Newer
Older
/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/huge_mm.h>
#include <asm/pgtable.h>
/*
* swapper_space is a fiction, retained to simplify the path through
static const struct address_space_operations swap_aops = {

Mel Gorman
committed
.set_page_dirty = swap_set_page_dirty,
#ifdef CONFIG_MIGRATION
.migratepage = migrate_page,
struct address_space *swapper_spaces[MAX_SWAPFILES];
static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
bool swap_vma_readahead = true;
#define SWAP_RA_MAX_ORDER_DEFAULT 3
static int swap_ra_max_order = SWAP_RA_MAX_ORDER_DEFAULT;
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
#define SWAP_RA_VAL(addr, win, hits) \
(((addr) & PAGE_MASK) | \
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
((hits) & SWAP_RA_HITS_MASK))
/* Initial readahead hits is 4 to start up with a small window */
#define GET_SWAP_RA_VAL(vma) \
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
static struct {
unsigned long add_total;
unsigned long del_total;
unsigned long find_success;
unsigned long find_total;
} swap_cache_info;
unsigned long total_swapcache_pages(void)
{
unsigned long ret = 0;
rcu_read_lock();
for (i = 0; i < MAX_SWAPFILES; i++) {
/*
* The corresponding entries in nr_swapper_spaces and
* swapper_spaces will be reused only after at least
* one grace period. So it is impossible for them
* belongs to different usage.
*/
nr = nr_swapper_spaces[i];
spaces = rcu_dereference(swapper_spaces[i]);
if (!nr || !spaces)
continue;
for (j = 0; j < nr; j++)
ret += spaces[j].nrpages;
}
rcu_read_unlock();
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
printk("%lu pages in swap cache\n", total_swapcache_pages());
printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.find_success, swap_cache_info.find_total);
printk("Free swap = %ldkB\n",
get_nr_swap_pages() << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
* __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
int error, i, nr = hpage_nr_pages(page);
struct address_space *address_space;
pgoff_t idx = swp_offset(entry);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageSwapCache(page), page);
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
for (i = 0; i < nr; i++) {
set_page_private(page + i, entry.val + i);
error = radix_tree_insert(&address_space->page_tree,
idx + i, page + i);
if (unlikely(error))
break;
if (likely(!error)) {
address_space->nrpages += nr;
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
ADD_CACHE_INFO(add_total, nr);
} else {
/*
* Only the context which have set SWAP_HAS_CACHE flag
* would call add_to_swap_cache().
* So add_to_swap_cache() doesn't returns -EEXIST.
*/
VM_BUG_ON(error == -EEXIST);
set_page_private(page + i, 0UL);
while (i--) {
radix_tree_delete(&address_space->page_tree, idx + i);
set_page_private(page + i, 0UL);
}
spin_unlock_irq(&address_space->tree_lock);
return error;
}
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
int error;
error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
error = __add_to_swap_cache(page, entry);
return error;
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct page *page)
{
struct address_space *address_space;
int i, nr = hpage_nr_pages(page);
swp_entry_t entry;
pgoff_t idx;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
VM_BUG_ON_PAGE(PageWriteback(page), page);
entry.val = page_private(page);
address_space = swap_address_space(entry);
idx = swp_offset(entry);
for (i = 0; i < nr; i++) {
radix_tree_delete(&address_space->page_tree, idx + i);
set_page_private(page + i, 0);
}
address_space->nrpages -= nr;
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
ADD_CACHE_INFO(del_total, nr);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
*/
int add_to_swap(struct page *page)
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageUptodate(page), page);
entry = get_swap_page(page);
if (mem_cgroup_try_charge_swap(page, entry))
/*
* Radix-tree node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
*/
err = add_to_swap_cache(page, entry,
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
/* -ENOMEM radix-tree allocation failure */
if (err)
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
return 1;
fail:
put_swap_page(page, entry);
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache and locked.
* It will never put the page into the free list,
* the caller has a reference on the page.
*/
void delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
struct address_space *address_space;
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
spin_unlock_irq(&address_space->tree_lock);
put_swap_page(page, entry);
page_ref_sub(page, hpage_nr_pages(page));
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check for PageSwapCache without the page lock
* here because we are going to recheck again inside
* try_to_free_swap() _with_ the lock.
* - Marcelo
*/
static inline void free_swap_cache(struct page *page)
{
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
try_to_free_swap(page);
unlock_page(page);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
if (!is_huge_zero_page(page))
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct page **pages, int nr)
{
struct page **pagep = pages;
int i;
for (i = 0; i < nr; i++)
free_swap_cache(pagep[i]);
release_pages(pagep, nr, false);
}
/*
* Lookup a swap entry in the swap cache. A found page will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the page
* lock before returning.
