen5, or byt, they also behave similarly
    		 * and hang if the HWS is placed at the top of the
    		 * GTT. To generalise, it appears that all !llc
    		 * platforms have issues with us placing the HWS
    		 * above the mappable region (even though we never
    		 * actualy map it).
    		 */
    		flags |= PIN_MAPPABLE;
    	ret = i915_vma_pin(vma, 0, 4096, flags);
    	if (ret)
    		goto err;
    
    	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
    	if (IS_ERR(vaddr)) {
    		ret = PTR_ERR(vaddr);
    		goto err_unpin;
    	}
    
    	engine->status_page.vma = vma;
    	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
    	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
    
    	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
    			 engine->name, i915_ggtt_offset(vma));
    	return 0;
    
    err_unpin:
    	i915_vma_unpin(vma);
    err:
    	i915_gem_object_put(obj);
    	return ret;
    }
    
    static int init_phys_status_page(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	GEM_BUG_ON(engine->id != RCS);
    
    	dev_priv->status_page_dmah =
    		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
    	if (!dev_priv->status_page_dmah)
    		return -ENOMEM;
    
    	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
    	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
    
    	return 0;
    }
    
    int intel_ring_pin(struct intel_ring *ring,
    		   struct drm_i915_private *i915,
    		   unsigned int offset_bias)
    {
    	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
    	struct i915_vma *vma = ring->vma;
    	unsigned int flags;
    	void *addr;
    	int ret;
    
    	GEM_BUG_ON(ring->vaddr);
    
    
    	flags = PIN_GLOBAL;
    	if (offset_bias)
    		flags |= PIN_OFFSET_BIAS | offset_bias;
    	if (vma->obj->stolen)
    		flags |= PIN_MAPPABLE;
    
    	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
    		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
    			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
    		else
    			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
    		if (unlikely(ret))
    			return ret;
    	}
    
    	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
    	if (unlikely(ret))
    		return ret;
    
    	if (i915_vma_is_map_and_fenceable(vma))
    		addr = (void __force *)i915_vma_pin_iomap(vma);
    	else
    		addr = i915_gem_object_pin_map(vma->obj, map);
    	if (IS_ERR(addr))
    		goto err;
    
    	ring->vaddr = addr;
    	return 0;
    
    err:
    	i915_vma_unpin(vma);
    	return PTR_ERR(addr);
    }
    
    void intel_ring_reset(struct intel_ring *ring, u32 tail)
    {
    	GEM_BUG_ON(!list_empty(&ring->request_list));
    	ring->tail = tail;
    	ring->head = tail;
    	ring->emit = tail;
    	intel_ring_update_space(ring);
    }
    
    void intel_ring_unpin(struct intel_ring *ring)
    {
    	GEM_BUG_ON(!ring->vma);
    	GEM_BUG_ON(!ring->vaddr);
    
    	/* Discard any unused bytes beyond that submitted to hw. */
    	intel_ring_reset(ring, ring->tail);
    
    	if (i915_vma_is_map_and_fenceable(ring->vma))
    		i915_vma_unpin_iomap(ring->vma);
    	else
    		i915_gem_object_unpin_map(ring->vma->obj);
    	ring->vaddr = NULL;
    
    	i915_vma_unpin(ring->vma);
    }
    
    static struct i915_vma *
    intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
    {
    	struct drm_i915_gem_object *obj;
    	struct i915_vma *vma;
    
    	obj = i915_gem_object_create_stolen(dev_priv, size);
    	if (!obj)
    		obj = i915_gem_object_create_internal(dev_priv, size);
    	if (IS_ERR(obj))
    		return ERR_CAST(obj);
    
    	/* mark ring buffers as read-only from GPU side by default */
    	obj->gt_ro = 1;
    
    	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
    	if (IS_ERR(vma))
    		goto err;
    
    	return vma;
    
    err:
    	i915_gem_object_put(obj);
    	return vma;
    }
    
    struct intel_ring *
    intel_engine_create_ring(struct intel_engine_cs *engine, int size)
    {
    	struct intel_ring *ring;
    	struct i915_vma *vma;
    
