Skip to content
Snippets Groups Projects
Select Git revision
  • f89632a9e5fa6c4787c14458cd42a9ef42025434
  • drm-misc-templates default
  • wip/final/kci-gitlab-lava-v1
  • wip/vignesh/kci-lava-gitlab-runner
  • kci-gitlab-igt-v8
  • kci-gitlab-igt-v4
  • drm-misc-fixes-2024-10-02
  • drm-misc-next-2024-09-26
  • drm-misc-fixes-2024-09-26
  • drm-misc-next-2024-09-20
  • drm-misc-fixes-2024-09-12
  • drm-misc-fixes-2024-09-05
  • drm-misc-next-fixes-2024-09-05
  • drm-misc-fixes-2024-08-29
  • drm-misc-next-2024-08-29
  • drm-misc-next-2024-08-22
  • drm-misc-fixes-2024-08-22
  • drm-misc-next-2024-08-16
  • drm-misc-fixes-2024-08-15
  • drm-misc-next-2024-08-09
  • drm-misc-fixes-2024-08-08
  • drm-misc-next-2024-08-01
  • drm-misc-fixes-2024-08-01
  • drm-misc-next-fixes-2024-07-25
  • drm-misc-next-fixes-2024-07-19
  • drm-misc-next-fixes-2024-07-11
26 results

Kconfig

Blame
  • huge_memory.c 79.18 KiB
    /*
     *  Copyright (C) 2009  Red Hat, Inc.
     *
     *  This work is licensed under the terms of the GNU GPL, version 2. See
     *  the COPYING file in the top-level directory.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/mm.h>
    #include <linux/sched.h>
    #include <linux/highmem.h>
    #include <linux/hugetlb.h>
    #include <linux/mmu_notifier.h>
    #include <linux/rmap.h>
    #include <linux/swap.h>
    #include <linux/shrinker.h>
    #include <linux/mm_inline.h>
    #include <linux/kthread.h>
    #include <linux/khugepaged.h>
    #include <linux/freezer.h>
    #include <linux/mman.h>
    #include <linux/pagemap.h>
    #include <linux/migrate.h>
    #include <linux/hashtable.h>
    
    #include <asm/tlb.h>
    #include <asm/pgalloc.h>
    #include "internal.h"
    
    /*
     * By default transparent hugepage support is disabled in order that avoid
     * to risk increase the memory footprint of applications without a guaranteed
     * benefit. When transparent hugepage support is enabled, is for all mappings,
     * and khugepaged scans all mappings.
     * Defrag is invoked by khugepaged hugepage allocations and by page faults
     * for all hugepage allocations.
     */
    unsigned long transparent_hugepage_flags __read_mostly =
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
    	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
    #endif
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
    	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
    #endif
    	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
    	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
    	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
    
    /* default scan 8*512 pte (or vmas) every 30 second */
    static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
    static unsigned int khugepaged_pages_collapsed;
    static unsigned int khugepaged_full_scans;
    static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
    /* during fragmentation poll the hugepage allocator once every minute */
    static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
    static struct task_struct *khugepaged_thread __read_mostly;
    static DEFINE_MUTEX(khugepaged_mutex);
    static DEFINE_SPINLOCK(khugepaged_mm_lock);
    static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
    /*
     * default collapse hugepages if there is at least one pte mapped like
     * it would have happened if the vma was large enough during page
     * fault.
     */
    static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
    
    static int khugepaged(void *none);
    static int khugepaged_slab_init(void);
    static void khugepaged_slab_exit(void);
    
    #define MM_SLOTS_HASH_BITS 10
    static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
    
    static struct kmem_cache *mm_slot_cache __read_mostly;
    
    /**
     * struct mm_slot - hash lookup from mm to mm_slot
     * @hash: hash collision list
     * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
     * @mm: the mm that this information is valid for
     */
    struct mm_slot {
    	struct hlist_node hash;
    	struct list_head mm_node;
    	struct mm_struct *mm;
    };
    
    /**
     * struct khugepaged_scan - cursor for scanning
     * @mm_head: the head of the mm list to scan
     * @mm_slot: the current mm_slot we are scanning
     * @address: the next address inside that to be scanned
     *
     * There is only the one khugepaged_scan instance of this cursor structure.
     */
    struct khugepaged_scan {
    	struct list_head mm_head;
    	struct mm_slot *mm_slot;
    	unsigned long address;
    };
    static struct khugepaged_scan khugepaged_scan = {
    	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
    };
    
    
    static int set_recommended_min_free_kbytes(void)
    {
    	struct zone *zone;
    	int nr_zones = 0;
    	unsigned long recommended_min;
    
    	/* khugepaged thread has stopped to failed to start */
    	if (!khugepaged_thread)
    		return 0;
    
    	for_each_populated_zone(zone)
    		nr_zones++;
    
    	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
    	recommended_min = pageblock_nr_pages * nr_zones * 2;
    
    	/*
    	 * Make sure that on average at least two pageblocks are almost free
    	 * of another type, one for a migratetype to fall back to and a
    	 * second to avoid subsequent fallbacks of other types There are 3
    	 * MIGRATE_TYPES we care about.
    	 */
    	recommended_min += pageblock_nr_pages * nr_zones *
    			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
    
    	/* don't ever allow to reserve more than 5% of the lowmem */
    	recommended_min = min(recommended_min,
    			      (unsigned long) nr_free_buffer_pages() / 20);
    	recommended_min <<= (PAGE_SHIFT-10);
    
    	if (recommended_min > min_free_kbytes) {
    		if (user_min_free_kbytes >= 0)
    			pr_info("raising min_free_kbytes from %d to %lu "
    				"to help transparent hugepage allocations\n",
    				min_free_kbytes, recommended_min);
    
    		min_free_kbytes = recommended_min;
    	}
    	setup_per_zone_wmarks();
    	return 0;
    }
    late_initcall(set_recommended_min_free_kbytes);
    
    static int start_khugepaged(void)
    {
    	int err = 0;
    	if (khugepaged_enabled()) {
    		if (!khugepaged_thread)
    			khugepaged_thread = kthread_run(khugepaged, NULL,
    							"khugepaged");
    		if (unlikely(IS_ERR(khugepaged_thread))) {
    			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
    			err = PTR_ERR(khugepaged_thread);
    			khugepaged_thread = NULL;
    		}
    
    		if (!list_empty(&khugepaged_scan.mm_head))
    			wake_up_interruptible(&khugepaged_wait);
    
    		set_recommended_min_free_kbytes();
    	} else if (khugepaged_thread) {
    		kthread_stop(khugepaged_thread);
    		khugepaged_thread = NULL;
    	}
    
    	return err;
    }
    
    static atomic_t huge_zero_refcount;
    struct page *huge_zero_page __read_mostly;
    
    static inline bool is_huge_zero_pmd(pmd_t pmd)
    {
    	return is_huge_zero_page(pmd_page(pmd));
    }
    
    static struct page *get_huge_zero_page(void)
    {
    	struct page *zero_page;
    retry:
    	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
    		return READ_ONCE(huge_zero_page);
    
    	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
    			HPAGE_PMD_ORDER);
    	if (!zero_page) {
    		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
    		return NULL;
    	}
    	count_vm_event(THP_ZERO_PAGE_ALLOC);
    	preempt_disable();
    	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
    		preempt_enable();
    		__free_pages(zero_page, compound_order(zero_page));
    		goto retry;
    	}
    
    	/* We take additional reference here. It will be put back by shrinker */
    	atomic_set(&huge_zero_refcount, 2);
    	preempt_enable();
    	return READ_ONCE(huge_zero_page);
    }
    
    static void put_huge_zero_page(void)
    {
    	/*
    	 * Counter should never go to zero here. Only shrinker can put
    	 * last reference.
    	 */
    	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
    }
    
    static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
    					struct shrink_control *sc)
    {
    	/* we can free zero page only if last reference remains */
    	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
    }
    
    static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
    				       struct shrink_control *sc)
    {
    	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
    		struct page *zero_page = xchg(&huge_zero_page, NULL);
    		BUG_ON(zero_page == NULL);
    		__free_pages(zero_page, compound_order(zero_page));
    		return HPAGE_PMD_NR;
    	}
    
    	return 0;
    }
    
    static struct shrinker huge_zero_page_shrinker = {
    	.count_objects = shrink_huge_zero_page_count,
    	.scan_objects = shrink_huge_zero_page_scan,
    	.seeks = DEFAULT_SEEKS,
    };
    
    #ifdef CONFIG_SYSFS
    
    static ssize_t double_flag_show(struct kobject *kobj,
    				struct kobj_attribute *attr, char *buf,
    				enum transparent_hugepage_flag enabled,
    				enum transparent_hugepage_flag req_madv)
    {
    	if (test_bit(enabled, &transparent_hugepage_flags)) {
    		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
    		return sprintf(buf, "[always] madvise never\n");
    	} else if (test_bit(req_madv, &transparent_hugepage_flags))
    		return sprintf(buf, "always [madvise] never\n");
    	else
    		return sprintf(buf, "always madvise [never]\n");
    }
    static ssize_t double_flag_store(struct kobject *kobj,
    				 struct kobj_attribute *attr,
    				 const char *buf, size_t count,
    				 enum transparent_hugepage_flag enabled,
    				 enum transparent_hugepage_flag req_madv)
    {
    	if (!memcmp("always", buf,
    		    min(sizeof("always")-1, count))) {
    		set_bit(enabled, &transparent_hugepage_flags);
    		clear_bit(req_madv, &transparent_hugepage_flags);
    	} else if (!memcmp("madvise", buf,
    			   min(sizeof("madvise")-1, count))) {
    		clear_bit(enabled, &transparent_hugepage_flags);
    		set_bit(req_madv, &transparent_hugepage_flags);
    	} else if (!memcmp("never", buf,
    			   min(sizeof("never")-1, count))) {
    		clear_bit(enabled, &transparent_hugepage_flags);
    		clear_bit(req_madv, &transparent_hugepage_flags);
    	} else
    		return -EINVAL;
    
    	return count;
    }
    
    static ssize_t enabled_show(struct kobject *kobj,
    			    struct kobj_attribute *attr, char *buf)
    {
    	return double_flag_show(kobj, attr, buf,
    				TRANSPARENT_HUGEPAGE_FLAG,
    				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
    }
    static ssize_t enabled_store(struct kobject *kobj,
    			     struct kobj_attribute *attr,
    			     const char *buf, size_t count)
    {
    	ssize_t ret;
    
    	ret = double_flag_store(kobj, attr, buf, count,
    				TRANSPARENT_HUGEPAGE_FLAG,
    				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
    
    	if (ret > 0) {
    		int err;
    
    		mutex_lock(&khugepaged_mutex);
    		err = start_khugepaged();
    		mutex_unlock(&khugepaged_mutex);
    
    		if (err)
    			ret = err;
    	}
    
    	return ret;
    }
    static struct kobj_attribute enabled_attr =
    	__ATTR(enabled, 0644, enabled_show, enabled_store);
    
    static ssize_t single_flag_show(struct kobject *kobj,
    				struct kobj_attribute *attr, char *buf,
    				enum transparent_hugepage_flag flag)
    {
    	return sprintf(buf, "%d\n",
    		       !!test_bit(flag, &transparent_hugepage_flags));
    }
    