*/
struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
unsigned long addr)
unsigned long ra_info;
int win, hits, readahead;
page = find_get_page(swap_address_space(entry), swp_offset(entry));
INC_CACHE_INFO(find_total);
if (page) {
if (unlikely(PageTransCompound(page)))
return page;
readahead = TestClearPageReadahead(page);
if (vma) {
ra_info = GET_SWAP_RA_VAL(vma);
win = SWAP_RA_WIN(ra_info);
hits = SWAP_RA_HITS(ra_info);
if (readahead)
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(addr, win, hits));
}
if (readahead) {
if (!vma)
atomic_inc(&swapin_readahead_hits);
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
bool *new_page_allocated)
struct address_space *swapper_space = swap_address_space(entry);
*new_page_allocated = false;
do {
/*
* First check the swap cache. Since this is normally
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
found_page = find_get_page(swapper_space, swp_offset(entry));
/*
* Just skip read ahead for unused swap slot.
* During swap_off when swap_slot_cache is disabled,
* we have to handle the race between putting
* swap entry in swap cache and marking swap slot
* as SWAP_HAS_CACHE. That's done in later part of code or
* else swap_off will be aborted if we return NULL.
*/
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
break;
/*
* Get a new page to read into from swap.
*/
if (!new_page) {
new_page = alloc_page_vma(gfp_mask, vma, addr);
if (!new_page)
break; /* Out of memory */
}
/*
* call radix_tree_preload() while we can wait.
*/
err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
/*
* Swap entry may have been freed since our caller observed it.
*/
err = swapcache_prepare(entry);

Rafael Aquini
committed
if (err == -EEXIST) {

Rafael Aquini
committed
/*
* We might race against get_swap_page() and stumble
* across a SWAP_HAS_CACHE swap_map entry whose page
* has not been brought into the swapcache yet.

Rafael Aquini
committed
*/
cond_resched();
}
if (err) { /* swp entry is obsolete ? */
radix_tree_preload_end();
/* May fail (-ENOMEM) if radix-tree node allocation failed. */
__SetPageLocked(new_page);
__SetPageSwapBacked(new_page);
err = __add_to_swap_cache(new_page, entry);
/*
* Initiate read into locked page and return.
*/
lru_cache_add_anon(new_page);
*new_page_allocated = true;
__ClearPageLocked(new_page);
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
put_swap_page(new_page, entry);
put_page(new_page);
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*/
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr, bool do_poll)
{
bool page_was_allocated;
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
vma, addr, &page_was_allocated);
if (page_was_allocated)
return retpage;
}
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
unsigned long offset,
int hits,
int max_pages,
int prev_win)
/*
* This heuristic has been found to work well on both sequential and
* random loads, swapping to hard disk or to SSD: please don't ask
* what the "+ 2" means, it just happens to work well, that's all.
*/
if (pages == 2) {
/*
* We can have no readahead hits to judge by: but must not get
* stuck here forever, so check for an adjacent offset instead
* (and don't even bother to check whether swap type is same).
*/
if (offset != prev_offset + 1 && offset != prev_offset - 1)
pages = 1;
} else {
unsigned int roundup = 4;
while (roundup < pages)
roundup <<= 1;
pages = roundup;
}
if (pages > max_pages)
pages = max_pages;
/* Don't shrink readahead too fast */
if (pages < last_ra)
pages = last_ra;
return pages;
}
static unsigned long swapin_nr_pages(unsigned long offset)
{
static unsigned long prev_offset;
unsigned int hits, pages, max_pages;
static atomic_t last_readahead_pages;
max_pages = 1 << READ_ONCE(page_cluster);
if (max_pages <= 1)
return 1;
hits = atomic_xchg(&swapin_readahead_hits, 0);
pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
atomic_read(&last_readahead_pages));
if (!hits)
prev_offset = offset;
atomic_set(&last_readahead_pages, pages);
return pages;
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @vma: user vma this address belongs to
* @addr: target address for mempolicy
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* This has been extended to use the NUMA policies from the mm triggering
* the readahead.