    	GEM_BUG_ON(!is_power_of_2(size));
    	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
    
    	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
    	if (!ring)
    		return ERR_PTR(-ENOMEM);
    
    	INIT_LIST_HEAD(&ring->request_list);
    
    	ring->size = size;
    	/* Workaround an erratum on the i830 which causes a hang if
    	 * the TAIL pointer points to within the last 2 cachelines
    	 * of the buffer.
    	 */
    	ring->effective_size = size;
    	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
    		ring->effective_size -= 2 * CACHELINE_BYTES;
    
    	intel_ring_update_space(ring);
    
    	vma = intel_ring_create_vma(engine->i915, size);
    	if (IS_ERR(vma)) {
    		kfree(ring);
    		return ERR_CAST(vma);
    	}
    	ring->vma = vma;
    
    	return ring;
    }
    
    void
    intel_ring_free(struct intel_ring *ring)
    {
    	struct drm_i915_gem_object *obj = ring->vma->obj;
    
    	i915_vma_close(ring->vma);
    	__i915_gem_object_release_unless_active(obj);
    
    	kfree(ring);
    }
    
    static int context_pin(struct i915_gem_context *ctx)
    {
    	struct i915_vma *vma = ctx->engine[RCS].state;
    	int ret;
    
    	/* Clear this page out of any CPU caches for coherent swap-in/out.
    	 * We only want to do this on the first bind so that we do not stall
    	 * on an active context (which by nature is already on the GPU).
    	 */
    	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
    		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
    		if (ret)
    			return ret;
    	}
    
    	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
    			    PIN_GLOBAL | PIN_HIGH);
    }
    
    static struct i915_vma *
    alloc_context_vma(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *i915 = engine->i915;
    	struct drm_i915_gem_object *obj;
    	struct i915_vma *vma;
    
    	obj = i915_gem_object_create(i915, engine->context_size);
    	if (IS_ERR(obj))
    		return ERR_CAST(obj);
    
    	/*
    	 * Try to make the context utilize L3 as well as LLC.
    	 *
    	 * On VLV we don't have L3 controls in the PTEs so we
    	 * shouldn't touch the cache level, especially as that
    	 * would make the object snooped which might have a
    	 * negative performance impact.
    	 *
    	 * Snooping is required on non-llc platforms in execlist
    	 * mode, but since all GGTT accesses use PAT entry 0 we
    	 * get snooping anyway regardless of cache_level.
    	 *
    	 * This is only applicable for Ivy Bridge devices since
    	 * later platforms don't have L3 control bits in the PTE.
    	 */
    	if (IS_IVYBRIDGE(i915)) {
    		/* Ignore any error, regard it as a simple optimisation */
    		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
    	}
    
    	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
    	if (IS_ERR(vma))
    		i915_gem_object_put(obj);
    
    	return vma;
    }
    
    static struct intel_ring *
    intel_ring_context_pin(struct intel_engine_cs *engine,
    		       struct i915_gem_context *ctx)
    {
    	struct intel_context *ce = &ctx->engine[engine->id];
    	int ret;
    
    	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
    
    	if (likely(ce->pin_count++))
    		goto out;
    	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
    
    	if (!ce->state && engine->context_size) {
    		struct i915_vma *vma;
    
    		vma = alloc_context_vma(engine);
    		if (IS_ERR(vma)) {
    			ret = PTR_ERR(vma);
    			goto err;
    		}
    
    		ce->state = vma;
    	}
    
    	if (ce->state) {
    		ret = context_pin(ctx);
    		if (ret)
    			goto err;
    
    		ce->state->obj->mm.dirty = true;
    	}
    
    	/* The kernel context is only used as a placeholder for flushing the
    	 * active context. It is never used for submitting user rendering and
    	 * as such never requires the golden render context, and so we can skip
    	 * emitting it when we switch to the kernel context. This is required
    	 * as during eviction we cannot allocate and pin the renderstate in
    	 * order to initialise the context.
    	 */
    	if (i915_gem_context_is_kernel(ctx))
    		ce->initialised = true;
    
    	i915_gem_context_get(ctx);
    
    out:
    	/* One ringbuffer to rule them all */
    	return engine->buffer;
    
    err:
    	ce->pin_count = 0;
    	return ERR_PTR(ret);
    }
    
    static void intel_ring_context_unpin(struct intel_engine_cs *engine,
    				     struct i915_gem_context *ctx)
    {
    	struct intel_context *ce = &ctx->engine[engine->id];
    