    static ssize_t single_flag_store(struct kobject *kobj,
    				 struct kobj_attribute *attr,
    				 const char *buf, size_t count,
    				 enum transparent_hugepage_flag flag)
    {
    	unsigned long value;
    	int ret;
    
    	ret = kstrtoul(buf, 10, &value);
    	if (ret < 0)
    		return ret;
    	if (value > 1)
    		return -EINVAL;
    
    	if (value)
    		set_bit(flag, &transparent_hugepage_flags);
    	else
    		clear_bit(flag, &transparent_hugepage_flags);
    
    	return count;
    }
    
    /*
     * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
     * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
     * memory just to allocate one more hugepage.
     */
    static ssize_t defrag_show(struct kobject *kobj,
    			   struct kobj_attribute *attr, char *buf)
    {
    	return double_flag_show(kobj, attr, buf,
    				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
    				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
    }
    static ssize_t defrag_store(struct kobject *kobj,
    			    struct kobj_attribute *attr,
    			    const char *buf, size_t count)
    {
    	return double_flag_store(kobj, attr, buf, count,
    				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
    				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
    }
    static struct kobj_attribute defrag_attr =
    	__ATTR(defrag, 0644, defrag_show, defrag_store);
    
    static ssize_t use_zero_page_show(struct kobject *kobj,
    		struct kobj_attribute *attr, char *buf)
    {
    	return single_flag_show(kobj, attr, buf,
    				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
    }
    static ssize_t use_zero_page_store(struct kobject *kobj,
    		struct kobj_attribute *attr, const char *buf, size_t count)
    {
    	return single_flag_store(kobj, attr, buf, count,
    				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
    }
    static struct kobj_attribute use_zero_page_attr =
    	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
    #ifdef CONFIG_DEBUG_VM
    static ssize_t debug_cow_show(struct kobject *kobj,
    				struct kobj_attribute *attr, char *buf)
    {
    	return single_flag_show(kobj, attr, buf,
    				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
    }
    static ssize_t debug_cow_store(struct kobject *kobj,
    			       struct kobj_attribute *attr,
    			       const char *buf, size_t count)
    {
    	return single_flag_store(kobj, attr, buf, count,
    				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
    }
    static struct kobj_attribute debug_cow_attr =
    	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
    #endif /* CONFIG_DEBUG_VM */
    
    static struct attribute *hugepage_attr[] = {
    	&enabled_attr.attr,
    	&defrag_attr.attr,
    	&use_zero_page_attr.attr,
    #ifdef CONFIG_DEBUG_VM
    	&debug_cow_attr.attr,
    #endif
    	NULL,
    };
    
    static struct attribute_group hugepage_attr_group = {
    	.attrs = hugepage_attr,
    };
    
    static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
    					 struct kobj_attribute *attr,
    					 char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
    }
    
    static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
    					  struct kobj_attribute *attr,
    					  const char *buf, size_t count)
    {
    	unsigned long msecs;
    	int err;
    
    	err = kstrtoul(buf, 10, &msecs);
    	if (err || msecs > UINT_MAX)
    		return -EINVAL;
    
    	khugepaged_scan_sleep_millisecs = msecs;
    	wake_up_interruptible(&khugepaged_wait);
    
    	return count;
    }
    static struct kobj_attribute scan_sleep_millisecs_attr =
    	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
    	       scan_sleep_millisecs_store);
    
    static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
    					  struct kobj_attribute *attr,
    					  char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
    }
    
    static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
    					   struct kobj_attribute *attr,
    					   const char *buf, size_t count)
    {
    	unsigned long msecs;
    	int err;
    
    	err = kstrtoul(buf, 10, &msecs);
    	if (err || msecs > UINT_MAX)
    		return -EINVAL;
    
    	khugepaged_alloc_sleep_millisecs = msecs;
    	wake_up_interruptible(&khugepaged_wait);
    
    	return count;
    }
    static struct kobj_attribute alloc_sleep_millisecs_attr =
    	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
    	       alloc_sleep_millisecs_store);
    
    static ssize_t pages_to_scan_show(struct kobject *kobj,
    				  struct kobj_attribute *attr,
    				  char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
    }
    static ssize_t pages_to_scan_store(struct kobject *kobj,
    				   struct kobj_attribute *attr,
    				   const char *buf, size_t count)
    {
    	int err;
    	unsigned long pages;
    
    	err = kstrtoul(buf, 10, &pages);
    	if (err || !pages || pages > UINT_MAX)
    		return -EINVAL;
    
    	khugepaged_pages_to_scan = pages;
    
    	return count;
    }
    static struct kobj_attribute pages_to_scan_attr =
    	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
    	       pages_to_scan_store);
    
    static ssize_t pages_collapsed_show(struct kobject *kobj,
    				    struct kobj_attribute *attr,
    				    char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
    }
    static struct kobj_attribute pages_collapsed_attr =
    	__ATTR_RO(pages_collapsed);
    
    static ssize_t full_scans_show(struct kobject *kobj,
    			       struct kobj_attribute *attr,
    			       char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_full_scans);
    }
    static struct kobj_attribute full_scans_attr =
    	__ATTR_RO(full_scans);
    
    static ssize_t khugepaged_defrag_show(struct kobject *kobj,
    				      struct kobj_attribute *attr, char *buf)
    {
    	return single_flag_show(kobj, attr, buf,
    				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
    }
    static ssize_t khugepaged_defrag_store(struct kobject *kobj,
    				       struct kobj_attribute *attr,
    				       const char *buf, size_t count)
    {
    	return single_flag_store(kobj, attr, buf, count,
    				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
    }
    static struct kobj_attribute khugepaged_defrag_attr =
    	__ATTR(defrag, 0644, khugepaged_defrag_show,
    	       khugepaged_defrag_store);
    
    /*
     * max_ptes_none controls if khugepaged should collapse hugepages over
     * any unmapped ptes in turn potentially increasing the memory
     * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
     * reduce the available free memory in the system as it
     * runs. Increasing max_ptes_none will instead potentially reduce the
     * free memory in the system during the khugepaged scan.
     */
    static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
    					     struct kobj_attribute *attr,
    					     char *buf)
    {
    	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
    }
    static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
    					      struct kobj_attribute *attr,
    					      const char *buf, size_t count)
    {
    	int err;
    	unsigned long max_ptes_none;
    
    	err = kstrtoul(buf, 10, &max_ptes_none);
    	if (err || max_ptes_none > HPAGE_PMD_NR-1)
    		return -EINVAL;
    
    	khugepaged_max_ptes_none = max_ptes_none;
    
    	return count;
    }
    static struct kobj_attribute khugepaged_max_ptes_none_attr =
    	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
    	       khugepaged_max_ptes_none_store);
    
    static struct attribute *khugepaged_attr[] = {
    	&khugepaged_defrag_attr.attr,
    	&khugepaged_max_ptes_none_attr.attr,
    	&pages_to_scan_attr.attr,
    	&pages_collapsed_attr.attr,
    	&full_scans_attr.attr,
    	&scan_sleep_millisecs_attr.attr,
    	&alloc_sleep_millisecs_attr.attr,
    	NULL,
    };
    
    static struct attribute_group khugepaged_attr_group = {
    	.attrs = khugepaged_attr,
    	.name = "khugepaged",
    };
    
    static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
    {
    	int err;
    
    	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
    	if (unlikely(!*hugepage_kobj)) {
    		pr_err("failed to create transparent hugepage kobject\n");
    		return -ENOMEM;
    	}
    
    	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
    	if (err) {
    		pr_err("failed to register transparent hugepage group\n");
    		goto delete_obj;
    	}
    
    	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
    	if (err) {
    		pr_err("failed to register transparent hugepage group\n");
    		goto remove_hp_group;
    	}
    
    	return 0;
    
    remove_hp_group:
    	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
    delete_obj:
    	kobject_put(*hugepage_kobj);
    	return err;
    }
    
    static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
    {
    	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
    	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
    	kobject_put(hugepage_kobj);
    }
    #else
    static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
    {
    	return 0;
    }
    
    static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
    {
    }
    #endif /* CONFIG_SYSFS */
    
    static int __init hugepage_init(void)
    {
    	int err;
    	struct kobject *hugepage_kobj;
    
    	if (!has_transparent_hugepage()) {
    		transparent_hugepage_flags = 0;
    		return -EINVAL;
    	}
    
    	err = hugepage_init_sysfs(&hugepage_kobj);
    	if (err)
    		goto err_sysfs;
    
    	err = khugepaged_slab_init();
    	if (err)
    		goto err_slab;
    
    	err = register_shrinker(&huge_zero_page_shrinker);
    	if (err)
    		goto err_hzp_shrinker;
    
    	/*
    	 * By default disable transparent hugepages on smaller systems,
    	 * where the extra memory used could hurt more than TLB overhead
    	 * is likely to save.  The admin can still enable it through /sys.
    	 */
    	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
    		transparent_hugepage_flags = 0;
    
    	err = start_khugepaged();
    	if (err)
    		goto err_khugepaged;
    
    	return 0;
    err_khugepaged:
    	unregister_shrinker(&huge_zero_page_shrinker);
    err_hzp_shrinker:
    	khugepaged_slab_exit();
    err_slab:
    	hugepage_exit_sysfs(hugepage_kobj);
    err_sysfs:
    	return err;
    }
    subsys_initcall(hugepage_init);
    
    static int __init setup_transparent_hugepage(char *str)
    {
    	int ret = 0;
    	if (!str)
    		goto out;
    	if (!strcmp(str, "always")) {
    		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
    			&transparent_hugepage_flags);
    		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
    			  &transparent_hugepage_flags);
    		ret = 1;
    	} else if (!strcmp(str, "madvise")) {
    		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
    			  &transparent_hugepage_flags);
    		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
    			&transparent_hugepage_flags);
    		ret = 1;
    	} else if (!strcmp(str, "never")) {
    		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
    			  &transparent_hugepage_flags);
    		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
    			  &transparent_hugepage_flags);
    		ret = 1;
    	}
    out:
    	if (!ret)
    		pr_warn("transparent_hugepage= cannot parse, ignored\n");
    	return ret;
    }
    __setup("transparent_hugepage=", setup_transparent_hugepage);
    
    pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
    {
    	if (likely(vma->vm_flags & VM_WRITE))
    		pmd = pmd_mkwrite(pmd);
    	return pmd;
    }
    
    static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
    {
    	pmd_t entry;
    	entry = mk_pmd(page, prot);
    	entry = pmd_mkhuge(entry);
    	return entry;
    }
    
    static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
    					struct vm_area_struct *vma,
    					unsigned long haddr, pmd_t *pmd,
    					struct page *page, gfp_t gfp)
    {
    	struct mem_cgroup *memcg;
    	pgtable_t pgtable;
    	spinlock_t *ptl;
    
    	VM_BUG_ON_PAGE(!PageCompound(page), page);
    
    	if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
    		return VM_FAULT_OOM;
    
    	pgtable = pte_alloc_one(mm, haddr);
    	if (unlikely(!pgtable)) {
    		mem_cgroup_cancel_charge(page, memcg);
    		return VM_FAULT_OOM;
    	}
    
    	clear_huge_page(page, haddr, HPAGE_PMD_NR);
    	/*
    	 * The memory barrier inside __SetPageUptodate makes sure that
    	 * clear_huge_page writes become visible before the set_pmd_at()
    	 * write.
    	 */
    	__SetPageUptodate(page);
    