*
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
unsigned long entry_offset = swp_offset(entry);
unsigned long offset = entry_offset;
unsigned long start_offset, end_offset;
unsigned long mask;
mask = swapin_nr_pages(offset) - 1;
if (!mask)
goto skip;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
page = __read_swap_cache_async(
swp_entry(swp_type(entry), offset),
gfp_mask, vma, addr, &page_allocated);
if (page_allocated) {
swap_readpage(page, false);
if (offset != entry_offset &&
likely(!PageTransCompound(page))) {
SetPageReadahead(page);
count_vm_event(SWAP_RA);
}
put_page(page);
blk_finish_plug(&plug);
lru_add_drain(); /* Push any new pages onto the LRU now */
return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
{
struct address_space *spaces, *space;
unsigned int i, nr;
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
if (!spaces)
return -ENOMEM;
for (i = 0; i < nr; i++) {
space = spaces + i;
INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
atomic_set(&space->i_mmap_writable, 0);
space->a_ops = &swap_aops;
/* swap cache doesn't use writeback related tags */
mapping_set_no_writeback_tags(space);
spin_lock_init(&space->tree_lock);
}
nr_swapper_spaces[type] = nr;
rcu_assign_pointer(swapper_spaces[type], spaces);
return 0;
}
void exit_swap_address_space(unsigned int type)
{
struct address_space *spaces;
spaces = swapper_spaces[type];
nr_swapper_spaces[type] = 0;
rcu_assign_pointer(swapper_spaces[type], NULL);
synchronize_rcu();
kvfree(spaces);
}
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
unsigned long faddr,
unsigned long lpfn,
unsigned long rpfn,
unsigned long *start,
unsigned long *end)
{
*start = max3(lpfn, PFN_DOWN(vma->vm_start),
PFN_DOWN(faddr & PMD_MASK));
*end = min3(rpfn, PFN_DOWN(vma->vm_end),
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
}
struct page *swap_readahead_detect(struct vm_fault *vmf,
struct vma_swap_readahead *swap_ra)
{
struct vm_area_struct *vma = vmf->vma;
unsigned long swap_ra_info;
struct page *page;
swp_entry_t entry;
unsigned long faddr, pfn, fpfn;
unsigned long start, end;
pte_t *pte;
unsigned int max_win, hits, prev_win, win, left;
#ifndef CONFIG_64BIT
pte_t *tpte;
#endif
faddr = vmf->address;
entry = pte_to_swp_entry(vmf->orig_pte);
if ((unlikely(non_swap_entry(entry))))
return NULL;
page = lookup_swap_cache(entry, vma, faddr);
if (page)
return page;
max_win = 1 << READ_ONCE(swap_ra_max_order);
if (max_win == 1) {
swap_ra->win = 1;
return NULL;
}
fpfn = PFN_DOWN(faddr);
swap_ra_info = GET_SWAP_RA_VAL(vma);
pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
prev_win = SWAP_RA_WIN(swap_ra_info);
hits = SWAP_RA_HITS(swap_ra_info);
swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
max_win, prev_win);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(faddr, win, 0));
if (win == 1)
return NULL;
/* Copy the PTEs because the page table may be unmapped */
if (fpfn == pfn + 1)
swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
else if (pfn == fpfn + 1)
swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
&start, &end);
else {
left = (win - 1) / 2;
swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
&start, &end);
}
swap_ra->nr_pte = end - start;
swap_ra->offset = fpfn - start;
pte = vmf->pte - swap_ra->offset;
#ifdef CONFIG_64BIT
swap_ra->ptes = pte;
#else
tpte = swap_ra->ptes;
for (pfn = start; pfn != end; pfn++)
*tpte++ = *pte++;
#endif
return NULL;
}
struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
struct vm_fault *vmf,
struct vma_swap_readahead *swap_ra)
{
struct blk_plug plug;
struct vm_area_struct *vma = vmf->vma;
struct page *page;
pte_t *pte, pentry;
swp_entry_t entry;
unsigned int i;
bool page_allocated;
if (swap_ra->win == 1)
goto skip;
blk_start_plug(&plug);
for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
i++, pte++) {
pentry = *pte;
if (pte_none(pentry))
continue;
if (pte_present(pentry))
continue;
entry = pte_to_swp_entry(pentry);
if (unlikely(non_swap_entry(entry)))
continue;
page = __read_swap_cache_async(entry, gfp_mask, vma,
vmf->address, &page_allocated);
if (!page)
continue;
if (page_allocated) {
swap_readpage(page, false);
if (i != swap_ra->offset &&
likely(!PageTransCompound(page))) {
SetPageReadahead(page);
count_vm_event(SWAP_RA);
}
}
put_page(page);
}
blk_finish_plug(&plug);
lru_add_drain();
skip:
return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
swap_ra->win == 1);
}
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#ifdef CONFIG_SYSFS
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
}
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
swap_vma_readahead = true;
else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
swap_vma_readahead = false;
else
return -EINVAL;
return count;
}
static struct kobj_attribute vma_ra_enabled_attr =
__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
vma_ra_enabled_store);
static ssize_t vma_ra_max_order_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", swap_ra_max_order);
}
static ssize_t vma_ra_max_order_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err, v;
err = kstrtoint(buf, 10, &v);
if (err || v > SWAP_RA_ORDER_CEILING || v <= 0)
return -EINVAL;
swap_ra_max_order = v;
return count;
}
static struct kobj_attribute vma_ra_max_order_attr =
__ATTR(vma_ra_max_order, 0644, vma_ra_max_order_show,
vma_ra_max_order_store);
static struct attribute *swap_attrs[] = {
&vma_ra_enabled_attr.attr,
&vma_ra_max_order_attr.attr,
NULL,
};
static struct attribute_group swap_attr_group = {
.attrs = swap_attrs,
};
static int __init swap_init_sysfs(void)
{
int err;
struct kobject *swap_kobj;
swap_kobj = kobject_create_and_add("swap", mm_kobj);
if (!swap_kobj) {
pr_err("failed to create swap kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(swap_kobj, &swap_attr_group);
if (err) {
pr_err("failed to register swap group\n");
goto delete_obj;
}
return 0;
delete_obj:
kobject_put(swap_kobj);
return err;
}
subsys_initcall(swap_init_sysfs);
#endif