    	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
    	GEM_BUG_ON(ce->pin_count == 0);
    
    	if (--ce->pin_count)
    		return;
    
    	if (ce->state)
    		i915_vma_unpin(ce->state);
    
    	i915_gem_context_put(ctx);
    }
    
    static int intel_init_ring_buffer(struct intel_engine_cs *engine)
    {
    	struct intel_ring *ring;
    	int err;
    
    	intel_engine_setup_common(engine);
    
    	err = intel_engine_init_common(engine);
    	if (err)
    		goto err;
    
    	if (HWS_NEEDS_PHYSICAL(engine->i915))
    		err = init_phys_status_page(engine);
    	else
    		err = init_status_page(engine);
    	if (err)
    		goto err;
    
    	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
    	if (IS_ERR(ring)) {
    		err = PTR_ERR(ring);
    		goto err_hws;
    	}
    
    	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
    	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
    	if (err)
    		goto err_ring;
    
    	GEM_BUG_ON(engine->buffer);
    	engine->buffer = ring;
    
    	return 0;
    
    err_ring:
    	intel_ring_free(ring);
    err_hws:
    	if (HWS_NEEDS_PHYSICAL(engine->i915))
    		cleanup_phys_status_page(engine);
    	else
    		cleanup_status_page(engine);
    err:
    	intel_engine_cleanup_common(engine);
    	return err;
    }
    
    void intel_engine_cleanup(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
    		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
    
    	intel_ring_unpin(engine->buffer);
    	intel_ring_free(engine->buffer);
    
    	if (engine->cleanup)
    		engine->cleanup(engine);
    
    	if (HWS_NEEDS_PHYSICAL(dev_priv))
    		cleanup_phys_status_page(engine);
    	else
    		cleanup_status_page(engine);
    
    	intel_engine_cleanup_common(engine);
    
    	dev_priv->engine[engine->id] = NULL;
    	kfree(engine);
    }
    
    void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
    {
    	struct intel_engine_cs *engine;
    	enum intel_engine_id id;
    
    	/* Restart from the beginning of the rings for convenience */
    	for_each_engine(engine, dev_priv, id)
    		intel_ring_reset(engine->buffer, 0);
    }
    
    static int ring_request_alloc(struct drm_i915_gem_request *request)
    {
    	u32 *cs;
    
    	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
    
    	/* Flush enough space to reduce the likelihood of waiting after
    	 * we start building the request - in which case we will just
    	 * have to repeat work.
    	 */
    	request->reserved_space += LEGACY_REQUEST_SIZE;
    
    	cs = intel_ring_begin(request, 0);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	request->reserved_space -= LEGACY_REQUEST_SIZE;
    	return 0;
    }
    
    static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
    {
    	struct intel_ring *ring = req->ring;
    	struct drm_i915_gem_request *target;
    	long timeout;
    
    	lockdep_assert_held(&req->i915->drm.struct_mutex);
    
    	if (intel_ring_update_space(ring) >= bytes)
    		return 0;
    
    	/*
    	 * Space is reserved in the ringbuffer for finalising the request,
    	 * as that cannot be allowed to fail. During request finalisation,
    	 * reserved_space is set to 0 to stop the overallocation and the
    	 * assumption is that then we never need to wait (which has the
    	 * risk of failing with EINTR).
    	 *
    	 * See also i915_gem_request_alloc() and i915_add_request().
    	 */
    	GEM_BUG_ON(!req->reserved_space);
    
    	list_for_each_entry(target, &ring->request_list, ring_link) {
    		/* Would completion of this request free enough space? */
    		if (bytes <= __intel_ring_space(target->postfix,
    						ring->emit, ring->size))
    			break;
    	}
    