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(!pmd_none(*pmd))) {
    		spin_unlock(ptl);
    		mem_cgroup_cancel_charge(page, memcg);
    		put_page(page);
    		pte_free(mm, pgtable);
    	} else {
    		pmd_t entry;
    		entry = mk_huge_pmd(page, vma->vm_page_prot);
    		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    		page_add_new_anon_rmap(page, vma, haddr);
    		mem_cgroup_commit_charge(page, memcg, false);
    		lru_cache_add_active_or_unevictable(page, vma);
    		pgtable_trans_huge_deposit(mm, pmd, pgtable);
    		set_pmd_at(mm, haddr, pmd, entry);
    		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
    		atomic_long_inc(&mm->nr_ptes);
    		spin_unlock(ptl);
    	}
    
    	return 0;
    }
    
    static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
    {
    	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
    }
    
    /* Caller must hold page table lock. */
    static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
    		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
    		struct page *zero_page)
    {
    	pmd_t entry;
    	if (!pmd_none(*pmd))
    		return false;
    	entry = mk_pmd(zero_page, vma->vm_page_prot);
    	entry = pmd_mkhuge(entry);
    	pgtable_trans_huge_deposit(mm, pmd, pgtable);
    	set_pmd_at(mm, haddr, pmd, entry);
    	atomic_long_inc(&mm->nr_ptes);
    	return true;
    }
    
    int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
    			       unsigned long address, pmd_t *pmd,
    			       unsigned int flags)
    {
    	gfp_t gfp;
    	struct page *page;
    	unsigned long haddr = address & HPAGE_PMD_MASK;
    
    	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
    		return VM_FAULT_FALLBACK;
    	if (unlikely(anon_vma_prepare(vma)))
    		return VM_FAULT_OOM;
    	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
    		return VM_FAULT_OOM;
    	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
    			transparent_hugepage_use_zero_page()) {
    		spinlock_t *ptl;
    		pgtable_t pgtable;
    		struct page *zero_page;
    		bool set;
    		pgtable = pte_alloc_one(mm, haddr);
    		if (unlikely(!pgtable))
    			return VM_FAULT_OOM;
    		zero_page = get_huge_zero_page();
    		if (unlikely(!zero_page)) {
    			pte_free(mm, pgtable);
    			count_vm_event(THP_FAULT_FALLBACK);
    			return VM_FAULT_FALLBACK;
    		}
    		ptl = pmd_lock(mm, pmd);
    		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
    				zero_page);
    		spin_unlock(ptl);
    		if (!set) {
    			pte_free(mm, pgtable);
    			put_huge_zero_page();
    		}
    		return 0;
    	}
    	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
    	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
    	if (unlikely(!page)) {
    		count_vm_event(THP_FAULT_FALLBACK);
    		return VM_FAULT_FALLBACK;
    	}
    	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
    		put_page(page);
    		count_vm_event(THP_FAULT_FALLBACK);
    		return VM_FAULT_FALLBACK;
    	}
    
    	count_vm_event(THP_FAULT_ALLOC);
    	return 0;
    }
    
    int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
    		  struct vm_area_struct *vma)
    {
    	spinlock_t *dst_ptl, *src_ptl;
    	struct page *src_page;
    	pmd_t pmd;
    	pgtable_t pgtable;
    	int ret;
    
    	ret = -ENOMEM;
    	pgtable = pte_alloc_one(dst_mm, addr);
    	if (unlikely(!pgtable))
    		goto out;
    
    	dst_ptl = pmd_lock(dst_mm, dst_pmd);
    	src_ptl = pmd_lockptr(src_mm, src_pmd);
    	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    
    	ret = -EAGAIN;
    	pmd = *src_pmd;
    	if (unlikely(!pmd_trans_huge(pmd))) {
    		pte_free(dst_mm, pgtable);
    		goto out_unlock;
    	}
    	/*
    	 * When page table lock is held, the huge zero pmd should not be
    	 * under splitting since we don't split the page itself, only pmd to
    	 * a page table.
    	 */
    	if (is_huge_zero_pmd(pmd)) {
    		struct page *zero_page;
    		bool set;
    		/*
    		 * get_huge_zero_page() will never allocate a new page here,
    		 * since we already have a zero page to copy. It just takes a
    		 * reference.
    		 */
    		zero_page = get_huge_zero_page();
    		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
    				zero_page);
    		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
    		ret = 0;
    		goto out_unlock;
    	}
    
    	if (unlikely(pmd_trans_splitting(pmd))) {
    		/* split huge page running from under us */
    		spin_unlock(src_ptl);
    		spin_unlock(dst_ptl);
    		pte_free(dst_mm, pgtable);
    
    		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
    		goto out;
    	}
    	src_page = pmd_page(pmd);
    	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
    	get_page(src_page);
    	page_dup_rmap(src_page);
    	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
    
    	pmdp_set_wrprotect(src_mm, addr, src_pmd);
    	pmd = pmd_mkold(pmd_wrprotect(pmd));
    	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
    	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
    	atomic_long_inc(&dst_mm->nr_ptes);
    
    	ret = 0;
    out_unlock:
    	spin_unlock(src_ptl);
    	spin_unlock(dst_ptl);
    out:
    	return ret;
    }
    
    void huge_pmd_set_accessed(struct mm_struct *mm,
    			   struct vm_area_struct *vma,
    			   unsigned long address,
    			   pmd_t *pmd, pmd_t orig_pmd,
    			   int dirty)
    {
    	spinlock_t *ptl;
    	pmd_t entry;
    	unsigned long haddr;
    
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(!pmd_same(*pmd, orig_pmd)))
    		goto unlock;
    
    	entry = pmd_mkyoung(orig_pmd);
    	haddr = address & HPAGE_PMD_MASK;
    	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
    		update_mmu_cache_pmd(vma, address, pmd);
    
    unlock:
    	spin_unlock(ptl);
    }
    
    /*
     * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
     * during copy_user_huge_page()'s copy_page_rep(): in the case when
     * the source page gets split and a tail freed before copy completes.
     * Called under pmd_lock of checked pmd, so safe from splitting itself.
     */
    static void get_user_huge_page(struct page *page)
    {
    	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
    		struct page *endpage = page + HPAGE_PMD_NR;
    
    		atomic_add(HPAGE_PMD_NR, &page->_count);
    		while (++page < endpage)
    			get_huge_page_tail(page);
    	} else {
    		get_page(page);
    	}
    }
    
    static void put_user_huge_page(struct page *page)
    {
    	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
    		struct page *endpage = page + HPAGE_PMD_NR;
    
    		while (page < endpage)
    			put_page(page++);
    	} else {
    		put_page(page);
    	}
    }
    
    static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
    					struct vm_area_struct *vma,
    					unsigned long address,
    					pmd_t *pmd, pmd_t orig_pmd,
    					struct page *page,
    					unsigned long haddr)
    {
    	struct mem_cgroup *memcg;
    	spinlock_t *ptl;
    	pgtable_t pgtable;
    	pmd_t _pmd;
    	int ret = 0, i;
    	struct page **pages;
    	unsigned long mmun_start;	/* For mmu_notifiers */
    	unsigned long mmun_end;		/* For mmu_notifiers */
    
    	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
    			GFP_KERNEL);
    	if (unlikely(!pages)) {
    		ret |= VM_FAULT_OOM;
    		goto out;
    	}
    
    	for (i = 0; i < HPAGE_PMD_NR; i++) {
    		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
    					       __GFP_OTHER_NODE,
    					       vma, address, page_to_nid(page));
    		if (unlikely(!pages[i] ||
    			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
    						   &memcg))) {
    			if (pages[i])
    				put_page(pages[i]);
    			while (--i >= 0) {
    				memcg = (void *)page_private(pages[i]);
    				set_page_private(pages[i], 0);
    				mem_cgroup_cancel_charge(pages[i], memcg);
    				put_page(pages[i]);
    			}
    			kfree(pages);
    			ret |= VM_FAULT_OOM;
    			goto out;
    		}
    		set_page_private(pages[i], (unsigned long)memcg);
    	}
    
    	for (i = 0; i < HPAGE_PMD_NR; i++) {
    		copy_user_highpage(pages[i], page + i,
    				   haddr + PAGE_SIZE * i, vma);
    		__SetPageUptodate(pages[i]);
    		cond_resched();
    	}
    
    	mmun_start = haddr;
    	mmun_end   = haddr + HPAGE_PMD_SIZE;
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(!pmd_same(*pmd, orig_pmd)))
    		goto out_free_pages;
    	VM_BUG_ON_PAGE(!PageHead(page), page);
    
    	pmdp_clear_flush_notify(vma, haddr, pmd);
    	/* leave pmd empty until pte is filled */
    
    	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
    	pmd_populate(mm, &_pmd, pgtable);
    
    	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
    		pte_t *pte, entry;
    		entry = mk_pte(pages[i], vma->vm_page_prot);
    		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    		memcg = (void *)page_private(pages[i]);
    		set_page_private(pages[i], 0);
    		page_add_new_anon_rmap(pages[i], vma, haddr);
    		mem_cgroup_commit_charge(pages[i], memcg, false);
    		lru_cache_add_active_or_unevictable(pages[i], vma);
    		pte = pte_offset_map(&_pmd, haddr);
    		VM_BUG_ON(!pte_none(*pte));
    		set_pte_at(mm, haddr, pte, entry);
    		pte_unmap(pte);
    	}
    	kfree(pages);
    
    	smp_wmb(); /* make pte visible before pmd */
    	pmd_populate(mm, pmd, pgtable);
    	page_remove_rmap(page);
    	spin_unlock(ptl);
    
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    
    	ret |= VM_FAULT_WRITE;
    	put_page(page);
    
    out:
    	return ret;
    
    out_free_pages:
    	spin_unlock(ptl);
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    	for (i = 0; i < HPAGE_PMD_NR; i++) {
    		memcg = (void *)page_private(pages[i]);
    		set_page_private(pages[i], 0);
    		mem_cgroup_cancel_charge(pages[i], memcg);
    		put_page(pages[i]);
    	}
    	kfree(pages);
    	goto out;
    }
    
    int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
    			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
    {
    	spinlock_t *ptl;
    	int ret = 0;
    	struct page *page = NULL, *new_page;
    	struct mem_cgroup *memcg;
    	unsigned long haddr;
    	unsigned long mmun_start;	/* For mmu_notifiers */
    	unsigned long mmun_end;		/* For mmu_notifiers */
    	gfp_t huge_gfp;			/* for allocation and charge */
    
    	ptl = pmd_lockptr(mm, pmd);
    	VM_BUG_ON_VMA(!vma->anon_vma, vma);
    	haddr = address & HPAGE_PMD_MASK;
    	if (is_huge_zero_pmd(orig_pmd))
    		goto alloc;
    	spin_lock(ptl);
    	if (unlikely(!pmd_same(*pmd, orig_pmd)))
    		goto out_unlock;
    
    	page = pmd_page(orig_pmd);
    	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
    	if (page_mapcount(page) == 1) {
    		pmd_t entry;
    		entry = pmd_mkyoung(orig_pmd);
    		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
    			update_mmu_cache_pmd(vma, address, pmd);
    		ret |= VM_FAULT_WRITE;
    		goto out_unlock;
    	}
    	get_user_huge_page(page);
    	spin_unlock(ptl);
    alloc:
    	if (transparent_hugepage_enabled(vma) &&
    	    !transparent_hugepage_debug_cow()) {
    		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
    		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
    	} else
    		new_page = NULL;
    
    	if (unlikely(!new_page)) {
    		if (!page) {
    			split_huge_page_pmd(vma, address, pmd);
    			ret |= VM_FAULT_FALLBACK;
    		} else {
    			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
    					pmd, orig_pmd, page, haddr);
    			if (ret & VM_FAULT_OOM) {
    				split_huge_page(page);
    				ret |= VM_FAULT_FALLBACK;
    			}
    			put_user_huge_page(page);
    		}
    		count_vm_event(THP_FAULT_FALLBACK);
    		goto out;
    	}
    