    	if (WARN_ON(&target->ring_link == &ring->request_list))
    		return -ENOSPC;
    
    	timeout = i915_wait_request(target,
    				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
    				    MAX_SCHEDULE_TIMEOUT);
    	if (timeout < 0)
    		return timeout;
    
    	i915_gem_request_retire_upto(target);
    
    	intel_ring_update_space(ring);
    	GEM_BUG_ON(ring->space < bytes);
    	return 0;
    }
    
    u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
    {
    	struct intel_ring *ring = req->ring;
    	int remain_actual = ring->size - ring->emit;
    	int remain_usable = ring->effective_size - ring->emit;
    	int bytes = num_dwords * sizeof(u32);
    	int total_bytes, wait_bytes;
    	bool need_wrap = false;
    	u32 *cs;
    
    	total_bytes = bytes + req->reserved_space;
    
    	if (unlikely(bytes > remain_usable)) {
    		/*
    		 * Not enough space for the basic request. So need to flush
    		 * out the remainder and then wait for base + reserved.
    		 */
    		wait_bytes = remain_actual + total_bytes;
    		need_wrap = true;
    	} else if (unlikely(total_bytes > remain_usable)) {
    		/*
    		 * The base request will fit but the reserved space
    		 * falls off the end. So we don't need an immediate wrap
    		 * and only need to effectively wait for the reserved
    		 * size space from the start of ringbuffer.
    		 */
    		wait_bytes = remain_actual + req->reserved_space;
    	} else {
    		/* No wrapping required, just waiting. */
    		wait_bytes = total_bytes;
    	}
    
    	if (wait_bytes > ring->space) {
    		int ret = wait_for_space(req, wait_bytes);
    		if (unlikely(ret))
    			return ERR_PTR(ret);
    	}
    
    	if (unlikely(need_wrap)) {
    		GEM_BUG_ON(remain_actual > ring->space);
    		GEM_BUG_ON(ring->emit + remain_actual > ring->size);
    
    		/* Fill the tail with MI_NOOP */
    		memset(ring->vaddr + ring->emit, 0, remain_actual);
    		ring->emit = 0;
    		ring->space -= remain_actual;
    	}
    
    	GEM_BUG_ON(ring->emit > ring->size - bytes);
    	GEM_BUG_ON(ring->space < bytes);
    	cs = ring->vaddr + ring->emit;
    	GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
    	ring->emit += bytes;
    	ring->space -= bytes;
    
    	return cs;
    }
    
    /* Align the ring tail to a cacheline boundary */
    int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
    {
    	int num_dwords =
    		(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
    	u32 *cs;
    
    	if (num_dwords == 0)
    		return 0;
    
    	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
    	cs = intel_ring_begin(req, num_dwords);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	while (num_dwords--)
    		*cs++ = MI_NOOP;
    
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
    {
    	struct drm_i915_private *dev_priv = request->i915;
    
    	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
    
           /* Every tail move must follow the sequence below */
    
    	/* Disable notification that the ring is IDLE. The GT
    	 * will then assume that it is busy and bring it out of rc6.
    	 */
    	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
    		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
    
    	/* Clear the context id. Here be magic! */
    	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
    
    	/* Wait for the ring not to be idle, i.e. for it to wake up. */
    	if (__intel_wait_for_register_fw(dev_priv,
    					 GEN6_BSD_SLEEP_PSMI_CONTROL,
    					 GEN6_BSD_SLEEP_INDICATOR,
    					 0,
    					 1000, 0, NULL))
    		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
    
    	/* Now that the ring is fully powered up, update the tail */
    	i9xx_submit_request(request);
    
    	/* Let the ring send IDLE messages to the GT again,
    	 * and so let it sleep to conserve power when idle.
    	 */
    	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
    		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
    
    	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
    }
    
    static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 cmd, *cs;
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	cmd = MI_FLUSH_DW;
    	if (INTEL_GEN(req->i915) >= 8)
    		cmd += 1;
    
    	/* We always require a command barrier so that subsequent
    	 * commands, such as breadcrumb interrupts, are strictly ordered
    	 * wrt the contents of the write cache being flushed to memory
    	 * (and thus being coherent from the CPU).
    	 */
    	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
    