    	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
    		put_page(new_page);
    		if (page) {
    			split_huge_page(page);
    			put_user_huge_page(page);
    		} else
    			split_huge_page_pmd(vma, address, pmd);
    		ret |= VM_FAULT_FALLBACK;
    		count_vm_event(THP_FAULT_FALLBACK);
    		goto out;
    	}
    
    	count_vm_event(THP_FAULT_ALLOC);
    
    	if (!page)
    		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
    	else
    		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
    	__SetPageUptodate(new_page);
    
    	mmun_start = haddr;
    	mmun_end   = haddr + HPAGE_PMD_SIZE;
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    
    	spin_lock(ptl);
    	if (page)
    		put_user_huge_page(page);
    	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
    		spin_unlock(ptl);
    		mem_cgroup_cancel_charge(new_page, memcg);
    		put_page(new_page);
    		goto out_mn;
    	} else {
    		pmd_t entry;
    		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
    		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    		pmdp_clear_flush_notify(vma, haddr, pmd);
    		page_add_new_anon_rmap(new_page, vma, haddr);
    		mem_cgroup_commit_charge(new_page, memcg, false);
    		lru_cache_add_active_or_unevictable(new_page, vma);
    		set_pmd_at(mm, haddr, pmd, entry);
    		update_mmu_cache_pmd(vma, address, pmd);
    		if (!page) {
    			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
    			put_huge_zero_page();
    		} else {
    			VM_BUG_ON_PAGE(!PageHead(page), page);
    			page_remove_rmap(page);
    			put_page(page);
    		}
    		ret |= VM_FAULT_WRITE;
    	}
    	spin_unlock(ptl);
    out_mn:
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    out:
    	return ret;
    out_unlock:
    	spin_unlock(ptl);
    	return ret;
    }
    
    struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
    				   unsigned long addr,
    				   pmd_t *pmd,
    				   unsigned int flags)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct page *page = NULL;
    
    	assert_spin_locked(pmd_lockptr(mm, pmd));
    
    	if (flags & FOLL_WRITE && !pmd_write(*pmd))
    		goto out;
    
    	/* Avoid dumping huge zero page */
    	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
    		return ERR_PTR(-EFAULT);
    
    	/* Full NUMA hinting faults to serialise migration in fault paths */
    	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
    		goto out;
    
    	page = pmd_page(*pmd);
    	VM_BUG_ON_PAGE(!PageHead(page), page);
    	if (flags & FOLL_TOUCH) {
    		pmd_t _pmd;
    		/*
    		 * We should set the dirty bit only for FOLL_WRITE but
    		 * for now the dirty bit in the pmd is meaningless.
    		 * And if the dirty bit will become meaningful and
    		 * we'll only set it with FOLL_WRITE, an atomic
    		 * set_bit will be required on the pmd to set the
    		 * young bit, instead of the current set_pmd_at.
    		 */
    		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
    		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
    					  pmd, _pmd,  1))
    			update_mmu_cache_pmd(vma, addr, pmd);
    	}
    	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
    		if (page->mapping && trylock_page(page)) {
    			lru_add_drain();
    			if (page->mapping)
    				mlock_vma_page(page);
    			unlock_page(page);
    		}
    	}
    	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
    	VM_BUG_ON_PAGE(!PageCompound(page), page);
    	if (flags & FOLL_GET)
    		get_page_foll(page);
    
    out:
    	return page;
    }
    
    /* NUMA hinting page fault entry point for trans huge pmds */
    int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
    				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
    {
    	spinlock_t *ptl;
    	struct anon_vma *anon_vma = NULL;
    	struct page *page;
    	unsigned long haddr = addr & HPAGE_PMD_MASK;
    	int page_nid = -1, this_nid = numa_node_id();
    	int target_nid, last_cpupid = -1;
    	bool page_locked;
    	bool migrated = false;
    	bool was_writable;
    	int flags = 0;
    
    	/* A PROT_NONE fault should not end up here */
    	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
    
    	ptl = pmd_lock(mm, pmdp);
    	if (unlikely(!pmd_same(pmd, *pmdp)))
    		goto out_unlock;
    
    	/*
    	 * If there are potential migrations, wait for completion and retry
    	 * without disrupting NUMA hinting information. Do not relock and
    	 * check_same as the page may no longer be mapped.
    	 */
    	if (unlikely(pmd_trans_migrating(*pmdp))) {
    		page = pmd_page(*pmdp);
    		spin_unlock(ptl);
    		wait_on_page_locked(page);
    		goto out;
    	}
    
    	page = pmd_page(pmd);
    	BUG_ON(is_huge_zero_page(page));
    	page_nid = page_to_nid(page);
    	last_cpupid = page_cpupid_last(page);
    	count_vm_numa_event(NUMA_HINT_FAULTS);
    	if (page_nid == this_nid) {
    		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
    		flags |= TNF_FAULT_LOCAL;
    	}
    
    	/* See similar comment in do_numa_page for explanation */
    	if (!(vma->vm_flags & VM_WRITE))
    		flags |= TNF_NO_GROUP;
    
    	/*
    	 * Acquire the page lock to serialise THP migrations but avoid dropping
    	 * page_table_lock if at all possible
    	 */
    	page_locked = trylock_page(page);
    	target_nid = mpol_misplaced(page, vma, haddr);
    	if (target_nid == -1) {
    		/* If the page was locked, there are no parallel migrations */
    		if (page_locked)
    			goto clear_pmdnuma;
    	}
    
    	/* Migration could have started since the pmd_trans_migrating check */
    	if (!page_locked) {
    		spin_unlock(ptl);
    		wait_on_page_locked(page);
    		page_nid = -1;
    		goto out;
    	}
    
    	/*
    	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
    	 * to serialises splits
    	 */
    	get_page(page);
    	spin_unlock(ptl);
    	anon_vma = page_lock_anon_vma_read(page);
    
    	/* Confirm the PMD did not change while page_table_lock was released */
    	spin_lock(ptl);
    	if (unlikely(!pmd_same(pmd, *pmdp))) {
    		unlock_page(page);
    		put_page(page);
    		page_nid = -1;
    		goto out_unlock;
    	}
    
    	/* Bail if we fail to protect against THP splits for any reason */
    	if (unlikely(!anon_vma)) {
    		put_page(page);
    		page_nid = -1;
    		goto clear_pmdnuma;
    	}
    
    	/*
    	 * Migrate the THP to the requested node, returns with page unlocked
    	 * and access rights restored.
    	 */
    	spin_unlock(ptl);
    	migrated = migrate_misplaced_transhuge_page(mm, vma,
    				pmdp, pmd, addr, page, target_nid);
    	if (migrated) {
    		flags |= TNF_MIGRATED;
    		page_nid = target_nid;
    	} else
    		flags |= TNF_MIGRATE_FAIL;
    
    	goto out;
    clear_pmdnuma:
    	BUG_ON(!PageLocked(page));
    	was_writable = pmd_write(pmd);
    	pmd = pmd_modify(pmd, vma->vm_page_prot);
    	pmd = pmd_mkyoung(pmd);
    	if (was_writable)
    		pmd = pmd_mkwrite(pmd);
    	set_pmd_at(mm, haddr, pmdp, pmd);
    	update_mmu_cache_pmd(vma, addr, pmdp);
    	unlock_page(page);
    out_unlock:
    	spin_unlock(ptl);
    
    out:
    	if (anon_vma)
    		page_unlock_anon_vma_read(anon_vma);
    
    	if (page_nid != -1)
    		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
    
    	return 0;
    }
    
    int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
    		 pmd_t *pmd, unsigned long addr)
    {
    	spinlock_t *ptl;
    	int ret = 0;
    
    	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
    		struct page *page;
    		pgtable_t pgtable;
    		pmd_t orig_pmd;
    		/*
    		 * For architectures like ppc64 we look at deposited pgtable
    		 * when calling pmdp_get_and_clear. So do the
    		 * pgtable_trans_huge_withdraw after finishing pmdp related
    		 * operations.
    		 */
    		orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
    						   tlb->fullmm);
    		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
    		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
    		if (is_huge_zero_pmd(orig_pmd)) {
    			atomic_long_dec(&tlb->mm->nr_ptes);
    			spin_unlock(ptl);
    			put_huge_zero_page();
    		} else {
    			page = pmd_page(orig_pmd);
    			page_remove_rmap(page);
    			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
    			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
    			VM_BUG_ON_PAGE(!PageHead(page), page);
    			atomic_long_dec(&tlb->mm->nr_ptes);
    			spin_unlock(ptl);
    			tlb_remove_page(tlb, page);
    		}
    		pte_free(tlb->mm, pgtable);
    		ret = 1;
    	}
    	return ret;
    }
    
    int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
    		  unsigned long old_addr,
    		  unsigned long new_addr, unsigned long old_end,
    		  pmd_t *old_pmd, pmd_t *new_pmd)
    {
    	spinlock_t *old_ptl, *new_ptl;
    	int ret = 0;
    	pmd_t pmd;
    
    	struct mm_struct *mm = vma->vm_mm;
    
    	if ((old_addr & ~HPAGE_PMD_MASK) ||
    	    (new_addr & ~HPAGE_PMD_MASK) ||
    	    old_end - old_addr < HPAGE_PMD_SIZE ||
    	    (new_vma->vm_flags & VM_NOHUGEPAGE))
    		goto out;
    
    	/*
    	 * The destination pmd shouldn't be established, free_pgtables()
    	 * should have release it.
    	 */
    	if (WARN_ON(!pmd_none(*new_pmd))) {
    		VM_BUG_ON(pmd_trans_huge(*new_pmd));
    		goto out;
    	}
    
    	/*
    	 * We don't have to worry about the ordering of src and dst
    	 * ptlocks because exclusive mmap_sem prevents deadlock.
    	 */
    	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
    	if (ret == 1) {
    		new_ptl = pmd_lockptr(mm, new_pmd);
    		if (new_ptl != old_ptl)
    			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
    		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
    		VM_BUG_ON(!pmd_none(*new_pmd));
    
    		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
    			pgtable_t pgtable;
    			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
    			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
    		}
    		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
    		if (new_ptl != old_ptl)
    			spin_unlock(new_ptl);
    		spin_unlock(old_ptl);
    	}
    out:
    	return ret;
    }
    
    /*
     * Returns
     *  - 0 if PMD could not be locked
     *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
     *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
     */
    int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
    		unsigned long addr, pgprot_t newprot, int prot_numa)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	spinlock_t *ptl;
    	int ret = 0;
    
    	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
    		pmd_t entry;
    		bool preserve_write = prot_numa && pmd_write(*pmd);
    		ret = 1;
    