    	/*
    	 * Bspec vol 1c.5 - video engine command streamer:
    	 * "If ENABLED, all TLBs will be invalidated once the flush
    	 * operation is complete. This bit is only valid when the
    	 * Post-Sync Operation field is a value of 1h or 3h."
    	 */
    	if (mode & EMIT_INVALIDATE)
    		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
    
    	*cs++ = cmd;
    	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
    	if (INTEL_GEN(req->i915) >= 8) {
    		*cs++ = 0; /* upper addr */
    		*cs++ = 0; /* value */
    	} else  {
    		*cs++ = 0;
    		*cs++ = MI_NOOP;
    	}
    	intel_ring_advance(req, cs);
    	return 0;
    }
    
    static int
    gen8_emit_bb_start(struct drm_i915_gem_request *req,
    		   u64 offset, u32 len,
    		   unsigned int dispatch_flags)
    {
    	bool ppgtt = USES_PPGTT(req->i915) &&
    			!(dispatch_flags & I915_DISPATCH_SECURE);
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	/* FIXME(BDW): Address space and security selectors. */
    	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
    		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
    	*cs++ = lower_32_bits(offset);
    	*cs++ = upper_32_bits(offset);
    	*cs++ = MI_NOOP;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    hsw_emit_bb_start(struct drm_i915_gem_request *req,
    		  u64 offset, u32 len,
    		  unsigned int dispatch_flags)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
    		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
    		(dispatch_flags & I915_DISPATCH_RS ?
    		MI_BATCH_RESOURCE_STREAMER : 0);
    	/* bit0-7 is the length on GEN6+ */
    	*cs++ = offset;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static int
    gen6_emit_bb_start(struct drm_i915_gem_request *req,
    		   u64 offset, u32 len,
    		   unsigned int dispatch_flags)
    {
    	u32 *cs;
    
    	cs = intel_ring_begin(req, 2);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
    		0 : MI_BATCH_NON_SECURE_I965);
    	/* bit0-7 is the length on GEN6+ */
    	*cs++ = offset;
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    /* Blitter support (SandyBridge+) */
    
    static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
    {
    	u32 cmd, *cs;
    
    	cs = intel_ring_begin(req, 4);
    	if (IS_ERR(cs))
    		return PTR_ERR(cs);
    
    	cmd = MI_FLUSH_DW;
    	if (INTEL_GEN(req->i915) >= 8)
    		cmd += 1;
    
    	/* We always require a command barrier so that subsequent
    	 * commands, such as breadcrumb interrupts, are strictly ordered
    	 * wrt the contents of the write cache being flushed to memory
    	 * (and thus being coherent from the CPU).
    	 */
    	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
    
    	/*
    	 * Bspec vol 1c.3 - blitter engine command streamer:
    	 * "If ENABLED, all TLBs will be invalidated once the flush
    	 * operation is complete. This bit is only valid when the
    	 * Post-Sync Operation field is a value of 1h or 3h."
    	 */
    	if (mode & EMIT_INVALIDATE)
    		cmd |= MI_INVALIDATE_TLB;
    	*cs++ = cmd;
    	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
    	if (INTEL_GEN(req->i915) >= 8) {
    		*cs++ = 0; /* upper addr */
    		*cs++ = 0; /* value */
    	} else  {
    		*cs++ = 0;
    		*cs++ = MI_NOOP;
    	}
    	intel_ring_advance(req, cs);
    
    	return 0;
    }
    
    static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
    				       struct intel_engine_cs *engine)
    {
    	struct drm_i915_gem_object *obj;
    	int ret, i;
    
    	if (!i915.semaphores)
    		return;
    
    	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
    		struct i915_vma *vma;
    
    		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
    		if (IS_ERR(obj))
    			goto err;
    
    		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
    		if (IS_ERR(vma))
    			goto err_obj;
    
    		ret = i915_gem_object_set_to_gtt_domain(obj, false);
    		if (ret)
    			goto err_obj;
    