    		/*
    		 * Avoid trapping faults against the zero page. The read-only
    		 * data is likely to be read-cached on the local CPU and
    		 * local/remote hits to the zero page are not interesting.
    		 */
    		if (prot_numa && is_huge_zero_pmd(*pmd)) {
    			spin_unlock(ptl);
    			return ret;
    		}
    
    		if (!prot_numa || !pmd_protnone(*pmd)) {
    			entry = pmdp_get_and_clear_notify(mm, addr, pmd);
    			entry = pmd_modify(entry, newprot);
    			if (preserve_write)
    				entry = pmd_mkwrite(entry);
    			ret = HPAGE_PMD_NR;
    			set_pmd_at(mm, addr, pmd, entry);
    			BUG_ON(!preserve_write && pmd_write(entry));
    		}
    		spin_unlock(ptl);
    	}
    
    	return ret;
    }
    
    /*
     * Returns 1 if a given pmd maps a stable (not under splitting) thp.
     * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
     *
     * Note that if it returns 1, this routine returns without unlocking page
     * table locks. So callers must unlock them.
     */
    int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
    		spinlock_t **ptl)
    {
    	*ptl = pmd_lock(vma->vm_mm, pmd);
    	if (likely(pmd_trans_huge(*pmd))) {
    		if (unlikely(pmd_trans_splitting(*pmd))) {
    			spin_unlock(*ptl);
    			wait_split_huge_page(vma->anon_vma, pmd);
    			return -1;
    		} else {
    			/* Thp mapped by 'pmd' is stable, so we can
    			 * handle it as it is. */
    			return 1;
    		}
    	}
    	spin_unlock(*ptl);
    	return 0;
    }
    
    /*
     * This function returns whether a given @page is mapped onto the @address
     * in the virtual space of @mm.
     *
     * When it's true, this function returns *pmd with holding the page table lock
     * and passing it back to the caller via @ptl.
     * If it's false, returns NULL without holding the page table lock.
     */
    pmd_t *page_check_address_pmd(struct page *page,
    			      struct mm_struct *mm,
    			      unsigned long address,
    			      enum page_check_address_pmd_flag flag,
    			      spinlock_t **ptl)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    
    	if (address & ~HPAGE_PMD_MASK)
    		return NULL;
    
    	pgd = pgd_offset(mm, address);
    	if (!pgd_present(*pgd))
    		return NULL;
    	pud = pud_offset(pgd, address);
    	if (!pud_present(*pud))
    		return NULL;
    	pmd = pmd_offset(pud, address);
    
    	*ptl = pmd_lock(mm, pmd);
    	if (!pmd_present(*pmd))
    		goto unlock;
    	if (pmd_page(*pmd) != page)
    		goto unlock;
    	/*
    	 * split_vma() may create temporary aliased mappings. There is
    	 * no risk as long as all huge pmd are found and have their
    	 * splitting bit set before __split_huge_page_refcount
    	 * runs. Finding the same huge pmd more than once during the
    	 * same rmap walk is not a problem.
    	 */
    	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
    	    pmd_trans_splitting(*pmd))
    		goto unlock;
    	if (pmd_trans_huge(*pmd)) {
    		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
    			  !pmd_trans_splitting(*pmd));
    		return pmd;
    	}
    unlock:
    	spin_unlock(*ptl);
    	return NULL;
    }
    
    static int __split_huge_page_splitting(struct page *page,
    				       struct vm_area_struct *vma,
    				       unsigned long address)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	spinlock_t *ptl;
    	pmd_t *pmd;
    	int ret = 0;
    	/* For mmu_notifiers */
    	const unsigned long mmun_start = address;
    	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
    
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    	pmd = page_check_address_pmd(page, mm, address,
    			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
    	if (pmd) {
    		/*
    		 * We can't temporarily set the pmd to null in order
    		 * to split it, the pmd must remain marked huge at all
    		 * times or the VM won't take the pmd_trans_huge paths
    		 * and it won't wait on the anon_vma->root->rwsem to
    		 * serialize against split_huge_page*.
    		 */
    		pmdp_splitting_flush(vma, address, pmd);
    
    		ret = 1;
    		spin_unlock(ptl);
    	}
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    
    	return ret;
    }
    
    static void __split_huge_page_refcount(struct page *page,
    				       struct list_head *list)
    {
    	int i;
    	struct zone *zone = page_zone(page);
    	struct lruvec *lruvec;
    	int tail_count = 0;
    
    	/* prevent PageLRU to go away from under us, and freeze lru stats */
    	spin_lock_irq(&zone->lru_lock);
    	lruvec = mem_cgroup_page_lruvec(page, zone);
    
    	compound_lock(page);
    	/* complete memcg works before add pages to LRU */
    	mem_cgroup_split_huge_fixup(page);
    
    	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
    		struct page *page_tail = page + i;
    
    		/* tail_page->_mapcount cannot change */
    		BUG_ON(page_mapcount(page_tail) < 0);
    		tail_count += page_mapcount(page_tail);
    		/* check for overflow */
    		BUG_ON(tail_count < 0);
    		BUG_ON(atomic_read(&page_tail->_count) != 0);
    		/*
    		 * tail_page->_count is zero and not changing from
    		 * under us. But get_page_unless_zero() may be running
    		 * from under us on the tail_page. If we used
    		 * atomic_set() below instead of atomic_add(), we
    		 * would then run atomic_set() concurrently with
    		 * get_page_unless_zero(), and atomic_set() is
    		 * implemented in C not using locked ops. spin_unlock
    		 * on x86 sometime uses locked ops because of PPro
    		 * errata 66, 92, so unless somebody can guarantee
    		 * atomic_set() here would be safe on all archs (and
    		 * not only on x86), it's safer to use atomic_add().
    		 */
    		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
    			   &page_tail->_count);
    
    		/* after clearing PageTail the gup refcount can be released */
    		smp_mb__after_atomic();
    
    		/*
    		 * retain hwpoison flag of the poisoned tail page:
    		 *   fix for the unsuitable process killed on Guest Machine(KVM)
    		 *   by the memory-failure.
    		 */
    		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
    		page_tail->flags |= (page->flags &
    				     ((1L << PG_referenced) |
    				      (1L << PG_swapbacked) |
    				      (1L << PG_mlocked) |
    				      (1L << PG_uptodate) |
    				      (1L << PG_active) |
    				      (1L << PG_unevictable)));
    		page_tail->flags |= (1L << PG_dirty);
    
    		/* clear PageTail before overwriting first_page */
    		smp_wmb();
    
    		/*
    		 * __split_huge_page_splitting() already set the
    		 * splitting bit in all pmd that could map this
    		 * hugepage, that will ensure no CPU can alter the
    		 * mapcount on the head page. The mapcount is only
    		 * accounted in the head page and it has to be
    		 * transferred to all tail pages in the below code. So
    		 * for this code to be safe, the split the mapcount
    		 * can't change. But that doesn't mean userland can't
    		 * keep changing and reading the page contents while
    		 * we transfer the mapcount, so the pmd splitting
    		 * status is achieved setting a reserved bit in the
    		 * pmd, not by clearing the present bit.
    		*/
    		page_tail->_mapcount = page->_mapcount;
    
    		BUG_ON(page_tail->mapping);
    		page_tail->mapping = page->mapping;
    
    		page_tail->index = page->index + i;
    		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
    
    		BUG_ON(!PageAnon(page_tail));
    		BUG_ON(!PageUptodate(page_tail));
    		BUG_ON(!PageDirty(page_tail));
    		BUG_ON(!PageSwapBacked(page_tail));
    
    		lru_add_page_tail(page, page_tail, lruvec, list);
    	}
    	atomic_sub(tail_count, &page->_count);
    	BUG_ON(atomic_read(&page->_count) <= 0);
    
    	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
    
    	ClearPageCompound(page);
    	compound_unlock(page);
    	spin_unlock_irq(&zone->lru_lock);
    
    	for (i = 1; i < HPAGE_PMD_NR; i++) {
    		struct page *page_tail = page + i;
    		BUG_ON(page_count(page_tail) <= 0);
    		/*
    		 * Tail pages may be freed if there wasn't any mapping
    		 * like if add_to_swap() is running on a lru page that
    		 * had its mapping zapped. And freeing these pages
    		 * requires taking the lru_lock so we do the put_page
    		 * of the tail pages after the split is complete.
    		 */
    		put_page(page_tail);
    	}
    
    	/*
    	 * Only the head page (now become a regular page) is required
    	 * to be pinned by the caller.
    	 */
    	BUG_ON(page_count(page) <= 0);
    }
    
    static int __split_huge_page_map(struct page *page,
    				 struct vm_area_struct *vma,
    				 unsigned long address)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	spinlock_t *ptl;
    	pmd_t *pmd, _pmd;
    	int ret = 0, i;
    	pgtable_t pgtable;
    	unsigned long haddr;
    
    	pmd = page_check_address_pmd(page, mm, address,
    			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
    	if (pmd) {
    		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
    		pmd_populate(mm, &_pmd, pgtable);
    		if (pmd_write(*pmd))
    			BUG_ON(page_mapcount(page) != 1);
    
    		haddr = address;
    		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
    			pte_t *pte, entry;
    			BUG_ON(PageCompound(page+i));
    			/*
    			 * Note that NUMA hinting access restrictions are not
    			 * transferred to avoid any possibility of altering
    			 * permissions across VMAs.
    			 */
    			entry = mk_pte(page + i, vma->vm_page_prot);
    			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    			if (!pmd_write(*pmd))
    				entry = pte_wrprotect(entry);
    			if (!pmd_young(*pmd))
    				entry = pte_mkold(entry);
    			pte = pte_offset_map(&_pmd, haddr);
    			BUG_ON(!pte_none(*pte));
    			set_pte_at(mm, haddr, pte, entry);
    			pte_unmap(pte);
    		}
    
    		smp_wmb(); /* make pte visible before pmd */
    		/*
    		 * Up to this point the pmd is present and huge and
    		 * userland has the whole access to the hugepage
    		 * during the split (which happens in place). If we
    		 * overwrite the pmd with the not-huge version
    		 * pointing to the pte here (which of course we could
    		 * if all CPUs were bug free), userland could trigger
    		 * a small page size TLB miss on the small sized TLB
    		 * while the hugepage TLB entry is still established
    		 * in the huge TLB. Some CPU doesn't like that. See
    		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
    		 * Erratum 383 on page 93. Intel should be safe but is
    		 * also warns that it's only safe if the permission
    		 * and cache attributes of the two entries loaded in
    		 * the two TLB is identical (which should be the case
    		 * here). But it is generally safer to never allow
    		 * small and huge TLB entries for the same virtual
    		 * address to be loaded simultaneously. So instead of
    		 * doing "pmd_populate(); flush_tlb_range();" we first
    		 * mark the current pmd notpresent (atomically because
    		 * here the pmd_trans_huge and pmd_trans_splitting
    		 * must remain set at all times on the pmd until the
    		 * split is complete for this pmd), then we flush the
    		 * SMP TLB and finally we write the non-huge version
    		 * of the pmd entry with pmd_populate.
    		 */
    		pmdp_invalidate(vma, address, pmd);
    		pmd_populate(mm, pmd, pgtable);
    		ret = 1;
    		spin_unlock(ptl);
    	}
    
    	return ret;
    }
    
    /* must be called with anon_vma->root->rwsem held */
    static void __split_huge_page(struct page *page,
    			      struct anon_vma *anon_vma,
    			      struct list_head *list)
    {
    	int mapcount, mapcount2;
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	struct anon_vma_chain *avc;
    