    		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
    		if (ret)
    			goto err_obj;
    
    		dev_priv->semaphore = vma;
    	}
    
    	if (INTEL_GEN(dev_priv) >= 8) {
    		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
    
    		engine->semaphore.sync_to = gen8_ring_sync_to;
    		engine->semaphore.signal = gen8_xcs_signal;
    
    		for (i = 0; i < I915_NUM_ENGINES; i++) {
    			u32 ring_offset;
    
    			if (i != engine->id)
    				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
    			else
    				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
    
    			engine->semaphore.signal_ggtt[i] = ring_offset;
    		}
    	} else if (INTEL_GEN(dev_priv) >= 6) {
    		engine->semaphore.sync_to = gen6_ring_sync_to;
    		engine->semaphore.signal = gen6_signal;
    
    		/*
    		 * The current semaphore is only applied on pre-gen8
    		 * platform.  And there is no VCS2 ring on the pre-gen8
    		 * platform. So the semaphore between RCS and VCS2 is
    		 * initialized as INVALID.  Gen8 will initialize the
    		 * sema between VCS2 and RCS later.
    		 */
    		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
    			static const struct {
    				u32 wait_mbox;
    				i915_reg_t mbox_reg;
    			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
    				[RCS_HW] = {
    					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
    					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
    					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
    				},
    				[VCS_HW] = {
    					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
    					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
    					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
    				},
    				[BCS_HW] = {
    					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
    					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
    					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
    				},
    				[VECS_HW] = {
    					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
    					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
    					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
    				},
    			};
    			u32 wait_mbox;
    			i915_reg_t mbox_reg;
    
    			if (i == engine->hw_id) {
    				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
    				mbox_reg = GEN6_NOSYNC;
    			} else {
    				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
    				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
    			}
    
    			engine->semaphore.mbox.wait[i] = wait_mbox;
    			engine->semaphore.mbox.signal[i] = mbox_reg;
    		}
    	}
    
    	return;
    
    err_obj:
    	i915_gem_object_put(obj);
    err:
    	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
    	i915.semaphores = 0;
    }
    
    static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
    				struct intel_engine_cs *engine)
    {
    	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
    
    	if (INTEL_GEN(dev_priv) >= 8) {
    		engine->irq_enable = gen8_irq_enable;
    		engine->irq_disable = gen8_irq_disable;
    		engine->irq_seqno_barrier = gen6_seqno_barrier;
    	} else if (INTEL_GEN(dev_priv) >= 6) {
    		engine->irq_enable = gen6_irq_enable;
    		engine->irq_disable = gen6_irq_disable;
    		engine->irq_seqno_barrier = gen6_seqno_barrier;
    	} else if (INTEL_GEN(dev_priv) >= 5) {
    		engine->irq_enable = gen5_irq_enable;
    		engine->irq_disable = gen5_irq_disable;
    		engine->irq_seqno_barrier = gen5_seqno_barrier;
    	} else if (INTEL_GEN(dev_priv) >= 3) {
    		engine->irq_enable = i9xx_irq_enable;
    		engine->irq_disable = i9xx_irq_disable;
    	} else {
    		engine->irq_enable = i8xx_irq_enable;
    		engine->irq_disable = i8xx_irq_disable;
    	}
    }
    
    static void i9xx_set_default_submission(struct intel_engine_cs *engine)
    {
    	engine->submit_request = i9xx_submit_request;
    }
    
    static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
    {
    	engine->submit_request = gen6_bsd_submit_request;
    }
    
    static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
    				      struct intel_engine_cs *engine)
    {
    	intel_ring_init_irq(dev_priv, engine);
    	intel_ring_init_semaphores(dev_priv, engine);
    
    	engine->init_hw = init_ring_common;
    	engine->reset_hw = reset_ring_common;
    
    	engine->context_pin = intel_ring_context_pin;
    	engine->context_unpin = intel_ring_context_unpin;
    
    	engine->request_alloc = ring_request_alloc;
    
    	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
    	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
    	if (i915.semaphores) {
    		int num_rings;
    