    	BUG_ON(!PageHead(page));
    	BUG_ON(PageTail(page));
    
    	mapcount = 0;
    	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
    		struct vm_area_struct *vma = avc->vma;
    		unsigned long addr = vma_address(page, vma);
    		BUG_ON(is_vma_temporary_stack(vma));
    		mapcount += __split_huge_page_splitting(page, vma, addr);
    	}
    	/*
    	 * It is critical that new vmas are added to the tail of the
    	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
    	 * and establishes a child pmd before
    	 * __split_huge_page_splitting() freezes the parent pmd (so if
    	 * we fail to prevent copy_huge_pmd() from running until the
    	 * whole __split_huge_page() is complete), we will still see
    	 * the newly established pmd of the child later during the
    	 * walk, to be able to set it as pmd_trans_splitting too.
    	 */
    	if (mapcount != page_mapcount(page)) {
    		pr_err("mapcount %d page_mapcount %d\n",
    			mapcount, page_mapcount(page));
    		BUG();
    	}
    
    	__split_huge_page_refcount(page, list);
    
    	mapcount2 = 0;
    	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
    		struct vm_area_struct *vma = avc->vma;
    		unsigned long addr = vma_address(page, vma);
    		BUG_ON(is_vma_temporary_stack(vma));
    		mapcount2 += __split_huge_page_map(page, vma, addr);
    	}
    	if (mapcount != mapcount2) {
    		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
    			mapcount, mapcount2, page_mapcount(page));
    		BUG();
    	}
    }
    
    /*
     * Split a hugepage into normal pages. This doesn't change the position of head
     * page. If @list is null, tail pages will be added to LRU list, otherwise, to
     * @list. Both head page and tail pages will inherit mapping, flags, and so on
     * from the hugepage.
     * Return 0 if the hugepage is split successfully otherwise return 1.
     */
    int split_huge_page_to_list(struct page *page, struct list_head *list)
    {
    	struct anon_vma *anon_vma;
    	int ret = 1;
    
    	BUG_ON(is_huge_zero_page(page));
    	BUG_ON(!PageAnon(page));
    
    	/*
    	 * The caller does not necessarily hold an mmap_sem that would prevent
    	 * the anon_vma disappearing so we first we take a reference to it
    	 * and then lock the anon_vma for write. This is similar to
    	 * page_lock_anon_vma_read except the write lock is taken to serialise
    	 * against parallel split or collapse operations.
    	 */
    	anon_vma = page_get_anon_vma(page);
    	if (!anon_vma)
    		goto out;
    	anon_vma_lock_write(anon_vma);
    
    	ret = 0;
    	if (!PageCompound(page))
    		goto out_unlock;
    
    	BUG_ON(!PageSwapBacked(page));
    	__split_huge_page(page, anon_vma, list);
    	count_vm_event(THP_SPLIT);
    
    	BUG_ON(PageCompound(page));
    out_unlock:
    	anon_vma_unlock_write(anon_vma);
    	put_anon_vma(anon_vma);
    out:
    	return ret;
    }
    
    #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
    
    int hugepage_madvise(struct vm_area_struct *vma,
    		     unsigned long *vm_flags, int advice)
    {
    	switch (advice) {
    	case MADV_HUGEPAGE:
    #ifdef CONFIG_S390
    		/*
    		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
    		 * can't handle this properly after s390_enable_sie, so we simply
    		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
    		 */
    		if (mm_has_pgste(vma->vm_mm))
    			return 0;
    #endif
    		/*
    		 * Be somewhat over-protective like KSM for now!
    		 */
    		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
    			return -EINVAL;
    		*vm_flags &= ~VM_NOHUGEPAGE;
    		*vm_flags |= VM_HUGEPAGE;
    		/*
    		 * If the vma become good for khugepaged to scan,
    		 * register it here without waiting a page fault that
    		 * may not happen any time soon.
    		 */
    		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
    			return -ENOMEM;
    		break;
    	case MADV_NOHUGEPAGE:
    		/*
    		 * Be somewhat over-protective like KSM for now!
    		 */
    		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
    			return -EINVAL;
    		*vm_flags &= ~VM_HUGEPAGE;
    		*vm_flags |= VM_NOHUGEPAGE;
    		/*
    		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
    		 * this vma even if we leave the mm registered in khugepaged if
    		 * it got registered before VM_NOHUGEPAGE was set.
    		 */
    		break;
    	}
    
    	return 0;
    }
    
    static int __init khugepaged_slab_init(void)
    {
    	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
    					  sizeof(struct mm_slot),
    					  __alignof__(struct mm_slot), 0, NULL);
    	if (!mm_slot_cache)
    		return -ENOMEM;
    
    	return 0;
    }
    
    static void __init khugepaged_slab_exit(void)
    {
    	kmem_cache_destroy(mm_slot_cache);
    }
    
    static inline struct mm_slot *alloc_mm_slot(void)
    {
    	if (!mm_slot_cache)	/* initialization failed */
    		return NULL;
    	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
    }
    
    static inline void free_mm_slot(struct mm_slot *mm_slot)
    {
    	kmem_cache_free(mm_slot_cache, mm_slot);
    }
    
    static struct mm_slot *get_mm_slot(struct mm_struct *mm)
    {
    	struct mm_slot *mm_slot;
    
    	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
    		if (mm == mm_slot->mm)
    			return mm_slot;
    
    	return NULL;
    }
    
    static void insert_to_mm_slots_hash(struct mm_struct *mm,
    				    struct mm_slot *mm_slot)
    {
    	mm_slot->mm = mm;
    	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
    }
    
    static inline int khugepaged_test_exit(struct mm_struct *mm)
    {
    	return atomic_read(&mm->mm_users) == 0;
    }
    
    int __khugepaged_enter(struct mm_struct *mm)
    {
    	struct mm_slot *mm_slot;
    	int wakeup;
    
    	mm_slot = alloc_mm_slot();
    	if (!mm_slot)
    		return -ENOMEM;
    
    	/* __khugepaged_exit() must not run from under us */
    	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
    	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
    		free_mm_slot(mm_slot);
    		return 0;
    	}
    
    	spin_lock(&khugepaged_mm_lock);
    	insert_to_mm_slots_hash(mm, mm_slot);
    	/*
    	 * Insert just behind the scanning cursor, to let the area settle
    	 * down a little.
    	 */
    	wakeup = list_empty(&khugepaged_scan.mm_head);
    	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
    	spin_unlock(&khugepaged_mm_lock);
    
    	atomic_inc(&mm->mm_count);
    	if (wakeup)
    		wake_up_interruptible(&khugepaged_wait);
    
    	return 0;
    }
    
    int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
    			       unsigned long vm_flags)
    {
    	unsigned long hstart, hend;
    	if (!vma->anon_vma)
    		/*
    		 * Not yet faulted in so we will register later in the
    		 * page fault if needed.
    		 */
    		return 0;
    	if (vma->vm_ops)
    		/* khugepaged not yet working on file or special mappings */
    		return 0;
    	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
    	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
    	hend = vma->vm_end & HPAGE_PMD_MASK;
    	if (hstart < hend)
    		return khugepaged_enter(vma, vm_flags);
    	return 0;
    }
    
    void __khugepaged_exit(struct mm_struct *mm)
    {
    	struct mm_slot *mm_slot;
    	int free = 0;
    
    	spin_lock(&khugepaged_mm_lock);
    	mm_slot = get_mm_slot(mm);
    	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
    		hash_del(&mm_slot->hash);
    		list_del(&mm_slot->mm_node);
    		free = 1;
    	}
    	spin_unlock(&khugepaged_mm_lock);
    
    	if (free) {
    		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
    		free_mm_slot(mm_slot);
    		mmdrop(mm);
    	} else if (mm_slot) {
    		/*
    		 * This is required to serialize against
    		 * khugepaged_test_exit() (which is guaranteed to run
    		 * under mmap sem read mode). Stop here (after we
    		 * return all pagetables will be destroyed) until
    		 * khugepaged has finished working on the pagetables
    		 * under the mmap_sem.
    		 */
    		down_write(&mm->mmap_sem);
    		up_write(&mm->mmap_sem);
    	}
    }
    
    static void release_pte_page(struct page *page)
    {
    	/* 0 stands for page_is_file_cache(page) == false */
    	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
    	unlock_page(page);
    	putback_lru_page(page);
    }
    
    static void release_pte_pages(pte_t *pte, pte_t *_pte)
    {
    	while (--_pte >= pte) {
    		pte_t pteval = *_pte;
    		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
    			release_pte_page(pte_page(pteval));
    	}
    }
    
    static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
    					unsigned long address,
    					pte_t *pte)
    {
    	struct page *page;
    	pte_t *_pte;
    	int none_or_zero = 0;
    	bool referenced = false, writable = false;
    	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
    	     _pte++, address += PAGE_SIZE) {
    		pte_t pteval = *_pte;
    		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
    			if (++none_or_zero <= khugepaged_max_ptes_none)
    				continue;
    			else
    				goto out;
    		}
    		if (!pte_present(pteval))
    			goto out;
    		page = vm_normal_page(vma, address, pteval);
    		if (unlikely(!page))
    			goto out;
    
    		VM_BUG_ON_PAGE(PageCompound(page), page);
    		VM_BUG_ON_PAGE(!PageAnon(page), page);
    		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
    
    		/*
    		 * We can do it before isolate_lru_page because the
    		 * page can't be freed from under us. NOTE: PG_lock
    		 * is needed to serialize against split_huge_page
    		 * when invoked from the VM.
    		 */
    		if (!trylock_page(page))
    			goto out;
    
    		/*
    		 * cannot use mapcount: can't collapse if there's a gup pin.
    		 * The page must only be referenced by the scanned process
    		 * and page swap cache.
    		 */
    		if (page_count(page) != 1 + !!PageSwapCache(page)) {
    			unlock_page(page);
    			goto out;
    		}
    		if (pte_write(pteval)) {
    			writable = true;
    		} else {
    			if (PageSwapCache(page) && !reuse_swap_page(page)) {
    				unlock_page(page);
    				goto out;
    			}
    			/*
    			 * Page is not in the swap cache. It can be collapsed
    			 * into a THP.
    			 */
    		}
    
    		/*
    		 * Isolate the page to avoid collapsing an hugepage
    		 * currently in use by the VM.
    		 */
    		if (isolate_lru_page(page)) {
    			unlock_page(page);
    			goto out;
    		}
    		/* 0 stands for page_is_file_cache(page) == false */
    		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
    		VM_BUG_ON_PAGE(!PageLocked(page), page);
    		VM_BUG_ON_PAGE(PageLRU(page), page);
    
    		/* If there is no mapped pte young don't collapse the page */
    		if (pte_young(pteval) || PageReferenced(page) ||
    		    mmu_notifier_test_young(vma->vm_mm, address))
    			referenced = true;
    	}
    	if (likely(referenced && writable))
    		return 1;
    out:
    	release_pte_pages(pte, _pte);
    	return 0;
    }
    
    static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
    				      struct vm_area_struct *vma,
    				      unsigned long address,
    				      spinlock_t *ptl)
    {
    	pte_t *_pte;
    	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
    		pte_t pteval = *_pte;
    		struct page *src_page;
    
    		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
    			clear_user_highpage(page, address);
    			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
    			if (is_zero_pfn(pte_pfn(pteval))) {
    				/*
    				 * ptl mostly unnecessary.
    				 */
    				spin_lock(ptl);
    				/*
    				 * paravirt calls inside pte_clear here are
    				 * superfluous.
    				 */
    				pte_clear(vma->vm_mm, address, _pte);
    				spin_unlock(ptl);
    			}
    		} else {
    			src_page = pte_page(pteval);
    			copy_user_highpage(page, src_page, address, vma);
    			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
    			release_pte_page(src_page);
    			/*
    			 * ptl mostly unnecessary, but preempt has to
    			 * be disabled to update the per-cpu stats
    			 * inside page_remove_rmap().
    			 */
    			spin_lock(ptl);
    			/*
    			 * paravirt calls inside pte_clear here are
    			 * superfluous.
    			 */
    			pte_clear(vma->vm_mm, address, _pte);
    			page_remove_rmap(src_page);
    			spin_unlock(ptl);
    			free_page_and_swap_cache(src_page);
    		}
    
    		address += PAGE_SIZE;
    		page++;
    	}
    }
    
    static void khugepaged_alloc_sleep(void)
    {
    	wait_event_freezable_timeout(khugepaged_wait, false,
    			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
    }
    
    static int khugepaged_node_load[MAX_NUMNODES];
    
    static bool khugepaged_scan_abort(int nid)
    {
    	int i;
    
    	/*
    	 * If zone_reclaim_mode is disabled, then no extra effort is made to
    	 * allocate memory locally.
    	 */
    	if (!zone_reclaim_mode)
    		return false;
    
    	/* If there is a count for this node already, it must be acceptable */
    	if (khugepaged_node_load[nid])
    		return false;
    
    	for (i = 0; i < MAX_NUMNODES; i++) {
    		if (!khugepaged_node_load[i])
    			continue;
    		if (node_distance(nid, i) > RECLAIM_DISTANCE)
    			return true;
    	}
    	return false;
    }
    
    #ifdef CONFIG_NUMA
    static int khugepaged_find_target_node(void)
    {
    	static int last_khugepaged_target_node = NUMA_NO_NODE;
    	int nid, target_node = 0, max_value = 0;
    
    	/* find first node with max normal pages hit */
    	for (nid = 0; nid < MAX_NUMNODES; nid++)
    		if (khugepaged_node_load[nid] > max_value) {
    			max_value = khugepaged_node_load[nid];
    			target_node = nid;
    		}
    
    	/* do some balance if several nodes have the same hit record */
    	if (target_node <= last_khugepaged_target_node)
    		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
    				nid++)
    			if (max_value == khugepaged_node_load[nid]) {
    				target_node = nid;
    				break;
    			}
    
    	last_khugepaged_target_node = target_node;
    	return target_node;
    }
    
    static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
    {
    	if (IS_ERR(*hpage)) {
    		if (!*wait)
    			return false;
    
    		*wait = false;
    		*hpage = NULL;
    		khugepaged_alloc_sleep();
    	} else if (*hpage) {
    		put_page(*hpage);
    		*hpage = NULL;
    	}
    
    	return true;
    }
    
    static struct page *
    khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
    		       struct vm_area_struct *vma, unsigned long address,
    		       int node)
    {
    	VM_BUG_ON_PAGE(*hpage, *hpage);
    
    	/*
    	 * Before allocating the hugepage, release the mmap_sem read lock.
    	 * The allocation can take potentially a long time if it involves
    	 * sync compaction, and we do not need to hold the mmap_sem during
    	 * that. We will recheck the vma after taking it again in write mode.
    	 */
    	up_read(&mm->mmap_sem);
    
    	*hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
    	if (unlikely(!*hpage)) {
    		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
    		*hpage = ERR_PTR(-ENOMEM);
    		return NULL;
    	}
    
    	count_vm_event(THP_COLLAPSE_ALLOC);
    	return *hpage;
    }
    #else
    static int khugepaged_find_target_node(void)
    {
    	return 0;
    }
    
    static inline struct page *alloc_hugepage(int defrag)
    {
    	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
    			   HPAGE_PMD_ORDER);
    }
    
    static struct page *khugepaged_alloc_hugepage(bool *wait)
    {
    	struct page *hpage;
    
    	do {
    		hpage = alloc_hugepage(khugepaged_defrag());
    		if (!hpage) {
    			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
    			if (!*wait)
    				return NULL;
    
    			*wait = false;
    			khugepaged_alloc_sleep();
    		} else
    			count_vm_event(THP_COLLAPSE_ALLOC);
    	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
    
    	return hpage;
    }
    
    static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
    {
    	if (!*hpage)
    		*hpage = khugepaged_alloc_hugepage(wait);
    
    	if (unlikely(!*hpage))
    		return false;
    
    	return true;
    }
    
    static struct page *
    khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
    		       struct vm_area_struct *vma, unsigned long address,
    		       int node)
    {
    	up_read(&mm->mmap_sem);
    	VM_BUG_ON(!*hpage);
    
    	return  *hpage;
    }
    #endif
    
    static bool hugepage_vma_check(struct vm_area_struct *vma)
    {
    	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
    	    (vma->vm_flags & VM_NOHUGEPAGE))
    		return false;
    
    	if (!vma->anon_vma || vma->vm_ops)
    		return false;
    	if (is_vma_temporary_stack(vma))
    		return false;
    	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
    	return true;
    }
    
    static void collapse_huge_page(struct mm_struct *mm,
    				   unsigned long address,
    				   struct page **hpage,
    				   struct vm_area_struct *vma,
    				   int node)
    {
    	pmd_t *pmd, _pmd;
    	pte_t *pte;
    	pgtable_t pgtable;
    	struct page *new_page;
    	spinlock_t *pmd_ptl, *pte_ptl;
    	int isolated;
    	unsigned long hstart, hend;
    	struct mem_cgroup *memcg;
    	unsigned long mmun_start;	/* For mmu_notifiers */
    	unsigned long mmun_end;		/* For mmu_notifiers */
    	gfp_t gfp;
    
    	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
    
    	/* Only allocate from the target node */
    	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
    		__GFP_THISNODE;
    
    	/* release the mmap_sem read lock. */
    	new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
    	if (!new_page)
    		return;
    
    	if (unlikely(mem_cgroup_try_charge(new_page, mm,
    					   gfp, &memcg)))
    		return;
    
    	/*
    	 * Prevent all access to pagetables with the exception of
    	 * gup_fast later hanlded by the ptep_clear_flush and the VM
    	 * handled by the anon_vma lock + PG_lock.
    	 */
    	down_write(&mm->mmap_sem);
    	if (unlikely(khugepaged_test_exit(mm)))
    		goto out;
    
    	vma = find_vma(mm, address);
    	if (!vma)
    		goto out;
    	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
    	hend = vma->vm_end & HPAGE_PMD_MASK;
    	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
    		goto out;
    	if (!hugepage_vma_check(vma))
    		goto out;
    	pmd = mm_find_pmd(mm, address);
    	if (!pmd)
    		goto out;
    
    	anon_vma_lock_write(vma->anon_vma);
    
    	pte = pte_offset_map(pmd, address);
    	pte_ptl = pte_lockptr(mm, pmd);
    
    	mmun_start = address;
    	mmun_end   = address + HPAGE_PMD_SIZE;
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
    	/*
    	 * After this gup_fast can't run anymore. This also removes
    	 * any huge TLB entry from the CPU so we won't allow
    	 * huge and small TLB entries for the same virtual address
    	 * to avoid the risk of CPU bugs in that area.
    	 */
    	_pmd = pmdp_clear_flush(vma, address, pmd);
    	spin_unlock(pmd_ptl);
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    
    	spin_lock(pte_ptl);
    	isolated = __collapse_huge_page_isolate(vma, address, pte);
    	spin_unlock(pte_ptl);
    
    	if (unlikely(!isolated)) {
    		pte_unmap(pte);
    		spin_lock(pmd_ptl);
    		BUG_ON(!pmd_none(*pmd));
    		/*
    		 * We can only use set_pmd_at when establishing
    		 * hugepmds and never for establishing regular pmds that
    		 * points to regular pagetables. Use pmd_populate for that
    		 */
    		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
    		spin_unlock(pmd_ptl);
    		anon_vma_unlock_write(vma->anon_vma);
    		goto out;
    	}
    
    	/*
    	 * All pages are isolated and locked so anon_vma rmap
    	 * can't run anymore.
    	 */
    	anon_vma_unlock_write(vma->anon_vma);
    
    	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
    	pte_unmap(pte);
    	__SetPageUptodate(new_page);
    	pgtable = pmd_pgtable(_pmd);
    
    	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
    	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
    
    	/*
    	 * spin_lock() below is not the equivalent of smp_wmb(), so
    	 * this is needed to avoid the copy_huge_page writes to become
    	 * visible after the set_pmd_at() write.
    	 */
    	smp_wmb();
    
    	spin_lock(pmd_ptl);
    	BUG_ON(!pmd_none(*pmd));
    	page_add_new_anon_rmap(new_page, vma, address);
    	mem_cgroup_commit_charge(new_page, memcg, false);
    	lru_cache_add_active_or_unevictable(new_page, vma);
    	pgtable_trans_huge_deposit(mm, pmd, pgtable);
    	set_pmd_at(mm, address, pmd, _pmd);
    	update_mmu_cache_pmd(vma, address, pmd);
    	spin_unlock(pmd_ptl);
    
    	*hpage = NULL;
    
    	khugepaged_pages_collapsed++;
    out_up_write:
    	up_write(&mm->mmap_sem);
    	return;
    
    out:
    	mem_cgroup_cancel_charge(new_page, memcg);
    	goto out_up_write;
    }
    
    static int khugepaged_scan_pmd(struct mm_struct *mm,
    			       struct vm_area_struct *vma,
    			       unsigned long address,
    			       struct page **hpage)
    {
    	pmd_t *pmd;
    	pte_t *pte, *_pte;
    	int ret = 0, none_or_zero = 0;
    	struct page *page;
    	unsigned long _address;
    	spinlock_t *ptl;
    	int node = NUMA_NO_NODE;
    	bool writable = false, referenced = false;
    
    	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
    
    	pmd = mm_find_pmd(mm, address);
    	if (!pmd)
    		goto out;
    
    	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
    	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
    	     _pte++, _address += PAGE_SIZE) {
    		pte_t pteval = *_pte;
    		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
    			if (++none_or_zero <= khugepaged_max_ptes_none)
    				continue;
    			else
    				goto out_unmap;
    		}
    		if (!pte_present(pteval))
    			goto out_unmap;
    		if (pte_write(pteval))
    			writable = true;
    
    		page = vm_normal_page(vma, _address, pteval);
    		if (unlikely(!page))
    			goto out_unmap;
    		/*
    		 * Record which node the original page is from and save this
    		 * information to khugepaged_node_load[].
    		 * Khupaged will allocate hugepage from the node has the max
    		 * hit record.
    		 */
    		node = page_to_nid(page);
    		if (khugepaged_scan_abort(node))
    			goto out_unmap;
    		khugepaged_node_load[node]++;
    		VM_BUG_ON_PAGE(PageCompound(page), page);
    		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
    			goto out_unmap;
    		/*
    		 * cannot use mapcount: can't collapse if there's a gup pin.
    		 * The page must only be referenced by the scanned process
    		 * and page swap cache.
    		 */
    		if (page_count(page) != 1 + !!PageSwapCache(page))
    			goto out_unmap;
    		if (pte_young(pteval) || PageReferenced(page) ||
    		    mmu_notifier_test_young(vma->vm_mm, address))
    			referenced = true;
    	}
    	if (referenced && writable)
    		ret = 1;
    out_unmap:
    	pte_unmap_unlock(pte, ptl);
    	if (ret) {
    		node = khugepaged_find_target_node();
    		/* collapse_huge_page will return with the mmap_sem released */
    		collapse_huge_page(mm, address, hpage, vma, node);
    	}
    out:
    	return ret;
    }
    
    static void collect_mm_slot(struct mm_slot *mm_slot)
    {
    	struct mm_struct *mm = mm_slot->mm;
    