    		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
    
    		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
    		if (INTEL_GEN(dev_priv) >= 8) {
    			engine->emit_breadcrumb_sz += num_rings * 6;
    		} else {
    			engine->emit_breadcrumb_sz += num_rings * 3;
    			if (num_rings & 1)
    				engine->emit_breadcrumb_sz++;
    		}
    	}
    
    	engine->set_default_submission = i9xx_set_default_submission;
    
    	if (INTEL_GEN(dev_priv) >= 8)
    		engine->emit_bb_start = gen8_emit_bb_start;
    	else if (INTEL_GEN(dev_priv) >= 6)
    		engine->emit_bb_start = gen6_emit_bb_start;
    	else if (INTEL_GEN(dev_priv) >= 4)
    		engine->emit_bb_start = i965_emit_bb_start;
    	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
    		engine->emit_bb_start = i830_emit_bb_start;
    	else
    		engine->emit_bb_start = i915_emit_bb_start;
    }
    
    int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    	int ret;
    
    	intel_ring_default_vfuncs(dev_priv, engine);
    
    	if (HAS_L3_DPF(dev_priv))
    		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
    
    	if (INTEL_GEN(dev_priv) >= 8) {
    		engine->init_context = intel_rcs_ctx_init;
    		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
    		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
    		engine->emit_flush = gen8_render_ring_flush;
    		if (i915.semaphores) {
    			int num_rings;
    
    			engine->semaphore.signal = gen8_rcs_signal;
    
    			num_rings =
    				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
    			engine->emit_breadcrumb_sz += num_rings * 8;
    		}
    	} else if (INTEL_GEN(dev_priv) >= 6) {
    		engine->init_context = intel_rcs_ctx_init;
    		engine->emit_flush = gen7_render_ring_flush;
    		if (IS_GEN6(dev_priv))
    			engine->emit_flush = gen6_render_ring_flush;
    	} else if (IS_GEN5(dev_priv)) {
    		engine->emit_flush = gen4_render_ring_flush;
    	} else {
    		if (INTEL_GEN(dev_priv) < 4)
    			engine->emit_flush = gen2_render_ring_flush;
    		else
    			engine->emit_flush = gen4_render_ring_flush;
    		engine->irq_enable_mask = I915_USER_INTERRUPT;
    	}
    
    	if (IS_HASWELL(dev_priv))
    		engine->emit_bb_start = hsw_emit_bb_start;
    
    	engine->init_hw = init_render_ring;
    	engine->cleanup = render_ring_cleanup;
    
    	ret = intel_init_ring_buffer(engine);
    	if (ret)
    		return ret;
    
    	if (INTEL_GEN(dev_priv) >= 6) {
    		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
    		if (ret)
    			return ret;
    	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
    		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	intel_ring_default_vfuncs(dev_priv, engine);
    
    	if (INTEL_GEN(dev_priv) >= 6) {
    		/* gen6 bsd needs a special wa for tail updates */
    		if (IS_GEN6(dev_priv))
    			engine->set_default_submission = gen6_bsd_set_default_submission;
    		engine->emit_flush = gen6_bsd_ring_flush;
    		if (INTEL_GEN(dev_priv) < 8)
    			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
    	} else {
    		engine->mmio_base = BSD_RING_BASE;
    		engine->emit_flush = bsd_ring_flush;
    		if (IS_GEN5(dev_priv))
    			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
    		else
    			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
    	}
    
    	return intel_init_ring_buffer(engine);
    }
    
    int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	intel_ring_default_vfuncs(dev_priv, engine);
    
    	engine->emit_flush = gen6_ring_flush;
    	if (INTEL_GEN(dev_priv) < 8)
    		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
    
    	return intel_init_ring_buffer(engine);
    }
    
    int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
    {
    	struct drm_i915_private *dev_priv = engine->i915;
    
    	intel_ring_default_vfuncs(dev_priv, engine);
    
    	engine->emit_flush = gen6_ring_flush;
    
    	if (INTEL_GEN(dev_priv) < 8) {
    		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
    		engine->irq_enable = hsw_vebox_irq_enable;
    		engine->irq_disable = hsw_vebox_irq_disable;
    	}
    
    	return intel_init_ring_buffer(engine);
    }