    	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
    
    	if (khugepaged_test_exit(mm)) {
    		/* free mm_slot */
    		hash_del(&mm_slot->hash);
    		list_del(&mm_slot->mm_node);
    
    		/*
    		 * Not strictly needed because the mm exited already.
    		 *
    		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
    		 */
    
    		/* khugepaged_mm_lock actually not necessary for the below */
    		free_mm_slot(mm_slot);
    		mmdrop(mm);
    	}
    }
    
    static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
    					    struct page **hpage)
    	__releases(&khugepaged_mm_lock)
    	__acquires(&khugepaged_mm_lock)
    {
    	struct mm_slot *mm_slot;
    	struct mm_struct *mm;
    	struct vm_area_struct *vma;
    	int progress = 0;
    
    	VM_BUG_ON(!pages);
    	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
    
    	if (khugepaged_scan.mm_slot)
    		mm_slot = khugepaged_scan.mm_slot;
    	else {
    		mm_slot = list_entry(khugepaged_scan.mm_head.next,
    				     struct mm_slot, mm_node);
    		khugepaged_scan.address = 0;
    		khugepaged_scan.mm_slot = mm_slot;
    	}
    	spin_unlock(&khugepaged_mm_lock);
    
    	mm = mm_slot->mm;
    	down_read(&mm->mmap_sem);
    	if (unlikely(khugepaged_test_exit(mm)))
    		vma = NULL;
    	else
    		vma = find_vma(mm, khugepaged_scan.address);
    
    	progress++;
    	for (; vma; vma = vma->vm_next) {
    		unsigned long hstart, hend;
    
    		cond_resched();
    		if (unlikely(khugepaged_test_exit(mm))) {
    			progress++;
    			break;
    		}
    		if (!hugepage_vma_check(vma)) {
    skip:
    			progress++;
    			continue;
    		}
    		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
    		hend = vma->vm_end & HPAGE_PMD_MASK;
    		if (hstart >= hend)
    			goto skip;
    		if (khugepaged_scan.address > hend)
    			goto skip;
    		if (khugepaged_scan.address < hstart)
    			khugepaged_scan.address = hstart;
    		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
    
    		while (khugepaged_scan.address < hend) {
    			int ret;
    			cond_resched();
    			if (unlikely(khugepaged_test_exit(mm)))
    				goto breakouterloop;
    
    			VM_BUG_ON(khugepaged_scan.address < hstart ||
    				  khugepaged_scan.address + HPAGE_PMD_SIZE >
    				  hend);
    			ret = khugepaged_scan_pmd(mm, vma,
    						  khugepaged_scan.address,
    						  hpage);
    			/* move to next address */
    			khugepaged_scan.address += HPAGE_PMD_SIZE;
    			progress += HPAGE_PMD_NR;
    			if (ret)
    				/* we released mmap_sem so break loop */
    				goto breakouterloop_mmap_sem;
    			if (progress >= pages)
    				goto breakouterloop;
    		}
    	}
    breakouterloop:
    	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
    breakouterloop_mmap_sem:
    
    	spin_lock(&khugepaged_mm_lock);
    	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
    	/*
    	 * Release the current mm_slot if this mm is about to die, or
    	 * if we scanned all vmas of this mm.
    	 */
    	if (khugepaged_test_exit(mm) || !vma) {
    		/*
    		 * Make sure that if mm_users is reaching zero while
    		 * khugepaged runs here, khugepaged_exit will find
    		 * mm_slot not pointing to the exiting mm.
    		 */
    		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
    			khugepaged_scan.mm_slot = list_entry(
    				mm_slot->mm_node.next,
    				struct mm_slot, mm_node);
    			khugepaged_scan.address = 0;
    		} else {
    			khugepaged_scan.mm_slot = NULL;
    			khugepaged_full_scans++;
    		}
    
    		collect_mm_slot(mm_slot);
    	}
    
    	return progress;
    }
    
    static int khugepaged_has_work(void)
    {
    	return !list_empty(&khugepaged_scan.mm_head) &&
    		khugepaged_enabled();
    }
    
    static int khugepaged_wait_event(void)
    {
    	return !list_empty(&khugepaged_scan.mm_head) ||
    		kthread_should_stop();
    }
    
    static void khugepaged_do_scan(void)
    {
    	struct page *hpage = NULL;
    	unsigned int progress = 0, pass_through_head = 0;
    	unsigned int pages = khugepaged_pages_to_scan;
    	bool wait = true;
    
    	barrier(); /* write khugepaged_pages_to_scan to local stack */
    
    	while (progress < pages) {
    		if (!khugepaged_prealloc_page(&hpage, &wait))
    			break;
    
    		cond_resched();
    
    		if (unlikely(kthread_should_stop() || freezing(current)))
    			break;
    
    		spin_lock(&khugepaged_mm_lock);
    		if (!khugepaged_scan.mm_slot)
    			pass_through_head++;
    		if (khugepaged_has_work() &&
    		    pass_through_head < 2)
    			progress += khugepaged_scan_mm_slot(pages - progress,
    							    &hpage);
    		else
    			progress = pages;
    		spin_unlock(&khugepaged_mm_lock);
    	}
    
    	if (!IS_ERR_OR_NULL(hpage))
    		put_page(hpage);
    }
    
    static void khugepaged_wait_work(void)
    {
    	try_to_freeze();
    
    	if (khugepaged_has_work()) {
    		if (!khugepaged_scan_sleep_millisecs)
    			return;
    
    		wait_event_freezable_timeout(khugepaged_wait,
    					     kthread_should_stop(),
    			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
    		return;
    	}
    
    	if (khugepaged_enabled())
    		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
    }
    
    static int khugepaged(void *none)
    {
    	struct mm_slot *mm_slot;
    
    	set_freezable();
    	set_user_nice(current, MAX_NICE);
    
    	while (!kthread_should_stop()) {
    		khugepaged_do_scan();
    		khugepaged_wait_work();
    	}
    
    	spin_lock(&khugepaged_mm_lock);
    	mm_slot = khugepaged_scan.mm_slot;
    	khugepaged_scan.mm_slot = NULL;
    	if (mm_slot)
    		collect_mm_slot(mm_slot);
    	spin_unlock(&khugepaged_mm_lock);
    	return 0;
    }
    
    static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
    		unsigned long haddr, pmd_t *pmd)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	pgtable_t pgtable;
    	pmd_t _pmd;
    	int i;
    
    	pmdp_clear_flush_notify(vma, haddr, pmd);
    	/* leave pmd empty until pte is filled */
    
    	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
    	pmd_populate(mm, &_pmd, pgtable);
    
    	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
    		pte_t *pte, entry;
    		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
    		entry = pte_mkspecial(entry);
    		pte = pte_offset_map(&_pmd, haddr);
    		VM_BUG_ON(!pte_none(*pte));
    		set_pte_at(mm, haddr, pte, entry);
    		pte_unmap(pte);
    	}
    	smp_wmb(); /* make pte visible before pmd */
    	pmd_populate(mm, pmd, pgtable);
    	put_huge_zero_page();
    }
    
    void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
    		pmd_t *pmd)
    {
    	spinlock_t *ptl;
    	struct page *page;
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long haddr = address & HPAGE_PMD_MASK;
    	unsigned long mmun_start;	/* For mmu_notifiers */
    	unsigned long mmun_end;		/* For mmu_notifiers */
    
    	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
    
    	mmun_start = haddr;
    	mmun_end   = haddr + HPAGE_PMD_SIZE;
    again:
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(!pmd_trans_huge(*pmd))) {
    		spin_unlock(ptl);
    		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    		return;
    	}
    	if (is_huge_zero_pmd(*pmd)) {
    		__split_huge_zero_page_pmd(vma, haddr, pmd);
    		spin_unlock(ptl);
    		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    		return;
    	}
    	page = pmd_page(*pmd);
    	VM_BUG_ON_PAGE(!page_count(page), page);
    	get_page(page);
    	spin_unlock(ptl);
    	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    
    	split_huge_page(page);
    
    	put_page(page);
    
    	/*
    	 * We don't always have down_write of mmap_sem here: a racing
    	 * do_huge_pmd_wp_page() might have copied-on-write to another
    	 * huge page before our split_huge_page() got the anon_vma lock.
    	 */
    	if (unlikely(pmd_trans_huge(*pmd)))
    		goto again;
    }
    
    void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
    		pmd_t *pmd)
    {
    	struct vm_area_struct *vma;
    
    	vma = find_vma(mm, address);
    	BUG_ON(vma == NULL);
    	split_huge_page_pmd(vma, address, pmd);
    }
    
    static void split_huge_page_address(struct mm_struct *mm,
    				    unsigned long address)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    
    	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
    
    	pgd = pgd_offset(mm, address);
    	if (!pgd_present(*pgd))
    		return;
    
    	pud = pud_offset(pgd, address);
    	if (!pud_present(*pud))
    		return;
    
    	pmd = pmd_offset(pud, address);
    	if (!pmd_present(*pmd))
    		return;
    	/*
    	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
    	 * materialize from under us.
    	 */
    	split_huge_page_pmd_mm(mm, address, pmd);
    }
    
    void __vma_adjust_trans_huge(struct vm_area_struct *vma,
    			     unsigned long start,
    			     unsigned long end,
    			     long adjust_next)
    {
    	/*
    	 * If the new start address isn't hpage aligned and it could
    	 * previously contain an hugepage: check if we need to split
    	 * an huge pmd.
    	 */
    	if (start & ~HPAGE_PMD_MASK &&
    	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
    	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
    		split_huge_page_address(vma->vm_mm, start);
    
    	/*
    	 * If the new end address isn't hpage aligned and it could
    	 * previously contain an hugepage: check if we need to split
    	 * an huge pmd.
    	 */
    	if (end & ~HPAGE_PMD_MASK &&
    	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
    	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
    		split_huge_page_address(vma->vm_mm, end);
    
    	/*
    	 * If we're also updating the vma->vm_next->vm_start, if the new
    	 * vm_next->vm_start isn't page aligned and it could previously
    	 * contain an hugepage: check if we need to split an huge pmd.
    	 */
    	if (adjust_next > 0) {
    		struct vm_area_struct *next = vma->vm_next;
    		unsigned long nstart = next->vm_start;
    		nstart += adjust_next << PAGE_SHIFT;
    		if (nstart & ~HPAGE_PMD_MASK &&
    		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
    		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
    			split_huge_page_address(next->vm_mm, nstart);
    	}
    }